TWI523435B - Analog-to-digital converting device - Google Patents

Analog-to-digital converting device Download PDF

Info

Publication number
TWI523435B
TWI523435B TW103115704A TW103115704A TWI523435B TW I523435 B TWI523435 B TW I523435B TW 103115704 A TW103115704 A TW 103115704A TW 103115704 A TW103115704 A TW 103115704A TW I523435 B TWI523435 B TW I523435B
Authority
TW
Taiwan
Prior art keywords
signal
comparison
positive
phase control
negative phase
Prior art date
Application number
TW103115704A
Other languages
Chinese (zh)
Other versions
TW201543821A (en
Inventor
戴宏彥
陳信樹
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW103115704A priority Critical patent/TWI523435B/en
Publication of TW201543821A publication Critical patent/TW201543821A/en
Application granted granted Critical
Publication of TWI523435B publication Critical patent/TWI523435B/en

Links

Description

類比數位轉換裝置 Analog digital converter

本發明是有關於一種裝置,特別是指一種類比數位轉換裝置。 The present invention relates to a device, and more particularly to an analog digital conversion device.

隨著數位時代的蓬勃發展與電子產品數位化的興起,如何將類比信號轉換成電子產品所需的數位信號就顯得格外重要,因此類比數位轉換裝置在電路設計中成為不可或缺的一部分。習知類比數位轉換裝置的主要功用是將其所接收的類比信號轉換成數位信號,且習知類比數位轉換裝置包含一比較器及一電連接該比較器的連續近似暫存電路,該比較器用以比較其所接收的複數個正相及負相類比信號的電壓大小,並據以產生各自所對應的複數個比較信號,該連續近似暫存電路接收來自該比較器的該等比較信號,並據以產生一具有複數個位元的數位信號。 With the booming digital era and the rise of electronic digital products, how to convert analog signals into digital signals required by electronic products is particularly important, so analog digital converters are an integral part of circuit design. The main function of the conventional analog-to-digital conversion device is to convert the analog signal received by it into a digital signal, and the conventional analog-to-digital conversion device comprises a comparator and a continuous approximation temporary circuit electrically connected to the comparator, the comparator Comparing the voltage magnitudes of the plurality of positive and negative phase analog signals received therefrom, and generating respective plurality of comparison signals corresponding thereto, the continuous approximation temporary storage circuit receiving the comparison signals from the comparator, and A digital signal having a plurality of bits is generated.

然而,當該比較器所接收的該等正相及負相類比信號的電壓差值很小時,會導致該比較器遲遲無法產生各自所對應的該等比較信號,即該比較器發生亞穩態(meta-stability)情況,同時導致該連續近似暫存電路遲遲無法產生該數位信號,造成習知類比數位轉換裝置的轉換速 度很慢。 However, when the voltage difference between the positive phase and the negative phase analog signal received by the comparator is small, the comparator may be delayed in generating the corresponding comparison signals, that is, the comparator is metastable. The meta-stability situation, which causes the continuous approximation temporary circuit to delay generating the digital signal, resulting in the conversion speed of the conventional analog digital conversion device. Very slow.

因此,本發明之目的,即在提供一種可提升轉換速度的類比數位轉換裝置。 Accordingly, it is an object of the present invention to provide an analog digital conversion device that can increase the conversion speed.

於是本發明類比數位轉換裝置,接收一正相輸入電壓及一負相輸入電壓,且據以產生一具有N位元的數位信號,N≧3,且N為正整數,且包含一電容陣列電路、一比較器、一亞穩態偵測模組,及一連續近似暫存電路。 Therefore, the analog-to-digital conversion device of the present invention receives a positive phase input voltage and a negative phase input voltage, and accordingly generates a digital signal having N bits, N ≧ 3 , and N is a positive integer, and includes a capacitor array circuit a comparator, a metastable detection module, and a continuous approximation temporary storage circuit.

該電容陣列電路依序操作於N個比較週期中,且接收該正相輸入電壓、該負相輸入電壓、一正相控制信號及一負相控制信號,該正相及負相控制信號皆具有P個位元,P=N+1,且於每一比較週期中,該電容陣列電路根據該正相控制信號的每一位元的邏輯準位來決定將該正相輸入電壓進行遞減的一幅度,以產生一正相輸出電壓,該電容陣列電路根據該負相控制信號的每一位元的邏輯準位來決定將該負相輸入電壓進行遞減的一幅度,以產生一負相輸出電壓。 The capacitor array circuit sequentially operates in N comparison periods, and receives the normal phase input voltage, the negative phase input voltage, a positive phase control signal, and a negative phase control signal, and the positive phase and negative phase control signals have P bits, P=N+1, and in each comparison period, the capacitor array circuit determines one of the positive phase input voltages to be decremented according to the logic level of each bit of the normal phase control signal Amplitude to generate a positive phase output voltage, the capacitor array circuit determining a magnitude of the negative phase input voltage to be decremented according to a logic level of each bit of the negative phase control signal to generate a negative phase output voltage .

該比較器電連接該電容陣列電路,以依序接收該電容陣列電路於每一比較週期中所產生的該正相及負相輸出電壓,並於每一比較週期中根據該正相及負相輸出電壓的差值來產生一比較信號,且於產生該比較信號的同時輸出一比較結束信號。 The comparator is electrically connected to the capacitor array circuit to sequentially receive the positive and negative phase output voltages generated by the capacitor array circuit in each comparison period, and according to the positive phase and the negative phase in each comparison period The difference in output voltage is used to generate a comparison signal, and a comparison end signal is output while the comparison signal is being generated.

該亞穩態偵測模組電連接該比較器,以依序接收該比較器於每一比較週期中所產生的該比較結束信號, 並根據該比較結束信號產生一指示是否發生亞穩態的偵測信號。 The metastable detection module is electrically connected to the comparator to sequentially receive the comparison end signal generated by the comparator in each comparison period. And generating a detection signal indicating whether metastability occurs according to the comparison end signal.

該連續近似暫存電路電連接該比較器以依序接收於每一比較週期中來自該比較器的該比較信號,電連接該亞穩態偵測模組以依序接收於每一比較週期中來自該亞穩態偵測模組的該偵測信號。 The continuous approximation temporary storage circuit is electrically connected to the comparator to sequentially receive the comparison signal from the comparator in each comparison period, and is electrically connected to the metastable detection module to be sequentially received in each comparison period. The detection signal from the metastable detection module.

當該偵測信號指示有亞穩態時,該連續近似暫存電路根據該偵測信號決定該正相控制信號及該負相控制信號所要調整的位元的邏輯準位。其中,該正相控制信號及該負相控制信號的每一位元具有一預設初始邏輯準位,該N個比較週期包括第一至第N比較週期,該第一比較週期中的該正相及負相控制信號的所要調整的位元是第一及第二位元,該第二比較週期中的該正相及負相控制信號的所要調整的位元是第三及第四位元,該第三至第(N-1)比較週期中的該正相及負相控制信號的所要對應調整的位元分別是第五至第P位元。 When the detection signal indicates a metastable state, the continuous approximation temporary storage circuit determines a logic level of the bit element to be adjusted by the positive phase control signal and the negative phase control signal according to the detection signal. Wherein, each bit of the positive phase control signal and the negative phase control signal has a predetermined initial logic level, and the N comparison periods include first to Nth comparison periods, the positive in the first comparison period The bit to be adjusted of the phase and negative phase control signals is the first and second bits, and the bits to be adjusted of the positive and negative phase control signals in the second comparison period are the third and fourth bits The correspondingly adjusted bits of the positive phase and negative phase control signals in the third to (N-1)th comparison periods are fifth to Pth bits, respectively.

該連續近似暫存電路根據該正相控制信號及該比較器於該第N比較週期中所產生的一比較信號,進行邏輯運算以產生該具有N位元的數位信號。 The continuous approximation temporary storage circuit performs a logic operation to generate the digital signal having N bits according to the normal phase control signal and a comparison signal generated by the comparator in the Nth comparison period.

11‧‧‧電容陣列電路 11‧‧‧Capacitor array circuit

111‧‧‧第一開關 111‧‧‧First switch

112‧‧‧第二開關 112‧‧‧Second switch

12‧‧‧比較器 12‧‧‧ comparator

13‧‧‧亞穩態偵測模組 13‧‧‧ Metastable Detection Module

131‧‧‧延遲電路 131‧‧‧Delay circuit

132‧‧‧相位偵測電路 132‧‧‧ phase detection circuit

14‧‧‧連續近似暫存電路 14‧‧‧Continuous approximation temporary storage circuit

15‧‧‧信號產生電路 15‧‧‧Signal generation circuit

C1~C7‧‧‧第一電容 C1~C7‧‧‧first capacitor

G1~G7‧‧‧第一反及閘 G1~G7‧‧‧First reverse gate

c1~c7‧‧‧第二電容 C1~c7‧‧‧second capacitor

g1~g7‧‧‧第二反及閘 G1~g7‧‧‧second reverse gate

p1~p7‧‧‧位元 P1~p7‧‧‧ bits

n1~n7‧‧‧位元 N1~n7‧‧‧ bits

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一電路圖,說明本發明類比數位轉換裝置之一較佳實施例;及 圖2是一電路圖,說明該較佳實施例之一電容陣列電路。 Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: FIG. 1 is a circuit diagram illustrating a preferred embodiment of the analog-to-digital conversion device of the present invention; Figure 2 is a circuit diagram showing a capacitor array circuit of the preferred embodiment.

參閱圖1與圖2,本發明類比數位轉換裝置之較佳實施例,接收一正相輸入電壓及一負相輸入電壓,且據以產生一具有N位元的數位信號,N≧3,且N為正整數。在此實施例中,為方便說明,舉N=6為例,該數位信號的六個位元分別為位元B1~B6,但不限於此。該類比數位轉換裝置包含一電容陣列電路11、一比較器12、一亞穩態偵測模組13、一連續近似暫存電路14及一信號產生電路15。 Referring to FIG. 1 and FIG. 2, a preferred embodiment of the analog-to-digital conversion apparatus of the present invention receives a positive phase input voltage and a negative phase input voltage, and accordingly generates a digital signal having N bits, N≧3, and N is a positive integer. In this embodiment, for convenience of explanation, N=6 is taken as an example, and the six bits of the digital signal are respectively bit B1 to B6, but are not limited thereto. The analog-to-digital conversion device includes a capacitor array circuit 11, a comparator 12, a metastable detection module 13, a continuous approximation temporary storage circuit 14, and a signal generation circuit 15.

該電容陣列電路11依序操作於六(即,N=6)個比較週期中(即,第一至第六比較週期),且接收該正相輸入電壓、該負相輸入電壓、一正相控制信號、一負相控制信號及一取樣信號,並根據該取樣信號對該正相輸入電壓及該負相輸入電壓進行取樣,且該正相及負相控制信號皆具有七(即,P=N+1=7)個位元,該正相控制信號及該負相控制信號的每一位元具有一預設初始邏輯準位。在此實施例中,該正相控制信號的七個位元分別為第一至第七位元p1~p7,該負相控制信號的七個位元分別為第一至第七位元n1~n7,每一位元p1~p7、n1~n7的該預設初始邏輯準位為一低邏輯準位。 The capacitor array circuit 11 sequentially operates in six (ie, N=6) comparison periods (ie, first to sixth comparison periods), and receives the normal phase input voltage, the negative phase input voltage, and a positive phase. a control signal, a negative phase control signal and a sampling signal, and sampling the positive phase input voltage and the negative phase input voltage according to the sampling signal, and the positive phase and negative phase control signals have seven (ie, P= N+1=7) bits, each of the positive phase control signal and the negative phase control signal has a predetermined initial logic level. In this embodiment, the seven bits of the positive phase control signal are the first to seventh bits p1~p7, respectively, and the seven bits of the negative phase control signal are the first to seventh bits n1~ N7, the preset initial logic level of each bit p1~p7, n1~n7 is a low logic level.

於每一比較週期中,該電容陣列電路11根據該正相控制信號的每一位元p1~p7的邏輯準位來決定將該正 相輸入電壓進行遞減的一幅度,以產生一正相輸出電壓V1,該電容陣列電路11根據該負相控制信號的每一位元n1~n7的邏輯準位來決定將該負相輸入電壓進行遞減的一幅度,以產生一負相輸出電壓V2,且該電容陣列電路11包括一第一及第二開關111、112、七個第一電容C1~C7、七個第一反及閘G1~G7、七個第二電容c1~c7及七個第二反及閘g1~g7。 In each comparison period, the capacitor array circuit 11 determines the positive according to the logic level of each bit p1~p7 of the positive phase control signal. The phase input voltage is decremented by a magnitude to generate a positive phase output voltage V1. The capacitor array circuit 11 determines the negative phase input voltage according to the logic level of each bit n1~n7 of the negative phase control signal. Decreasing a magnitude to generate a negative phase output voltage V2, and the capacitor array circuit 11 includes a first and second switches 111, 112, seven first capacitors C1 C C7, and seven first back gates G1 ~ G7, seven second capacitors c1~c7 and seven second gates g1~g7.

該第一開關111具有一接收該正相輸入電壓的第一端,及一於每一比較週期輸出該正相輸出電壓V1的第二端,並受該取樣信號控制而導通或不導通。每一第一電容C1~C7具有一電連接該第一開關111之該第二端的第一端,及一第二端。每一第一反及閘G1~G7具有一接收一重置信號的第一端、一第二端,及一第三端,該等第一反及閘G1~G7的該等第二端分別接收各自所對應的該正相控制信號的該等位元p1~p7,該等第一反及閘G1~G7的該等第三端分別電連接各自所對應的該等第一電容C1~C7的該等第二端,且每一第一反及閘G1~G7根據該重置信號及其所對應接收的該正相控制信號中的該位元,在其第三端,輸出一第一邏輯信號。其中,每一正相輸出電壓V1相關於該等第一電容C1~C7的跨壓。 The first switch 111 has a first end for receiving the positive phase input voltage, and a second end for outputting the positive phase output voltage V1 during each comparison period, and is controlled to be turned on or off by the sampling signal. Each of the first capacitors C1 C C7 has a first end electrically connected to the second end of the first switch 111 and a second end. Each of the first anti-gates G1 G G7 has a first end, a second end, and a third end, and the second ends of the first anti-gates G1 G G7 respectively The third terminals of the first and second gates G1 G G7 are respectively electrically connected to the first capacitors C1 C C7 to C7 respectively corresponding to the corresponding positive phase control signals. The second ends of the first and second gates G1 G G7 are outputted at the third end according to the reset signal and the bit in the positive phase control signal corresponding thereto. Logic signal. Wherein, each positive phase output voltage V1 is related to the voltage across the first capacitors C1 C C7.

該第二開關112具有一接收該負相輸入電壓的第一端,及一於每一比較週期輸出該負相輸出電壓V2的第二端,並受該取樣信號控制而導通或不導通。每一第二電容c1~c7具有一電連接該第二開關112之該第二端的第 一端,及一第二端。每一第二反及閘g1~g7具有一接收該重置信號的第一端、一第二端,及一第三端,該等第二反及閘g1~g7的該等第二端分別接收各自所對應的該負相控制信號的該等位元n1~n7,該等第二反及閘g1~g7的該等第三端分別電連接各自所對應的該等第二電容c1~c7的該等第二端,且每一第二反及閘g1~g7根據該重置信號及其所對應接收的該負相控制信號中的該位元,在其第三端,輸出一第二邏輯信號。其中,每一負相輸出電壓V2相關於該等第二電容c1~c7的跨壓。 The second switch 112 has a first end for receiving the negative phase input voltage, and a second end for outputting the negative phase output voltage V2 during each comparison period, and is controlled to be turned on or off by the sampling signal. Each of the second capacitors c1 c c7 has a second end electrically connected to the second end of the second switch 112 One end, and one second end. Each of the second anti-gates g1 to g7 has a first end, a second end, and a third end receiving the reset signal, and the second ends of the second anti-gates g1 to g7 respectively Receiving the corresponding n-ths n1 to n7 of the corresponding negative phase control signals, the third ends of the second anti-gates g1 to g7 are respectively electrically connected to the respective second capacitors c1 to c7 The second end, and each of the second anti-gates g1~g7 outputs a second at the third end according to the reset signal and the corresponding bit in the negative phase control signal received Logic signal. Wherein, each negative phase output voltage V2 is related to the voltage across the second capacitors c1 c c7.

在此實施例中,該重置信號的一初始邏輯準位為該預設初始邏輯準位。該等電容C1、C2、c1、c2的電容值為8C,該等電容C3~C5、c3~c5的電容值為4C,該等電容C6、c6的電容值為2C,該等電容C7、c7的電容值為1C,其中,C為單位電容值,但不限於此。 In this embodiment, an initial logic level of the reset signal is the preset initial logic level. The capacitance values of the capacitors C1, C2, c1, and c2 are 8C, and the capacitance values of the capacitors C3 to C5 and c3 to c5 are 4C, and the capacitance values of the capacitors C6 and c6 are 2C, and the capacitors C7 and c7. The capacitance value is 1C, where C is a unit capacitance value, but is not limited thereto.

該比較器12電連接該電容陣列電路11,且具有第一至第三輸入端及第一及第二輸出端,該第一輸入端於每一比較週期中接收一致能信號,且該第二及第三輸入端分別依序接收該電容陣列電路11於每一比較週期中所產生的該正相及負相輸出電壓V1、V2,該比較器12於每一比較週期中根據該致能信號開始對該正相及負相輸出電壓V1、V2進行比較,以取得該正相及負相輸出電壓V1、V2的差值,並根據該正相與負相輸出電壓V1、V2的差值來產生一比較信號,並在其第二輸出端輸出該比較信號,且於產生該比較信號的同時,在其第一輸出端,產生並輸出 一比較結束信號。在此實施例中,該比較器12會進行六次比較,並分別產生六個比較信號CS1~CS6,及六個比較結束信號。其中,當該等正相輸出電壓V1與各自所對應的該等負相輸出電壓V2的差值大於零時,該比較器12所對應輸出的該等比較信號CS1~CS6的邏輯準位為一高邏輯準位。當該等正相輸出電壓V1與各自所對應的該等負相輸出電壓V2的差值小於零時,該比較器12所對應輸出的該等比較信號CS1~CS6的邏輯準位為一低邏輯準位。 The comparator 12 is electrically connected to the capacitor array circuit 11 and has first to third input terminals and first and second output terminals. The first input terminal receives a uniform energy signal in each comparison period, and the second And the third input terminal sequentially receives the positive and negative phase output voltages V1 and V2 generated by the capacitor array circuit 11 in each comparison period, and the comparator 12 is configured according to the enable signal in each comparison period. The comparison of the positive and negative phase output voltages V1, V2 is started to obtain the difference between the positive and negative phase output voltages V1, V2, and according to the difference between the positive phase and the negative phase output voltages V1, V2 Generating a comparison signal and outputting the comparison signal at its second output, and generating and outputting at the first output thereof while generating the comparison signal A comparison end signal. In this embodiment, the comparator 12 performs six comparisons and generates six comparison signals CS1~CS6 and six comparison end signals, respectively. When the difference between the positive phase output voltage V1 and the corresponding negative phase output voltage V2 is greater than zero, the logic level of the comparison signals CS1~CS6 corresponding to the output of the comparator 12 is one. High logic level. When the difference between the positive phase output voltage V1 and the corresponding negative phase output voltage V2 is less than zero, the logic level of the comparison signals CS1~CS6 corresponding to the output of the comparator 12 is a low logic. Level.

需注意的是,在此實施例中,該比較器12於每一比較週期中產生該比較結束信號所需的一比較時間是反相關於每一正相輸出電壓V1及每一負相輸出電壓V2的差值△V(即,△V=V1-V2),並正相關於一共模電壓Vcm(即, )。 It should be noted that, in this embodiment, a comparison time required by the comparator 12 to generate the comparison end signal in each comparison period is inverted with respect to each positive phase output voltage V1 and each negative phase output voltage. The difference ΔV of V2 (ie, ΔV=V1-V2) is positively correlated with a common mode voltage Vcm (ie, ).

該亞穩態偵測模組13電連接該比較器12,以依序接收該比較器12於每一比較週期中所產生的該比較結束信號,並根據該比較結束信號產生一指示是否發生亞穩態(meta-stability)的偵測信號,且該亞穩態偵測模組13包括一延遲電路131及一相位偵測電路132。 The metastable detection module 13 is electrically connected to the comparator 12 to sequentially receive the comparison end signal generated by the comparator 12 in each comparison period, and generate an indication according to the comparison end signal whether or not the sub-station is generated. A meta-stability detection signal, and the metastable detection module 13 includes a delay circuit 131 and a phase detection circuit 132.

該延遲電路131於每一比較週期中接收該致能信號,且將該致能信號延遲一預設時間,來產生一延遲信號。 The delay circuit 131 receives the enable signal in each comparison period and delays the enable signal for a predetermined time to generate a delayed signal.

該相位偵測電路132電連接該比較器12及該延遲電路131,以依序接收該比較器12於每一比較週期中所產生的該比較結束信號,及依序接收該延遲電路131於每 一比較週期中所產生的該延遲信號,並於每一比較週期中比較該比較結束信號的相位是否落後該延遲信號的相位。 The phase detecting circuit 132 is electrically connected to the comparator 12 and the delay circuit 131 to sequentially receive the comparison end signal generated by the comparator 12 in each comparison period, and sequentially receive the delay circuit 131. The delayed signal generated in a comparison period is compared in each comparison period to compare whether the phase of the comparison end signal is behind the phase of the delayed signal.

詳細來說,當該相位偵測電路132偵測出該比較結束信號的相位落後該延遲信號的相位時,則該相位偵測電路132產生的該偵測信號指示發生亞穩態。當該相位偵測電路132偵測出該比較結束信號的相位領先該延遲信號的相位時,則該相位偵測電路132產生的該偵測信號指示未發生亞穩態。 In detail, when the phase detecting circuit 132 detects that the phase of the comparison end signal is behind the phase of the delayed signal, the detection signal generated by the phase detecting circuit 132 indicates that metastability occurs. When the phase detecting circuit 132 detects that the phase of the comparison end signal leads the phase of the delayed signal, the detection signal generated by the phase detecting circuit 132 indicates that metastability does not occur.

該連續近似暫存電路14接收一轉換起始信號,且電連接該比較器12以依序接收於該等比較週期中來自該比較器12的該等比較信號CS1~CS6,電連接該亞穩態偵測模組13之該相位偵測電路132以依序接收於每一比較週期中來自該相位偵測電路132的該偵測信號。該連續近似暫存電路14根據該轉換起始信號產生該致能信號,並將該致能信號輸出至該延遲電路131及該比較器12。 The continuous approximation temporary memory circuit 14 receives a conversion start signal, and is electrically connected to the comparator 12 to sequentially receive the comparison signals CS1 to CS6 from the comparator 12 in the comparison periods, and electrically connect the metastable signals. The phase detecting circuit 132 of the state detecting module 13 sequentially receives the detecting signal from the phase detecting circuit 132 in each comparison period. The continuous approximation temporary storage circuit 14 generates the enable signal according to the conversion start signal, and outputs the enable signal to the delay circuit 131 and the comparator 12.

當每一比較週期所對應的該偵測信號指示有亞穩態時,該連續近似暫存電路14根據該偵測信號決定該正相控制信號及該負相控制信號所要調整的位元的邏輯準位。當每一比較週期所對應的該偵測信號指示無亞穩態時,該連續近似暫存電路14根據該比較信號決定該正相控制信號及該負相控制信號所要調整的位元的邏輯準位。該連續近似暫存電路14將調整後的該正相控制信號及該負相控制信號輸出至該電容陣列電路11。在此實施例中,該第一比較週期中的該正相及負相控制信號的所要調整的位元 是該第一及第二位元p1、p2、n1、n2。該第二比較週期中的該正相及負相控制信號的所要調整的位元是該第三及第四位元p3、p4、n3、n4。該第三至第五(即,N-1=5)比較週期中的該正相及負相控制信號的所要對應調整的位元分別是該第五至第七(即,P=7)位元p5~p7、n5~n7。 When the detection signal corresponding to each comparison period indicates metastability, the continuous approximate temporary storage circuit 14 determines the logic of the positive phase control signal and the bit to be adjusted by the negative phase control signal according to the detection signal. Level. When the detection signal corresponding to each comparison period indicates no metastable state, the continuous approximation temporary storage circuit 14 determines the logic of the bit to be adjusted by the positive phase control signal and the negative phase control signal according to the comparison signal. Bit. The continuous approximation temporary storage circuit 14 outputs the adjusted positive phase control signal and the negative phase control signal to the capacitor array circuit 11. In this embodiment, the bit of the positive phase and the negative phase control signal to be adjusted in the first comparison period It is the first and second bits p1, p2, n1, and n2. The bits to be adjusted of the positive and negative phase control signals in the second comparison period are the third and fourth bits p3, p4, n3, n4. The correspondingly adjusted bits of the positive phase and negative phase control signals in the third to fifth (ie, N-1=5) comparison periods are the fifth to seventh (ie, P=7) bits, respectively. Yuan p5~p7, n5~n7.

該連續近似暫存電路14將該正相控制信號及該比較器12於該第六(即,N=6)比較週期中所產生的該比較信號CS6進行加法邏輯運算,以產生該具有六位元B1~B6的數位信號,並於產生該數位信號的同時輸出一轉換結束信號。 The continuous approximation temporary storage circuit 14 performs an addition logic operation on the normal phase control signal and the comparison signal CS6 generated by the comparator 12 in the sixth (ie, N=6) comparison period to generate the six bits. The digital signal of the elements B1 to B6, and outputs a conversion end signal while generating the digital signal.

該信號產生電路15接收一時脈信號,並據以產生該取樣信號及該轉換起始信號,並將該取樣信號及該轉換起始信號分別用以觸發該電容陣列電路11及該連續近似暫存電路14。該信號產生電路15接收來自該連續近似暫存電路14的該轉換結束信號,並根據該轉換結束信號及該時脈信號產生該電容陣列電路11進行下一次取樣時所需的下一個取樣信號。 The signal generating circuit 15 receives a clock signal, and generates the sampling signal and the conversion start signal, and uses the sampling signal and the conversion start signal to trigger the capacitor array circuit 11 and the continuous approximation temporary storage respectively. Circuit 14. The signal generating circuit 15 receives the conversion end signal from the continuous approximation temporary storage circuit 14, and generates a next sampling signal required for the next sampling by the capacitance array circuit 11 based on the conversion end signal and the clock signal.

詳細來說,該重置信號的該初始邏輯準位為該預設初始邏輯準位(即,為低邏輯準位),且該第一及第二反及閘G1~G7、g1~g7所輸出的每一邏輯信號的初始邏輯準位為一高邏輯準位。當該第一及第二開關111、112受該取樣信號控制而導通時,該電容陣列電路11開始進行取樣保持以將其所接收的該正相輸入電壓及該負相輸入電壓分別儲存在該第一及第二電容C1~C7、c1~c7中,並據以產 生第一個正相及負相輸出電壓V1、V2。該比較器12將該第一個正相及負相輸出電壓V1、V2進行比較以產生第一個比較信號CS1,同時輸出第一個比較結束信號。 In detail, the initial logic level of the reset signal is the preset initial logic level (ie, the low logic level), and the first and second inverse gates G1~G7, g1~g7 are The initial logic level of each logic signal output is a high logic level. When the first and second switches 111 and 112 are turned on by the sampling signal, the capacitor array circuit 11 starts sampling and holding to store the positive phase input voltage and the negative phase input voltage received by the capacitor array circuit 11 respectively. First and second capacitors C1~C7, c1~c7, and according to The first positive and negative phase output voltages V1, V2 are generated. The comparator 12 compares the first positive and negative phase output voltages V1, V2 to produce a first comparison signal CS1 while outputting a first comparison end signal.

接著,該相位偵測電路132根據該第一個比較結束信號及第一個延遲信號產生第一個偵測信號,且該連續近似暫存電路14根據該第一個偵測信號或該第一個比較信號CS1產生該正相及負相控制信號的該等位元p1、p2、n1、n2,來調整該電容陣列電路11下一次輸出的第二個正相輸出電壓V1及第二個負相輸出電壓V2的大小,以減小共模電壓Vcm(即,)的大小,同時提升該比較器12的比較速度。該類比數位轉換裝置重複執行上述運作,使該連續近似暫存電路14產生該正相及負相控制信號的該等位元p1~p7、n1~n7。最後,該連續近似暫存電路14根據該正相控制信號的該等位元p1~p7及該比較信號CS6產生該數位信號,同時產生並輸出該轉換結束信號至該信號產生電路15,以進行下一次的類比數位轉換。 Then, the phase detecting circuit 132 generates a first detection signal according to the first comparison end signal and the first delay signal, and the continuous approximation temporary storage circuit 14 is based on the first detection signal or the first The comparison signal CS1 generates the bits p1, p2, n1, and n2 of the positive and negative phase control signals to adjust the second positive phase output voltage V1 and the second negative output of the capacitor array circuit 11 for the next time. The magnitude of the phase output voltage V2 to reduce the common mode voltage Vcm (ie, The size of the comparator is simultaneously increased by the comparison speed of the comparator 12. The analog-to-digital conversion apparatus repeatedly performs the above operation to cause the continuous approximation temporary storage circuit 14 to generate the bits p1 to p7, n1 to n7 of the positive and negative phase control signals. Finally, the continuous approximation temporary storage circuit 14 generates the digital signal according to the bits p1~p7 of the positive phase control signal and the comparison signal CS6, and simultaneously generates and outputs the conversion end signal to the signal generating circuit 15 for performing The next analog analog digit conversion.

參閱下表1、2,在此實施例中,該類比數位轉換裝置係將差值△V(-63≦△V≦63)進行六位元的類比數位轉換。該正相輸出電壓V1等於共模電壓Vcm與差值△V一半的和(即,V1=Vcm+△V/2),該負相輸出電壓V2等於共模電壓Vcm與差值△V一半的差(即,V2=Vcm-△V/2)。該共模電壓Vcm初始值為一預定參考電壓Vref的一半(即,Vcm=Vref/2),且預定參考電壓Vref等於63V,但不限於此。 Referring to the following Tables 1, 2, in this embodiment, the analog-to-digital conversion apparatus performs a six-bit analog-to-digital conversion of the difference ΔV (-63 ≦ ΔV ≦ 63). The normal phase output voltage V1 is equal to the sum of the common mode voltage Vcm and the difference ΔV half (i.e., V1 = Vcm + ΔV/2), and the negative phase output voltage V2 is equal to the difference between the common mode voltage Vcm and the difference ΔV half. (ie, V2 = Vcm - ΔV / 2). The initial value of the common mode voltage Vcm is half of a predetermined reference voltage Vref (ie, Vcm=Vref/2), and the predetermined reference voltage Vref is equal to 63V, but is not limited thereto.

表1、2顯示初始差值△V等於63V,及該類比數位轉換裝置進行六次轉換比較為例,說明該類比數位轉換裝置如何進行類比數位轉換。 Tables 1 and 2 show that the initial difference ΔV is equal to 63 V, and the analog-to-digital conversion device performs six conversion comparisons as an example to illustrate how the analog-to-digital conversion device performs analog-to-digital conversion.

比較一: Compare one:

差值△V等於63V,此時該正相輸出電壓V1的大小大於該負相輸出電壓V2的大小,因此該比較器12所輸出的該比較信號CS1的邏輯準位為一高邏輯準位,且由於差值△V很大,因此該比較器12所產生的第一個比較結束信號的相位領先第一個延遲信號的相位(即,該偵測信號顯示未發生亞穩態),此時,該連續近似暫存電路14直接根據該比較信號CS1來將該正相控制信號的該等位元p1、p2的邏輯準位調整為高邏輯準位,且該負相控制信號 的該等位元n1、n2的邏輯準位與該正相控制信號的該等位元p1、p2的邏輯準位不同,該負相控制信號的該等位元n1、n2的邏輯準位為低邏輯準位。 The difference ΔV is equal to 63V, and the magnitude of the positive phase output voltage V1 is greater than the magnitude of the negative phase output voltage V2. Therefore, the logic level of the comparison signal CS1 output by the comparator 12 is a high logic level. And because the difference ΔV is large, the phase of the first comparison end signal generated by the comparator 12 leads the phase of the first delayed signal (ie, the detection signal indicates that no metastable state has occurred). The continuous approximation temporary storage circuit 14 directly adjusts the logic level of the bits p1 and p2 of the positive phase control signal to a high logic level according to the comparison signal CS1, and the negative phase control signal The logic levels of the bits n1, n2 are different from the logic levels of the bits p1, p2 of the positive phase control signal, and the logic levels of the bits n1, n2 of the negative phase control signal are Low logic level.

比較二: Comparison two:

該電容陣列電路11根據該正相控制信號的該等位元p1、p2調整其於比較二所輸出的該正相輸出電壓V1的大小,使其於比較二所輸出的該正相輸出電壓V1的大小較其於比較一所輸出的該正相輸出電壓V1的大小減少一第一調整值D1(D1=Vref/2),且於比較二所輸出的該負相輸出電壓V2的大小維持不變。此時,差值△V等於63/2V,該比較信號CS2的邏輯準位為高邏輯準位,該比較器12所產生的第二個比較結束信號的相位領先第二個延遲信號的相位,該連續近似暫存電路14直接根據該比較信號CS2來將該正相控制信號的該等位元p3、p4的邏輯準位調整為高邏輯準位,且該負相控制信號的該等位元n3、n4的邏輯準位與該正相控制信號的該等位元p3、p4的邏輯準位不同,該負相控制信號的該等位元n3、n4的邏輯準位為低邏輯準位。 The capacitor array circuit 11 adjusts the magnitude of the positive phase output voltage V1 outputted by the comparison two according to the bits p1 and p2 of the normal phase control signal to compare the positive phase output voltage V1 outputted by the second phase. The size is reduced by a first adjustment value D1 (D1=Vref/2) compared to the magnitude of the output of the positive phase output voltage V1, and the magnitude of the negative phase output voltage V2 outputted by the comparison 2 is maintained. change. At this time, the difference ΔV is equal to 63/2V, the logic level of the comparison signal CS2 is a high logic level, and the phase of the second comparison end signal generated by the comparator 12 leads the phase of the second delayed signal. The continuous approximation temporary storage circuit 14 directly adjusts the logic levels of the bits p3 and p4 of the positive phase control signal to a high logic level according to the comparison signal CS2, and the bits of the negative phase control signal The logic levels of n3 and n4 are different from the logic levels of the bits p3 and p4 of the positive phase control signal, and the logic levels of the bits n3 and n4 of the negative phase control signal are low logic levels.

比較三: Compare three:

該相位偵測電路132停止判斷是否發生亞穩態情況,且該電容陣列電路11根據該正相控制信號的該等位元p1~p4調整其於比較三所輸出的該正相輸出電壓V1的大小,使其於比較三所輸出的該正相輸出電壓V1的大小較其於比較二所輸出的該正相輸出電壓V1的大小減少一第 二調整值D2(D2=Vref/4),且於比較三所輸出的該負相輸出電壓V2的大小維持不變。此時,差值△V等於63/4V,該比較信號CS3的邏輯準位為高邏輯準位,該連續近似暫存電路14根據該比較信號CS3來將該正相控制信號的該位元p5的邏輯準位調整為高邏輯準位,且該負相控制信號的該位元n5的邏輯準位與該正相控制信號的該位元p5的邏輯準位不同,該負相控制信號的該位元n5的邏輯準位為低邏輯準位。 The phase detecting circuit 132 stops determining whether a metastable condition occurs, and the capacitor array circuit 11 adjusts the positive phase output voltage V1 of the output of the third phase according to the bits p1~p4 of the normal phase control signal. The size is such that the magnitude of the positive phase output voltage V1 outputted by the comparison of the three outputs is reduced by the magnitude of the positive phase output voltage V1 outputted by the comparison two Second, the value D2 is adjusted (D2 = Vref / 4), and the magnitude of the negative phase output voltage V2 outputted by the comparison three remains unchanged. At this time, the difference ΔV is equal to 63/4V, the logic level of the comparison signal CS3 is a high logic level, and the continuous approximation temporary memory circuit 14 uses the bit p5 of the positive phase control signal according to the comparison signal CS3. The logic level is adjusted to a high logic level, and the logic level of the bit n5 of the negative phase control signal is different from the logic level of the bit p5 of the positive phase control signal, the negative phase control signal The logic level of bit n5 is a low logic level.

比較四: Compare four:

該電容陣列電路11根據該正相控制信號的該等位元p1~p5調整其於比較四所輸出的該正相輸出電壓V1的大小,使其於比較四所輸出的該正相輸出電壓V1的大小較其於比較三所輸出的該正相輸出電壓V1的大小減少一第三調整值D3(D3=Vref/8),且於比較四所輸出的該負相輸出電壓V2的大小維持不變。此時,差值△V等於63/8V,該比較信號CS4的邏輯準位為高邏輯準位,該連續近似暫存電路14根據該比較信號CS4來將該正相控制信號的該位元p6的邏輯準位調整為高邏輯準位,且該負相控制信號的該位元n6的邏輯準位(與該正相控制信號的該位元p6不同)為低邏輯準位。 The capacitor array circuit 11 adjusts the magnitude of the positive phase output voltage V1 outputted by the comparison four according to the bits p1~p5 of the normal phase control signal to compare the positive phase output voltage V1 of the four outputs. The size is reduced by a third adjustment value D3 (D3=Vref/8) compared to the magnitude of the positive phase output voltage V1 outputted by the comparison three, and the magnitude of the negative phase output voltage V2 outputted by the comparison four is maintained. change. At this time, the difference ΔV is equal to 63/8V, the logic level of the comparison signal CS4 is a high logic level, and the continuous approximation temporary memory circuit 14 is the bit p6 of the positive phase control signal according to the comparison signal CS4. The logic level is adjusted to a high logic level, and the logic level of the bit n6 of the negative phase control signal (which is different from the bit p6 of the positive phase control signal) is a low logic level.

比較五: Compare five:

該電容陣列電路11根據該正相控制信號的該等位元p1~p6調整其於比較五所輸出的該正相輸出電壓V1的大小,使其於比較五所輸出的該正相輸出電壓V1的大小 較其於比較四所輸出的該正相輸出電壓V1的大小減少一第四調整值D4(D4=Vref/16),且於比較五所輸出的該負相輸出電壓V2的大小維持不變。此時,差值△V等於63/16V,該比較信號CS5的邏輯準位為高邏輯準位,該連續近似暫存電路14根據該比較信號CS5來將該正相控制信號的該位元p7的邏輯準位調整為高邏輯準位,且該負相控制信號的該位元n7的邏輯準位(與該正相控制信號的該位元p7不同)為低邏輯準位。 The capacitor array circuit 11 adjusts the magnitude of the positive phase output voltage V1 outputted by the comparison five according to the bits p1~p6 of the normal phase control signal to compare the magnitude of the positive phase output voltage V1 output by the five outputs. The fourth adjustment value D4 (D4=Vref/16) is reduced by the magnitude of the positive phase output voltage V1 outputted by the comparison four, and the magnitude of the negative phase output voltage V2 outputted by the comparison five remains unchanged. At this time, the difference ΔV is equal to 63/16V, the logic level of the comparison signal CS5 is a high logic level, and the continuous approximation temporary memory circuit 14 is the bit p7 of the positive phase control signal according to the comparison signal CS5. The logic level is adjusted to a high logic level, and the logic level of the bit n7 of the negative phase control signal (which is different from the bit p7 of the positive phase control signal) is a low logic level.

比較六: Compare six:

該電容陣列電路11根據該正相控制信號的該等位元p1~p7調整其於比較六所輸出的該正相輸出電壓V1的大小,使其於比較六所輸出的該正相輸出電壓V1的大小較其於比較五所輸出的該正相輸出電壓V1的大小減少一第五調整值D5(D5=Vref/32),且於比較六所輸出的該負相輸出電壓V2的大小維持不變。此時,差值△V等於63/32V,該比較信號CS6的邏輯準位為高邏輯準位。 The capacitor array circuit 11 adjusts the magnitude of the positive phase output voltage V1 outputted by the six comparators according to the bits p1~p7 of the normal phase control signal to compare the positive phase output voltage V1 of the six outputs. The size is reduced by a fifth adjustment value D5 (D5=Vref/32) compared to the magnitude of the positive phase output voltage V1 outputted by the five outputs, and the magnitude of the negative phase output voltage V2 outputted by the six outputs is maintained. . At this time, the difference ΔV is equal to 63/32V, and the logic level of the comparison signal CS6 is a high logic level.

參閱下表3,當該類比數位轉換裝置進行完六次轉換比較後,該連續近似暫存電路14將該正相控制信號的該等位元p1~p7及該比較信號CS6進行加法邏輯運算,以計算出該數位信號的該等位元B1~B6,同時該連續近似暫存電路14產生並輸出該轉換結束信號至該信號產生電路15,以再次產生取樣信號,並進行下一次的類比數位轉換。 Referring to Table 3 below, after the analog-to-digital conversion device performs six conversion comparisons, the continuous approximation temporary storage circuit 14 performs the addition logic operation on the bits p1~p7 of the positive phase control signal and the comparison signal CS6. To calculate the bits B1 B B6 of the digital signal, and the continuous approximation temporary storage circuit 14 generates and outputs the conversion end signal to the signal generating circuit 15 to generate the sampling signal again, and performs the next analog digital position. Conversion.

表3: table 3:

參閱下表4、5,其顯示初始差值△V等於1V,及該類比數位轉換裝置進行六次轉換比較為例,說明該類比數位轉換裝置如何進行類比數位轉換。 Referring to Tables 4 and 5 below, which shows that the initial difference ΔV is equal to 1V, and the analog-to-digital conversion device performs six conversion comparisons as an example, how the analog-to-digital conversion device performs analog-to-digital conversion.

比較一: Compare one:

差值△V等於1V,由於差值△V很小,因此該比較器12所產生的第一個比較結束信號的相位落後第一個延遲信號的相位(即,該偵測信號顯示發生亞穩態),此時,無論該比較器12所輸出的該比較信號CS1的邏輯準位為高或低邏輯準位,該連續近似暫存電路14直接根據第一個偵測信號將該正相及負相控制信號的該等位元p1、n1的邏輯準位調整為低邏輯準位,並將該正相及負相控制信號的該等位元p2、n2的邏輯準位調整為高邏輯準位,但不限於此。 The difference ΔV is equal to 1V. Since the difference ΔV is small, the phase of the first comparison end signal generated by the comparator 12 lags behind the phase of the first delayed signal (ie, the detection signal indicates metastable occurrence). In this case, regardless of whether the logic level of the comparison signal CS1 output by the comparator 12 is a high or low logic level, the continuous approximation temporary storage circuit 14 directly directs the positive phase according to the first detection signal. The logic levels of the bits p1 and n1 of the negative phase control signal are adjusted to a low logic level, and the logic levels of the bits p2 and n2 of the positive and negative phase control signals are adjusted to a high logic level. Bit, but not limited to this.

比較二: Comparison two:

該電容陣列電路11根據該正相及負相控制信號的該等位元p1、p2、n1、n2調整其於比較二所輸出的該正相及負相輸出電壓V1、V2的大小,使其於比較二所輸出的該正相及負相輸出電壓V1、V2的大小分別較其於比較一所輸出的該正相及負相輸出電壓V1、V2的大小皆減少一第一調整值d1(d1=Vref/4)。此時,差值△V等於1V,由於差值△V很小,因此該比較器12所產生的第二個比較結束信號的相位落後第二個延遲信號的相位(即發生亞穩態情況),該連續近似暫存電路14直接根據第二個偵測信號將該正相及負相控制信號的該等位元p3、n3的邏輯準位調整為低邏輯準位,並將該正相及負相控制信號的該等位元p4、n4的邏輯準位調整為高邏輯準位,但不限於此。 The capacitor array circuit 11 adjusts the magnitudes of the positive and negative phase output voltages V1 and V2 outputted by the comparison two according to the bits p1, p2, n1, and n2 of the positive and negative phase control signals. The magnitudes of the positive and negative phase output voltages V1, V2 outputted by the comparison two are respectively reduced by a first adjustment value d1 from the magnitude of the positive and negative phase output voltages V1, V2 outputted by the comparison one ( D1=Vref/4). At this time, the difference ΔV is equal to 1V, and since the difference ΔV is small, the phase of the second comparison end signal generated by the comparator 12 lags behind the phase of the second delayed signal (ie, the metastable state occurs). The continuous approximation temporary storage circuit 14 directly adjusts the logic levels of the bits p3 and n3 of the positive and negative phase control signals to a low logic level according to the second detection signal, and the positive phase and The logic levels of the bits p4, n4 of the negative phase control signal are adjusted to a high logic level, but are not limited thereto.

比較三: Compare three:

該電容陣列電路11根據該正相及負相控制信號的該等位元p1~p4、n1~n4調整其於比較三所輸出的該正相及負相輸出電壓V1、V2的大小,使其於比較三所輸出的該正相及負相輸出電壓V1、V2的大小分別較其於比較二所輸出的該正相及負相輸出電壓V1、V2的大小皆減少一第二調整值d2(d2=Vref/8)。此時,雖然差值△V不變,但該共模電壓Vcm(Vcm=63/8)很小,可使該比較器12的比較速度提升,改善亞穩態情況,因此該連續近似暫存電路14直接根據該比較信號CS3將該正相控制信號的該位元p5的邏輯準位調整為高邏輯準位,並將該負相控制信號的該位元n5的邏輯準位(與該正相控制信號的該位元p5的邏輯準位不同)調整為低邏輯準位。 The capacitor array circuit 11 adjusts the magnitudes of the positive and negative phase output voltages V1 and V2 outputted by the comparison three according to the bits p1 to p4 and n1 to n4 of the positive and negative phase control signals. Comparing the magnitudes of the positive and negative phase output voltages V1 and V2 outputted by the three outputs to the magnitudes of the positive and negative phase output voltages V1 and V2 outputted by the comparison two are respectively reduced by a second adjustment value d2 ( D2=Vref/8). At this time, although the difference ΔV is constant, the common mode voltage Vcm (Vcm=63/8) is small, the comparison speed of the comparator 12 can be improved, and the metastable condition is improved, so the continuous approximation is temporarily stored. The circuit 14 directly adjusts the logic level of the bit p5 of the positive phase control signal to a high logic level according to the comparison signal CS3, and sets the logic level of the bit n5 of the negative phase control signal (and the positive The logic level of the bit p5 of the phase control signal is different) is adjusted to a low logic level.

比較四: Compare four:

該電容陣列電路11根據該正相控制信號的該等位元p1~p5調整其於比較四所輸出的該正相輸出電壓V1的大小,使其於比較四所輸出的該正相輸出電壓V1的大小較其於比較三所輸出的該正相輸出電壓V1的大小減少一第三調整值d3(d3=Vref/8),且於比較四所輸出的該負相輸出電壓V2的大小維持不變。此時,差值△V等於-55/8V,該比較信號CS4的邏輯準位為低邏輯準位,該連續近似暫存電路14根據該比較信號CS4將該正相控制信號的該位元p6的邏輯準位調整為低邏輯準位,並將該負相控制信號的該位元n6的邏輯準位(與該正相控制信號的該位元p6的邏輯準位不同)調整為高邏輯準位。 The capacitor array circuit 11 adjusts the magnitude of the positive phase output voltage V1 outputted by the comparison four according to the bits p1~p5 of the normal phase control signal to compare the positive phase output voltage V1 of the four outputs. The size is reduced by a third adjustment value d3 (d3=Vref/8) compared to the magnitude of the positive phase output voltage V1 outputted by the comparison three, and the magnitude of the negative phase output voltage V2 outputted by the comparison four is maintained. change. At this time, the difference ΔV is equal to -55/8V, the logic level of the comparison signal CS4 is a low logic level, and the continuous approximation temporary memory circuit 14 is the bit p6 of the positive phase control signal according to the comparison signal CS4. The logic level is adjusted to a low logic level, and the logic level of the bit n6 of the negative phase control signal (which is different from the logic level of the bit p6 of the positive phase control signal) is adjusted to a high logic level. Bit.

比較五: Compare five:

該電容陣列電路11根據該負相控制信號的該等位元n1~n6調整其於比較五所輸出的該負相輸出電壓V2的大小,使其於比較五所輸出的該負相輸出電壓V2的大小較其於比較四所輸出的該負相輸出電壓V2的大小減少一第四調整值d4(d4=Vref/16),且於比較五所輸出的該正相輸出電壓V1的大小不變。此時,差值△V等於-47/16V,該比較信號CS5的邏輯準位為低邏輯準位,該連續近似暫存電路14根據該比較信號CS5將該正相控制信號的該位元p7的邏輯準位調整為低邏輯準位,並將該負相控制信號的該位元n7的邏輯準位(與該正相控制信號的該位元p7的邏輯準位不同)調整為高邏輯準位。 The capacitor array circuit 11 adjusts the magnitude of the negative phase output voltage V2 outputted by the five signals according to the bits n1~n6 of the negative phase control signal to compare the magnitude of the negative phase output voltage V2 output by the five outputs. The fourth adjustment value d4 (d4=Vref/16) is reduced by the magnitude of the negative phase output voltage V2 outputted by the comparison four, and the magnitude of the positive phase output voltage V1 outputted by the comparison five is unchanged. At this time, the difference ΔV is equal to -47/16V, the logic level of the comparison signal CS5 is a low logic level, and the continuous approximation temporary memory circuit 14 is the bit p7 of the positive phase control signal according to the comparison signal CS5. The logic level is adjusted to a low logic level, and the logic level of the bit n7 of the negative phase control signal (which is different from the logic level of the bit p7 of the positive phase control signal) is adjusted to a high logic level. Bit.

比較六: Compare six:

該電容陣列電路11根據該負相控制信號的該等位元n1~n7調整其於比較六所輸出的該負相輸出電壓V2的大小,使其於比較六所輸出的該負相輸出電壓V2的大小較其於比較五所輸出的該負相輸出電壓V2的大小減少一第五調整值d5(d5=Vref/32),且於比較六所輸出的該正相輸出電壓V1的大小維持不變。此時,差值△V等於-31/32V,該比較信號CS6的邏輯準位為低邏輯準位。 The capacitor array circuit 11 adjusts the magnitude of the negative phase output voltage V2 outputted by the six signals according to the bits n1~n7 of the negative phase control signal to compare the negative phase output voltage V2 of the six outputs. The size is reduced by a fifth adjustment value d5 (d5=Vref/32) compared to the magnitude of the negative phase output voltage V2 outputted by the five outputs, and the magnitude of the positive phase output voltage V1 of the six outputs is maintained unchanged. . At this time, the difference ΔV is equal to -31/32V, and the logic level of the comparison signal CS6 is a low logic level.

需注意的是,由於比較二之後的該共模電壓已小到足以改善亞穩態情況,因此比較三至比較五可直接根據該等比較信號CS3~CS5產生各自所對應的該正相及負相控制信號的該等位元p5~p7、n5~n7。 It should be noted that since the common mode voltage after the comparison 2 is small enough to improve the metastable condition, the comparison three to the fifth can directly generate the corresponding positive and negative corresponding to the comparison signals CS3 to CS5. The bits p5~p7, n5~n7 of the phase control signal.

參閱下表6,其顯示該連續近似暫存電路14將該正相控制信號的該等位元p1~p7及該比較信號CS6進行加法邏輯運算,以計算出該數位信號的該等位元B1~B6。 Referring to Table 6 below, the continuous approximation temporary memory circuit 14 performs the addition logic operation on the bits p1~p7 of the normal phase control signal and the comparison signal CS6 to calculate the bit B1 of the digital signal. ~B6.

需注意的是,該相位偵測電路132會於該比較器12進行前兩次比較時,產生用以判斷是否發生亞穩態情況的該偵測信號。當該偵測信號指示未發生亞穩態時,該連續近似暫存電路14直接根據該等比較信號CS1~CS5產生該正相及負相控制信號的該等位元p1~p7,n1~n7。當該偵測信號指示發生亞穩態時,該連續近似暫存電路14直接將該正相及負相控制信號的該等位元p1、p3、n1、n3的邏輯準位調整為低邏輯準位,並將該正相及負相控制信號的該等位元p2、p4、n2、n4的邏輯準位調整為高邏輯準位(或將該正相及負相控制信號的該等位元p1、p3、n1、n3的邏輯準位調整為高邏輯準位,並將該正相及負相控制信號的該等位元p2、p4、n2、n43的邏輯準位調整為低邏輯準位),並根據該等比較信號CS3~CS5產生該正相及負相控制信號的該等位元p5~p7、n5~n7,以進行類比數位轉換。 It should be noted that the phase detecting circuit 132 generates the detection signal for determining whether a metastable condition occurs when the comparator 12 performs the first two comparisons. When the detection signal indicates that metastability has not occurred, the continuous approximation temporary storage circuit 14 directly generates the pixels p1~p7, n1~n7 of the positive and negative phase control signals according to the comparison signals CS1~CS5. . When the detection signal indicates that a metastable state occurs, the continuous approximation temporary storage circuit 14 directly adjusts the logic levels of the bits p1, p3, n1, and n3 of the positive and negative phase control signals to a low logic level. Bits, and adjust the logic levels of the bits p2, p4, n2, n4 of the positive and negative phase control signals to a high logic level (or the bits of the positive and negative phase control signals) The logic levels of p1, p3, n1, and n3 are adjusted to a high logic level, and the logic levels of the bits p2, p4, n2, and n43 of the positive and negative phase control signals are adjusted to a low logic level. And generating the normal phase and negative phase control signals of the normal bits p5~p7, n5~n7 according to the comparison signals CS3~CS5 for analog digital conversion.

綜上所述,藉由利用該相位偵測電路132來對該延遲電路131及該比較器12所產生的該等延遲信號及該等比較結束信號進行相位偵測,可判斷該比較器12是否發 生亞穩態的情況,且該連續近似暫存電路14更可於該比較器12發生亞穩態情況時,調整該正相及負相控制信號的該等位元p1~p4、n1~n4的邏輯準位,來減小該比較器12之該共模電壓Vcm的大小,以提升該比較器12的比較速度,同時使該類比數位轉換裝置的轉換速度變快,故確實能達成本發明之目的。 In summary, by using the phase detecting circuit 132 to perform phase detection on the delay circuit 131 and the delay signals generated by the comparator 12 and the comparison end signals, it can be determined whether the comparator 12 is hair In the case of a metastable state, the continuous approximation register circuit 14 can adjust the bits p1~p4, n1~n4 of the positive and negative phase control signals when the comparator 12 is in a metastable state. The logic level is used to reduce the magnitude of the common mode voltage Vcm of the comparator 12 to increase the comparison speed of the comparator 12, and at the same time, the conversion speed of the analog-to-digital conversion device is increased, so that the present invention can be achieved. The purpose.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.

11‧‧‧電容陣列電路 11‧‧‧Capacitor array circuit

12‧‧‧比較器 12‧‧‧ comparator

13‧‧‧亞穩態偵測模組 13‧‧‧ Metastable Detection Module

131‧‧‧延遲電路 131‧‧‧Delay circuit

132‧‧‧相位偵測電路 132‧‧‧ phase detection circuit

14‧‧‧連續近似暫存電路 14‧‧‧Continuous approximation temporary storage circuit

15‧‧‧信號產生電路 15‧‧‧Signal generation circuit

Claims (9)

一種類比數位轉換裝置,接收一正相輸入電壓及一負相輸入電壓,且據以產生一具有N位元的數位信號,N≧3,且N為正整數,且包含:一電容陣列電路,依序操作於N個比較週期中,且接收該正相輸入電壓、該負相輸入電壓、一正相控制信號及一負相控制信號,該正相及負相控制信號皆具有P個位元,P=N+1,且於每一比較週期中,該電容陣列電路根據該正相控制信號的每一位元的邏輯準位來決定將該正相輸入電壓進行遞減的一幅度,以產生一正相輸出電壓,該電容陣列電路根據該負相控制信號的每一位元的邏輯準位來決定將該負相輸入電壓進行遞減的一幅度,以產生一負相輸出電壓;一比較器,電連接該電容陣列電路,以依序接收該電容陣列電路於每一比較週期中所產生的該正相及負相輸出電壓,並於每一比較週期中根據該正相及負相輸出電壓的差值來產生一比較信號,且於產生該比較信號的同時輸出一比較結束信號;一亞穩態偵測模組,電連接該比較器,以依序接收該比較器於每一比較週期中所產生的該比較結束信號,並根據該比較結束信號產生一指示是否發生亞穩態的偵測信號;及一連續近似暫存電路,電連接該比較器以依序接 收於每一比較週期中來自該比較器的該比較信號,電連接該亞穩態偵測模組以依序接收於每一比較週期中來自該亞穩態偵測模組的該偵測信號;當該偵測信號指示有亞穩態時,該連續近似暫存電路根據該偵測信號決定該正相控制信號及該負相控制信號所要調整的位元的邏輯準位;其中,該正相控制信號及該負相控制信號的每一位元具有一預設初始邏輯準位,該N個比較週期包括第一至第N比較週期,該第一比較週期中的該正相及負相控制信號的所要調整的位元是第一及第二位元;該第二比較週期中的該正相及負相控制信號的所要調整的位元是第三及第四位元;該第三至第(N-1)比較週期中的該正相及負相控制信號的所要對應調整的位元分別是第五至第P位元;該連續近似暫存電路根據該正相控制信號及該比較器於該第N比較週期中所產生的一比較信號,進行邏輯運算以產生該具有N位元的數位信號。 An analog-to-digital conversion device receives a positive phase input voltage and a negative phase input voltage, and accordingly generates a digital signal having N bits, N≧3, and N is a positive integer, and includes: a capacitor array circuit And sequentially operating in the N comparison periods, and receiving the normal phase input voltage, the negative phase input voltage, a positive phase control signal, and a negative phase control signal, the positive phase and the negative phase control signal each having P bits Yuan, P=N+1, and in each comparison period, the capacitor array circuit determines an amplitude of the positive phase input voltage to be decremented according to a logic level of each bit of the normal phase control signal, Generating a positive phase output voltage, the capacitor array circuit determining a magnitude of the negative phase input voltage to be decremented according to a logic level of each bit of the negative phase control signal to generate a negative phase output voltage; And electrically connecting the capacitor array circuit to sequentially receive the positive and negative phase output voltages generated by the capacitor array circuit in each comparison period, and output the positive phase and the negative phase according to each comparison period Voltage difference Generating a comparison signal, and outputting a comparison end signal while generating the comparison signal; a metastable detection module electrically connecting the comparator to sequentially receive the comparator generated in each comparison cycle The comparison end signal, and according to the comparison end signal, a detection signal indicating whether a metastable state is generated; and a continuous approximation temporary storage circuit, electrically connecting the comparators to sequentially connect Receiving the comparison signal from the comparator in each comparison period, electrically connecting the metastable detection module to sequentially receive the detection signal from the metastable detection module in each comparison period When the detection signal indicates a metastable state, the continuous approximation temporary storage circuit determines a logic level of the bit element to be adjusted by the positive phase control signal and the negative phase control signal according to the detection signal; wherein, the positive Each of the phase control signal and the negative phase control signal has a predetermined initial logic level, the N comparison periods including first to Nth comparison periods, the positive and negative phases in the first comparison period The bit to be adjusted of the control signal is the first and second bits; the bit to be adjusted of the positive and negative phase control signals in the second comparison period is the third and fourth bits; the third The correspondingly adjusted bits of the positive phase and negative phase control signals in the (N-1)th comparison period are fifth to Pth bits, respectively; the continuous approximate temporary storage circuit is based on the positive phase control signal and the Comparing a comparison signal generated by the comparator in the Nth comparison period Logical operation to generate the digital signal having N bits. 如請求項1所述的類比數位轉換裝置,其中,當該偵測信號指示無亞穩態時,該連續近似暫存電路根據該比較信號決定該正相控制信號及該負相控制信號所要調整的位元的邏輯準位。 The analog-to-digital conversion device of claim 1, wherein when the detection signal indicates no metastable state, the continuous approximation temporary storage circuit determines that the positive phase control signal and the negative phase control signal are to be adjusted according to the comparison signal. The logical level of the bit. 如請求項1所述的類比數位轉換裝置,其中,該連續近似暫存電路將該正相控制信號及該比較器於該第N比較週期中所產生的該比較信號進行加法邏輯運算。 The analog-to-digital conversion device of claim 1, wherein the continuous approximation temporary storage circuit performs an addition logic operation on the positive phase control signal and the comparison signal generated by the comparator in the Nth comparison period. 如請求項1所述的類比數位轉換裝置,其中,該亞穩態偵測模組包括:一延遲電路,於每一比較週期中接收一致能信號,且將該致能信號延遲一預設時間,來產生一延遲信號;及一相位偵測電路,電連接該比較器及該延遲電路,以依序接收該比較器於每一比較週期中所產生的該比較結束信號,及依序接收該延遲電路於每一比較週期中所產生的該延遲信號,並於每一比較週期中比較該比較結束信號的相位是否落後該延遲信號的相位;當該比較結束信號的相位落後該延遲信號的相位時,則該相位偵測電路產生的該偵測信號指示發生亞穩態。 The analog-to-digital conversion device of claim 1, wherein the metastable detection module comprises: a delay circuit, receiving a uniform energy signal in each comparison period, and delaying the enable signal by a preset time And generating a delay signal; and a phase detecting circuit electrically connecting the comparator and the delay circuit to sequentially receive the comparison end signal generated by the comparator in each comparison period, and sequentially receiving the The delay circuit generates the delayed signal generated in each comparison period, and compares whether the phase of the comparison end signal lags behind the phase of the delayed signal in each comparison period; when the phase of the comparison end signal lags behind the phase of the delayed signal The detection signal generated by the phase detecting circuit indicates that metastability occurs. 如請求項4所述的類比數位轉換裝置,還包含:一信號產生電路,接收一時脈信號,並據以產生一取樣信號及一轉換起始信號,並將該取樣信號及該轉換起始信號分別用以觸發該電容陣列電路及該連續近似暫存電路。 The analog digital conversion device of claim 4, further comprising: a signal generating circuit, receiving a clock signal, and generating a sampling signal and a conversion starting signal, and combining the sampling signal and the conversion starting signal The trigger array circuit and the continuous approximate temporary storage circuit are respectively triggered. 如請求項5所述的類比數位轉換裝置,其中,該電容陣列電路更接收來自該信號產生電路的該取樣信號,並根據該取樣信號對該正相輸入電壓及該負相輸入電壓進行取樣;其中,該連續近似暫存電路更接收來自該信號產 生電路的該轉換起始信號,並根據該轉換起始信號產生該致能信號,並將該致能信號輸出至該延遲電路及該比較器,且該比較器於每一比較週期中更根據該致能信號開始對該正相及負相輸出電壓進行比較,以取得該正相及負相輸出電壓的差值。 The analog-to-digital conversion device of claim 5, wherein the capacitor array circuit further receives the sampling signal from the signal generating circuit, and samples the normal phase input voltage and the negative phase input voltage according to the sampling signal; Wherein, the continuous approximation temporary storage circuit receives more from the signal production Generating the conversion start signal, and generating the enable signal according to the conversion start signal, and outputting the enable signal to the delay circuit and the comparator, and the comparator is further based on each comparison period The enable signal begins to compare the positive and negative phase output voltages to obtain a difference between the positive and negative phase output voltages. 如請求項6所述的類比數位轉換裝置,其中,該連續近似暫存電路於產生該數位信號的同時輸出一轉換結束信號。 The analog-to-digital conversion device of claim 6, wherein the continuous approximation temporary storage circuit outputs a conversion end signal while generating the digital signal. 如請求項7所述的類比數位轉換裝置,其中,該信號產生電路更接收來自該連續近似暫存電路的該轉換結束信號,並根據該轉換結束信號及該時脈信號產生該電容陣列電路進行下一次取樣時所需的下一個取樣信號。 The analog-to-digital conversion device of claim 7, wherein the signal generating circuit further receives the conversion end signal from the continuous approximation temporary storage circuit, and generates the capacitance array circuit according to the conversion end signal and the clock signal. The next sampled signal required for the next sample. 如請求項5所述的類比數位轉換裝置,其中,N=6,P=7,且該電容陣列電路包括:一第一開關,具有一接收該正相輸入電壓的第一端,及一於每一比較週期輸出該正相輸出電壓的第二端,並受該取樣信號控制而導通或不導通;七個第一電容,每一第一電容具有一電連接該第一開關之該第二端的第一端,及一第二端;七個第一反及閘,每一第一反及閘具有一接收一重置信號的第一端、一第二端,及一第三端,該等第一反及閘的該等第二端分別接收各自所對應的該正相控制信號的該等位元,該等第一反及閘的該等第三端 分別電連接各自所對應的該等第一電容的該等第二端,且每一第一反及閘根據該重置信號及其所對應接收的該正相控制信號中的該位元,在其第三端,輸出一第一邏輯信號;一第二開關,具有一接收該負相輸入電壓的第一端,及一於每一比較週期輸出該負相輸出電壓的第二端,並受該取樣信號控制而導通或不導通;七個第二電容,每一第二電容具有一電連接該第二開關之該第二端的第一端,及一第二端;及七個第二反及閘,每一第二反及閘具有一接收該重置信號的第一端、一第二端,及一第三端,該等第二反及閘的該等第二端分別接收各自所對應的該負相控制信號的該等位元,該等第二反及閘的該等第三端分別電連接各自所對應的該等第二電容的該等第二端,且每一第二反及閘根據該重置信號及其所對應接收的該負相控制信號中的該位元,在其第三端,輸出一第二邏輯信號;其中,該重置信號的一初始邏輯準位為該預設初始邏輯準位。 The analog-to-digital conversion device of claim 5, wherein N=6, P=7, and the capacitor array circuit comprises: a first switch having a first end receiving the positive phase input voltage, and a first Outputting a second end of the positive phase output voltage for each comparison period, and being turned on or off by the sampling signal; seven first capacitors, each of the first capacitors having an electrical connection to the second of the first switches a first end of the end, and a second end; seven first anti-gates, each of the first anti-gates having a first end, a second end, and a third end receiving a reset signal The second ends of the first NAND gate respectively receive the corresponding bits of the corresponding positive phase control signal, and the third ends of the first NAND gates Electrically connecting the second ends of the first capacitors corresponding to the respective ones, and each of the first and second gates is in accordance with the reset signal and the corresponding one of the positive phase control signals received by the reset signal a third end thereof outputs a first logic signal; a second switch has a first end receiving the negative phase input voltage, and a second end outputting the negative phase output voltage in each comparison period, and is subjected to The sampling signal is controlled to be turned on or off; seven second capacitors each having a first end electrically connected to the second end of the second switch, and a second end; and seven second counters And a second gate having a first end, a second end, and a third end receiving the reset signal, wherein the second ends of the second anti-gates respectively receive the respective Corresponding to the bits of the negative phase control signal, the third ends of the second anti-gates are electrically connected to the second ends of the second capacitors respectively corresponding to each, and each second And the gate is based on the reset signal and the corresponding one of the negative phase control signals received in the gate Terminal, a second logic output signal; wherein an initial logic level of the reset signal for the preset initial logical level.
TW103115704A 2014-05-01 2014-05-01 Analog-to-digital converting device TWI523435B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103115704A TWI523435B (en) 2014-05-01 2014-05-01 Analog-to-digital converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103115704A TWI523435B (en) 2014-05-01 2014-05-01 Analog-to-digital converting device

Publications (2)

Publication Number Publication Date
TW201543821A TW201543821A (en) 2015-11-16
TWI523435B true TWI523435B (en) 2016-02-21

Family

ID=55221042

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103115704A TWI523435B (en) 2014-05-01 2014-05-01 Analog-to-digital converting device

Country Status (1)

Country Link
TW (1) TWI523435B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI638531B (en) * 2017-05-16 2018-10-11 瑞昱半導體股份有限公司 Successive approximation register analog-to-digital converter capable of accelerating reset

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI638531B (en) * 2017-05-16 2018-10-11 瑞昱半導體股份有限公司 Successive approximation register analog-to-digital converter capable of accelerating reset

Also Published As

Publication number Publication date
TW201543821A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
US10312932B2 (en) Successive approximation analog-to-digital converter
JP4153026B2 (en) AD converter and AD conversion method
CN109314521B (en) Asynchronous clock generation for time interleaved successive approximation analog-to-digital converter
CN106656185B (en) Monoclinic analog-to-digital converter with digital double sampling function, chip and terminal
JP5275351B2 (en) AD converter
US8907834B2 (en) Apparatus and methods for converting analog signal to N-bit digital data
JP2016213826A (en) Time interleave type ad converter
US9379726B1 (en) Adaptive asynchronous SAR ADC
US8842029B2 (en) Area-efficiency delta modulator for quantizing an analog signal
CN107040260B (en) Asynchronous successive approximation type analog-to-digital conversion circuit
US8836556B2 (en) ADC, IC including the same, and ADC method thereof
US7969204B1 (en) Sample hold circuit and method thereof for eliminating offset voltage of analog signal
US20130285844A1 (en) Method and apparatus for analog-to-digital converter
JP2014075684A (en) Ad conversion circuit, semiconductor device and ad conversion method
US20190131997A1 (en) Bootstrapped high-speed successive approximation analog to digital converter
CN105406868B (en) Adaptive timing for analog-to-digital conversion
TWI523435B (en) Analog-to-digital converting device
EP1962428A1 (en) Method and apparatus for analog-to-digital conversion using switched capacitors
TWI405977B (en) Current measurement circuit and measuring method thereof
US8749274B1 (en) Level sensitive comparing device
US8779954B2 (en) AD (analog-to-digital) conversion circuit, micro-controller, and method of adjusting sampling time
TWI707547B (en) Analog to digital converter device and noise shaping digital slope analog to digital converter circuitry
KR101989696B1 (en) Apparatus and method having reduced static phase offset
TWI594580B (en) Analog to digital converter and data conversion method
US10181861B1 (en) Reference voltage control circuit for a two-step flash analog-to-digital converter