TWI521449B - 焦碳乾式淬火系統與其控制方法 - Google Patents

焦碳乾式淬火系統與其控制方法 Download PDF

Info

Publication number
TWI521449B
TWI521449B TW104103579A TW104103579A TWI521449B TW I521449 B TWI521449 B TW I521449B TW 104103579 A TW104103579 A TW 104103579A TW 104103579 A TW104103579 A TW 104103579A TW I521449 B TWI521449 B TW I521449B
Authority
TW
Taiwan
Prior art keywords
model
concentration
intake air
temperature
parameters
Prior art date
Application number
TW104103579A
Other languages
English (en)
Other versions
TW201629855A (zh
Inventor
謝煒東
鄭西顯
謝賢書
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW104103579A priority Critical patent/TWI521449B/zh
Application granted granted Critical
Publication of TWI521449B publication Critical patent/TWI521449B/zh
Publication of TW201629855A publication Critical patent/TW201629855A/zh

Links

Landscapes

  • Coke Industry (AREA)

Description

焦碳乾式淬火系統與其控制方法
本發明是有關於一種焦碳乾式淬火系統,且特別是有關於一種控制焦碳乾式淬火系統循環氣體迴路中補入新鮮空氣量的控制方法。
焦碳乾式淬火系統(coke dry quench,CDQ)是將焦爐經煉焦爐所產出約1050℃之紅熱焦炭透過氣體熱交換來將焦炭冷卻。此方法除可提升焦炭機械性能並同時降低焦炭濕式淬火所造成之汙染問題外,更可將焦炭所具有之熱量回收,而所回收之熱能經過廢熱鍋爐可產生蒸氣並推動發電機發電,此為煉焦工場中普遍應用之節能減碳技術。
一般而言,此系統是讓循環風進入CDQ系統的淬火塔內,在循環風與熱焦炭換熱的冷卻過程中,會因高溫熔損反應(solution loss)與二氧化碳於高溫時與焦炭反應而帶走焦炭中部分的碳而形成一氧化碳。而經由淬火塔所產生的一氧化碳可與淬火塔上方環形煙道中由外界補入之空氣混合燃燒,進而提升循環氣體進入鍋爐之熱量來提升蒸汽的產量,有效利用已熔損之焦炭所產生的一氧化碳。然而,當循環氣體中一氧化碳的濃度過高時會造成能源的浪費,而 一氧化碳的濃度過低時會使得進入鍋爐的氣體溫度太低。一般而言會控制補入空氣的流量來調節一氧化碳的濃度,控制方法例如為補入定量的空氣、手動操作或利用線性模型。但由於CDQ的熱交換是在高溫條件下進行操作,涉及複雜的化學反應,在高度非線性的系統下難以使用線性方法建立模型,難以預測與掌握循環氣體中一氧化碳的濃度。因此,如何準確地控制補入空氣的流量,為此領域技術人員所關心的議題。
本發明提出一種焦碳乾式淬火系統的控制方法。此焦碳乾式淬火系統包括淬火塔與鍋爐,淬火塔包括進氣模組。進氣模組根據一進氣量輸入空氣至淬火塔使空氣與淬火塔內的一氧化碳混合並燃燒。燃燒後高溫廢氣會進入鍋爐以產製蒸汽。控制方法包括以下步驟。首先,取得焦碳乾式淬火系統的多個參數,這些參數包括鍋爐進氣溫度、循環氣體一氧化碳濃度、入焦溫度、循環氣體流量...等。接下來,從這些參數中選出多個第一模型參數,並且以進氣量與第一模型參數作為輸入,以鍋爐進氣溫度作為輸出來執行第一機器學習演算法以取得一溫度模型。從所述的參數中選出多個第二模型參數,並且以進氣量與第二模型參數作為輸入,以循環氣體一氧化碳濃度作為輸出來執行第二機器學習演算法以取得一濃度模型。並且,以進氣量做為變數,根據鍋爐進氣溫度的一溫度設定點與溫度模型的輸出之間的差以及濃度模型的輸出來設定一目標 函數。接下來,根據目標函數來執行最佳化演算法以計算出進氣量。
在一範例實施例中,上述選擇第一模型參數的步驟與選擇第一模型參數的步驟是根據最小絕對收縮與選擇(Least Absolute Shrinkage and Selection Operator,LASSO)演算法所執行。選擇第一模型參數時是以鍋爐進氣溫度做為目標參數,並且選擇第二模型參數時是以循環氣體一氧化碳濃度做為目標參數。
在一範例實施例中,上述的第一機器學習演算法與第二機器學習演算法為人工類神經網路演算法。
在一範例實施例中,上述設定目標函數的步驟包括以下步驟。設定一懲罰函數,其中當濃度模型的輸出大於等於濃度臨界值時,懲罰函數為零,當濃度模型的輸出小於濃度臨界值時,懲罰函數為濃度臨界值減去濃度模型的輸出。接著,將溫度設定點與溫度模型的輸出之間的差加上懲罰函數與懲罰權重的相乘以做為目標函數。
在一範例實施例中,上述根據目標函數來執行最佳化演算法的步驟還包括:限制進氣量的變異量在變動上限與變動下限之間。
本發明的範例實施例提出一種焦碳乾式淬火系統,包括淬火塔、鍋爐與控制模組。淬火塔包括一進氣模組,此進氣模組用以根據一進氣量輸入空氣至淬火塔使空氣與淬火塔內的一氧化碳混合並燃燒。鍋爐是利用與淬火塔熱焦炭換熱後的高溫空氣以及一氧化碳燃燒時所含的熱能來產製蒸汽。控制模組是用以取得焦碳乾式淬火系 統的多個參數,這些參數包括鍋爐進氣溫度與循環氣體一氧化碳濃度、入焦溫度、循環氣體流量...等。控制模組也用以從這些參數中選出多個第一模型參數,並且以進氣量與第一模型參數作為輸入,以鍋爐進氣溫度作為輸出來執行第一機器學習演算法以取得一溫度模型。控制模組也用以從上述的參數中選出多個第二模型參數,並且以進氣量與第二模型參數作為輸入,以循環氣體一氧化碳濃度作為輸出來執行第二機器學習演算法以取得一濃度模型。控制模組以進氣量做為變數,根據鍋爐進氣溫度的一溫度設定點與溫度模型的輸出之間的差以及濃度模型的輸出來設定一目標函數,並且根據目標函數來執行最佳化演算法以計算出進氣量。
在一範例實施例中,上述的控制模組是根據最小絕對收縮與選擇演算法來選擇第一模型參數與選擇第一模型參數。當選擇第一模型參數時控制模組是以鍋爐進氣溫度做為目標參數,當選擇第二模型參數時控制模組是以循環氣體一氧化碳濃度做為目標參數。
在一範例實施例中,上述的控制模組還用以設定一懲罰函數。其中當濃度模型的輸出大於等於一濃度臨界值時,懲罰函數為零;當濃度模型的輸出小於濃度臨界值時,懲罰函數為濃度臨界值減去濃度模型的輸出。控制模組還用以將溫度設定點與溫度模型的輸出之間的差加上懲罰函數與懲罰權重的相乘以做為目標函數。
在一範例實施例中,上述的控制模組還用以 限制進氣量的變異量在變動上限與變動下限之間。
在本發明實施例所提出的控制方法應用於CDQ系統中,可以準確地控制進氣量,充分利用循環氣體中未燃盡之一氧化碳能量,藉此可以提升蒸汽的產量。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100‧‧‧焦碳乾式淬火系統
110‧‧‧淬火塔
111‧‧‧進風模組
112‧‧‧攔塵器
120‧‧‧鍋爐
121‧‧‧渦輪
122‧‧‧旋風分離機
123‧‧‧循環風扇
124‧‧‧次節能器
125‧‧‧除氧器
126‧‧‧運送機
130‧‧‧控制模組
P1~P9‧‧‧位置
S201~S204‧‧‧步驟
圖1是根據一實施例繪示焦碳乾式淬火系統的示意圖。
圖2是根據一實施例繪示焦碳乾式淬火系統的控制方法的流程圖。
圖1是根據一實施例繪示焦碳乾式淬火系統的示意圖。請參照圖1,焦碳乾式淬火系統100包括了淬火塔110、進氣模組111、攔塵器(dust catcher)112、鍋爐(boiler)120、渦輪(turbine)121、旋風分離機(cyclone)122、循環風扇123、次節能器(sub economizer)124、除氧器(deaerator)125、運送機(conveyor)126。
紅熱焦炭會加入至淬火塔110中與次節能器124所輸入的氣體進行熱交換,冷卻後的焦炭會由運送機126運送至別處。在熱交換時會因高溫熔損反應(solution loss)與二氧化碳於高溫時與焦炭反應而帶走焦炭中部分的碳而形成一氧化碳。在一實施例中進氣模組111為一風扇,進氣模組111會根據某一進氣量輸入空氣至淬火塔110中,使得輸入的空氣會與淬火塔110內的一氧化碳混合,於高溫下燃燒放熱,所產生的高溫廢氣經由欄塵器112後進入鍋爐120。換言之,鍋爐120會接收來自淬火塔110與焦碳換熱後的循環氣體以及循環氣體內一氧化碳燃燒產生之熱能,藉此產生蒸汽。蒸汽導入渦輪121產生電力,完成紅焦炭熱能回收利用。另外,鍋爐120中的氣體透過旋風分離機122與循環風扇123傳送至次節能器124,次節能器124會利用水來冷卻來自循環風扇123的氣體,冷卻後的氣體則再送至淬火塔110中,而冷卻用的水會送至除氧器125,經過除氧器125的處理後這些水會被送至鍋爐120。然而,值得注意的是,圖1僅是一範例,本領域具有通常知識者當可根據實際需要設計焦碳乾式淬火系統100。
焦碳乾式淬火系統100還包括了控制模組130,此控制模組130是用以控制進氣模組111的進氣量。在一實施例中,控制模組130為軟體,被載入至記憶體(未繪示)中以後由處理器(未繪示)所執行。在另一實施例中,控制模組130為硬體,包括了一或多個電路。然而,本發明並不限制將控制模組130實作為軟體或是硬體。以下將詳細說明控制模組130如何控制進氣模組111的進氣量。
首先,焦碳乾式淬火系統100中設置了多個感 測器,這些感測器可以用來感測溫度、壓力、氣體濃度、焦炭的量、氣體流量等。控制模組130是以有線或無線的方式耦接至這些感測器,並透過感測器來取得多筆參數。舉例來說,請參照以下的表1,其中包括了多個參數、各參數的說明、各參數的單位,以及各參數所偵測的位置。然而,表1僅是一範例,在其他實施例中控制模組130也可以取得更多或更少的參數,或者從不同的位置上取得參數,本發明並不限制這些參數的數目、單位、內容與偵測位置。
在訓練階段中,控制模組130會取得一段時間內的參數,並利用這些參數來建立一個溫度模型與一個濃度模型。溫度模型是用來預測鍋爐進氣溫度TCGB,而濃度模型是用來預測循環氣體一氧化碳濃度CCO。然而,在建立模型時不是所有的參數都有用,有些參數跟所要預測的溫度或濃度之間的關聯是很小的。因此,控制模組130會從這些參數中挑選出多個第一模型參數,這些第一模型參數是用來建立溫度模型。控制模組130也會從這些參數中挑選出多個第二模型參數,這些第二模型參數是用來建立濃度模型。舉例來說,在此實施例中控制模組130是根據最小絕對收縮與選擇(Least Absolute Shrinkage and Selection Operator,LASSO)演算法來選擇上述的第一模型參數與第二模型參數。LASSO演算法可以表示為以下方程式。
其中y為目標參數,表示所要預測的參數,例如要建立溫度模型時可設定為鍋爐進氣溫度TCGB,要建立 濃度模型時可設定為循環氣體一氧化碳濃度CCO。X是根據上述參數(除了目標參數y以外)所產生的共變異數矩陣(covariate matrix)。θ為一向量,向量的長度等於所有參數(除了目標參數y)的個數,向量θ中的每一個回歸係數θi都對應至一個參數。t為一正數。LASSO演算法是用以在回歸係數θi的絕對值之和小於常數t的限制下,讓目標參數y與Xθ之間的平方和最小化,而產生某些嚴格等於0的回歸係數。這些嚴格等於0的回歸係數θi所對應的參數就是不相關的參數,而不等於0的回歸係數θi所對應的參數便是所挑選的參數。在此,當鍋爐進氣溫度TCGB為目標參數時挑選出的參數便是上述的第一模型參數,而當循環氣體一氧化碳濃度CCO為目標參數時所挑選出的參數便是上述的第二模型參數。
然而,在其他實施例中控制模組130也可以用其他演算法來挑選第一模型參數與第二模型參數,例如自適應增強(adaptive boosting,AdaBoost)演算法,本發明並不限制控制模組130如何挑選第一模型參數與第二模型參數。或者,在挑選第一模型參數與第二模型參數時也可以使用不同的演算法。
接下來,控制模組130會以進氣量FSA與所挑選的第一模型參數作為輸入,以鍋爐進氣溫度TCGB作為輸出來執行第一機器學習演算法以取得溫度模型。控制模組130也會以進氣量FSA與第二模型參數作為輸入,以循環氣體一氧化碳濃度CCO作為輸出來執行第二機器學習演算法 以取得濃度模型。在此實施例中,上述的第一機器學習演算法與第二機器學習演算法為人工類神經網路(artificial neural network,ANN)。然而,在其他實施例中上述的第一機器學習演算法與第二機器學習演算法也可以為支持向量機(support vector machine,SVM)、K-近鄰(k-nearest neighbor)演算法、或其他任意的監督性學習(supervised learning)演算法。或者,第一機器學習演算法也可以不同於第二機器學習演算法。
接下來,控制模組130會以進氣量FSA做為變數,根據鍋爐進氣溫度TCGB的溫度設定點與溫度模型的輸出之間的差以及濃度模型的輸出來設定目標函數,並且根據此目標函數來執行最佳化演算法以計算出進氣量FSA。換言之,在執行最佳化演算法時,控制模組130會找到適當的進氣量FSA,使得預測出的鍋爐進氣溫度TCGB會接近設定點。舉例來說,上述的溫度模型的預測可以表示為以下方程式(2),而濃度模型的預測可以表示為以下方程式(3)。
T CGB (k+1)=F(u 1(k),x 1(k))...(2)
C CO (k+1)=G(u 2(k),x 2(k))...(3)
其中k表示時間。F( )與G( )分別為溫度模型與濃度模型。u1(k)與u2(k)表示時間k時的進氣量FSA。x1(k)表示所挑選出的第一模型參數在時間k時的數值。x2(k)表示所挑選出的第二模型參數在時間k時的數值。
另一方面,若循環氣體一氧化碳濃度CCO太 低,表示循環氣體中的可燃氣體太少,應該減少進氣模組111輸入的進氣量,否則冷空氣會使循環氣體的溫度降低。在一實施例中,控制模組130會設定一懲罰函數。當濃度模型G( )的輸出大於等於某一濃度臨界值時,懲罰函數為零;當濃度模型G( )的輸出小於濃度臨界值時,懲罰函數為濃度臨界值減去濃度模型G( )的輸出。例如,此懲罰函數可以表示為以下方程式(4)。
其中濃度臨界值為0.2,然而在其他實施例中此濃度臨界值也可設定為其他數值,本發明並不在此限。
控制模組130會將溫度設定點與溫度模型F( )的輸出之間的差加上懲罰函數PCO( )與懲罰權重的相乘以做為上述的目標函數。具體來說,控制模組130所執行的最佳化演算法可表示為以下方程式(5)。
其中λ為懲罰權重,為一實數。rk+1為鍋爐進氣溫度TCGB的設定點。△u(k)為進氣量u(k)的變異量。控制模組130會限制變異量△u(k)在變動上限△uun與變動下限△ulb之間,但本發明並不限制變動上限△uun與變動下限△ulb的數值大小。在此實施例中,設定點rk+1與溫度模型的輸出之間的差為平方差,但在其他實施例中也可以為絕對誤差或是其他形式的差。在執行完最佳化演算法以 後,控制模組130便可以計算出進氣量u(k+1)以控制進氣模組111。
值得注意的是,在不脫離本發明的精神之下,上述方程式(5)可以有許多不同的寫法。例如,u(k)+△u(k)可寫為u(k+1),而在min函數下方也可以是u(k+1)。另外,在其他實施例中方程式(5)中也可以不具有限制(constraint),或是具有更多的限制,本發明並不在此限。
圖2是根據一實施例繪示焦碳乾式淬火系統的控制方法的流程圖。請參照圖2,在步驟S201中,取得焦碳乾式淬火系統的多個參數。在步驟S202中,從這些參數中選出多個第一模型參數,並且以進氣量與第一模型參數作為輸入,以鍋爐進氣溫度作為輸出來執行第一機器學習演算法以取得一溫度模型。在步驟S203中,從所述的參數中選出多個第二模型參數,並且以進氣量與第二模型參數作為輸入,以循環氣體一氧化碳濃度作為輸出來執行第二機器學習演算法以取得一濃度模型。在步驟S204中,以進氣量做為變數,根據鍋爐進氣溫度的溫度設定點與溫度模型的輸出之間的差以及濃度模型的輸出來設定目標函數,並根據目標函數來執行最佳化演算法以計算出進氣量。
然而,圖2中各步驟已詳細說明如上,在此便不再贅述。值得注意的是,圖2中各步驟可以實作為多個程式碼或是電路,本發明並不在此限。本發明也不限制圖 2個步驟執行的順序,例如步驟S202與步驟S203可以互換。此外,圖2的方法可以搭配以上實施例使用,也可以單獨使用。
本發明實施例提出的焦碳乾式淬火系統與其控制方法,可利用非線性的參數選取方式來建立模型以預測鍋爐進氣溫度與循環氣體一氧化碳濃度。這些模型的輸出可用來決定進風模組的進氣量,藉此可提升熱能回收,進而提升蒸汽產量。
雖然本發明已實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
S201~S204‧‧‧步驟

Claims (8)

  1. 一種焦碳乾式淬火系統的控制方法,其中該焦碳乾式淬火系統包括一淬火塔與一鍋爐,該淬火塔包括一進氣模組,該進氣模組根據一進氣量輸入空氣至該淬火塔使該空氣與該淬火塔內的一氧化碳混合並燃燒,高溫廢氣進入該鍋爐,該控制方法包括:取得該焦碳乾式淬火系統的多個參數,該些參數包括一鍋爐進氣溫度與一循環氣體一氧化碳濃度;從該些參數中選出多個第一模型參數,並且以該進氣量與該些第一模型參數作為輸入,以該鍋爐進氣溫度作為輸出來執行一第一機器學習演算法以取得一溫度模型;從該些參數中選出多個第二模型參數,並且以該進氣量與該些第二模型參數作為輸入,以該循環氣體一氧化碳濃度作為輸出來執行一第二機器學習演算法以取得一濃度模型;以及以該進氣量做為變數,根據該鍋爐進氣溫度的一溫度設定點與該溫度模型的輸出之間的差以及該濃度模型的輸出來設定一目標函數,並且根據該目標函數來執行一最佳化演算法以計算出該進氣量,其中選擇該些第一模型參數的步驟與選擇該些第一模型參數的步驟是根據一最小絕對收縮與選擇(Least Absolute Shrinkage and Selection Operator,LASSO)演算法所執行,其中選擇該些第一模型參數時是以該鍋爐進氣溫度做為一目標參數,並且選擇該些第二模型參數時是以該循環氣體一氧化碳濃度做為該目標參數。
  2. 如申請專利範圍第1項所述之控制方法,其中該第一機器學習演算法與該第二機器學習演算法為人工類神經網路演算法。
  3. 如申請專利範圍第1項所述之控制方法,其中設定該目標函數的步驟包括:設定一懲罰函數,其中當該濃度模型的輸出大於等於一濃度臨界值時,該懲罰函數為零,當該濃度模型的輸出小於該濃度臨界值時,該懲罰函數為該濃度臨界值減去該濃度模型的輸出;以及將該溫度設定點與該溫度模型的輸出之間的差加上該懲罰函數與一懲罰權重的相乘以做為該目標函數。
  4. 如申請專利範圍第1項所述之控制方法,其中根據該目標函數來執行該最佳化演算法的步驟還包括:限制該進氣量的變異量在一變動上限與一變動下限之間。
  5. 一種焦碳乾式淬火系統,包括:一淬火塔,包括一進氣模組,其中該進氣模組用以根據一進氣量輸入空氣至該淬火塔使該空氣與該淬火塔內的一氧化碳混合並燃燒;一鍋爐,接收來自該淬火塔與焦碳換熱後的循環氣體 以及該循環氣體內該一氧化碳燃燒產生之熱能;以及一控制模組,用以取得該焦碳乾式淬火系統的多個參數,該些參數包括一鍋爐進氣溫度與一循環氣體一氧化碳濃度,該控制模組用以從該些參數中選出多個第一模型參數,並且以該進氣量與該些第一模型參數作為輸入,以該鍋爐進氣溫度作為輸出來執行一第一機器學習演算法以取得一溫度模型,該控制模組用以從該些參數中選出多個第二模型參數,並且以該進氣量與該些第二模型參數作為輸入,以該循環氣體一氧化碳濃度作為輸出來執行一第二機器學習演算法以取得一濃度模型,該控制模組用以將該進氣量做為變數,根據該鍋爐進氣溫度的一溫度設定點與該溫度模型的輸出之間的差以及該濃度模型的輸出來設定一目標函數,並且根據該目標函數來執行一最佳化演算法以計算出該進氣量,其中該控制模組是根據一最小絕對收縮與選擇(Least Absolute Shrinkage and Selection Operator,LASSO)演算法來選擇該些第一模型參數與選擇該些第一模型參數,其中選擇該些第一模型參數時該控制模組是以該鍋爐進氣溫度做為一目標參數,並且選擇該些第二模型參數時該控制模組是以該循環氣體一氧化碳濃度做為該目標參數。
  6. 如申請專利範圍第5項所述之焦碳乾式淬 火系統,其中該第一機器學習演算法與該第二機器學習演算法為人工類神經網路演算法。
  7. 如申請專利範圍第5項所述之焦碳乾式淬火系統,該控制模組還用以設定一懲罰函數,其中當該濃度模型的輸出大於等於一濃度臨界值時,該懲罰函數為零,當該濃度模型的輸出小於該濃度臨界值時,該懲罰函數為該濃度臨界值減去該濃度模型的輸出,該控制模組還用以將該溫度設定點與該溫度模型的輸出之間的差加上該懲罰函數與一懲罰權重的相乘以做為該目標函數。
  8. 如申請專利範圍第5項所述之焦碳乾式淬火系統,其中該控制模組更用以限制該進氣量的變異量在一變動上限與一變動下限之間。
TW104103579A 2015-02-03 2015-02-03 焦碳乾式淬火系統與其控制方法 TWI521449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104103579A TWI521449B (zh) 2015-02-03 2015-02-03 焦碳乾式淬火系統與其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104103579A TWI521449B (zh) 2015-02-03 2015-02-03 焦碳乾式淬火系統與其控制方法

Publications (2)

Publication Number Publication Date
TWI521449B true TWI521449B (zh) 2016-02-11
TW201629855A TW201629855A (zh) 2016-08-16

Family

ID=55810359

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104103579A TWI521449B (zh) 2015-02-03 2015-02-03 焦碳乾式淬火系統與其控制方法

Country Status (1)

Country Link
TW (1) TWI521449B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114764093A (zh) * 2021-01-13 2022-07-19 新智数字科技有限公司 燃气锅炉烟气一氧化碳含量监测方法及装置
TWI787954B (zh) * 2021-08-12 2022-12-21 中國鋼鐵股份有限公司 鋼液溫度預測方法與電腦系統

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114764093A (zh) * 2021-01-13 2022-07-19 新智数字科技有限公司 燃气锅炉烟气一氧化碳含量监测方法及装置
TWI787954B (zh) * 2021-08-12 2022-12-21 中國鋼鐵股份有限公司 鋼液溫度預測方法與電腦系統

Also Published As

Publication number Publication date
TW201629855A (zh) 2016-08-16

Similar Documents

Publication Publication Date Title
Fang et al. Backstepping-based nonlinear adaptive control for coal-fired utility boiler–turbine units
CN108227488B (zh) 基于滑模预测控制的超超临界火电机组协调控制方法
Chen et al. Gaussian process regression based optimal design of combustion systems using flame images
Sun et al. Model predictive control for improving waste heat recovery in coke dry quenching processes
JP2014174993A5 (zh)
CN103243190B (zh) 一种预测热风炉煤气消耗量的方法
TWI521449B (zh) 焦碳乾式淬火系統與其控制方法
Galletti et al. Biomass furnace for externally fired gas turbine: Development and validation of the numerical model
Wu et al. Power-carbon coordinated control of BFG-fired CCGT power plant integrated with solvent-based post-combustion CO2 capture
Zhang et al. A dynamic heat transfer model to estimate the flue gas temperature in the horizontal flue of the coal-fired utility boiler
Giorgetti et al. Surrogate-assisted modeling and robust optimization of a micro gas turbine plant with carbon capture
Bahadori et al. Estimation of energy conservation benefits in excess air controlled gas-fired systems
CN102252779B (zh) 基于烟气能量平衡的炉膛出口烟温优化测量方法
JP6013458B2 (ja) 有機性廃棄物の処理装置および処理方法並びに制御装置
Menghini et al. Effect of excess air on the optimization of heating appliances for biomass combustion
CN105180205B (zh) 富氧燃烧烟气循环系统控制方法
Bahadori et al. A method for estimation of recoverable heat from blowdown systems during steam generation
CN104392095B (zh) 一种基于偏增量因素分解的锅炉性能指标分析方法
Zanoli et al. Advanced Process Control of a cement plant grate cooler
Zhou et al. Intelligent dynamic modeling for online estimation of burning zone temperature in cement rotary kiln
Plis et al. Adaptive simulation model of a double-pressure heat recovery steam generator for current optimization in control systems
Zhang et al. Multi-Objective Optimization for Gas Distribution in Continuous Annealing Process
CN106439786B (zh) 电站锅炉再热蒸汽温度的烟气侧和蒸汽侧协调预测控制方法
RU2007132429A (ru) Способ регулирования режима работы установки сухого тушения кокса и устройство для его осуществления
Zanoli et al. A constraints softening decoupling strategy oriented to time delays handling with Model Predictive Control

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees