TWI525974B - 基於分切合整之直流/直流轉換器電流補償控制方法 - Google Patents

基於分切合整之直流/直流轉換器電流補償控制方法 Download PDF

Info

Publication number
TWI525974B
TWI525974B TW103142696A TW103142696A TWI525974B TW I525974 B TWI525974 B TW I525974B TW 103142696 A TW103142696 A TW 103142696A TW 103142696 A TW103142696 A TW 103142696A TW I525974 B TWI525974 B TW I525974B
Authority
TW
Taiwan
Prior art keywords
converter
current
control method
output voltage
inductance
Prior art date
Application number
TW103142696A
Other languages
English (en)
Other versions
TW201622325A (zh
Inventor
Tsai-Fu Wu
Tin-Hao Chang
Li-Chun Lin
Chih-Hao Chang
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW103142696A priority Critical patent/TWI525974B/zh
Priority to US14/672,719 priority patent/US9391513B2/en
Application granted granted Critical
Publication of TWI525974B publication Critical patent/TWI525974B/zh
Publication of TW201622325A publication Critical patent/TW201622325A/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

基於分切合整之直流/直流轉換器電流補償控制方法
本發明係有關於一種基於分切合整之直流/直流轉換器電流補償  控制方法,尤指涉及一種電子電路控制方法,特別係指可允許寬廣感值變化之直流/直流轉換器電流補償控制方法者。
能源是人類社會賴以生存之物質基礎,亦是社會與經濟發展之重 要資源。自工業革命以來,煤油、石油與天然氣等化石燃料,逐漸成為生產與生活之主要能源。然而,當今社會過量消耗化石能源,使得能源危機與環境保護問題日益突顯,因此做為理想替代能源之綠色能源正如火如荼的發展。此類綠色能源如太陽能發電需要一最大功率追蹤器與充放電器電路來完成整個直流供電系統,而傳統對直流系統輸出電壓穩壓之機制,僅對輸出電壓單一訊號作處理,而忽略對電感電流之控制與保護,導致容易因過流造成功率元件燒毀。
因此後來衍生出對電流控制之控制方法,如Brad Bryant等人於 2005年提出之峰值電流模式控制(Peak Current-Mode Control, PCMC;參考文獻:Brad Bryant and Marian K. Kazimierczuk, "Modeling the Closed-Current Loop of PWM Boost DC–DC Converters Operating in CCM With Peak Current-Mode Control, " IEEE Trans. on Circuits and Systems, Vol. 52, No. 11, Nov. 2005.)與Yingyi Yan等人於2014年提出之平均值電流模式控制(Average Current-Mode Control, ACMC;參考文獻:Yingyi Yan, Fred C. Lee, Paolo Mattavelli and Pei-Hsin Liu, "I2 Average Current Mode Control for Switching Converters, " IEEE Trans. on Power Electronics, Vol. 29, No. 4, Apr. 2014.)等透過電流內迴路來控制與保護開關元件,但此控制法仍然存在一些缺點。
Lloyd Dixon曾於文獻(Lloyd H. Dixon,“Average Current Mode Control of Switching Power Supplies,” Unitrode Application, Vol. 3, pp. 356-359, 1999.)中說明PCMC之缺點為其峰值與平均值之誤差量造成控制上之失真,且抗雜訊干擾能力低。由於PCMC之控制原理為其電感電流峰值頂到其參考電流指令之值後即切換開關截止,而非其電流平均值與參考電流指令比較,當電感電流漣波大時,會因電流峰值與平均值誤差量造成責任比率下降而影響輸出電壓穩壓機制。
Tsai-Fu Wu等人另於文獻(Tsai-Fu Wu, Chih-Hao Chang, Li-Chiun Lin, and Yung-Ruei Chang, "Current Improvement  for a 3φ Bi-directional Inverter with Wide Inductance Variation, " 8th International Conference on Power Electronics - ECCE Asia, May 30-June 3, 2011.)中說明ACMC之缺點為輸出電壓響應速度慢。ACMC在電流內迴路上多了一組濾波器,可濾除瞬間的電感電流,解決PCMC因電流峰值與平均值之誤差量造成控制上之失真,亦能濾除因功率元件切換時造成之電流漣波,因而相較於PCMC,ACMC擁有較好之抗雜訊干擾能力。惟其多了一組濾波器,無疑增加設計上之困難度,亦相對降低輸出電壓響應速度。故,ㄧ般習用者係無法符合使用者於實際使用時之所需。
本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提 供一種包含可允許電感變化以及分切合整數位控制之基於分切合整之直流/直流轉換器電流補償控制方法。
本發明之次要目的係在於,提供一種可快速調節迴路增益,改善 ACMC因電流內迴路之濾波器造成響應速度降低之缺點之基於分切合整之直流/直流轉換器電流補償控制方法。
本發明之另一目的係在於,提供一種採用載波中心點電流取樣, 能夠確保在一個切換週期中皆能夠取到平均電感電流值,如此即能夠解決PCMC因峰值與平均值之誤差量造成控制上之失真之基於分切合整之直流/直流轉換器電流補償控制方法。
本發明之再一目的係在於,提供一種包含隨電流變化之電感值, 且藉由在單晶片中建表之方式,可達成責任週期比之補償之基於分切合整之直流/直流轉換器電流補償控制方法。
本發明之又一目的係在於,提供一種允許寬感值變化,即使電感 感值隨著電流變大而衰減,轉換器仍可精確追蹤參考電流指令,進而能顯著地降低鐵芯體積之基於分切合整之直流/直流轉換器電流補償控制方法。
為達以上之目的,本發明係一種基於分切合整之直流/直流轉換器 電流補償控制方法,其至少包含下列步驟:(A)將參考電壓(V ref)與輸出電壓迴授(V of)之差值乘上電流誤差補償量(K p),計算出新的參考電流(i ref);(B)透過新的參考電流(i ref)得到電感電流變化量(Δi L),利用分切合整數位控制特徵方程式,計算電感電流變化量(Δi L)得到責任比率(d);(C)利用轉移函數(G p)依據系統中責任比率(d)操作得到電感電流(i L(n+1)),藉由電感電流(i L(n+1))與系統輸出之等效阻抗(Z O)可對輸出進行穩壓;以及(D)輸出電壓(V o(n+1))。
於本發明上述實施例中,該分切合整數位控制特徵方程式為狀態 電壓on/off(u)乘以切換週期(T s)得到分切合整轉換矩陣,其方程式表示如下:
於本發明上述實施例中,該直流/直流轉換器係為一降壓型(Buck) 轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,V IN為輸入電壓,V O為輸出電壓,T S為切換週期。
於本發明上述實施例中,該直流/直流轉換器係為一升壓型(Boost) 轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,V IN為輸入電壓,V O為輸出電壓,T S為切換週期。
於本發明上述實施例中,該直流/直流轉換器係為一升-降壓型 (Buck-Boost)轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,V IN為輸入電壓,V O為輸出電壓,T S為切換週期。
於本發明上述實施例中,該直流/直流轉換器係為一返馳型 (Flyback)轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,V IN為輸入電壓,V O為輸出電壓,T S為切換週期,di L為電感電流,N為線圈匝數。
於本發明上述實施例中,該直流/直流轉換器係為一順向型 (Forward)轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,V IN為輸入電壓,V O為輸出電壓,T S為切換週期,N為線圈匝數。
於本發明上述實施例中,該直流/直流轉換器係為一全橋型 (Full-Bridge)轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,V IN為輸入電壓,V O為輸出電壓,T S為切換週期,N為線圈匝數。
請參閱『第1圖~第10圖』所示,係分別為本發明實施例之基 於分切合整之直流/直流轉換器電流補償控制流程圖、本發明實施例之基於分切合整之直流/直流轉換器電流補償控制方塊圖、Buck轉換器之電路架構圖、Boost轉換器之電路架構圖、Buck-Boost轉換器之電路架構圖、Flyback轉換器之電路架構圖、Forward轉換器之電路架構圖、Full-Bridge轉換器之電路架構圖、單向Buck轉換器等效電路與控制方塊圖、本發明之中心點電流取樣示意圖。如圖所示:本發明係一種基於分切合整之直流/直流轉換器電流補償控制方法,其將輸出電壓V o之電壓命令為V ref,電感電流 之電流追蹤命令為I ref,可由輸出電壓與電壓命令估算而得,通過分切合整控制,使轉換器可精確的追蹤Iref。該基於分切合整之直流/直流轉換器電流補償控制方法係至少包含下列步驟:
在步驟S101中,將參考電壓(Vref)與輸出電壓迴授(Vof)相減之差值乘上電流誤差補償量(Kp),計算出新的參考電流指令(iref),其中該輸出電壓迴授(Vof)之路徑係先透過延遲結構延遲一個計數週期後,再經過增益為1之過濾器。
在步驟S102中,將透過延遲結構延遲一個計數週期後之電感電流(iL(n))與新的參考電流(iref)相減得到電感電流變化量(△iL)後,利用分切合整數位控制特徵方程式,計算電感電流變化量(△iL)得到責任比率(d),其中,該分切合整數位控制特徵方程式為狀態電壓on/off(u)乘以切換週期(Ts)得到分切合整轉換矩陣,其方程式表示如下:
在步驟S103中,利用轉移函數(Gp)依據系統中責任比率(d)操作得到電感電流(iL(n+1)),藉由電感電流(iL(n+1))與系統輸出之等效阻抗(ZO)可對輸出進行穩壓。
最後在步驟S104中,輸出電壓(Vo(n+1))。如是,藉由上述揭露之流程構成一全新之基於分切合整之直流/直流轉換器電流補償控制方法。
本實施例中所述直流/直流轉換器以降壓型(Buck)轉換器為例,其電路架構如第3圖所示。由克希荷夫電壓定律,可列出迴路之方程式,如公式一所示,其中dt為一週期之時間Ts,VO為輸出電壓,L為電感,diL為電感電流。
經移向整理後得到公式二,其中電感值視為變數,有別於傳統之作法都把電感值視為常數。
uT S =Ldi L +V O T S 公式二
將公式二經由上述分切合整轉換矩陣後,即轉換為公式三,其中 u on及u off由一切換週期(T s)經由重疊原理所得到之分切合整轉換矩陣。 = 公式三
而由於u off為零,故可進一步簡化其矩陣,由於導通時間(T on)等 於責任比率(d)與週期時間(T s)之乘積,經移向後可得到責任比率(d),如公式四所示,其中V IN為輸入電壓。 公式四
本發明所提直流/直流轉換器亦可進一步為升壓型(Boost)轉換 器,其電路架構如第4圖所示,可以上述同樣的推導方式推得責任比率(d),如公式五所示: 公式五
本發明所提直流/直流轉換器亦可進一步為升-降壓型 (Buck-Boost)轉換器,其電路架構如第5圖所示,可以上述同樣的推導方式推得責任比率(d),如公式六所示: 公式六
本發明所提直流/直流轉換器亦可進一步為返馳型(Flyback)轉換 器,其電路架構如第6圖所示,可以上述同樣的推導方式推得責任比率(d),如公式七所示: 公式七
本發明所提直流/直流轉換器亦可進一步為順向型(Forward)轉換 器,其電路架構如第7圖所示,可以上述同樣的推導方式推得責任比率(d),如公式八所示: 公式八
本發明所提直流/直流轉換器亦可進一步為全橋型(Full-Bridge) 轉換器,其電路架構如第8圖所示,可以上述同樣的推導方式推得責任比率(d),如公式九所示: 公式九
以第3圖所示Buck轉換器為例,當開關切入時,其等效電路如第 9圖所示。第2圖為在S域之控制方塊圖,亦為第1圖之流程圖。 其中 ,而G ci為其倒數,如此設計是為了消除電感(L)與 切換週期(T s)之變化,以增加追蹤電流之強健性。
準確之電流取樣係確保電流迴授ifb之平均值能夠準確追蹤參考電 流指令Iref之關鍵,中心點電流取樣在一個切換週期之取樣機制如第10圖所示。由第10圖可知,其脈波寬度調變(Pulse Width Modulation, PWM)計數器為一載波訊號,當計數器數至載波峰值處(即中心點)時會觸發類比/數位(Analog-to-Digital, A/D)取樣與轉換,以確保在一個切換週期中皆能夠取到平均電感電流值,如此即能夠解決峰值電流模式控制(Peak Current-Mode Control, PCMC)因峰值與平均值之誤差量造成控制上之失真,亦能夠避免取到導通與截止時造成之切換雜訊。且分切合整數位控制於電流內迴路中並無額外的濾波電路,能對一週期內之電流變化作即時補償,改善平均值電流模式控制(Average Current-Mode Control, ACMC)響應速度慢之缺點。
本發明所提基於分切合整之直流/直流轉換器電流補償控制方 法,包含可允許電感變化以及分切合整數位控制,可快速調節迴路增益,改善ACMC因電流內迴路之濾波器造成響應速度降低之缺點,並且,本控制方法採用載波中心點電流取樣,能夠確保在一個切換週期中皆能夠取到平均電感電流值,如此即能夠解決PCMC因峰值與平均值之誤差量造成控制上之失真,同時,透過本控制方法包含隨電流變化之電感值,且藉由在單晶片中建表之方式,係可達成責任週期比之補償。藉此,本發明係可解決目前PCMC以及ACMC之缺點,並且此控制法允許寬感值變化,即使電感感值隨著電流變大而衰減,轉換器仍可精確追蹤參考電流指令,進而能顯著地降低鐵芯之體積。
綜上所述,本發明係一種基於分切合整之直流/直流轉換器電流補 償控制方法,可有效改善習用之種種缺點,提出分切合整數位控制應用中心點電流取樣,可使電感電流平均值準確追蹤參考電流指令,且電流內迴路中無須加入濾波器,可對電流作即時之補償,同時改善峰值電流模式控制(Peak Current-Mode Control, PCMC)及平均值電流模式控制(Average Current-Mode Control, ACMC)之缺點,進而使本發明之□生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定 本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。
S101~S104‧‧‧步驟
第1圖,係本發明實施例之基於分切合整之直流/直流轉換器電流 補償控制流程圖。 第2圖,係本發明實施例之基於分切合整之直流/直流轉換器電流 補償控制方塊圖。 第3圖,係Buck轉換器之電路架構圖。 第4圖,係Boost轉換器之電路架構圖。 第5圖,係Buck-Boost轉換器之電路架構圖。 第6圖,係Flyback轉換器之電路架構圖。 第7圖,係Forward轉換器之電路架構圖。 第8圖,係Full-Bridge轉換器之電路架構圖。 第9圖,係單向Buck轉換器等效電路與控制方塊圖。 第10圖,係本發明之中心點電流取樣示意圖。
S101-S104‧‧‧步驟

Claims (8)

  1. 一種基於分切合整之直流/直流轉換器電流補償控制方法,其至少 包含下列步驟: (A)將參考電壓(Vref )與輸出電壓迴授(Vof)之差值乘上電流誤差補償量(Kp),計算出新的參考電流(iref ); (B)透過新的參考電流(iref )得到電感電流變化量(ΔiL),利用分切合整數位控制特徵方程式,計算電感電流變化量(ΔiL)得到責任比率(d); (C)利用轉移函數(Gp)依據系統中責任比率(d)操作得到電感電流(iL(n+1)),藉由電感電流(iL(n+1))與系統輸出之等效阻抗(ZO)可對輸出進行穩壓;以及 (D)輸出電壓(Vo(n+1))。
  2. 依申請專利範圍第1項所述之基於分切合整之直流/直流轉換器 電流補償控制方法,其中,該分切合整數位控制特徵方程式為狀態電壓on/off(u)乘以切換週期(Ts)得到分切合整轉換矩陣,其方程式表示如下:
  3. 依申請專利範圍第1項所述之基於分切合整之直流/直流轉換器 電流補償控制方法,其中,該直流/直流轉換器係為一降壓型(Buck)轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,VIN為輸入電壓,VO為輸出電壓,TS為切換週期。
  4. 依申請專利範圍第1項所述之基於分切合整之直流/直流轉換器 電流補償控制方法,其中,該直流/直流轉換器係為一升壓型(Boost)轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,VIN為輸入電壓,VO為輸出電壓,TS為切換週期。
  5. 依申請專利範圍第1項所述之基於分切合整之直流/直流轉換器 電流補償控制方法,其中,該直流/直流轉換器係為一升-降壓型(Buck-Boost)轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,VIN為輸入電壓,VO為輸出電壓,TS為切換週期。
  6. 依申請專利範圍第1項所述之基於分切合整之直流/直流轉換器 電流補償控制方法,其中,該直流/直流轉換器係為一返馳型(Flyback)轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,VIN為輸入電壓,VO為輸出電壓,TS為切換週期,diL為電感電流,N為線圈匝數。
  7. 依申請專利範圍第1項所述之基於分切合整之直流/直流轉換器 電流補償控制方法,其中,該直流/直流轉換器係為一順向型(Forward)轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,VIN為輸入電壓,VO為輸出電壓,TS為切換週期,N為線圈匝數。
  8. 依申請專利範圍第1項所述之基於分切合整之直流/直流轉換器 電流補償控制方法,其中,該直流/直流轉換器係為一全橋型(Full-Bridge)轉換器,係以下列方程式計算得責任比率(d): 其中,L為電感,VIN為輸入電壓,VO為輸出電壓,TS為切換週期,N為線圈匝數。
TW103142696A 2014-12-08 2014-12-08 基於分切合整之直流/直流轉換器電流補償控制方法 TWI525974B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103142696A TWI525974B (zh) 2014-12-08 2014-12-08 基於分切合整之直流/直流轉換器電流補償控制方法
US14/672,719 US9391513B2 (en) 2014-12-08 2015-03-30 Method of current compensation based on division-sigma control for DC/DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103142696A TWI525974B (zh) 2014-12-08 2014-12-08 基於分切合整之直流/直流轉換器電流補償控制方法

Publications (2)

Publication Number Publication Date
TWI525974B true TWI525974B (zh) 2016-03-11
TW201622325A TW201622325A (zh) 2016-06-16

Family

ID=56085446

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103142696A TWI525974B (zh) 2014-12-08 2014-12-08 基於分切合整之直流/直流轉換器電流補償控制方法

Country Status (2)

Country Link
US (1) US9391513B2 (zh)
TW (1) TWI525974B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709296B (zh) * 2017-10-17 2020-11-01 美商格蘭電子公司 用於電源轉換器之峰值電流模式控制(pcmc)之控制器及包含其之電源轉換器
CN113358929A (zh) * 2021-06-28 2021-09-07 深圳市武锋技术有限公司 调整参考电平的方法、计算机可读存储介质及频谱接收机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979281B2 (en) * 2016-10-07 2018-05-22 Excelitas Technologies Corp. Apparatus and method for dynamic adjustment of the bandwidth of a power converter
EP3373432B1 (en) * 2017-03-10 2021-05-12 Rohm Co., Ltd. Dc-dc converter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481178A (en) * 1993-03-23 1996-01-02 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
US20050276085A1 (en) * 2004-06-15 2005-12-15 Winn Jackie L Current control for inductive weld loads
US7787563B2 (en) * 2004-12-08 2010-08-31 Texas Instruments Incorporated Transmitter for wireless applications incorporation spectral emission shaping sigma delta modulator
US7323851B2 (en) * 2005-09-22 2008-01-29 Artesyn Technologies, Inc. Digital power factor correction controller and AC-to-DC power supply including same
US7859442B2 (en) * 2007-10-05 2010-12-28 Jorg Daniels Asynchronous sigma delta analog to digital converter using a time to digital converter
US8330439B2 (en) * 2009-06-23 2012-12-11 Intersil Americas Inc. System and method for PFM/PWM mode transition within a multi-phase buck converter
DE102010041632A1 (de) * 2010-09-29 2012-03-29 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung zum Betreiben mindestens zweier Halbleiterlichtquellen
US8665127B2 (en) * 2010-12-08 2014-03-04 National Semiconductor Corporation Σ-Δ difference-of-squares RMS to DC converter with multiple feedback paths
CN104079079B (zh) * 2014-07-14 2018-02-23 南京矽力杰半导体技术有限公司 谐振型非接触供电装置、集成电路和恒压控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709296B (zh) * 2017-10-17 2020-11-01 美商格蘭電子公司 用於電源轉換器之峰值電流模式控制(pcmc)之控制器及包含其之電源轉換器
CN113358929A (zh) * 2021-06-28 2021-09-07 深圳市武锋技术有限公司 调整参考电平的方法、计算机可读存储介质及频谱接收机

Also Published As

Publication number Publication date
TW201622325A (zh) 2016-06-16
US20160164407A1 (en) 2016-06-09
US9391513B2 (en) 2016-07-12

Similar Documents

Publication Publication Date Title
US9621028B2 (en) Digitally controlled PFC converter with multiple discontinuous modes
US9318960B2 (en) High efficiency and low loss AC-DC power supply circuit and control method
TWI633807B (zh) 一種開關電源系統及其控制電路和控制方法
CN102946254B (zh) 多相开关变换器的数字控制器及数字控制方法
CN107579670A (zh) 一种同步整流原边反馈反激式电源的恒压输出控制系统
US10819224B2 (en) Power factor correction circuit, control method and controller
TWI525974B (zh) 基於分切合整之直流/直流轉換器電流補償控制方法
CN103001463A (zh) 开关电源控制器及包含该开关电源控制器的开关电源
TW201238226A (en) Relative efficiency measurement in a pulse width modulation system
CN202997942U (zh) 开关电源控制器及包含该开关电源控制器的开关电源
Yang et al. Analysis, modeling and controller design of CRM PFC boost ac/dc converter with constant on-time control IC FAN7530
CN209913707U (zh) 一种开关频率可调的自适应关断时间计时器
CN108391344B (zh) 基于开关电容变换器的led驱动系统的变频恒流控制方法
CN104578797A (zh) 一种断续模式的高功率因数高效率反激变换器的控制方法及其装置
CN204290730U (zh) 一种断续模式的高功率因数高效率反激变换器的控制装置
Hu et al. A 0.9 PF LED driver with small LED current ripple based on series-input digitally-controlled converter modules
CN105226935A (zh) 基于分频振荡器实现频率调制的开关电源
Akter et al. Modeling and Simulation of Input Switched AC-DC SEPIC Converter with PFC Control for optimized Operation
Yadav et al. A high PFC AC-DC system for led using k factor control driven by synchronous semi-bridgeless rectifier
Veerachary et al. Design and analysis of 4 th-order buck DC-DC converter
TWI495392B (zh) High efficiency single stage return light type LED lamp with temperature compensation
Tian et al. Research of the adaptive control on modulation factor for PSR fly‐back PSM converter
Ho et al. SoPC based digital current-mode control of full-bridge phase-shifted DC/DC converters with fast dynamic responses
TWI636650B (zh) 應用於電源轉換器的控制器及其操作方法
Li et al. Zero-crossing distortion analysis in one cycle controlled boost PFC for low THD

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees