TWI524079B - Inspection method for contact by die to database - Google Patents

Inspection method for contact by die to database Download PDF

Info

Publication number
TWI524079B
TWI524079B TW103135750A TW103135750A TWI524079B TW I524079 B TWI524079 B TW I524079B TW 103135750 A TW103135750 A TW 103135750A TW 103135750 A TW103135750 A TW 103135750A TW I524079 B TWI524079 B TW I524079B
Authority
TW
Taiwan
Prior art keywords
wafer
contact window
actual image
detecting
database
Prior art date
Application number
TW103135750A
Other languages
Chinese (zh)
Other versions
TW201614256A (en
Inventor
駱統
李筱玲
楊令武
楊大弘
陳光釗
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW103135750A priority Critical patent/TWI524079B/en
Application granted granted Critical
Publication of TWI524079B publication Critical patent/TWI524079B/en
Publication of TW201614256A publication Critical patent/TW201614256A/en

Links

Description

晶片對資料庫的接觸窗檢測方法 Contact window detection method for wafer pair database

本發明是有關於一種晶片檢測方法,且特別是有關於一種晶片對資料庫(die to database,D2DB)的接觸窗(Contact)檢測方法。 The present invention relates to a wafer inspection method, and more particularly to a contact detection method for a wafer to database (D2DB).

隨著IC製程的線寬持續縮小,製程的關鍵尺寸(CD)的控制與監測也更加重要。以奈米世代半導體技術來看,要精確檢測出晶片表面結構之缺陷也更加不易。 As the line width of the IC process continues to shrink, the control and monitoring of the critical dimension (CD) of the process is also more important. In view of nanometer semiconductor technology, it is even more difficult to accurately detect defects in the surface structure of the wafer.

以接觸窗的檢測為例,目前常見的方式有兩種。一種檢測方式是通過不同條件之曝光能量與焦距的矩陣(又稱focus-energy matrix,FEM),來檢查微影蝕刻後的接觸窗,以定義出FEM窗(window)。另一種檢測方式是使用電子束檢測工具(E-beam inspection tool)來檢測接觸窗。 Taking the detection of the contact window as an example, there are two common ways. One method of detection is to examine the contact window after lithography etching through a matrix of exposure energy and focal length (FEM) under different conditions to define a FEM window. Another method of detection is to use an E-beam inspection tool to detect the contact window.

然而,因為FEM窗不會特別標示開口過小(small)的接觸窗,所以這種導因於開口過小的斷線不會被測出,而影響元件內連線的可靠度。而且因為整個晶片的接觸窗大小都不同,也增加 了檢測的難度。 However, since the FEM window does not particularly indicate the contact window that is too small, this is caused by the fact that the disconnection of the opening is too small to be detected, and the reliability of the component interconnection is affected. And because the contact window size of the entire wafer is different, it also increases The difficulty of detection.

至於電子束檢測方式只會標出隱蔽(blind)缺陷,且會受到下層結構(如金屬導線)的影響,而錯判結果。另外,E-Beam檢測需要將整個晶片的影像都取得後才能一一進行檢查,所以單片晶片檢測時間往往長達數個月。因此,這種檢測方式也不夠即時。 As for the electron beam detection method, only the blind defect is marked, and it is affected by the underlying structure (such as a metal wire), and the result is wrongly judged. In addition, the E-Beam test requires that the entire wafer image be acquired before it can be inspected one by one, so the wafer inspection time is often as long as several months. Therefore, this type of detection is not immediate enough.

本發明提供一種晶片對資料庫(die to database,D2DB)的接觸窗(contact)檢測方法,能即時取得精確的接觸窗檢測結果也可在離線(off-line)時取得精確的接觸窗檢測結果。 The invention provides a contact detection method for a wafer to database (D2DB), which can obtain accurate contact window detection results in real time and can obtain accurate contact window detection results when off-line. .

本發明的晶片對資料庫的接觸窗檢測方法,包括取得晶圓中多個接觸窗的實際影像,並對其位置進行解碼,以得到解碼後的一圖形檔。然後,將圖形檔與晶片的設計資料庫(design database)對準,並對上述實際影像進行影像萃取,以得到接觸窗的影像輪廓,隨後量測接觸窗的所述影像輪廓與設計資料庫(design database)中之對應接觸窗在關鍵尺寸上的差異。 The method for detecting a contact window of a wafer pair database of the present invention comprises obtaining an actual image of a plurality of contact windows in a wafer, and decoding the position thereof to obtain a decoded graphic file. Then, the graphic file is aligned with the design database of the wafer, and the actual image is image-extracted to obtain the image contour of the contact window, and then the image contour and the design database of the contact window are measured ( The difference in the key dimensions of the corresponding contact window in design database).

在本發明的一實施例中,上述接觸窗更包括晶片中的介層窗或多晶矽接觸窗插塞。 In an embodiment of the invention, the contact window further comprises a via or a polysilicon contact plug in the wafer.

在本發明的一實施例中,上述差異包括接觸窗在半徑、大小以及圓面積其中至少一種數值的差異。 In an embodiment of the invention, the difference includes a difference in at least one of a radius, a size, and a circular area of the contact window.

在本發明的一實施例中,上述方法還可包括根據差異,來判定接觸窗的缺陷種類,如開口過小(small)、橋接(bridge)或隱 蔽(blind)缺陷。 In an embodiment of the invention, the method may further comprise determining the type of defect of the contact window according to the difference, such as the opening being too small, bridging or hiding. Blind defects.

在本發明的一實施例中,上述方法在取得所述實際影像之前還可選擇所述晶圓中欲檢查之接觸窗所在的檢查區域,再重新設定所述檢查區域的座標,以使各區域重疊的部份降至最少。 In an embodiment of the present invention, the method may further select an inspection area where the contact window to be inspected in the wafer is located before acquiring the actual image, and then reset coordinates of the inspection area to make each area The overlap is minimized.

在本發明的一實施例中,選擇上述檢查區域之方法包括設定在所述設計資料庫中之關鍵尺寸(CD)在一預定值以下的區域為檢查區域。 In an embodiment of the invention, the method of selecting the inspection region includes setting an area of a critical dimension (CD) in the design database below a predetermined value as an inspection region.

在本發明的一實施例中,選擇上述檢查區域之方法包括根據設計法則(design rule)將接觸窗的尺寸超過或低於一預定數值的區域設定為檢查區域。 In an embodiment of the invention, the method of selecting the inspection region includes setting an area of the contact window that exceeds or falls below a predetermined value as an inspection area according to a design rule.

在本發明的一實施例中,選擇上述檢查區域之方法包括根據先前進行的晶圓從缺陷檢測結果選定檢查區域。 In an embodiment of the invention, the method of selecting the inspection region includes selecting an inspection region from a defect detection result based on a previously performed wafer.

在本發明的一實施例中,取得上述實際影像的方法包括利用電子束檢測(EBI inspection)或者掃描式電子顯微鏡(e beam SEM review tool,EBR)。 In an embodiment of the invention, the method of obtaining the actual image includes using an EBI inspection or an e beam SEM review tool (EBR).

在本發明的各個實施例中,用來執行上述電子束檢測的儀器包括電子束檢測工具(E-beam inspection tool)、搭配波長150nm~800nm光源的亮場檢測(bright field inspection)設備、搭配雷射光源的暗場檢測(laser light source with dark field inspection)設備、或掃描式電子顯微鏡(scanning electron microscope review tool)。 In various embodiments of the present invention, an apparatus for performing the above-described electron beam detection includes an E-beam inspection tool, a bright field inspection device with a light source having a wavelength of 150 nm to 800 nm, and a matching Ray A laser light source with dark field inspection device or a scanning electron microscope review tool.

在本發明的一實施例中,取得所述實際影像之方法還可 進而包括對實際影像中的定義圖形中繼檔(metafile)進行解碼並標示所述晶片位置(die)及相對掃描晶片原點(die corner)之缺陷座標位置,或依照KLA Klarf檔案與影像連結的方式,以便將實際影像轉入晶片資料庫。 In an embodiment of the invention, the method for obtaining the actual image may also The method further includes decoding a defined graphic metafile in the actual image and marking the die position of the wafer and the relative corner of the scan wafer, or linking with the image according to the KLA Klarf file. The way to transfer the actual image to the wafer database.

在本發明的一實施例中,取得所述實際影像之方法進而包括解碼實際影像之檔名並標示出所述晶片位置及相對掃描晶片原點(die corner)之缺陷座標位置,以便將實際影像轉入晶片資料庫。 In an embodiment of the invention, the method of obtaining the actual image further includes decoding a file name of the actual image and indicating the position of the wafer and the position of the defect coordinate relative to the scan wafer origin to display the actual image. Transfer to the wafer database.

在本發明的一實施例中,取得所述實際影像之方法包括根據已知所在晶片位置(die)及相對掃描晶片原點(die corner)之缺陷座標位置,僅作拍攝動作,進而將上述已知晶片位置及相對影像轉入晶片資料庫。 In an embodiment of the invention, the method for obtaining the actual image includes performing only a shooting action according to a known die position and a relative coordinate position of a scanning die origin, thereby The wafer position and relative image are transferred to the wafer database.

在本發明的一實施例中,上述設計資料庫包括原始設計資料庫之GDSII檔、模擬的後光學鄰近效應校正(post-OPC)之GDSII檔、或由模擬器(simulated tool)所轉換得到設計資料庫。 In an embodiment of the invention, the design database includes a GDSII file of the original design database, a post-OPC GDSII file of the simulated post-OPC, or a design converted by a simulated tool. database.

在本發明的一實施例中,取得接觸窗的實際影像之方法包括取得整個晶圓中的所有晶片內(die or chip)在選擇區內獲取多個接觸窗的實際影像或是部份晶片(Die or chip)在選擇區內獲取多個接觸窗的實際影像。 In an embodiment of the invention, the method for obtaining an actual image of the contact window includes obtaining an actual image or a partial wafer of a plurality of contact windows in the selection area of all the chips or chips in the entire wafer ( Die or chip) Acquires the actual image of multiple contact windows in the selection area.

在本發明的一實施例中,在取得所述接觸窗的實際影像之前,為了使檢測設備能對晶圓在每個晶片(die)都準確對位,可先做晶片對位(die register,i.e align with some position in each die),即在每個晶片對準同樣位置(如原點);以及在不同晶片上置入相同易認位置(easy to identify position)或晶片原點(virtual die corner)在欲拍攝位置上或欲拍照檢測之座標檔案(Klarf file)上增進其對準效果。 In an embodiment of the invention, before the actual image of the contact window is obtained, in order to enable the detecting device to accurately align the wafer on each die, a die register may be performed first. Ie align with some position in each Die), that is, aligning the same position (such as the origin) on each wafer; and placing the easy to identify position or the virtual die corner on the different wafers at the desired position or The Klarf file for photo detection improves its alignment.

基於上述,本發明藉由把整個晶片中的接觸窗的實際影像顯示於設計資料庫上,所以能即時或離線取得精確的接觸窗缺陷資訊,如開口過小(small)、橋接(bridge)或隱蔽(blind)缺陷。而且,本發明利用影像萃取的方式進行實際影像與設計資料庫的比較,更能得到精確的結果。另外,本發明如根據實體座標直接比較實際影像與設計資料庫,則可更為快速地得到缺陷資訊。本發明是以接觸窗之晶片對資料庫方法來決定黃光曝光能量與焦距的矩陣(FEM)的製程最佳條件與範圍,但此方法並不侷限在接觸窗的製程條件範圍上,此方法可應用在各種不同的線寬或線距黃光蝕刻的製程之曝光能量與焦距的矩陣最佳條件與範圍或是製程範圍驗證確認(Process window qualification,PWQ)。 Based on the above, the present invention can accurately or accurately obtain contact window defect information, such as an opening, a bridge, or a concealment, by displaying an actual image of a contact window in the entire wafer on a design database. (blind) a defect. Moreover, the present invention compares the actual image with the design database by means of image extraction, and can obtain accurate results. In addition, the present invention can obtain defect information more quickly if the actual image and design database are directly compared based on the physical coordinates. The invention is based on the wafer-to-database method of the contact window to determine the optimal condition and range of the process of the yellow light exposure energy and the focal length matrix (FEM), but the method is not limited to the range of the process conditions of the contact window, the method It can be applied to the matrix optimum conditions and ranges of exposure energy and focal length in various line width or line distance yellow etching processes or Process window qualification (PWQ).

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100~140‧‧‧步驟 100~140‧‧‧Steps

圖1是依照本發明的一實施例的一種晶片對資料庫的接觸窗檢測流程圖。 1 is a flow chart of contact window detection of a wafer-to-bank according to an embodiment of the invention.

圖2是依照目前KLA檢測的所得到的接觸窗範圍(contact window)之示意圖。 Figure 2 is a schematic illustration of the resulting contact window in accordance with current KLA detection.

圖3是依照本發明的實施例檢測得到的接觸窗範圍之示意圖。 3 is a schematic illustration of the range of contact windows detected in accordance with an embodiment of the present invention.

圖1是依照本發明的一實施例的一種晶片對資料庫的接觸窗檢測流程圖。 1 is a flow chart of contact window detection of a wafer-to-bank according to an embodiment of the invention.

在圖1中,先進行步驟100,取得晶圓中接觸窗的實際影像(raw images),其方法例如利用電子束檢測或是從掃描式電子顯微鏡拍照取得。在本實施例中雖然都以「接觸窗(Contact)」為例說明,但本發明並不限於此;舉凡半導體製程中需要製作的內連線部位,均可應用本發明的方法,譬如晶片中的介層窗(Via)或多晶矽接觸窗插塞(poly plug)等圓孔或圓形的影像檢測或是各種不同的線寬或線距黃光蝕刻的製程之曝光能量與焦距的矩陣最佳條件與範圍(FEM)晶圓或製程範圍驗證確認(Process window qualification,PWQ)。在一實施例中,用來執行上述電子束檢測的儀器例如電子束檢測工具(E-beam inspection tool)、搭配波長150nm~800nm光源的亮場檢測(bright field inspection)設備、搭配雷射光源的暗場檢測(laser light source with dark field inspection)設備、或掃描式電子顯微鏡(scanning electron microscope review tool)等。上述方式取得的實際影像在輸出時,可進而對實際影像中的定義圖形中繼檔(metafile)進行解碼,並標示所在晶片位置(die) 及相對掃描晶片原點(die corner)之缺陷座標位置,以便將實際影像轉入晶片資料庫。另外,取得實際影像的方法也可進而解碼實際影像之檔名,並標示所述晶片位置及相對掃描晶片原點(die corner)之缺陷座標位置或依照KLA Klarf檔案與影像連結的方式,以便將實際影像轉入晶片資料庫。此外,取得實際影像的方法還可根據已知所在晶片位置(die)及相對掃描晶片原點(die corner)之缺陷座標位置,如檢測座標(Klarf file)僅作拍攝動作,進而將已知晶片位置及相對影像轉入晶片資料庫。 In FIG. 1, step 100 is first performed to obtain a raw image of a contact window in a wafer, such as by electron beam detection or photographing from a scanning electron microscope. In the present embodiment, although the "contact" is taken as an example, the present invention is not limited thereto; the method of the present invention can be applied to an interconnect portion to be fabricated in a semiconductor process, such as a wafer. The aperture or circular image detection such as Via or poly plug, or the matrix of exposure energy and focal length for various line width or line yellow etch processes Condition and Range (FEM) Wafer or Process Window Qualification (PWQ). In one embodiment, an apparatus for performing the above-described electron beam detection, such as an E-beam inspection tool, a bright field inspection device with a wavelength of 150 nm to 800 nm, and a laser source. A laser light source with dark field inspection device, or a scanning electron microscope review tool or the like. When the actual image obtained by the above method is output, the defined graphic metafile in the actual image can be decoded and the location of the wafer is marked. And scanning the defect coordinate position of the die corner to transfer the actual image into the wafer database. In addition, the method of obtaining the actual image may further decode the file name of the actual image, and indicate the position of the wafer and the position of the defect coordinate relative to the scanning die origin or according to the KLA Klarf file and image connection, so as to The actual image is transferred to the wafer database. In addition, the method of obtaining the actual image may also be based on the known die position and the relative coordinate position of the scanning wafer origin, such as the Klarf file, and the known wafer. The position and relative image are transferred to the wafer database.

另外,在步驟100之前,可先選擇晶圓中欲檢查之接觸窗所在的多個檢查區域(步驟102)。選擇檢查區域的步驟102能將整個檢測流程的時間大幅縮短。在本實施例中減少受測的檢查區域之方式有很多種,例如根據風險分析(risk analysis)、圖案密度(pattern density)、設計法則(design rule)、最小關鍵尺寸(minimum CD)、圖案均勻度(pattern uniformity)、或經KLA亮場或暗場光學儀器檢測得到的結果,來挑選要進行以下各個步驟的區域。如果需要的話,仍可選擇整個晶片的全部接觸窗執行以下各個步驟。 In addition, prior to step 100, a plurality of inspection regions in the wafer where the contact window to be inspected is located may be selected (step 102). The step 102 of selecting the inspection area can greatly shorten the time of the entire inspection process. There are many ways to reduce the inspection area to be tested in this embodiment, for example, according to risk analysis, pattern density, design rule, minimum critical size, uniform pattern. The pattern uniformity, or the result of detection by KLA bright field or dark field optical instrument, is used to select the area where the following steps are to be performed. If desired, all of the contact windows of the entire wafer can still be selected to perform the following steps.

詳細地說,本實施例選擇檢查區域之方法有以下幾種。第一種是設定在設計資料庫(design database)中之關鍵尺寸(CD)在一預定值以下的區域為檢查區域。所述設計資料庫例如原始設計資料庫之圖形資料系統(graphic data system,GDSII)檔、模擬的後光學鄰近效應校正(post-OPC)之GDSII檔、或由模擬器(simulated tool)所轉換得到設計資料庫等。所謂的「GDSII」為設計資料庫的 格式的一種,其檔案格式並不僅限於GDSII,可為任何可轉出設計檔之格式,如Oasis或者其他資料庫格式(database format)。第二種選擇是根據設計法則(design rule)將超過一預定數值或低於一預定數值的區域設定為檢查區域,譬如黃光規則檢查(lithographic rule checking,LRC)與設計規則檢查(design rule checking,DRC)、風險注意區(care area)等可直接轉移,作為選擇檢查區域的依據。第三種選擇方法是根據先前進行的晶圓缺陷檢測結果選定檢查區域,其中所述晶圓缺陷檢測例如是經KLA儀器檢測得到的結果,其檔案形式稱為KLARF(即KLA result file),且KLARF輸出可能來自多種不同光源和解析度的掃描、光學掃描、或單一條件的單次掃描。以上各種選擇方法可單獨使用或者合併兩種以上運用。此外,本實施例的方法仍包括取得整個晶圓中的所有晶片(Die or chip)內在選擇區內獲取多個接觸窗之實際影像;或是部份晶片(Die or chip)在選擇區內獲取多個接觸窗的實際影像。 In detail, the method of selecting an inspection area in this embodiment has the following types. The first is to set the critical dimension (CD) in the design database below a predetermined value as the inspection area. The design database is, for example, a graphic data system (GDSII) file of the original design database, a post-OPC GDSII file of the simulated post-OPC, or converted by a simulated tool. Design database, etc. The so-called "GDSII" is the design database. One of the formats, whose file format is not limited to GDSII, can be any format that can be transferred out of the design file, such as Oasis or other database format. The second option is to set a region that exceeds a predetermined value or below a predetermined value as an inspection region according to a design rule, such as lithographic rule checking (LRC) and design rule checking. , DRC), risk area, etc. can be directly transferred as the basis for selecting the inspection area. A third method of selecting is to select an inspection area according to a previously performed wafer defect detection result, wherein the wafer defect detection is, for example, a result detected by a KLA instrument, and the file form is called KLARF (ie, KLA result file), and The KLARF output may come from a variety of different light sources and resolution scans, optical scans, or single scans of a single condition. The above various selection methods may be used alone or in combination of two or more. In addition, the method in this embodiment still includes obtaining an actual image of multiple contact windows in a selected area of all the chips in the entire wafer; or a Die or chip is obtained in the selection area. Actual image of multiple contact windows.

上述風險注意區域(care area)的選擇,譬如藉由風險分析輸入(如LRC、DRC等結果)選定檢查區域。另外也可藉由風險圖案規定(risk pattern specified)的圖案搜尋或相似性(similarity)選定檢查區域。此外,還可藉由風險注意區縮減或自KLA BF或DF選定檢查區域。 The selection of the above risk area, for example, by risk analysis input (such as LRC, DRC, etc.), selects the inspection area. Alternatively, the inspection area can be selected by pattern search or similarity of risk pattern specification. In addition, the inspection area can be selected by risk reduction or by KLA BF or DF.

此外,在步驟102之後可直接進行步驟100;或者重新設定上述檢查區域的座標,以使各區域重疊的部分降至最少(步驟104)。舉例來說,如果步驟102時是根據先前進行的晶圓缺陷檢 測結果(如KLA檢測)選定檢查區域,則有可能得到有部分是彼此重疊的區域。如果晶圓中的同一部位遭受多次電子束照射的檢測,有可能會破壞線路結構,所以為了避免檢查區域彼此重疊,可藉由此規則,經運算最佳化將彼此重疊的檢查區域根據其座標排除重疊的部分,而將檢查區域重新設定不重疊的檢查區域。 Further, step 100 may be performed directly after step 102; or the coordinates of the above-described inspection area may be reset to minimize the overlap of the areas (step 104). For example, if step 102 is based on a previously performed wafer defect inspection When the measurement result (such as KLA detection) selects the inspection area, it is possible to obtain an area in which parts overlap each other. If the same part of the wafer is subjected to multiple electron beam irradiation detection, the line structure may be destroyed. Therefore, in order to avoid overlapping of the inspection areas, the inspection area that overlaps each other by operation optimization may be used according to the rule. The coordinates exclude overlapping parts, and the inspection area is reset to an inspection area that does not overlap.

另外,在進行步驟100之前,為了使檢測設備在一晶圓的每個晶片(die)都能準確對位,還可先進行步驟106:晶片對位(die register,i.e align with some position in each die),即在每個晶片對準同樣位置(如原點);抑或進行步驟108:在不同晶片上置入相同記號(如易認位置(easy to identify position))或晶片原點(virtual die corner)在欲拍攝位置上或欲拍照檢測之座標檔案(Klarf file)上,以增進其對準效果。 In addition, before step 100 is performed, in order to make the detecting device accurately align each die of a wafer, step 106 may be performed: die register, ie align with some position in each Die), that is, aligning the same position (such as the origin) on each wafer; or proceeding to step 108: placing the same mark (such as easy to identify position) or wafer origin on different wafers (virtual die) Corner) On the Klarf file to be photographed or to be photographed to enhance its alignment.

在步驟100之後,進行步驟110,對實際影像的位置進行解碼,以得到解碼後的圖形檔。這個步驟可與上一步驟100一樣自用來取得實際影像的電子束檢測的儀器中輸出。也就是說,藉由將LRC或Care area、risk area利用電子束檢測並拍攝完畢(步驟100)之後,即進行上述解碼。 After step 100, step 110 is performed to decode the position of the actual image to obtain a decoded graphics file. This step can be output from the instrument used to obtain the electron beam detection of the actual image as in the previous step 100. That is to say, the above decoding is performed after the LRC or Care area and the risk area are detected by the electron beam and the photographing is completed (step 100).

接著,進行步驟120,將圖形檔與晶片的設計資料庫對準;亦即,把相對於檢測機台檢測位置轉換為設計資料庫(design base)GDS座標之圖形檔,對到相對應之設計佈局(design layout)上(比例譬如1:1)。 Next, proceeding to step 120, aligning the graphic file with the design database of the wafer; that is, converting the detection position relative to the detection machine to the graphic file of the design base GDS coordinate, corresponding to the design On the layout (scale is 1:1).

然後,進行步驟130,對實際影像進行影像萃取(image extraction),以得到接觸窗的影像輪廓。上述影像萃取能萃取出二維(2D)影像的輪廓(contour)。至於影像萃取的方法例如邊緣輪廓萃取(Edge contour extraction)、自仿射繪圖系統(Self-Affine mapping system)、自仿射蛇行模式(Self-Affine snake model)、主動輪廓模式(Active contour model)、最大期望(expectation-maximisation)演算法、主成分分析(Principal component analysis)、層集(level sets)演算法或蒙地卡羅法(Monte Carlo techniques)。而且上述影像萃取可以是線上(on-line)萃取,可藉由快速演算而達到即時處理的功效,並且能標示出座標。而且,這個步驟不只針對單張實際影像,而是將所有拍攝到的實際影像都進行影像萃取。 Then, proceed to step 130 to perform image extraction on the actual image (image) Extraction) to obtain the image outline of the contact window. The above image extraction extracts the contour of a two-dimensional (2D) image. As for image extraction methods such as Edge contour extraction, Self-Affine mapping system, Self-Affine snake model, Active contour model, Expectation-maximisation algorithm, principal component analysis, level sets algorithm or Monte Carlo techniques. Moreover, the above image extraction can be on-line extraction, which can achieve immediate processing by fast calculation and can mark coordinates. Moreover, this step is not only for a single actual image, but for all the captured actual images for image extraction.

之後,進行步驟140,量測接觸窗之影像輪廓與設計資料庫中之對應接觸窗在關鍵尺寸(CD)上的差異,以得到接觸窗缺陷檢測的結果,其中依照所選的區域,可每單位做一次量測,且所述單位可選從0.0001μm~0.5μm測一次。上述差異例如是接觸窗在半徑、大小(size)以及圓面積中至少一種數值上的差異。而且,在將差異輸出後,可藉由設定臨界條件(threshold condition)再將缺陷依所述差異的程度分類,若差異數值比標準目標大很多則易形成橋接(bridge)、若差異數值比標準目標小很多(如開口過小)則形成斷路(open)。最後輸出分類嚴重性及其最終缺陷解析結果。此些缺陷均可依晶片資料庫座標系找出相對應位置。由於能將影像輪廓顯示於設計資料庫之圖形上,所以能即時且精確地比對出影像輪廓與設計資料庫之差異,而直接判定接觸窗的缺陷種類並將其 差別大小及嚴重性分類。此外,本實施例還可藉由晶圓內位於不同晶片(chip)之檢測結果得到重複的系統缺陷(systematic defect)或熱點(hot spot)。 Then, step 140 is performed to measure the difference between the image contour of the contact window and the corresponding contact window in the design database on the critical dimension (CD) to obtain the result of the contact window defect detection, wherein each of the selected regions may be The unit is measured once, and the unit can be measured once from 0.0001 μm to 0.5 μm. The above difference is, for example, a difference in at least one of a radius, a size, and a circular area of the contact window. Moreover, after the difference is output, the defect can be classified according to the degree of the difference by setting a threshold condition. If the difference value is much larger than the standard target, the bridge is easily formed, and if the difference value is larger than the standard The target is much smaller (if the opening is too small) to form an open. Finally, the classification severity and its final defect analysis result are output. These defects can be found in the corresponding position according to the wafer database coordinate system. Since the image outline can be displayed on the graphic of the design database, the difference between the image outline and the design database can be accurately and accurately compared, and the defect type of the contact window is directly determined and Classification of differences in size and severity. In addition, this embodiment can also obtain repeated systematic defects or hot spots by the detection results of different chips in the wafer.

同時請注意,上述步驟中應排除使用一種避免實際影像界面導致誤差的演算法。 Also note that the above steps should exclude the use of an algorithm that avoids errors caused by the actual image interface.

以下列舉實驗結果來驗證上述實施例的效果,但不用以限制本發明的範圍。 The results of the above examples are enumerated below to verify the effects of the above examples, but are not intended to limit the scope of the invention.

首先,對整個晶圓利用目前KLA檢測法進行接觸窗檢測,並將檢測所得到的接觸窗範圍(contact window)連同顯影後關鍵尺寸窗(DCD window)顯示於圖2。 First, the contact window detection is performed on the entire wafer using the current KLA detection method, and the contact window obtained by the detection together with the developed DCD window is shown in FIG.

從圖2可知,KLA檢測結果大部分的缺陷(如圖2中的點區域或斜線區域)是在DCD窗以外的部分。 As can be seen from Fig. 2, most of the defects of the KLA detection result (such as the dot area or the oblique line area in Fig. 2) are outside the DCD window.

然而,當使用本發明的方法對相同晶圓進行接觸窗檢測,可藉由CDU Map觀測晶圓中每個晶片內的所有接觸窗;換言之,在單一晶片中能檢測高達數千個的接觸窗。圖3顯示DCDwindow以及按照本發明的實施例所得到的接觸窗範圍(contact window),結果顯現在DCD窗內有大部分的區域有開口過小(如圖3中的點區域)或隱蔽(如圖3中的斜線區域)缺陷,而且還能發現橋接(如圖3中的十字區域)缺陷,因此與圖2相比,依照本發明的檢測方法能更精確量測出接觸窗範圍。 However, when the same wafer is subjected to contact window detection using the method of the present invention, all contact windows in each wafer in the wafer can be observed by the CDU Map; in other words, up to thousands of contact windows can be detected in a single wafer. . Figure 3 shows the DCD window and the contact window obtained in accordance with an embodiment of the present invention, the result of which appears that most of the area within the DCD window has openings that are too small (as in the dot area of Figure 3) or concealed (Figure The slash area in 3) is defective, and a bridge (such as the cross area in FIG. 3) can be found, so that the detection method according to the present invention can more accurately measure the contact window range as compared with FIG.

綜上所述,本發明因為能直接把接觸窗的E-beam影像放在設計資料庫上,並有座標進行對準,因此能即時或者離線對晶 片甚至整個晶圓中的所有接觸窗取得其精確的缺陷資訊,並迅速與資料庫作比較。 In summary, the present invention can directly or offline the E-beam image of the contact window by directly placing it on the design database and having coordinates for alignment. All contact windows in the film or even the entire wafer get accurate defect information and quickly compare it with the database.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100~140‧‧‧步驟 100~140‧‧‧Steps

Claims (19)

一種晶片對資料庫的接觸窗檢測方法,包括:取得一晶圓中多個接觸窗的實際影像;依照KLA Klarf檔案與影像連結的方式,以便將所述實際影像轉入晶片資料庫;對所述接觸窗的所述實際影像的位置進行解碼,以得到解碼後的一圖形檔;將所述圖形檔與所述晶片的設計資料庫(design database)對準;對所述實際影像進行影像萃取,以得到所述接觸窗的多個影像輪廓;以及量測所述接觸窗之所述影像輪廓與所述設計資料庫中之多個對應接觸窗在關鍵尺寸(CD)上的差異。 A method for detecting a contact window of a wafer to a database, comprising: obtaining an actual image of a plurality of contact windows in a wafer; and connecting the KLA Klarf file and the image to transfer the actual image into the wafer database; Decoding the position of the actual image of the contact window to obtain a decoded graphic file; aligning the graphic file with a design database of the wafer; performing image extraction on the actual image And obtaining a plurality of image contours of the contact window; and measuring a difference in a critical dimension (CD) between the image contour of the contact window and a plurality of corresponding contact windows in the design database. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中所述接觸窗更包括所述晶片中的介層窗或多晶矽接觸窗插塞。 The method of detecting a contact window of a wafer-to-bank according to claim 1, wherein the contact window further comprises a via or a polysilicon contact plug in the wafer. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中所述差異包括所述接觸窗在半徑、大小以及圓面積其中至少一種數值的差異。 The method of detecting a contact window of a wafer-to-bank according to claim 1, wherein the difference comprises a difference in at least one of a radius, a size, and a circular area of the contact window. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,更包括根據所述差異,判定所述接觸窗的缺陷種類。 The method for detecting a contact window of a wafer pair database according to claim 1, further comprising determining a defect type of the contact window according to the difference. 如申請專利範圍第4項所述的晶片對資料庫的接觸窗檢測 方法,其中所述缺陷種類包括開口過小(small)、橋接(bridge)或隱蔽(blind)缺陷。 Contact window detection of the wafer-to-database as described in claim 4 The method wherein the defect type comprises an opening that is too small, a bridge, or a blind defect. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中在取得所述實際影像之前更包括:選擇所述晶圓中欲檢查之所述接觸窗所在的多個檢查區域;以及重新設定所述檢查區域的座標,以使各區域重疊的部分降至最少。 The method for detecting a contact window of a wafer pair database according to claim 1, wherein before the obtaining the actual image, the method further comprises: selecting a plurality of inspection regions of the wafer in which the contact window to be inspected is located. And resetting the coordinates of the inspection area to minimize the overlap of the areas. 如申請專利範圍第6項所述的晶片對資料庫的接觸窗檢測方法,其中選擇所述檢查區域之方法包括設定在所述設計資料庫中之所述關鍵尺寸在一預定值以下的區域為所述檢查區域。 The method for detecting a contact window of a wafer-to-bank according to claim 6, wherein the method of selecting the inspection region comprises setting a region of the design database that is less than a predetermined value to a predetermined value. The inspection area. 如申請專利範圍第6項所述的晶片對資料庫的接觸窗檢測方法,其中選擇所述檢查區域之方法包括根據設計法則(design rule)將所述接觸窗的尺寸超過或低於一預定數值的區域,設定為所述檢查區域。 The method for detecting a contact window of a wafer pair database according to claim 6, wherein the method of selecting the inspection region comprises selecting a size of the contact window to exceed a predetermined value according to a design rule. The area is set as the inspection area. 如申請專利範圍第6項所述的晶片對資料庫的接觸窗檢測方法,其中選擇所述檢查區域之方法包括根據先前進行的一晶圓缺陷檢測結果選定所述檢查區域。 The method for detecting a contact window of a wafer pair database according to claim 6, wherein the method of selecting the inspection region comprises selecting the inspection region according to a previously performed wafer defect detection result. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中取得所述實際影像的方法包括利用電子束檢測或者掃描式電子顯微鏡。 The method for detecting a contact window of a wafer-to-bank according to claim 1, wherein the method of obtaining the actual image comprises using an electron beam detection or a scanning electron microscope. 如申請專利範圍第10項所述的晶片對資料庫的接觸窗檢 測方法,其中執行所述電子束檢測的儀器包括電子束檢測工具(E-beam inspection tool)、搭配波長150nm~800nm光源的亮場檢測(bright field inspection)設備、或搭配雷射光源的暗場檢測(laser light source with dark field inspection)設備或掃描式電子顯微鏡(scanning electron microscope review tool)。 Contact window inspection of the wafer-to-database as described in claim 10 The measuring method, wherein the apparatus for performing the electron beam detection comprises an E-beam inspection tool, a bright field inspection device with a light source having a wavelength of 150 nm to 800 nm, or a dark field with a laser light source A laser light source with dark field inspection device or a scanning electron microscope review tool. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中取得所述實際影像之方法更包括:對所述實際影像中的定義圖形中繼檔(metafile)進行解碼並標示出所述晶片位置及相對掃描晶片原點(die corner)之缺陷座標位置。 The method for detecting a contact window of a wafer pair database according to claim 1, wherein the method for obtaining the actual image further comprises: decoding and marking a defined graphic metafile in the actual image. The wafer position and the defect coordinate position relative to the scan die corner are derived. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中取得所述實際影像之方法更包括:對所述實際影像之檔名進行解碼並標示出所述晶片位置及相對掃描晶片原點(die corner)之缺陷座標位置。 The method for detecting a contact window of a wafer pair database according to claim 1, wherein the method for obtaining the actual image further comprises: decoding a file name of the actual image and marking the wafer position and relative Scan the defect coordinate position of the die corner. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中取得所述實際影像之方法包括:對已知晶片位置(die)及相對掃描晶片原點(die corner)之缺陷座標位置作拍攝動作;以及將所述已知晶片位置及相對影像轉入晶片資料庫。 The method for detecting a contact window of a wafer pair database according to claim 1, wherein the method for obtaining the actual image comprises: a defect to a known wafer position and a relative scan wafer defect (die corner) The coordinate position is taken as a shooting action; and the known wafer position and relative image are transferred to the wafer database. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中所述設計資料庫包括原始設計資料庫之GDSII檔、模擬的後光學鄰近效應校正(post-OPC)之GDSII檔、或由模擬器(simulated tool)所轉換得到設計資料庫。 The method for detecting a contact window of a wafer pair database according to claim 1, wherein the design database comprises a GDSII file of the original design database, and a post-OPC GDSII file of the simulated post optical effect correction (post-OPC). Or a design library converted from a simulated tool. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中取得所述接觸窗的所述實際影像之方法包括:取得整個晶圓中的所有晶片內在選擇區內獲取多數個所述接觸窗的實際影像。 The method for detecting a contact window of a wafer pair database according to claim 1, wherein the method for obtaining the actual image of the contact window comprises: obtaining a majority of all in-wafer selection regions in the entire wafer. The actual image of the contact window. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中取得所述接觸窗的所述實際影像之方法包括:取得整個晶圓中的部分晶片在選擇區內獲取多數個所述接觸窗的實際影像。 The method for detecting a contact window of a wafer pair database according to claim 1, wherein the method for obtaining the actual image of the contact window comprises: obtaining a plurality of wafers in the entire wafer to obtain a plurality of selected areas in the selection area. The actual image of the contact window. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中在取得所述接觸窗的所述實際影像之前,更包括進行晶片對位(die register),以增進其對準效果。 The method for detecting a contact window of a wafer pair database according to claim 1, wherein before the actual image of the contact window is obtained, a die register is further included to enhance alignment thereof. effect. 如申請專利範圍第1項所述的晶片對資料庫的接觸窗檢測方法,其中在取得所述接觸窗的所述實際影像之前,更包括:在不同的所述晶片上置入相同記號之位置(identify position)在欲拍攝位置上或欲拍照檢測之座標檔案上增進其對準效果;以及在不同的所述晶片上置入晶片原點(virtual die corner)在欲拍攝位置上或欲拍照檢測之座標檔案上增進其對準效果。 The method for detecting a contact window of a wafer pair database according to claim 1, wherein before the actual image of the contact window is obtained, the method further comprises: placing the same mark on different wafers. (identify position) to enhance the alignment effect on the coordinate file to be photographed or to be photographed; and to place a virtual die corner on the different wafers at the desired position or to take a photo test The coordinate file enhances its alignment.
TW103135750A 2014-10-15 2014-10-15 Inspection method for contact by die to database TWI524079B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103135750A TWI524079B (en) 2014-10-15 2014-10-15 Inspection method for contact by die to database

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103135750A TWI524079B (en) 2014-10-15 2014-10-15 Inspection method for contact by die to database

Publications (2)

Publication Number Publication Date
TWI524079B true TWI524079B (en) 2016-03-01
TW201614256A TW201614256A (en) 2016-04-16

Family

ID=56085376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103135750A TWI524079B (en) 2014-10-15 2014-10-15 Inspection method for contact by die to database

Country Status (1)

Country Link
TW (1) TWI524079B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752593B2 (en) * 2016-03-07 2020-09-09 東レエンジニアリング株式会社 Defect inspection equipment
KR20230020571A (en) 2017-11-15 2023-02-10 프로틴텍스 엘티디. Integrated circuit margin measurement and failure prediction device
US11740281B2 (en) 2018-01-08 2023-08-29 Proteantecs Ltd. Integrated circuit degradation estimation and time-of-failure prediction using workload and margin sensing
TWI828676B (en) 2018-04-16 2024-01-11 以色列商普騰泰克斯有限公司 Methods for integrated circuit profiling and anomaly detection and relevant computer program products
CN112868016A (en) * 2018-06-19 2021-05-28 普罗泰克斯公司 Efficient integrated circuit simulation and testing
CN113474668A (en) 2018-12-30 2021-10-01 普罗泰克斯公司 Integrated circuit I/O integrity and degradation monitoring
WO2021111444A1 (en) 2019-12-04 2021-06-10 Proteantecs Ltd. Memory device degradation monitoring
US11815551B1 (en) 2022-06-07 2023-11-14 Proteantecs Ltd. Die-to-die connectivity monitoring using a clocked receiver

Also Published As

Publication number Publication date
TW201614256A (en) 2016-04-16

Similar Documents

Publication Publication Date Title
TWI524079B (en) Inspection method for contact by die to database
TWI665442B (en) Systems, methods and non-transitory computer-readable media for determining parameters of a metrology process to be performed on a specimen
TW201517192A (en) Image inspection method of die to database
TWI686718B (en) Determining coordinates for an area of interest on a specimen
JP2020057008A (en) Methods and systems for predicting characteristics of device
TWI668582B (en) System, methods and non-transitory computer-readable media for determining a position of output generated by an inspection subsystem in design data space
US11120182B2 (en) Methodology of incorporating wafer physical measurement with digital simulation for improving semiconductor device fabrication
TW201602565A (en) Using high resolution full die image data for inspection
TWI603078B (en) High accuracy design based classification
TWI692700B (en) Smart defect calibration system and the method thereof
JP2011524635A5 (en)
TW201346983A (en) Pattern evaluation method and pattern evaluation device
US9589086B2 (en) Method for measuring and analyzing surface structure of chip or wafer
US20160110859A1 (en) Inspection method for contact by die to database
CN110892516B (en) Identifying sources of nuisance defects on a wafer
CN109491210A (en) A method of for detecting the defect of photoengraving pattern
TWI581118B (en) Determining a position of inspection system output in design data space
JP4778685B2 (en) Pattern shape evaluation method and apparatus for semiconductor device
TW201804547A (en) Computer assisted weak pattern detection and quantification system
KR100792687B1 (en) Method and apparatus for detecting defects of patterns on a semconductor substrate
US10303839B2 (en) Electrically relevant placement of metrology targets using design analysis
KR20100073374A (en) Method for detecting defects of semiconductor device
JP5581835B2 (en) Semiconductor device inspection method and semiconductor device inspection system
CN105588844A (en) Die-to-database (D2DB) contact window detection method
TW202312099A (en) Mask inspection for semiconductor specimen fabrication