TWI525624B - Memory and operating method thereof - Google Patents
Memory and operating method thereof Download PDFInfo
- Publication number
- TWI525624B TWI525624B TW101144317A TW101144317A TWI525624B TW I525624 B TWI525624 B TW I525624B TW 101144317 A TW101144317 A TW 101144317A TW 101144317 A TW101144317 A TW 101144317A TW I525624 B TWI525624 B TW I525624B
- Authority
- TW
- Taiwan
- Prior art keywords
- memory
- load
- electrically coupled
- decoder
- determination result
- Prior art date
Links
Landscapes
- Read Only Memory (AREA)
Description
本發明是有關於資料儲存技術之領域,且特別是有關於一種記憶體及其操作方法。 The present invention relates to the field of data storage technology, and more particularly to a memory and method of operation thereof.
非揮發性(non-volatile)記憶體是一種即使在無外部電源供電的情況下,也能夠保存其儲存資料的一種記憶體。由於這種記憶體本身不需要浪費電力在資料的記憶上,因此特別適合使用在攜帶式的裝置上。 A non-volatile memory is a type of memory that retains stored data even when it is not powered by an external power source. Since the memory itself does not need to waste power on the memory of the data, it is particularly suitable for use on a portable device.
非揮發性記憶體有三種操作方式:讀取(read)、寫入(write)與抹除(erase)。其中,寫入操作即所謂的程式化(program)操作。一般而言,非揮發性記憶體在執行這三種操作時所需要的電壓都不一樣。而由於非揮發性記憶體對於其執行程式化操作時所需之程式化電壓的位準精確度要求越來越嚴格,因此其所需之程式化電壓必須非常精準而不能有大的變化。 Non-volatile memory has three modes of operation: read, write, and erase. Among them, the write operation is a so-called program operation. In general, non-volatile memory requires different voltages to perform these three operations. Since the non-volatile memory requires more and more stringent precision for the stylized voltages required to perform the stylized operation, the required stylized voltage must be very precise and cannot be greatly changed.
本發明提供一種記憶體,其係採用穩定負載大小的方式來穩定程式化電壓。 The present invention provides a memory that stabilizes the stylized voltage by stabilizing the magnitude of the load.
本發明另提供一種記憶體的操作方法,其適用於前述之記憶體。 The present invention further provides a method of operating a memory suitable for use in the aforementioned memory.
本發明提出一種記憶體,其包括有一解碼器、一記憶陣列、多個負載、一負載偵測電路與一負載控制電路。所述之解碼器包括有一輸入端與多個輸出端,而所述之輸入端用以接收一電源電壓。所述之記憶陣列包括有多條源極線與多個記憶單元,每一源極線電性耦接解碼器之其中一輸出端,並電性耦接該些記憶單元中的N個記憶單元。所述之每一負載的大小係與每一記憶單元所對應的負載大小相等。而所述之負載偵測電路用以取得記憶體之一N位元輸入資料,並判斷記憶體在依據上述N位元輸入資料執行一程式化操作時,需要改變多少個記憶單元的儲存內容,並據以產生第一判斷結果。至於所述之負載控制電路,其用以接收第一判斷結果,且當第一判斷結果顯示共有M個記憶單元之儲存內容需要改變時,負載控制電路便依據第一判斷結果來提供N-M個負載給解碼器,以進一步將所提供之N-M個負載並聯至上述電源電壓的一傳輸路徑上,其中N與M皆為自然數。 The invention provides a memory comprising a decoder, a memory array, a plurality of loads, a load detection circuit and a load control circuit. The decoder includes an input terminal and a plurality of output terminals, and the input terminal is configured to receive a power supply voltage. The memory array includes a plurality of source lines and a plurality of memory cells, each source line electrically coupled to one of the output ends of the decoder, and electrically coupled to the N memory cells of the memory cells . Each of the loads is equal in size to the load corresponding to each memory unit. The load detection circuit is configured to obtain one N-bit input data of the memory, and determine how many memory unit contents need to be changed when the memory performs a stylized operation according to the N-bit input data. And according to the results of the first judgment. The load control circuit is configured to receive the first determination result, and when the first determination result indicates that the storage content of the M memory units needs to be changed, the load control circuit provides the NM load according to the first determination result. The decoder is further provided to further connect the supplied NM loads to a transmission path of the above-mentioned power supply voltage, wherein N and M are both natural numbers.
本發明又提出一種記憶體的操作方法。所述之記憶體包括有一解碼器與一記憶陣列。所述之解碼器包括有一輸入端與多個輸出端,且所述之輸入端用以接收一電源電壓。而所述之記憶陣列包括有多條源極線與多個記憶單元,每一源極線電性耦接解碼器之其中一輸出端,並電性耦接該些記憶單元中的N個記憶單元。所述之操作方法包括有下列步驟:取得記憶體之一N位元輸入資料,並判斷記憶體在依據上述N位元輸入資料執行一程式化操作時,需要改變多少個記憶單元的儲存內容,並據以產生第一判斷結果;以及當第一判斷結果顯示共有M個記憶單元之儲存內容需要改變時,便依據第一判斷結果來提供N-M個負載給上述解碼器,以進一步將所提供之N-M個 負載並聯至上述電源電壓的一傳輸路徑上,其中N與M皆為自然數。 The invention further proposes a method of operating a memory. The memory includes a decoder and a memory array. The decoder includes an input end and a plurality of output ends, and the input end is configured to receive a power supply voltage. The memory array includes a plurality of source lines and a plurality of memory cells, each of the source lines being electrically coupled to one of the output ends of the decoder, and electrically coupling the N memories in the memory units unit. The operation method includes the following steps: obtaining N-bit input data of one of the memory, and determining how many memory unit contents need to be changed when the memory performs a stylized operation according to the N-bit input data. And generating a first judgment result; and when the first judgment result indicates that the storage contents of the total M memory units need to be changed, providing NM loads to the decoder according to the first determination result, to further provide the provided NM The load is connected in parallel to a transmission path of the above power supply voltage, wherein N and M are both natural numbers.
本發明係在記憶體中增設多個負載、一負載偵測電路與一負載控制電路,且每一負載的大小係與每一記憶單元所對應的負載大小相等。此外,本發明還利用上述負載偵測電路來取得記憶體之一N位元輸入資料,並判斷記憶體在依據上述N位元輸入資料執行一程式化操作時,需要改變多少個記憶單元的儲存內容,並據以產生第一判斷結果。當第一判斷結果顯示共有M個記憶單元之儲存內容需要改變時,便使負載控制電路依據第一判斷結果來提供N-M個負載給源極線的解碼器,以進一步將所提供之N-M個負載並聯至上述電源電壓的一傳輸路徑上。因此,在解碼器將其所接收的電源電壓當作程式化電壓使用而據以執行上述程式化操作時,程式化電壓所需驅動之負載的大小便可以維持在N個記憶單元所對應之負載的大小,進而使得程式化電壓能維持穩定。 In the invention, a plurality of loads, a load detecting circuit and a load control circuit are added in the memory, and the size of each load is equal to the load corresponding to each memory unit. In addition, the present invention also utilizes the load detection circuit to obtain one N-bit input data of the memory, and determines how many memory cells need to be changed when the memory performs a stylized operation according to the N-bit input data. Content, and according to the results of the first judgment. When the first judgment result indicates that the storage contents of the M memory cells need to be changed, the load control circuit provides the NM load to the decoder of the source line according to the first determination result to further connect the supplied NM loads in parallel. To a transmission path of the above power supply voltage. Therefore, when the decoder uses the received power voltage as a stylized voltage to perform the above-mentioned stylization operation, the load of the load required to drive the voltage can be maintained at the load corresponding to the N memory cells. The size of the program allows the stylized voltage to remain stable.
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects, features and advantages of the present invention will become more <RTIgt;
圖1為依照本發明一實施例之記憶體的示意圖,其僅繪示記憶體中與本發明相關的電路架構,並以快閃記憶體(flash memory)內部的電路架構為例。請參照圖1,此記憶體100包括有資料輸入/輸出介面110、負載偵測電路120、負載控制電路130、多個負載(如標示140所示)、電源電壓產生電路150、電源電壓切換開關160、解碼器170與記憶陣列180。所述之 解碼器170包括有一輸入端171與多個輸出端(如標示172-1~172-N所示)。而所述之記憶陣列180包括有多條源極線(如標示181所示)與多個記憶單元(如標示182所示),且每一源極線181電性耦接解碼器180之其中一輸出端,並電性耦接該些記憶單元182中的N個記憶單元182,其中N為自然數。從以上說明可知,解碼器170乃是一源極線解碼器。 1 is a schematic diagram of a memory structure according to an embodiment of the present invention, which only shows a circuit architecture related to the present invention in a memory, and takes a circuit architecture inside a flash memory as an example. Referring to FIG. 1, the memory 100 includes a data input/output interface 110, a load detection circuit 120, a load control circuit 130, a plurality of loads (as indicated by a reference numeral 140), a power supply voltage generating circuit 150, and a power voltage switch. 160. Decoder 170 and memory array 180. Said The decoder 170 includes an input 171 and a plurality of outputs (as indicated by the numerals 172-1 to 172-N). The memory array 180 includes a plurality of source lines (as indicated by the numeral 181) and a plurality of memory cells (as indicated by the numeral 182), and each of the source lines 181 is electrically coupled to the decoder 180. An output terminal is electrically coupled to the N memory cells 182 of the memory cells 182, where N is a natural number. As can be seen from the above description, the decoder 170 is a source line decoder.
電源電壓切換開關160電性耦接於電源電壓產生電路150之輸出端與解碼器170之輸入端171之間,並用以接收電源電壓產生電路150所產生的電源電壓PV1與一預設電壓PV2,進而依據控制命令CM來選擇輸出電源電壓PV1或預設電壓PV2至解碼器170之輸入端171。在此例中,電源電壓產生電路150可以是採用一低壓差穩壓器(low dropout regulator)來實現。此外,上述之電源電壓PV1是用來當作程式化電壓使用,而預設電壓PV2則例如是用來當作讀取電壓使用。 The power supply voltage switching switch 160 is electrically coupled between the output end of the power supply voltage generating circuit 150 and the input end 171 of the decoder 170, and is configured to receive the power supply voltage PV1 generated by the power supply voltage generating circuit 150 and a predetermined voltage PV2. The output power voltage PV1 or the preset voltage PV2 is selected to the input terminal 171 of the decoder 170 according to the control command CM. In this example, the supply voltage generating circuit 150 can be implemented using a low dropout regulator. In addition, the above-mentioned power supply voltage PV1 is used as a stylized voltage, and the preset voltage PV2 is used, for example, as a read voltage.
上述每一負載140的大小係與每一記憶單元182所對應的負載大小相等。在此例中,每一負載140皆包括以一冗餘記憶單元來實現。此處所指的冗餘記憶單元即是表示其內部電路架構係與記憶單元182的內部電路架構相同。這表示,記憶體100中的每一記憶單元182與每一冗餘記憶單元皆包括有一浮閘電晶體(floating-gate transistor,如標示141所示)。而在此例中,這些冗餘記憶單元中之每一浮閘電晶體141的其中一源/汲極係電性耦接解碼器170之輸入端171,且這些冗餘記憶單元中之每一浮閘電晶體141的另一源/汲極係電性耦接一參考電位,例如是接地電位GND。 Each of the loads 140 has a size equal to the load corresponding to each memory unit 182. In this example, each load 140 is implemented as a redundant memory unit. The redundant memory unit referred to herein means that its internal circuit architecture is the same as the internal circuit architecture of the memory unit 182. This means that each memory cell 182 and each redundant memory cell in the memory 100 includes a floating-gate transistor (shown as reference numeral 141). In this example, one of the source/drain electrodes of each of the redundant memory cells is electrically coupled to the input terminal 171 of the decoder 170, and each of the redundant memory cells The other source/drain of the floating gate transistor 141 is electrically coupled to a reference potential, such as a ground potential GND.
上述負載偵測電路120係用以取得記憶體100之一N位元輸入資料,並判斷記憶體100在依據上述N位元輸入資料執行 一程式化操作時,需要改變多少個記憶單元182的儲存內容,並據以產生第一判斷結果DS1。至於上述之負載控制電路130,其係電性耦接上述各冗餘記憶單元中之每一浮閘電晶體141的閘極,並用以依據第一判斷結果DS1來決定上述各冗餘記憶單元中的浮閘電晶體141的導通狀態。當第一判斷結果DS1顯示共有M個記憶單元182之儲存內容需要改變時,負載控制電路130便依據第一判斷結果DS1來導通N-M個浮閘電晶體141,也就是提供N-M個負載140給解碼器180,以進一步將所提供之N-M個負載140並聯至電源電壓PV1的一傳輸路徑(詳後述)上,其中M亦為自然數。由上述說明可知,需要改變儲存內容之記憶單元182的數目越多,需並聯的負載140就越少;需要改變儲存內容之記憶單元182的數目越少,需並聯的負載140就越多。此外,需要改變儲存內容之記憶單元182的數目與需並聯之負載140的數目的總合永遠為N。 The load detecting circuit 120 is configured to obtain one N-bit input data of the memory 100, and determine that the memory 100 is executed according to the N-bit input data. In a stylized operation, it is necessary to change the storage contents of the memory unit 182, and accordingly generate the first determination result DS1. The load control circuit 130 is electrically coupled to the gate of each of the floating memory transistors 141, and is configured to determine the redundant memory cells according to the first determination result DS1. The on state of the floating gate transistor 141. When the first determination result DS1 indicates that the storage contents of the M memory units 182 need to be changed, the load control circuit 130 turns on the NM floating gate transistors 141 according to the first determination result DS1, that is, provides NM loads 140 for decoding. The device 180 further parallels the supplied NM loads 140 to a transmission path (described later) of the power supply voltage PV1, where M is also a natural number. As can be seen from the above description, the more the number of memory cells 182 that need to change the stored content, the less the load 140 needs to be connected in parallel; the fewer the number of memory cells 182 that need to change the stored content, the more loads 140 need to be connected in parallel. In addition, the sum of the number of memory cells 182 that need to change the stored content and the number of loads 140 that need to be connected in parallel is always N.
以下將舉例說明此記憶體100之一實際操作方式,並假設N等於8。請再參照圖1,在負載偵測電路120取得記憶體100之一8位元輸入資料後,負載偵測電路120便會去判斷記憶體100在依據此8位元輸入資料執行一程式化操作時,需要改變多少個記憶單元182的儲存內容,並據以產生第一判斷結果DS1。若第一判斷結果DS1顯示共有六個記憶單元182之儲存內容需要改變,那麼負載控制電路130便會依據第一判斷結果DS1來導通上述各冗餘記憶單元中的其中二個浮閘電晶體141,也就是提供二個負載140給解碼器180,以進一步將所提供之二個負載140並聯至電源電壓PV1的一傳輸路徑上。 An actual operation of one of the memories 100 will be exemplified below, and N is assumed to be equal to 8. Referring to FIG. 1 again, after the load detection circuit 120 obtains an 8-bit input data of the memory 100, the load detection circuit 120 determines that the memory 100 performs a program operation based on the 8-bit input data. At this time, it is necessary to change the storage contents of the memory unit 182, and accordingly, the first judgment result DS1 is generated. If the first determination result DS1 indicates that the storage contents of the six memory units 182 need to be changed, the load control circuit 130 turns on the two floating gate transistors 141 of the redundant memory units according to the first determination result DS1. That is, two loads 140 are provided to the decoder 180 to further parallel the two supplied loads 140 to a transmission path of the power supply voltage PV1.
以此圖所示的情況為例,記憶體100係依據上述的8位元輸入資料來對解碼器170之輸出端172-1所電性耦接的八個記憶 單元182來執行上述之程式化操作,因此解碼器170在記憶體100執行上述之程式化操作時,便會在其內部形成一電性路徑173,以將其輸入端171與輸出端172-1互相電性耦接。而此時,電源電壓切換開關160與上述輸入端171之間的電性路徑、輸入端171、電性路徑173、輸出端172-1與輸出端172-1所電性耦接的源極線181就會形成電源電壓PV1的傳輸路徑。因此,在記憶體100執行上述之程式化操作時,負載控制電路130所提供的二個負載140就會並聯在此傳輸路徑上。 Taking the case shown in the figure as an example, the memory 100 is eight memories electrically coupled to the output terminal 172-1 of the decoder 170 according to the 8-bit input data described above. The unit 182 performs the above-mentioned stylization operation. Therefore, when the memory 100 performs the above-mentioned stylized operation, the decoder 170 forms an electrical path 173 therein to input the input terminal 171 and the output terminal 172-1. Electrically coupled to each other. At this time, the electrical path between the power supply voltage switch 160 and the input terminal 171, the input end 171, the electrical path 173, the output end 172-1 and the output end 172-1 are electrically coupled to the source line. 181 will form the transmission path of the power supply voltage PV1. Therefore, when the memory 100 performs the above-described stylized operation, the two loads 140 provided by the load control circuit 130 are connected in parallel on this transmission path.
上述這種做法的好處,就是在解碼器170將其所接收的電源電壓PV1當作程式化電壓使用而據以執行上述程式化操作時,程式化電壓所需驅動之負載的大小便可以維持在N個記憶單元182所對應之負載的大小,進而使得程式化電壓能維持穩定。 The advantage of the above method is that when the decoder 170 uses the received power voltage PV1 as a stylized voltage to perform the above stylized operation, the load required to drive the programmed voltage can be maintained. The size of the load corresponding to the N memory cells 182, in turn, enables the stylized voltage to remain stable.
進一步地,為了檢驗上述程式化操作的結果是否正確,負載偵測電路130更可以進一步去判斷此記憶體100之一N位元輸出資料相對於前述N位元輸入資料有多少個位元的資料是不同的,所述的N位元輸出資料係記憶體100中已依前述N位元輸入資料進行過程式化操作之多個記憶單元182所存有的一N位元儲存資料。如此,負載偵測電路130便可據以產生第二判斷結果DS2,並將第二判斷結果DS2輸出至負載控制電路130,以便負載控制電路130依據第二判斷結果DS2來決定是否提供負載140給解碼器170。而所需提供之負載140的數目並無限制,只要程式化電壓所需驅動之負載的大小可以維持在N個記憶單元182所對應之負載的大小即可。當然,上述的驗證操作可以重覆地進行,直到N位元輸入資料與N位元輸出資料吻合為止。 Further, in order to check whether the result of the above stylization operation is correct, the load detection circuit 130 can further determine the data of how many bits of the N-bit output data of the memory 100 relative to the N-bit input data. Differently, the N-bit output data is an N-bit storage data stored in the plurality of memory cells 182 of the memory 100 that have been subjected to the procedural operation according to the N-bit input data. In this way, the load detection circuit 130 can generate the second determination result DS2, and output the second determination result DS2 to the load control circuit 130, so that the load control circuit 130 determines whether to provide the load 140 according to the second determination result DS2. Decoder 170. The number of loads 140 to be provided is not limited as long as the load required to drive the programmed voltage can be maintained at the size of the load corresponding to the N memory cells 182. Of course, the above verification operation can be repeated until the N-bit input data coincides with the N-bit output data.
此外,為了取得上述之N位元輸入資料與上述之N位元輸出資料,負載偵測電路130更電性耦接資料輸入/輸出介面110,以接收資料輸入/輸出介面110所傳輸之N位元輸入資料與N位元輸出資料。其中,資料輸入/輸出介面110還用以閂鎖上述之N位元輸入資料。在此例中,資料輸入/輸出介面110更包括有輸入資料傳輸單元112與輸出資料傳輸單元114,其中輸入資料傳輸單元112用以傳輸並閂鎖上述之N位元輸入資料,而輸出資料傳輸單元114用以傳輸上述之N位元輸出資料。 In addition, in order to obtain the N-bit input data and the N-bit output data, the load detection circuit 130 is further electrically coupled to the data input/output interface 110 to receive the N-bit transmitted by the data input/output interface 110. Meta input data and N bit output data. The data input/output interface 110 is also used to latch the N-bit input data. In this example, the data input/output interface 110 further includes an input data transmission unit 112 and an output data transmission unit 114, wherein the input data transmission unit 112 is configured to transmit and latch the N-bit input data, and output data transmission. The unit 114 is configured to transmit the N-bit output data described above.
圖2為依照本發明另一實施例之記憶體的示意圖,其僅繪示記憶體中與本發明相關的電路架構,並同樣以快閃記憶體內部的電路架構為例。在圖2中,標示與圖1中之標示相同者表示為相同的物件或訊號。請參照圖2,此記憶體200與圖1之記憶體100的不同之處,主要在於各冗餘記憶單元中之浮閘電晶體141的電性耦接方式。此外,此記憶體200亦採用負載控制電路230來控制這些浮閘電晶體141,並增加了一條字元線242。 2 is a schematic diagram of a memory according to another embodiment of the present invention, which only shows the circuit architecture related to the present invention in the memory, and also takes the circuit architecture inside the flash memory as an example. In FIG. 2, the same reference numerals as those in FIG. 1 are indicated as the same object or signal. Referring to FIG. 2, the memory 200 differs from the memory 100 of FIG. 1 mainly in the electrical coupling manner of the floating gate transistors 141 in each redundant memory unit. In addition, the memory 200 also employs a load control circuit 230 to control the floating gate transistors 141 and adds a word line 242.
如圖2所示,該些冗餘記憶單元中之每一浮閘電晶體141的閘極端皆電性耦接至同一字元線242,且該些冗餘記憶單元中之每一浮閘電晶體141的其中一源/汲極係電性耦接解碼器170之輸入端171。此外,負載控制電路230包括有控制單元231與多個開關(如標示232所示)。每一開關232係電性耦接於該些冗餘記憶單元中之一對應浮閘電晶體141的另一源/汲極與接地電位GND之間,而控制單元231係電性耦接每一開關232之控制端,並用以依據第一判斷結果DS1或第二判斷結果DS2來決定是否要導通至少一開關232。在此例中,每一開關232係可採用一NMOS電晶體來實現,然本發明並非以此為限。 As shown in FIG. 2, the gate terminals of each of the redundant memory cells 141 are electrically coupled to the same word line 242, and each of the redundant memory cells is electrically One of the source/drain electrodes of the crystal 141 is electrically coupled to the input terminal 171 of the decoder 170. Additionally, load control circuit 230 includes a control unit 231 and a plurality of switches (as indicated by reference numeral 232). Each switch 232 is electrically coupled between one of the redundant memory cells and another source/drain of the floating gate 141 and the ground potential GND, and the control unit 231 is electrically coupled to each of the switches 231. The control terminal of the switch 232 is configured to determine whether to turn on at least one switch 232 according to the first determination result DS1 or the second determination result DS2. In this example, each switch 232 can be implemented by using an NMOS transistor, but the invention is not limited thereto.
圖3為依照本發明再一實施例之記憶體的示意圖,其僅繪示記憶體中與本發明相關的電路架構,並同樣以快閃記憶體內部的電路架構為例。在圖3中,標示與圖2中之標示相同者表示為相同的物件或訊號。請參照圖3,此記憶體300與圖2之記憶體200的不同之處,主要在於記憶體300所採用的每一負載340係採用一電阻來實現。 FIG. 3 is a schematic diagram of a memory structure according to still another embodiment of the present invention, which only shows the circuit architecture related to the present invention in the memory, and also takes the circuit architecture inside the flash memory as an example. In FIG. 3, the same reference numerals as those in FIG. 2 are indicated as the same object or signal. Referring to FIG. 3, the difference between the memory 300 and the memory 200 of FIG. 2 is mainly that each load 340 used in the memory 300 is implemented by using a resistor.
圖4為依照本發明又另一實施例之記憶體的示意圖,其僅繪示記憶體中與本發明相關的電路架構,並同樣以快閃記憶體內部的電路架構為例。在圖4中,標示與圖1中之標示相同者表示為相同的物件或訊號。請參照圖4,此記憶體400與圖1之記憶體100的不同之處,主要在於各冗餘記憶單元中之浮閘電晶體141的電性耦接方式。此外,此記憶體400亦採用解碼器470來電性耦接記憶陣列180中的源極線181,並增加了一源極線483。此解碼器470包括有一輸入端471與多個輸出端(如標示472-1~472-N及N+1所示)。當記憶體400在執行程式化操作時,此解碼器470會將其中二個輸出端互相電性耦接。這二個輸出端的其中之一是輸出端N+1,而另外一個輸出端則會透過記憶陣列180中的其中一源極線181來電性耦接需進行程式化操作的記憶單元182。 4 is a schematic diagram of a memory according to still another embodiment of the present invention, which only shows the circuit architecture related to the present invention in the memory, and also takes the circuit architecture inside the flash memory as an example. In FIG. 4, the same reference numerals as those in FIG. 1 are indicated as the same object or signal. Referring to FIG. 4, the memory 400 differs from the memory 100 of FIG. 1 mainly in the electrical coupling manner of the floating gate transistors 141 in each redundant memory unit. In addition, the memory 400 also uses the decoder 470 to electrically couple the source line 181 in the memory array 180 and add a source line 483. The decoder 470 includes an input 471 and a plurality of outputs (as indicated by the symbols 472-1~472-N and N+1). When the memory 400 is performing a program operation, the decoder 470 electrically couples the two outputs to each other. One of the two outputs is the output terminal N+1, and the other output terminal is electrically coupled to the memory unit 182 to be programmed by the source line 181 of the memory array 180.
以此圖所示的情況為例,當記憶體400執行一程式化操作時,解碼器470便會在其內部形成一電性路徑474,以將其輸入端471、輸出端472-1與輸出端N+1互相電性耦接。而此時,電源電壓切換開關160與上述輸入端471之間的電性路徑、輸入端471、電性路徑474、輸出端472-1、輸出端472-1所電性耦接的源極線181、輸出端N+1與源極線483就會形成電源電壓PV1的傳輸路徑。因此,在記憶體400執行上述之程式化操作時,負 載控制電路130所提供的負載140就會並聯在此傳輸路徑上。 Taking the case shown in this figure as an example, when the memory 400 performs a stylization operation, the decoder 470 forms an electrical path 474 therein to input its input terminal 471, output terminal 472-1, and output. The terminals N+1 are electrically coupled to each other. At this time, the electrical path between the power supply voltage switch 160 and the input terminal 471, the input terminal 471, the electrical path 474, the output terminal 472-1, and the output terminal 472-1 are electrically coupled to the source line. 181. The output terminal N+1 and the source line 483 form a transmission path of the power supply voltage PV1. Therefore, when the memory 400 performs the above stylized operation, negative The load 140 provided by the load control circuit 130 is connected in parallel to this transmission path.
圖5為依照本發明又再一實施例之記憶體的示意圖,其僅繪示記憶體中與本發明相關的電路架構,並同樣以快閃記憶體內部的電路架構為例。在圖5中,標示與圖4中之標示相同者表示為相同的物件或訊號。請參照圖5,此記憶體500與圖4之記憶體400的不同之處,主要在於各冗餘記憶單元中之浮閘電晶體141的電性耦接方式。此外,此記憶體500亦採用前述之負載控制電路230來控制這些浮閘電晶體141,並增加了一條字元線242。 FIG. 5 is a schematic diagram of a memory according to still another embodiment of the present invention, which only shows the circuit architecture related to the present invention in the memory, and also takes the circuit architecture inside the flash memory as an example. In FIG. 5, the same reference numerals as those in FIG. 4 are denoted as the same object or signal. Referring to FIG. 5, the memory 500 differs from the memory 400 of FIG. 4 mainly in the manner of electrically coupling the floating gate transistors 141 in the redundant memory cells. In addition, the memory 500 also uses the aforementioned load control circuit 230 to control the floating gate transistors 141 and adds a word line 242.
如圖5所示,該些冗餘記憶單元中之每一浮閘電晶體141的閘極端皆電性耦接至同一字元線242,且該些冗餘記憶單元中之每一浮閘電晶體141的其中一源/汲極係電性耦接解碼器470之輸入端N+1。此外,負載控制電路230中的每一開關232係電性耦接於該些冗餘記憶單元中之一對應浮閘電晶體141的另一源/汲極與共同電位之間,所述之共同電位例如是接地電位GND。 As shown in FIG. 5, the gate terminals of each of the redundant memory cells 141 are electrically coupled to the same word line 242, and each of the redundant memory cells is electrically One of the sources/drains of the crystal 141 is electrically coupled to the input terminal N+1 of the decoder 470. In addition, each switch 232 in the load control circuit 230 is electrically coupled between one of the redundant memory cells and another source/drain of the floating gate 141 and the common potential. The potential is, for example, a ground potential GND.
圖6為依照本發明再另一實施例之記憶體的示意圖,其僅繪示記憶體中與本發明相關的電路架構,並同樣以快閃記憶體內部的電路架構為例。在圖6中,標示與圖5中之標示相同者表示為相同的物件或訊號。請參照圖6,此記憶體600與圖5之記憶體500的不同之處,主要在於記憶體600所採用的每一負載340係採用一電阻來實現。 FIG. 6 is a schematic diagram of a memory according to still another embodiment of the present invention, which only shows the circuit architecture related to the present invention in the memory, and also takes the circuit architecture inside the flash memory as an example. In Fig. 6, the same reference numerals as those in Fig. 5 are indicated as the same object or signal. Referring to FIG. 6, the difference between the memory 600 and the memory 500 of FIG. 5 is mainly that each load 340 used in the memory 600 is implemented by using a resistor.
儘管上述各實施例皆是以快閃記憶體內部的電路架構為例,然此並非用以限制本發明,本領域具有通常知識者應知前述之任一種實施態樣皆可擴展應用至其他種類的記憶體。 Although the above embodiments are all based on the circuit architecture inside the flash memory, it is not intended to limit the present invention. Those skilled in the art should be aware that any of the foregoing embodiments can be extended to other types. Memory.
根據上述各實施例之教示,本領域具有通常知識者當可歸 納出一種記憶體的操作方法。所述記憶體包括有一解碼器與一記憶陣列。所述解碼器包括有一輸入端與多個輸出端,此輸入端用以接收一電源電壓。而所述記憶陣列包括有多條源極線與多個記憶單元。每一源極線電性耦接解碼器之其中一輸出端,並電性耦接該些記憶單元中的N個記憶單元。圖7即為依照本發明一實施例之記憶體的操作方法的流程圖。請參照圖7,所述操作方法之步驟包括:取得記憶體之一N位元輸入資料,並判斷記憶體在依據上述N位元輸入資料執行一程式化操作時,需要改變多少個記憶單元的儲存內容,並據以產生一判斷結果(如步驟S702所示);以及當此判斷結果顯示共有M個記憶單元之儲存內容需要改變時,便依據此判斷結果來提供N-M個負載給解碼器,以進一步將所提供之N-M個負載並聯至電源電壓的一傳輸路徑上,其中N與M皆為自然數(如步驟S704所示)。 According to the teachings of the above embodiments, those skilled in the art are entitled to return A method of operating a memory is presented. The memory includes a decoder and a memory array. The decoder includes an input and a plurality of outputs for receiving a supply voltage. The memory array includes a plurality of source lines and a plurality of memory units. Each of the source lines is electrically coupled to one of the outputs of the decoder and electrically coupled to the N of the memory units. FIG. 7 is a flow chart showing a method of operating a memory according to an embodiment of the invention. Referring to FIG. 7, the steps of the operation method include: acquiring one N-bit input data of the memory, and determining how many memory cells need to be changed when the memory performs a stylization operation according to the N-bit input data. And storing the content, and generating a judgment result (as shown in step S702); and when the judgment result indicates that the storage contents of the M memory units need to be changed, the NM load is provided to the decoder according to the judgment result, To further parallel the supplied NM loads to a transmission path of the power supply voltage, wherein N and M are both natural numbers (as shown in step S704).
綜上所述,本發明係在記憶體中增設多個負載、一負載偵測電路與一負載控制電路,且每一負載的大小係與每一記憶單元所對應的負載大小相等。此外,本發明還利用上述負載偵測電路來取得記憶體之一N位元輸入資料,並判斷記憶體在依據上述N位元輸入資料執行一程式化操作時,需要改變多少個記憶單元的儲存內容,並據以產生第一判斷結果。當第一判斷結果顯示共有M個記憶單元之儲存內容需要改變時,便使負載控制電路依據第一判斷結果來提供N-M個負載給源極線的解碼器,以進一步將所提供之N-M個負載並聯至上述電源電壓的一傳輸路徑上。因此,在解碼器將其所接收的電源電壓當作程式化電壓使用而據以執行上述程式化操作時,程式化電壓所需驅動之負載的大小便可以維持在N個記憶單元所對應之負載的大小,進而使得程式化電壓能維持穩定。 In summary, the present invention adds a plurality of loads, a load detection circuit and a load control circuit to the memory, and the size of each load is equal to the load corresponding to each memory unit. In addition, the present invention also utilizes the load detection circuit to obtain one N-bit input data of the memory, and determines how many memory cells need to be changed when the memory performs a stylized operation according to the N-bit input data. Content, and according to the results of the first judgment. When the first judgment result indicates that the storage contents of the M memory cells need to be changed, the load control circuit provides the NM load to the decoder of the source line according to the first determination result to further connect the supplied NM loads in parallel. To a transmission path of the above power supply voltage. Therefore, when the decoder uses the received power voltage as a stylized voltage to perform the above-mentioned stylization operation, the load of the load required to drive the voltage can be maintained at the load corresponding to the N memory cells. The size of the program allows the stylized voltage to remain stable.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.
100、200、300、400、500、600‧‧‧記憶體 100, 200, 300, 400, 500, 600‧‧‧ memory
110‧‧‧資料輸入/輸出介面 110‧‧‧Data input/output interface
112‧‧‧輸入資料傳輸單元 112‧‧‧Input data transmission unit
114‧‧‧輸出資料傳輸單元 114‧‧‧Output data transmission unit
120‧‧‧負載偵測電路 120‧‧‧Load detection circuit
130‧‧‧負載控制電路 130‧‧‧Load control circuit
140、340‧‧‧負載 140, 340‧‧‧ load
141‧‧‧浮閘電晶體 141‧‧‧Floating transistor
150‧‧‧電源電壓產生電路 150‧‧‧Power supply voltage generating circuit
160‧‧‧電源電壓切換開關 160‧‧‧Power supply voltage switch
170、470‧‧‧解碼器 170, 470‧‧‧ decoder
171、471‧‧‧輸入端 171, 471‧‧‧ input
172-1~172-N、472-1~472-N、N+1‧‧‧輸出端 172-1~172-N, 472-1~472-N, N+1‧‧‧ output
173、474‧‧‧電性路徑 173, 474‧‧‧ electrical path
180‧‧‧記憶陣列 180‧‧‧ memory array
181、483‧‧‧源極線 181, 483‧‧‧ source line
182‧‧‧記憶單元 182‧‧‧ memory unit
230‧‧‧負載控制電路 230‧‧‧Load control circuit
231‧‧‧控制單元 231‧‧‧Control unit
232‧‧‧開關 232‧‧‧Switch
242‧‧‧字元線 242‧‧‧ character line
CM‧‧‧控制命令 CM‧‧‧ control order
DS1‧‧‧第一判斷結果 DS1‧‧‧ first judgment result
DS2‧‧‧第二判斷結果 DS2‧‧‧ second judgment result
GND‧‧‧接地電位 GND‧‧‧ Ground potential
PV1‧‧‧電源電壓 PV1‧‧‧Power supply voltage
PV2‧‧‧預設電壓 PV2‧‧‧Preset voltage
S702~S704‧‧‧步驟 S702~S704‧‧‧Steps
圖1為依照本發明一實施例之記憶體的示意圖。 1 is a schematic diagram of a memory in accordance with an embodiment of the present invention.
圖2為依照本發明另一實施例之記憶體的示意圖。 2 is a schematic diagram of a memory in accordance with another embodiment of the present invention.
圖3為依照本發明再一實施例之記憶體的示意圖。 3 is a schematic diagram of a memory in accordance with still another embodiment of the present invention.
圖4為依照本發明又另一實施例之記憶體的示意圖。 4 is a schematic diagram of a memory in accordance with still another embodiment of the present invention.
圖5為依照本發明又再一實施例之記憶體的示意圖。 FIG. 5 is a schematic diagram of a memory according to still another embodiment of the present invention.
圖6為依照本發明再另一實施例之記憶體的示意圖。 Figure 6 is a schematic illustration of a memory in accordance with still another embodiment of the present invention.
圖7為依照本發明一實施例之記憶體的操作方法的流程圖。 7 is a flow chart of a method of operating a memory in accordance with an embodiment of the present invention.
S702~S704‧‧‧步驟 S702~S704‧‧‧Steps
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101144317A TWI525624B (en) | 2012-11-27 | 2012-11-27 | Memory and operating method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101144317A TWI525624B (en) | 2012-11-27 | 2012-11-27 | Memory and operating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201421474A TW201421474A (en) | 2014-06-01 |
TWI525624B true TWI525624B (en) | 2016-03-11 |
Family
ID=51393507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101144317A TWI525624B (en) | 2012-11-27 | 2012-11-27 | Memory and operating method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI525624B (en) |
-
2012
- 2012-11-27 TW TW101144317A patent/TWI525624B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201421474A (en) | 2014-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7760553B2 (en) | Fuse circuit and flash memory device having the same | |
US7898866B2 (en) | Nonvolatile memory device and method of operating the same | |
TW201822210A (en) | Memory and read method thereof | |
CN108932958A (en) | Semiconductor device and storage system with input buffer circuit | |
US7782680B2 (en) | Flash memory device having a verify data buffer capable of being employed as a program data buffer, and a method thereof | |
JP2010176831A (en) | Page buffer circuit | |
US20180068721A1 (en) | Memory with Margin Current Addition and Related Methods | |
US7236397B2 (en) | Redundancy circuit for NAND flash memory device | |
US20150078102A1 (en) | Nonvolatile semiconductor memory device and data transmission method | |
TWI573146B (en) | memory device and OPERATION method thereof | |
TWI525624B (en) | Memory and operating method thereof | |
KR101095799B1 (en) | Circuit for code address memory cell in non-volatile memory device and Method for operating thereof | |
US8873295B2 (en) | Memory and operation method thereof | |
US6998873B2 (en) | Data input/output buffer and semiconductor memory device using the same | |
KR101906966B1 (en) | Logic device and operating method of the same | |
CN113129981A (en) | Apparatus and method for fast data destruction | |
KR20120005843A (en) | Memory system and method of operating thereof | |
CN106898382B (en) | Reading circuit of memory and reading method thereof | |
KR100965078B1 (en) | Non volatile memory device and method of operating the same | |
US20050141275A1 (en) | Flash memory device | |
KR101723974B1 (en) | Operating method of non-volatile memory acquiring sensing margin using current mirror circuit | |
JPWO2015008438A1 (en) | Nonvolatile semiconductor memory device and rewriting method thereof | |
CN108615538B (en) | Memory with symmetrical read current curve and read method thereof | |
US20090027968A1 (en) | Nand flash memory device and method of operating the same | |
TWI490864B (en) | Resistive random-access memory |