TWI520623B - 4x4 OPTICAL CROSS-CONNECTER? WITH? RECONFIGURABLE WHITE WAVELENGTH CHANNEL - Google Patents

4x4 OPTICAL CROSS-CONNECTER? WITH? RECONFIGURABLE WHITE WAVELENGTH CHANNEL Download PDF

Info

Publication number
TWI520623B
TWI520623B TW103115239A TW103115239A TWI520623B TW I520623 B TWI520623 B TW I520623B TW 103115239 A TW103115239 A TW 103115239A TW 103115239 A TW103115239 A TW 103115239A TW I520623 B TWI520623 B TW I520623B
Authority
TW
Taiwan
Prior art keywords
photoreactor
arrayed waveguide
output end
input end
optical
Prior art date
Application number
TW103115239A
Other languages
Chinese (zh)
Other versions
TW201541970A (en
Inventor
蔡政穆
王建仁
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW103115239A priority Critical patent/TWI520623B/en
Publication of TW201541970A publication Critical patent/TW201541970A/en
Application granted granted Critical
Publication of TWI520623B publication Critical patent/TWI520623B/en

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

可組態白光波長通道之4x4光互連交換裝置及其設置 方法 4x4 optical interconnect switching device with configurable white light wavelength channel and its setting method

本發明係有關於一種可組態白光波長通道之4x4光互連交換裝置,特別是有關於一種利用陣列波導光柵、數個光柵及數個迴光器之間的配置與光路的連接,藉此組成的等效4x4光互連交換裝置。 The present invention relates to a 4x4 optical interconnect switching device capable of configuring a white light wavelength channel, and more particularly to a connection between an arrangement using an arrayed waveguide grating, a plurality of gratings and a plurality of optical switches and an optical path. An equivalent 4x4 optical interconnect switching device.

近年來,國民生活品質提高,國人對於資訊網絡與影音娛樂越趨重視,使得各大電信業者紛紛將傳統電信網路(Public Switch Telephone Network,PSTN)、無線網路(Wireless Network)與網際網路(Internet)整合於單一網路,並期望將無線數據傳輸、多媒體影音服務、個人化服務及資訊安全等各項應用服務合而為一。為此,業者為尋求解決頻寬需求愈趨成長的問題,於近幾年考慮藉由光通信所具有傳輸容量大及保密性好等特性用以解決頻寬當前面臨的供需求問題,進而提供使用者享有更良好的通信平台。然而,當光通信的傳輸速度提升與網路架構越趨複雜的同時,業者需要有更高效能的網路節點處理系統與其匹配,其中在此系統中又以光互連交換裝置扮演關鍵性的角色。 In recent years, the quality of national life has improved, and Chinese people have become more and more important about information networks and audio-visual entertainment, which has caused major telecom operators to use the traditional PTSN, Wireless Network and the Internet. (Internet) is integrated into a single network and is expected to combine applications such as wireless data transmission, multimedia audio and video services, personalized services and information security. To this end, in order to solve the problem of increasing bandwidth demand, the industry has considered the characteristics of large transmission capacity and good confidentiality in optical communication in recent years to solve the supply and demand problems currently faced by bandwidth. Users enjoy a better communication platform. However, as the transmission speed of optical communication increases and the network architecture becomes more complex, the industry needs a more efficient network node processing system to match it, in which the optical interconnection switching device plays a key role. Character.

光互連交換裝置(optical cross-connecter,OXC)是邁向全光 通信(all-optical communication)的核心元件且與光纖組成全光網路。光互連交換裝置對於全光信號中特定波長信號進行互連交換,從而有效地利用波長資源,以少量的波長實現互連交換大量的網路信號。且光互連交換裝置在光纖中斷或故障時,能夠自動完成故障隔離,並重新選擇路由及重新配置網路,進而使網路信號傳遞不被中斷。然而,在傳統光互連交換裝置為達成上述的特點,需使用大量波長多工器、解多工器及陣列波導光柵在光互連交換裝置的架構中,為此使得光互連交換裝置的成本增加且內部結構繁雜而增加生產的難度。 Optical cross-connecter (OXC) is moving towards full light The core component of all-optical communication and the optical fiber constitutes an all-optical network. The optical interconnect switching device interconnects and exchanges specific wavelength signals in the all-optical signal, thereby effectively utilizing wavelength resources, and interconnecting a large number of network signals with a small number of wavelengths. Moreover, when the optical fiber is interrupted or faulty, the optical interconnection switching device can automatically complete fault isolation, re-route and reconfigure the network, so that the network signal transmission is not interrupted. However, in order to achieve the above characteristics, a conventional optical interconnect switching device requires a large number of wavelength multiplexers, demultiplexers, and arrayed waveguide gratings in the architecture of the optical interconnect switching device, for which the optical interconnect switching device is The cost increases and the internal structure is complicated, which increases the difficulty of production.

有鑑於上述習知技術之問題,本發明之目的便是在提供一種可組態白光波長通道之4x4光互連交換裝置及其設置方法,以解決普遍的4x4光互連交換裝置因由大量波長多工器、解多工器及陣列波導光柵組成,而造成成本增加且生產不易的問題。 In view of the above problems of the prior art, the object of the present invention is to provide a 4x4 optical interconnect switching device capable of configuring a white light wavelength channel and a setting method thereof, to solve the problem that a general 4x4 optical interconnect switching device has a large number of wavelengths. The assembly of the tool, the demultiplexer, and the arrayed waveguide grating causes a problem of increased cost and difficulty in production.

根據本發明之一目的,提出一種可組態白光波長通道之4x4光互連交換裝置,4x4光互連交換裝置包含二個陣列波導光柵、複數個光柵及第一至第十二迴光器。二個陣列波導光柵各包含六個第一連接埠及N個第二連接埠,其中N為大於等於十二的正整數。六個第一連接埠設置在各陣列波導光柵的一側,且其中一個陣列波導光柵與另一個陣列波導光柵中的該些第一連接埠相對應。N個第二連接埠設置在各陣列波導光柵的另一側,並其中一個陣列波導光柵與另一個陣列波導光柵中的該些第二連接埠相對應。複數個光柵分別設置在二個陣列波導光柵的該些第二連接埠之間,而形成N條光通道。第一迴光器與第二迴光器分別連接至其中一個陣列波導光柵的第一個第一連接埠與另一個陣列波導光柵中的第一個第一連接埠,且第一迴光器與第二迴光器組成第一迴光器模組,其中第一迴光器包含第一輸入端與 第一輸出端,第二迴光器包含第二輸入端與第二輸出端。第三迴光器與第四迴光器分別連接至其中一個陣列波導光柵的第二個第一連接埠與另一個陣列波導光柵中的第二個第一連接埠,且第三迴光器與第四迴光器組成第二迴光器模組,其中第三迴光器包含第三輸入端與第三輸出端,第四迴光器包含第四輸入端與第四輸出端。第五迴光器與第六迴光器分別連接至其中一個陣列波導光柵的第三個第一連接埠與另一個陣列波導光柵中的第三個第一連接埠,且第五迴光器與第六迴光器組成第三迴光器模組,其中第五迴光器包含第五輸入端與第五輸出端,第六迴光器包含第六輸入端與第六輸出端。第七迴光器與第八迴光器分別連接至其中一個陣列波導光柵的第四個第一連接埠與另一個陣列波導光柵中的第四個第一連接埠,且第七迴光器與第八迴光器組成第四迴光器模組,其中第七迴光器包含第七輸入端與第七輸出端,第八迴光器包含第八輸入端與第八輸出端。第九迴光器與第十迴光器分別連接至其中一個陣列波導光柵的第五個第一連接埠與另一陣列波導光柵中的第五個第一連接埠,且第九迴光器與第十迴光器組成第五迴光器模組,其中第九迴光器包含第九輸入端與第九輸出端,第十迴光器包含第十輸入端與第十輸出端。第十一迴光器與第十二迴光器分別連接至其中一個陣列波導光柵的第六個第一連接埠與另一個陣列波導光柵中的第六個第一連接埠,且第十一迴光器與第十二迴光器組成第六迴光器模組,其中第十一迴光器包含第十一輸入端與第十一輸出端,第十二迴光器包含第十二輸入端與第十二輸出端。其中,該些迴光器模組分別與該些陣列波導光柵及對應地該些光柵搭配而依序地形成第一至第六等效2x2光互連交換裝置,其中第一至第四輸入端接收外部光信號,而為信號輸入端,並由第九至第十二輸出端輸出光信號,而為信號輸出端,第一輸出端連接於第七輸入端,第 二輸出端連接於第五輸入端,第三輸出端連接於第八輸入端,第四輸出端連接於第六輸入端,第五輸出端連接於第十一輸入端,第六輸出端連接於第九輸入端,第七輸出端連接於第十二輸入端,第八輸出端連接於第十輸入端,藉此組成等效4x4光互連交換裝置。 According to an aspect of the invention, a 4x4 optical interconnect switching device capable of configuring a white light wavelength channel is provided. The 4x4 optical interconnect switching device comprises two arrayed waveguide gratings, a plurality of gratings and first to twelfth optical switches. The two arrayed waveguide gratings each include six first ports and N second ports, where N is a positive integer greater than or equal to twelve. Six first ports are disposed on one side of each of the arrayed waveguide gratings, and one of the arrayed waveguide gratings corresponds to the first of the other arrayed waveguide gratings. N second ports are disposed on the other side of each of the arrayed waveguide gratings, and one of the arrayed waveguide gratings corresponds to the second of the other arrayed waveguide gratings. A plurality of gratings are respectively disposed between the second connection ports of the two arrayed waveguide gratings to form N optical channels. The first photoreactor and the second photoreactor are respectively connected to the first first connection port of one of the arrayed waveguide gratings and the first first connection port of the other of the arrayed waveguide gratings, and the first photoreactor is The second photoreactor constitutes a first photoreactor module, wherein the first photoreactor comprises a first input end and The first output end, the second photoreactor includes a second input end and a second output end. The third photoreactor and the fourth photoreactor are respectively connected to the second first connection port of one of the arrayed waveguide gratings and the second first connection port of the other of the arrayed waveguide gratings, and the third photoreactor is The fourth photoreactor comprises a second photoreactor module, wherein the third photoreactor comprises a third input end and a third output end, and the fourth photoreactor comprises a fourth input end and a fourth output end. The fifth photoreactor and the sixth photoreactor are respectively connected to the third first connection port of one of the arrayed waveguide gratings and the third first connection port of the other of the arrayed waveguide gratings, and the fifth photoreactor is The sixth photoreactor comprises a third photoreactor module, wherein the fifth photoreactor comprises a fifth input end and a fifth output end, and the sixth photoreactor comprises a sixth input end and a sixth output end. The seventh photoreactor and the eighth photoreactor are respectively connected to the fourth first connection port of one of the arrayed waveguide gratings and the fourth first connection port of the other of the arrayed waveguide gratings, and the seventh photoreactor is The eighth photoreactor comprises a fourth photoreactor module, wherein the seventh photoreactor comprises a seventh input end and a seventh output end, and the eighth photoreactor comprises an eighth input end and an eighth output end. The ninth optical switch and the tenth optical switch are respectively connected to a fifth first connection port of one of the arrayed waveguide gratings and a fifth first connection port of the other of the arrayed waveguide gratings, and the ninth optical switch is The tenth photoreactor comprises a fifth photoreactor module, wherein the ninth regenerator comprises a ninth input end and a ninth output end, and the tenth photoreactor comprises a tenth input end and a tenth output end. The eleventh photoreactor and the twelfth photoreactor are respectively connected to a sixth first connection port of one of the arrayed waveguide gratings and a sixth first connection port of the other of the arrayed waveguide gratings, and the eleventh back The optical device and the twelfth illuminator form a sixth ejector module, wherein the eleventh reticle comprises an eleventh input end and an eleventh output end, and the twelfth optical reticle comprises a twelfth input end With the twelfth output. The light returning modules are respectively matched with the arrayed waveguide gratings and corresponding gratings to form first to sixth equivalent 2x2 optical interconnection switching devices, wherein the first to fourth input terminals are respectively formed. Receiving an external optical signal, which is a signal input end, and outputs an optical signal from the ninth to twelfth output ends, and is a signal output end, and the first output end is connected to the seventh input end, The second output end is connected to the fifth input end, the third output end is connected to the eighth input end, the fourth output end is connected to the sixth input end, the fifth output end is connected to the eleventh input end, and the sixth output end is connected to the sixth output end. The ninth input end, the seventh output end is connected to the twelfth input end, and the eighth output end is connected to the tenth input end, thereby forming an equivalent 4x4 optical interconnect switching device.

較佳者,該些光通道之奇數條上所傳遞之光信號的波長可遵循下列之原則而配置:傳遞λM、λN+M、λ2N+M及λ3N+M等波長的波長信號,其中N為大於等於十二的正整數,M為任意的奇數。該些光通道之偶數條上所傳遞之光信號的波長可遵循下列之原則而配置:傳遞λM、λN+M、λ2N+M及λ3N+M等波長的波長信號,其中N為大於等於十二的正整數,M為任意的偶數。 Preferably, the wavelength of the optical signal transmitted on the odd-numbered strips of the optical channels can be configured according to the following principles: transmitting wavelength signals of wavelengths such as λ M , λ N+M , λ 2N+M , and λ 3N+M Where N is a positive integer greater than or equal to twelve, and M is an arbitrary odd number. The wavelengths of the optical signals transmitted on the even-numbered strips of the optical channels can be configured according to the following principles: wavelength signals of wavelengths such as λ M , λ N+M , λ 2N+M , and λ 3N+M are transmitted, where N is A positive integer greater than or equal to twelve, and M is an arbitrary even number.

較佳者,各陣列波導光柵可為NxN陣列波導光柵,其中N為大於等於十二的正整數。 Preferably, each arrayed waveguide grating may be an NxN arrayed waveguide grating, where N is a positive integer greater than or equal to twelve.

較佳者,各光柵可為多重可調式布雷格光纖光柵。 Preferably, each of the gratings can be a multi-adjustable Bragg fiber grating.

此外,本發明更提出一種可組態白光波長通道之4x4光互連交換裝置之設置方法,其方法包含設置二個陣列波導光柵;分別設置六個第一連接埠在各陣列波導光柵的一側,且其中一個陣列波導光柵與另一個陣列波導光柵中的該些第一連接埠相對應;分別設置N第二連接埠在各陣列波導光柵地另一側,並其中一個陣列波導光柵與另一個陣列波導光柵中的該些第二連接埠相對應,其中N為大於等於十二的正整數;分別設置複數個光柵在二個陣列波導光柵之該些第二連接埠之間,而形成N條光通道;將第一迴光器與第二迴光器分別連接至其中一個陣列波導光柵的第一個第一連接埠與另一個陣列波導光柵中的第一個第一連接埠,且第一迴光器與第二迴光器組成第一迴光器模組,其中第一迴光器包含第一輸入端與第一輸出端,第二迴光器包 含第二輸入端與第二輸出端;將第三迴光器與第四迴光器分別連接至其中一個陣列波導光柵的第二個第一連接埠與另一個陣列波導光柵中的第二個第一連接埠,且第三迴光器與第四迴光器組成第二迴光器模組,其中第三迴光器包含第三輸入端與第三輸出端,第四迴光器包含第四輸入端與第四輸出端;將第五迴光器與第六迴光器分別連接至其中一個陣列波導光柵的第三個第一連接埠與另一個陣列波導光柵中的第三個第一連接埠,且第五迴光器與第六迴光器組成第三迴光器模組,其中第五迴光器包含第五輸入端與第五輸出端,第六迴光器包含第六輸入端與第六輸出端;將第七迴光器與第八迴光器分別連接至其中一個陣列波導光柵的第四個第一連接埠與另一個陣列波導光柵中的第四個第一連接埠,且第七迴光器與第八迴光器組成第四迴光器模組,其中第七迴光器包含第七輸入端與第七輸出端,第八迴光器包含第八輸入端與第八輸出端;將第九迴光器與第十迴光器分別連接至其中一個陣列波導光柵的第五個該第一連接埠與另一該陣列波導光柵中的第五個第一連接埠,且第九迴光器與第十迴光器組成第五迴光器模組,其中第九迴光器包含第九輸入端與第九輸出端,第十迴光器包含第十輸入端與第十輸出端;及將第十一迴光器與第十二迴光器分別連接至其中一個陣列波導光柵的第六個第一連接埠與另一個陣列波導光柵中的第六個第一連接埠,且第十一迴光器與第十二迴光器組成第六迴光器模組,其中第十一迴光器包含第十一輸入端與第十一輸出端,第十二迴光器包含第十二輸入端與第十二輸出端。其中,該些迴光器模組分別與該些陣列波導光柵及對應地該些光柵搭配而依序地形成第一至第六等效2x2光互連交換裝置,其中第一至第四輸入端接收外部光信號,而為信號輸入端,並由第九至第十二輸出端輸出光信號,而為信號輸出端,第一輸出端連接於第七輸入端,第二輸出端 連接於第五輸入端,第三輸出端連接於第八輸入端,第四輸出端連接於第六輸入端,第五輸出端連接於第十一輸入端,第六輸出端連接於第九輸入端,第七輸出端連接於第十二輸入端,第八輸出端連接於第十輸入端,藉此組成等效4x4光互連交換裝置。 In addition, the present invention further provides a method for setting a 4x4 optical interconnect switching device capable of configuring a white light wavelength channel, the method comprising: providing two arrayed waveguide gratings; respectively setting six first connections on one side of each arrayed waveguide grating And one of the arrayed waveguide gratings corresponds to the first connection ports in the other array of waveguide gratings; respectively, the N second connection ports are disposed on the other side of each of the arrayed waveguide gratings, and one of the arrayed waveguide gratings is coupled to the other Corresponding to the second connections 阵列 in the arrayed waveguide grating, wherein N is a positive integer greater than or equal to twelve; respectively, a plurality of gratings are respectively disposed between the second connection ports of the two arrayed waveguide gratings to form N strips An optical channel; connecting the first photoreactor and the second photoreactor to the first first connection port of one of the arrayed waveguide gratings and the first one of the other of the arrayed waveguide gratings, and first The photoreactor and the second photoreactor comprise a first photoreactor module, wherein the first photoreactor comprises a first input end and a first output end, and the second photoreactor package a second input end and a second output end; respectively connecting the third photoreactor and the fourth photoreactor to the second one of the one of the arrayed waveguide gratings and the second of the other of the arrayed waveguide gratings a first connection port, and the third photoreactor and the fourth photoreactor comprise a second photoreactor module, wherein the third photoreactor comprises a third input end and a third output end, and the fourth photoreactor comprises a fourth input end and a fourth output end; respectively connecting the fifth photoreactor and the sixth photoreactor to the third first connection port of one of the arrayed waveguide gratings and the third one of the other of the arrayed waveguide gratings Connecting the 埠, and the fifth illuminator and the sixth illuminator form a third illuminator module, wherein the fifth reticle comprises a fifth input end and a fifth output end, and the sixth ejector comprises a sixth input And a sixth output end; connecting the seventh photoreactor and the eighth photoreactor to the fourth first port of the one of the arrayed waveguide gratings and the fourth one of the other of the arrayed waveguide gratings And the seventh photoreactor and the eighth photoreactor form a fourth photoreactor module, wherein the The light returner includes a seventh input end and a seventh output end, and the eighth photoreactor includes an eighth input end and an eighth output end; and the ninth optical switch and the tenth optical switch are respectively connected to one of the arrayed waveguide gratings The fifth first connection port and the fifth first connection port of the other of the arrayed waveguide gratings, and the ninth and tenth optical switches form a fifth photoreceptor module, wherein the ninth port The photoreactor includes a ninth input end and a ninth output end, the tenth photoreactor includes a tenth input end and a tenth output end; and the eleventh optical switch and the twelfth optical switch are respectively connected to one of the a sixth first connection port of the arrayed waveguide grating and a sixth first connection port of the other arrayed waveguide grating, and the eleventh and twelfth optical devices form a sixth photoreceptor module, The eleventh photoreactor comprises an eleventh input end and an eleventh output end, and the twelfth optical switch comprises a twelfth input end and a twelfth output end. The light returning modules are respectively matched with the arrayed waveguide gratings and corresponding gratings to form first to sixth equivalent 2x2 optical interconnection switching devices, wherein the first to fourth input terminals are respectively formed. Receiving an external optical signal, which is a signal input end, and outputs an optical signal from the ninth to twelfth output ends, and is a signal output end, the first output end is connected to the seventh input end, and the second output end is connected Connected to the fifth input end, the third output end is connected to the eighth input end, the fourth output end is connected to the sixth input end, the fifth output end is connected to the eleventh input end, and the sixth output end is connected to the ninth input end. The seventh output terminal is connected to the twelfth input terminal, and the eighth output terminal is connected to the tenth input terminal, thereby forming an equivalent 4x4 optical interconnection switching device.

承上所述,依本發明之可組態白光波長通道之4x4光互連交換裝置及其設置方法,其可具有一或多個下述優點: In view of the above, a 4x4 optical interconnect switching device and a method of setting the same for a configurable white light wavelength channel according to the present invention may have one or more of the following advantages:

(1)此可組態白光波長通道之4x4光互連交換裝置可藉由兩個陣列波導光柵、數個光柵及數個迴光器之間的配置與光路連接所組成,藉此可解決普遍的4x4光互連交換裝置因由大量波長多工器、解多工器及陣列波導光柵組成,而造成成本增加的問題。 (1) The 4x4 optical interconnect switching device of the configurable white light wavelength channel can be composed of a configuration between two arrayed waveguide gratings, a plurality of gratings and a plurality of optical switches and an optical path connection, thereby solving the common problem The 4x4 optical interconnect switching device is composed of a large number of wavelength multiplexers, demultiplexers, and arrayed waveguide gratings, resulting in an increase in cost.

(2)此可組態白光波長通道之4x4光互連交換裝置可藉由兩個陣列波導光柵、數個光柵及數個迴光器之間的簡單配置與連接所組成,藉此解決普遍的4x4光互連交換裝置因由大量陣列波導光柵組成,而造成由於內部結構繁雜所產生生產不易的問題。 (2) The 4x4 optical interconnect switching device of the configurable white light wavelength channel can be composed of a simple configuration and connection between two arrayed waveguide gratings, several gratings and several optical switches, thereby solving the common problem. The 4x4 optical interconnect switching device is composed of a large number of arrayed waveguide gratings, which causes a problem that production is difficult due to complicated internal structure.

10‧‧‧4x4光互連交換裝置 10‧‧‧4x4 optical interconnect switching device

100‧‧‧陣列波導光柵 100‧‧‧Arrayed waveguide grating

200‧‧‧光柵 200‧‧ ‧ grating

300‧‧‧光通道 300‧‧‧Light channel

401~412‧‧‧迴光器 401~412‧‧‧Returner

510~560‧‧‧迴光器模組 510~560‧‧‧Returner module

610~660‧‧‧等效2x2光互連交換裝置 610~660‧‧‧Equivalent 2x2 optical interconnect switching device

In1~In12‧‧‧輸入端 In1~In12‧‧‧ input

F1~F6‧‧‧第一連接埠 F1~F6‧‧‧First port

Out1~Out 12‧‧‧輸出端 Out1~Out 12‧‧‧Output

S1~S12‧‧‧第二連接埠 S1~S12‧‧‧Second connection

第1圖 係為本發明之可組態白光波長通道之4x4光互連交換裝置的第一實施例的示意圖。 Figure 1 is a schematic illustration of a first embodiment of a 4x4 optical interconnect switching device of the configurable white light wavelength channel of the present invention.

第2圖 係為本發明之可組態白光波長通道之4x4光互連交換裝置的第一實施例之第一至第六迴光器模組的示意圖。 Figure 2 is a schematic diagram of first to sixth photoreceptor modules of a first embodiment of a 4x4 optical interconnect switching device of the configurable white light wavelength channel of the present invention.

第3圖 係為本發明之可組態白光波長通道之4x4光互連交換裝置的第一實施例之第一至第六等效2x2光互連交換裝置的示意圖。 Figure 3 is a schematic illustration of first to sixth equivalent 2x2 optical interconnect switching devices of a first embodiment of a 4x4 optical interconnect switching device of the configurable white light wavelength channel of the present invention.

第4圖 係為本發明之可組態白光波長通道之4x4光互連交 換裝置之等效2x2光互連交換裝置彼此間相互連接之規則的示意圖。 Figure 4 is a 4x4 optical interconnection of the configurable white light wavelength channel of the present invention. A schematic diagram of the rules for the equivalent 2x2 optical interconnect switching devices of the device to be interconnected.

第5圖 係為本發明之可組態白光波長通道之4x4光互連交換裝置的第一實施例之各等效2x2光互連交換裝置之相互連接的示意圖。 Figure 5 is a schematic illustration of the interconnection of the equivalent 2x2 optical interconnect switching devices of the first embodiment of the 4x4 optical interconnect switching device of the configurable white light wavelength channel of the present invention.

第6圖 係為本發明之可組態白光波長通道之4x4光互連交換裝置的第二實施例之各等效2x2光互連交換裝置之相互連接的示意圖。 Figure 6 is a schematic diagram showing the interconnection of the equivalent 2x2 optical interconnect switching devices of the second embodiment of the 4x4 optical interconnect switching device of the configurable white light wavelength channel of the present invention.

請參閱第1圖,其係為本發明之可組態白光波長通道之4x4光互連交換裝置的第一實施例的示意圖;及請參閱第2圖,其係為本發明之可組態白光波長通道之4x4光互連交換裝置的第一實施例之第一至第六迴光器模組的示意圖。可組態白光波長通道之4x4光互連交換裝置10包含二個陣列波導光柵100、複數個光柵200及第一至第十二迴光器401至412。二個陣列波導光柵100各包含六個第一連接埠F1至F6及十二個第二連接埠S1至S12,即N為十二。六個第一連接埠F1至F6設置在各陣列波導光柵100的一側,且其中一個陣列波導光柵100與另一個陣列波導光柵100中的該些第一連接埠F1至F6相對應。十二個第二連接埠S1至S12設置在各陣列波導光柵100的另一側,並其中一個陣列波導光柵100與另一個陣列波導光柵100中的該些第二連接埠S1至S12相對應。複數個光柵200分別設置在二個陣列波導光柵100的該些第二連接埠S1至S12之間,而形成十二條光通道300。 Please refer to FIG. 1 , which is a schematic diagram of a first embodiment of a 4×4 optical interconnect switching device of the configurable white light wavelength channel of the present invention; and FIG. 2 is a configurable white light of the present invention. Schematic diagram of the first to sixth photoreceptor modules of the first embodiment of the 4x4 optical interconnect switching device of the wavelength channel. The 4x4 optical interconnect switching device 10 of the configurable white light wavelength channel comprises two arrayed waveguide gratings 100, a plurality of gratings 200 and first to twelfth optical reflectors 401 to 412. The two arrayed waveguide gratings 100 each include six first ports 1F1 to F6 and twelve second ports 1S1 to S12, that is, N is twelve. Six first ports F1 to F6 are disposed on one side of each of the arrayed waveguide gratings 100, and one of the arrayed waveguide gratings 100 corresponds to the first ports 1F1 to F6 in the other arrayed waveguide grating 100. Twelve second ports S1 to S12 are disposed on the other side of each of the arrayed waveguide gratings 100, and one of the arrayed waveguide gratings 100 corresponds to the second ports 1S1 to S12 in the other arrayed waveguide grating 100. A plurality of gratings 200 are respectively disposed between the second ports 1S1 to S12 of the two arrayed waveguide gratings 100 to form twelve light channels 300.

順帶一提的是,該些第一連接埠F1至F6是依序設置在各陣列波導光柵100的一側,該些第二連接埠S1至S12是依序設置在各 陣列波導光柵100的另一側,且第一個第一連接埠F1與第一個第二連接埠S1相對應,第二個第一連接埠F2與第三個第二連接埠S3相對應,第三個第一連接埠F3與第五個第二連接埠S5相對應,第四個第一連接埠F4與第七個第二連接埠S7相對應,第五個第一連接埠F5與第九個第二連接埠S9相對應,第六個第一連接埠F6與第十一個第二連接埠S11相對應。且第一個第二連接埠S1與第三個第二連接埠S3之間具有第二個第二連接埠S2,第三個第二連接埠S3與第五個第二連接埠S5之間具有第四個第二連接埠S4,第五個第二連接埠S5與第七個第二連接埠S7之間具有第六個第二連接埠S6,第七個第二連接埠S7與第九個第二連接埠S9之間具有第八個第二連接埠S8,第九個第二連接埠S9與第十一個第二連接埠S11之間具有第十個第二連接埠S10,且第十一個第二連接埠S11是位在第十個第二連接埠S10與第十二個第二連接埠S12之間。 Incidentally, the first ports 1F1 to F6 are sequentially disposed on one side of each of the arrayed waveguide gratings 100, and the second ports 1S1 to S12 are sequentially disposed in each The other side of the arrayed waveguide grating 100, and the first first port 埠F1 corresponds to the first second port 埠S1, and the second first port 埠F2 corresponds to the third second port 3S3, The third first port 埠F3 corresponds to the fifth second port 5S5, the fourth first port 埠F4 corresponds to the seventh second port 7S7, and the fifth first port 埠F5 and the first port The nine second ports 9S9 correspond to each other, and the sixth first port 埠F6 corresponds to the eleventh second port 埠S11. And a second second port 埠S2 is formed between the first second port 埠S1 and the third second port 埠S3, and the third second port 埠S3 and the fifth second port 埠S5 are The fourth second port 埠S4, the fifth second port 5S5 and the seventh second port 埠S7 have a sixth second port 6S6, and the seventh second port 埠S7 and ninth There is an eighth second port 8S8 between the second port 埠S9, and a tenth second port 10S10 between the ninth second port 9S9 and the eleventh second port 埠S11, and the tenth A second port S11 is located between the tenth second port S10 and the twelfth second port S12.

第一迴光器401與第二迴光器402分別連接至其中一個陣列波導光柵100的第一個第一連接埠F1與另一個陣列波導光柵100中的第一個第一連接埠F1,且第一迴光器401與第二迴光器402組成第一迴光器模組510,其中第一迴光器401包含第一輸入端In1與第一輸出端Out1,第二迴光器402包含第二輸入端In2與第二輸出端Out2。第三迴光器403與第四迴光器404分別連接至其中一個陣列波導光柵100的第二個第一連接埠F2與另一個陣列波導光柵100中的第二個第一連接埠F2,且第三迴光器403與第四迴光器404組成第二迴光器模組520,其中第三迴光器403包含第三輸入端In3與第三輸出端Out3,第四迴光器404包含第四輸入端In4與第四輸出端Out4。第五迴光器405與第六迴光器406分別連接至其中一個陣列波導光柵100的第三個第一連接埠F3與另一個陣列波導光柵100中的 第三個第一連接埠F3,且第五迴光器405與第六迴光器406組成第三迴光器模組530,其中第五迴光器405包含第五輸入端In5與第五輸出端Out5,第六迴光器406包含第六輸入端In6與第六輸出端Out6。第七迴光器407與第八迴光器408分別連接至其中一個陣列波導光柵100的第四個第一連接埠F4與另一個陣列波導光柵100中的第四個第一連接埠F4,且第七迴光器407與第八迴光器408組成第四迴光器模組540,其中第七迴光器407包含第七輸入端In7與第七輸出端Out7,第八迴光器408包含第八輸入端In8與第八輸出端Out8。第九迴光器409與第十迴光器410分別連接至其中一個陣列波導光柵100的第五個該第一連接埠F5與另一該陣列波導光柵100中的第五個第一連接埠F5,且第九迴光器409與第十迴光器410組成第五迴光器模組550,其中第九迴光器409包含第九輸入端In9與第九輸出端Out9,第十迴光器410包含第十輸入端In10與第十輸出端Out10。第十一迴光器411與第十二迴光器412分別連接至其中一個陣列波導光柵100的第六個第一連接埠F6與另一個陣列波導光柵100中的第六個第一連接埠F6,且第十一迴光器411與第十二迴光器412組成第六迴光器模組560,其中第十一迴光器411包含第十一輸入端In11與第十一輸出端Out11,第十二迴光器412包含第十二輸入端In12與第十二輸出端Out12。 The first photoreceiver 401 and the second photoreactor 402 are respectively connected to the first first connection port F1 of one of the arrayed waveguide gratings 100 and the first first connection port F1 of the other arrayed waveguide grating 100, and The first photoreactor 401 and the second photoreactor 402 form a first photoreceiver module 510, wherein the first photoreactor 401 includes a first input end In1 and a first output end Out1, and the second photoreactor 402 includes The second input terminal In2 and the second output terminal Out2. The third photoreceiver 403 and the fourth photoreactor 404 are respectively connected to the second first connection port F2 of one of the arrayed waveguide gratings 100 and the second first connection port F2 of the other arrayed waveguide grating 100, and The third photoreactor 403 and the fourth photoreactor 404 form a second photoreceiver module 520, wherein the third photoreactor 403 includes a third input end In3 and a third output end Out3, and the fourth photoreactor 404 includes The fourth input terminal In4 and the fourth output terminal Out4. The fifth photoreceiver 405 and the sixth photoreactor 406 are respectively connected to the third first connection port F3 of one of the arrayed waveguide gratings 100 and the other of the arrayed waveguide gratings 100. The third first port 埠F3, and the fifth photoreceiver 405 and the sixth photoreactor 406 form a third photoreceiver module 530, wherein the fifth photoreactor 405 includes a fifth input end In5 and a fifth output. The terminal Out5, the sixth photoreactor 406 includes a sixth input terminal In6 and a sixth output terminal Out6. The seventh photoreceiver 407 and the eighth photoreactor 408 are respectively connected to the fourth first connection port F4 of one of the arrayed waveguide gratings 100 and the fourth first connection port F4 of the other arrayed waveguide grating 100, and The seventh photoreactor 407 and the eighth photoreactor 408 form a fourth photoreceiver module 540, wherein the seventh photoreactor 407 includes a seventh input end In7 and a seventh output end Out7, and the eighth photoreactor 408 includes The eighth input terminal In8 and the eighth output terminal Out8. The ninth reticle 409 and the tenth illuminator 410 are respectively connected to the fifth first connection 埠F5 of one of the arrayed waveguide gratings 100 and the fifth first connection 埠F5 of the other of the arrayed waveguide gratings 100 The ninth optical 409 and the ninth optical 409 comprise a ninth input end In9 and a ninth output end Out9, and the tenth illuminator 410 includes a tenth input terminal In10 and a tenth output terminal Out10. The eleventh reticle 411 and the twelfth ejector 412 are respectively connected to the sixth first connection 埠F6 of one of the arrayed waveguide gratings 100 and the sixth first connection 埠F6 of the other of the arrayed waveguide gratings 100 The eleventh reticle 411 and the twelfth illuminator 412 form a sixth reticle module 560, wherein the eleventh reticle 411 includes an eleventh input end In11 and an eleventh output end Out11. The twelfth ejector 412 includes a twelfth input terminal In12 and a twelfth output terminal Out12.

詳言之,各迴光器模組中的該些迴光器可互換位置而相連至另一陣列波導光柵100上所對應的第一連接埠。舉例來說,第一迴光器模組510中的第一迴光器401連接至其中一個陣列波導光柵100的第一個第一連接埠F1,第二迴光器402連接至另一個陣列波導光柵100的第一個第一連接埠F1,或者第一迴光器401與第二迴光器402可交換位置並互換相連的第一個第一連接埠F1。 In detail, the returning lights in the respective photoreceiver modules are interchangeably connected to the corresponding first connecting ports on the other arrayed waveguide grating 100. For example, the first photoreactor 401 in the first photoreceiver module 510 is connected to the first first connection port F1 of one of the arrayed waveguide gratings 100, and the second photoreactor 402 is connected to the other array of waveguides. The first first port 埠F1 of the grating 100, or the first photoreceiver 401 and the second photoreactor 402 are interchangeable and interchangeably connected to the first first port 埠F1.

其中由第一至第十二輸入端In1至In12分別輸入不同波長的光信號,各光信號於其中一陣列波導光柵100依循路由規則而分解多工成為複數個波長信號,且該些波長信號並依序配置到各光通道300,而傳遞至另一陣列波導光柵100,並由光柵200反射對應於光柵200之一頻譜的光信號且由第一至第十二輸出端Out1至Out12之一輸出,未被反射的光信號則由第一至第十二輸出端Out1至Out12之另一輸出。此外,第一至第十二輸入端In1至In12可輸入任意波長的光信號。 The first to twelfth input terminals In1 to In12 respectively input optical signals of different wavelengths, and each of the optical signals is demultiplexed into a plurality of wavelength signals according to a routing rule of one of the arrayed waveguide gratings 100, and the plurality of wavelength signals are combined. The optical channels 300 are sequentially arranged to be transmitted to the other arrayed waveguide grating 100, and the optical signals corresponding to one spectrum of the grating 200 are reflected by the grating 200 and outputted by one of the first to twelfth output terminals Out1 to Out12. The unreflected optical signal is outputted by the other of the first to twelfth output terminals Out1 to Out12. Further, the first to twelfth input terminals In1 to In12 can input optical signals of arbitrary wavelengths.

詳言之,當陣列波導光柵100執行波長解多工時,由陣列波導光柵100之一端所接收到的光信號經由陣列波導光柵100執行波長解多工任務而選擇性地將各波長信號分配至相應的光通道300。舉例來說,當由第一輸入端In1輸入由十二個不同波長之波長信號所組成的光信號時,光信號會經由陣列波導光柵100執行波長解多工任務而將十二個波長信號依序分配至第一至第十二條光通道300上進行傳遞。此外,當陣列波導光柵100執行波長多工時,由陣列波導光柵100之一端所接收到的複數個波長信號會經由陣列波導光柵100執行波長多工任務而耦合多工成光信號並經由陣列波導光柵100之另一端輸出。從而,本發明僅需使用兩個陣列波導光柵100配合數個光柵及數個迴光器的簡單配置即可達成波長多工器及解多工器的作用,從而降低成本。 In detail, when the arrayed waveguide grating 100 performs wavelength demultiplexing, the optical signal received by one end of the arrayed waveguide grating 100 performs a wavelength demultiplexing task via the arrayed waveguide grating 100 to selectively distribute each wavelength signal to Corresponding light channel 300. For example, when an optical signal composed of twelve wavelength signals of different wavelengths is input by the first input terminal In1, the optical signal performs a wavelength demultiplexing task via the arrayed waveguide grating 100 and the twelve wavelength signals are The sequence is assigned to the first to twelfth optical channels 300 for transmission. In addition, when the arrayed waveguide grating 100 performs wavelength multiplexing, the plurality of wavelength signals received by one end of the arrayed waveguide grating 100 are subjected to a wavelength multiplexing task via the arrayed waveguide grating 100 to couple the multiplexed optical signals and pass through the arrayed waveguide. The other end of the grating 100 is output. Therefore, the present invention only needs to use two arrayed waveguide gratings 100 with a simple configuration of several gratings and a plurality of photoreactors to achieve the functions of the wavelength multiplexer and the demultiplexer, thereby reducing the cost.

該些光通道300之奇數條上所傳遞之光信號的波長係遵循下列之原則而配置:該些光通道300傳遞λM、λN+M、λ2N+M及λ3N+M等波長的波長信號,其中N為十二,M為任意的奇數;及該些光通道300之偶數條上所傳遞之光信號的波長係遵循下列之原則而配置:該些光通道300傳遞λM、λN+M、λ2N+M及λ3N+M等波長的波長 信號,其中N為十二,M為任意的偶數。 The wavelengths of the optical signals transmitted on the odd-numbered strips of the optical channels 300 are configured according to the following principles: the optical channels 300 transmit wavelengths of λ M , λ N+M , λ 2N+M , and λ 3N+M The wavelength signal, wherein N is twelve, M is an arbitrary odd number; and the wavelengths of the optical signals transmitted on the even-numbered strips of the optical channels 300 are configured according to the following principles: the optical channels 300 transmit λ M , λ Wavelength signals of wavelengths such as N+M , λ 2N+M, and λ 3N+M , where N is twelve and M is an arbitrary even number.

舉例來說,第一條光通道傳遞λ1、λ3、λ5、λ7、λ11、λ13等波長信號,第二條光通道傳遞λ2、λ4、λ6、λ8、λ10,λ12等,第三條光通道傳遞λ1、λ3、λ5、λ7、λ11、λ13等波長信號,第四條光通道傳遞λ2、λ4、λ6、λ8、λ10,λ12等波長信號,並依循此規則而至第十二條光通道。 For example, the first optical channel transmits wavelength signals such as λ 1 , λ 3 , λ 5 , λ 7 , λ 11 , λ 13 , and the second optical channel transmits λ 2 , λ 4 , λ 6 , λ 8 , λ 10 , λ 12, etc., the third optical channel transmits wavelength signals such as λ 1 , λ 3 , λ 5 , λ 7 , λ 11 , λ 13 , and the fourth optical channel transmits λ 2 , λ 4 , λ 6 , λ 8 Wavelength signals such as λ 10 and λ 12 follow this rule to the twelfth optical channel.

假使第一條光通道傳遞λ1、λ3及λ5的波長信號,且光柵200之頻譜對應於λ1時,λ3及λ5的波長信號穿透過光柵200並由對應的一輸出端輸出,而λ1的波長信號則被光柵200反射並由對應的另一輸出端輸出。 If the first optical channel transmits wavelength signals of λ 1 , λ 3 , and λ 5 , and the spectrum of the grating 200 corresponds to λ 1 , the wavelength signals of λ 3 and λ 5 pass through the grating 200 and are output by the corresponding one output terminal. And the wavelength signal of λ 1 is reflected by the grating 200 and outputted by the corresponding other output.

請參閱第3圖,其係為本發明之可組態白光波長通道之4x4光互連交換裝置的第一實施例之第一至第六等效2x2光互連交換裝置的示意圖。第一至第六迴光器模組510至560分別與該些陣列波導光柵100及對應地該些光柵200搭配而依序地形成第一至第六等效2x2光互連交換裝置610至660。其中第一至第六等效2x2光互連交換裝置610至660各具有兩個輸入端與兩個輸出端。 Please refer to FIG. 3, which is a schematic diagram of the first to sixth equivalent 2x2 optical interconnect switching devices of the first embodiment of the 4x4 optical interconnect switching device of the configurable white light wavelength channel of the present invention. The first to sixth illuminator modules 510 to 560 are respectively matched with the arrayed waveguide gratings 100 and the gratings 200 to form first to sixth equivalent 2x2 optical interconnection switching devices 610 to 660, respectively. . The first to sixth equivalent 2x2 optical interconnect switching devices 610 to 660 each have two inputs and two outputs.

請參閱第4圖,其係為本發明之可組態白光波長通道之4x4光互連交換裝置之等效2x2光互連交換裝置彼此間相互連接之規則的示意圖。其中第一至第四輸入端In1至In4接收外部光信號,而為信號輸入端,並由第九至第十二輸出端Out9至Out12輸出光信號,而為信號輸出端,第一輸出端Out1連接於第七輸入端In7,第二輸出端Out2連接於第五輸入端In5,第三輸出端Out3連接於第八輸入端In8,第四輸出端Out4連接於第六輸入端In6,第五輸出端Out5連接於第十一輸入端In11,第六輸出端Out6連接於第九輸入端In9,第七 輸出端Out7連接於第十二輸入端In12,第八輸出端Out8連接於第十輸入端In10,藉此組成等效4x4光互連交換裝置10。 Please refer to FIG. 4, which is a schematic diagram of the rules for interconnecting the equivalent 2x2 optical interconnect switching devices of the 4x4 optical interconnect switching device of the configurable white light wavelength channel of the present invention. The first to fourth input terminals In1 to In4 receive an external optical signal, and are signal input terminals, and output optical signals from the ninth to twelfth output terminals Out9 to Out12, and are signal output ends, and the first output terminal Out1 Connected to the seventh input terminal In7, the second output terminal Out2 is connected to the fifth input terminal In5, the third output terminal Out3 is connected to the eighth input terminal In8, and the fourth output terminal Out4 is connected to the sixth input terminal In6, the fifth output The end Out5 is connected to the eleventh input end In11, and the sixth output end Out6 is connected to the ninth input end In9, the seventh The output terminal Out7 is connected to the twelfth input terminal In12, and the eighth output terminal Out8 is connected to the tenth input terminal In10, thereby constituting the equivalent 4x4 optical interconnection switching device 10.

請交互參閱第1圖與第4圖,由第一至第四輸入端In1至In4分別接收外部光信號後,藉由第一至第六等效2x2光互連交換裝置610至660彼此間的連接關係而執行數次光信號的互連交換,並於最後由第九至第十二輸出端Out9至Out12輸出光信號。 Referring to FIG. 1 and FIG. 4, the first to fourth input terminals In1 to In4 respectively receive external optical signals, and then the first to sixth equivalent 2x2 optical interconnection switching devices 610 to 660 are connected to each other. The interconnection of the optical signals is performed several times in the connection relationship, and the optical signals are finally outputted from the ninth to twelfth output terminals Out9 to Out12.

請參閱第5圖,其係為本發明之可組態白光波長通道之4x4光互連交換裝置的第一實施例之各等效2x2光互連交換裝置之相互連接的示意圖。第一、第三、第五、第七、第九及第十一迴光器401、403、405、407、409及411是依序連接至其中一陣列波導光柵100的第一個至第六個第一連接埠F1至F6,其餘的第二、第四、第六、第八、第十及第十二迴光器402、404、406、408、410及412是依序連接至另一陣列波導光柵100的第一個至第六個第一連接埠F1至F6。且由第一迴光器401與第二迴光器402組成第一迴光器模組510,第三迴光器403與第四迴光器404組成第二迴光器模組520,第五迴光器405與第六迴光器406組成第三迴光器模組530,第七迴光器407與第八迴光器408組成第四迴光器模組540,第九迴光器409與第十迴光器410組成第五迴光器模組550,第十一迴光器411與第十二迴光器412組成第六迴光器模組560。此外,各光柵200可為多重可調式布雷格光纖光柵。 Please refer to FIG. 5, which is a schematic diagram showing the interconnection of the equivalent 2x2 optical interconnection switching devices of the first embodiment of the 4×4 optical interconnection switching device of the configurable white light wavelength channel of the present invention. The first, third, fifth, seventh, ninth and eleventh optical 401, 403, 405, 407, 409 and 411 are sequentially connected to the first to sixth of one of the arrayed waveguide gratings 100 First connections 埠F1 to F6, and the remaining second, fourth, sixth, eighth, tenth and twelfth illuminators 402, 404, 406, 408, 410 and 412 are sequentially connected to another The first to sixth first ports 阵列F1 to F6 of the arrayed waveguide grating 100. The first photoreceiver module 510 is formed by the first photoreactor 401 and the second photoreactor 402. The third photoreactor 403 and the fourth photoreactor 404 form a second photoreceiver module 520. The photoreactor 405 and the sixth photoreactor 406 form a third photoreceiver module 530, and the seventh photoreactor 407 and the eighth photoreactor 408 form a fourth photoreceiver module 540, and the ninth photoreactor 409 The fifth photoreactor module 550 is formed with the tenth photoreactor 410, and the eleventh photoreactor 411 and the twelfth photoreactor 412 form a sixth photoreceiver module 560. Additionally, each of the gratings 200 can be a multi-adjustable Bragg fiber grating.

另一方面,各陣列波導光柵100可為具有N個第一連接埠與N個第二連接埠的NxN陣列波導光柵,其中N為大於等於十二的正整數。當各陣列波導光柵100具有十二個第二連接埠S1至S12時,即N等於十二時,陣列波導光柵100係具有十二個第一連接埠與十二 個第二連接埠的12x12陣列波導光柵,其中僅使用十二個第一連接埠的其中六個,並使用十二個第二連接埠中的每一個,並在二個陣列波導光柵之該些第二連接埠之間形成十二條光通道。然而,當各陣列波導光柵100具有十六個第二連接埠時,即N等於十六時,陣列波導光柵100具有十六個第一連接埠與十六個第二連接埠的16x16陣列波導光柵,其中僅使用十六個第一連接埠的其中六個,並使用十六個第二連接埠中的每一個,並在二個陣列波導光柵之該些第二連接埠之間形成十六條光通道。 On the other hand, each of the arrayed waveguide gratings 100 may be an NxN arrayed waveguide grating having N first connection ports and N second connection ports, where N is a positive integer greater than or equal to twelve. When each arrayed waveguide grating 100 has twelve second connections 埠S1 to S12, that is, N is equal to twelve, the arrayed waveguide grating 100 has twelve first ports and twelve 12x12 arrayed waveguide gratings of the second connection, wherein only six of the twelve first connection ports are used, and each of the twelve second connection ports is used, and the two arrayed waveguide gratings are Twelve optical channels are formed between the second ports. However, when each arrayed waveguide grating 100 has sixteen second connections ,, that is, N is equal to sixteen, the arrayed waveguide grating 100 has sixteen first connection ports and sixteen second ports 16 16×16 array waveguide gratings. , wherein only six of the sixteen first ports are used, and each of the sixteen second ports is used, and sixteen strips are formed between the second ports of the two arrayed waveguide gratings Light channel.

其中第一至第六迴光器模組510至560分別與該些陣列波導光柵100及對應地該些光柵200搭配而依序地形成第一至第六等效2x2光互連交換裝置610至660。並藉由第一至第十二迴光器401至412彼此依循第4圖所示的規則連接,從而組成等效4x4光互連交換裝置10。 The first to sixth illuminator modules 510 to 560 are respectively matched with the arrayed waveguide gratings 100 and the gratings 200 to sequentially form the first to sixth equivalent 2x2 optical interconnection switching devices 610 to 660. And by the first to twelfth illuminators 401 to 412, the rule connection shown in FIG. 4 is connected to each other, thereby constituting the equivalent 4x4 optical interconnection switching device 10.

詳言之,第一迴光器401包含第一輸入端In1與第一輸出端Out1,第二迴光器402包含第二輸入端In2與第二輸出端Out2。第三迴光器403包含第三輸入端In3與第三輸出端Out3,第四迴光器404包含第四輸入端In4與第四輸出端Out4。第五迴光器405包含第五輸入端In5與第五輸出端Out5,第六迴光器406包含第六輸入端In6與第六輸出端Out6。第七迴光器407包含第七輸入端In7與第七輸出端Out7,第八迴光器408包含第八輸入端In8與第八輸出端Out8。第九迴光器409包含第九輸入端In9與第九輸出端Out9,第十迴光器410包含第十輸入端In10與第十輸出端Out10。第十一迴光器411包含第十一輸入端In11與第十一輸出端Out11,第十二迴光器412包含第十二輸入端In12與第十二輸出端Out12。其中,第一至第四輸入端In1至In4接收外部光信號,而為信號輸入端,並由第九至第十二輸出端 Out9至Out12輸出光信號,而為信號輸出端,第一輸出端Out1連接於第七輸入端In7,第二輸出端Out2連接於第五輸入端In5,第三輸出端Out3連接於第八輸入端In8,第四輸出端Out4連接於第六輸入端In6,第五輸出端Out5連接於第十一輸入端In11,第六輸出端Out6連接於第九輸入端In9,第七輸出端Out7連接於第十二輸入端In12,第八輸出端Out8連接於第十輸入端In10,藉此組成等效4x4光互連交換裝置10。 In detail, the first photoreceiver 401 includes a first input end In1 and a first output end Out1, and the second photoreactor 402 includes a second input end In2 and a second output end Out2. The third photoreactor 403 includes a third input end In3 and a third output end Out3, and the fourth photoreactor 404 includes a fourth input end In4 and a fourth output end Out4. The fifth photoreactor 405 includes a fifth input end In5 and a fifth output end Out5, and the sixth photoreactor 406 includes a sixth input end In6 and a sixth output end Out6. The seventh photoreactor 407 includes a seventh input end In7 and a seventh output end Out7, and the eighth photoreactor 408 includes an eighth input end In8 and an eighth output end Out8. The ninth photoreactor 409 includes a ninth input terminal In9 and a ninth output terminal Out9, and the tenth photoreactor 410 includes a tenth input terminal In10 and a tenth output terminal Out10. The eleventh photoreactor 411 includes an eleventh input end In11 and an eleventh output end Out11, and the twelfth photoreactor 412 includes a twelfth input end In12 and a twelfth output end Out12. Wherein, the first to fourth input terminals In1 to In4 receive an external optical signal, and are signal input terminals, and are ninth to twelfth output terminals Out9 to Out12 output optical signals, and as signal output ends, the first output terminal Out1 is connected to the seventh input terminal In7, the second output terminal Out2 is connected to the fifth input terminal In5, and the third output terminal Out3 is connected to the eighth input terminal. In8, the fourth output terminal Out4 is connected to the sixth input terminal In6, the fifth output terminal Out5 is connected to the eleventh input terminal In11, the sixth output terminal Out6 is connected to the ninth input terminal In9, and the seventh output terminal Out7 is connected to the first The twelve input terminal In12 and the eighth output terminal Out8 are connected to the tenth input terminal In10, thereby constituting the equivalent 4x4 optical interconnection switching device 10.

請參閱第6圖,其係為本發明之可組態白光波長通道之4x4光互連交換裝置的第二實施例之各等效2x2光互連交換裝置之相互連接的示意圖。本實施例中,相同元件的配置均與前一實施例類似,其類似之處於此便不再加以贅述。本實施例與前一實施例最大不同處在於,第一至第十二迴光器401至412的配置。 Please refer to FIG. 6 , which is a schematic diagram showing the interconnection of the equivalent 2×2 optical interconnection switching devices of the second embodiment of the 4×4 optical interconnection switching device of the configurable white light wavelength channel of the present invention. In this embodiment, the configurations of the same components are similar to those of the previous embodiment, and the similarities are not described herein. The biggest difference between this embodiment and the previous embodiment lies in the configuration of the first to twelfth photoreactors 401 to 412.

其中第一、第三、第六、第八、第九及第十一迴光器401、403、406、408、409及411是依序連接至其中一陣列波導光柵100的第一個至第六個第一連接埠F1至F6,其餘的第二、第四、第五、第七、第十及第十二迴光器402、404、405、407、410及412是依序連接至另一陣列波導光柵100的第一個至第六個第一連接埠F1至F6。並藉由第一至第十二迴光器401至412彼此依循第4圖所示的規則連接,從而組成等效4x4光互連交換裝置10。 The first, third, sixth, eighth, ninth and eleventh optical switches 401, 403, 406, 408, 409 and 411 are sequentially connected to the first to the first of the arrayed waveguide gratings 100. Six first ports 1F1 to F6, and the remaining second, fourth, fifth, seventh, tenth and twelfth illuminators 402, 404, 405, 407, 410 and 412 are sequentially connected to another The first to sixth first connections 埠F1 to F6 of an array of waveguide gratings 100. And by the first to twelfth illuminators 401 to 412, the rule connection shown in FIG. 4 is connected to each other, thereby constituting the equivalent 4x4 optical interconnection switching device 10.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改與變更,均應包含於後附之申請專利範圍中。 The above is intended to be illustrative only and not limiting. Equivalent modifications and variations of the present invention are intended to be included within the scope of the appended claims.

100‧‧‧陣列波導光柵 100‧‧‧Arrayed waveguide grating

200‧‧‧光柵 200‧‧ ‧ grating

300‧‧‧光通道 300‧‧‧Light channel

401~412‧‧‧迴光器 401~412‧‧‧Returner

In1~In12‧‧‧輸入端 In1~In12‧‧‧ input

F1~F6‧‧‧第一連接埠 F1~F6‧‧‧First port

Out1~Out 12‧‧‧輸出端 Out1~Out 12‧‧‧Output

S1~S12‧‧‧第二連接埠 S1~S12‧‧‧Second connection

Claims (8)

一種可組態白光波長通道之4x4光互連交換裝置,其包含:二個陣列波導光柵,各包含:六個第一連接埠,設置在各該陣列波導光柵之一側,且其中一該陣列波導光柵與另一該陣列波導光柵中的該些第一連接埠相對應;及N個第二連接埠,設置在各該陣列波導光柵之另一側,並其中一該陣列波導光柵與另一該陣列波導光柵中的該些第二連接埠相對應,其中N為大於等於十二的正整數;複數個光柵,分別設置在該二個陣列波導光柵之該些第二連接埠之間,而形成N條光通道;一第一迴光器與一第二迴光器,分別連接至其中一該陣列波導光柵的第一個該第一連接埠與另一該陣列波導光柵中的第一個該第一連接埠,且該第一迴光器與該第二迴光器組成一第一迴光器模組,其中該第一迴光器包含一第一輸入端與一第一輸出端,該第二迴光器包含一第二輸入端與一第二輸出端;一第三迴光器與一第四迴光器,分別連接至其中一該陣列波導光柵的第二個該第一連接埠與另一該陣列波導光柵中的第二個該第一連接埠,且該第三迴光器與該第四迴光器組成一第二迴光器模組,其中 該第三迴光器包含一第三輸入端與一第三輸出端,該第四迴光器包含一第四輸入端與一第四輸出端;一第五迴光器與一第六迴光器,分別連接至其中一該陣列波導光柵的第三個該第一連接埠與另一該陣列波導光柵中的第三個該第一連接埠,且該第五迴光器與該第六迴光器組成一第三迴光器模組,其中該第五迴光器包含一第五輸入端與一第五輸出端,該第六迴光器包含一第六輸入端與一第六輸出端;一第七迴光器與一第八迴光器,分別連接至其中一該陣列波導光柵的第四個該第一連接埠與另一該陣列波導光柵中的第四個該第一連接埠,且該第七迴光器與該第八迴光器組成一第四迴光器模組,其中該第七迴光器包含一第七輸入端與一第七輸出端,該第八迴光器包含一第八輸入端與一第八輸出端;一第九迴光器與一第十迴光器,分別連接至其中一該陣列波導光柵的第五個該第一連接埠與另一該陣列波導光柵中的第五個該第一連接埠,且該第九迴光器與該第十迴光器組成一第五迴光器模組,其中該第九迴光器包含一第九輸入端與一第九輸出端,該第十迴光器包含一第十輸入端與一第十輸出端;及 一第十一迴光器與一第十二迴光器,分別連接至其中一該陣列波導光柵的第六個該第一連接埠與另一該陣列波導光柵中的第六個該第一連接埠,且該第十一迴光器與該第十二迴光器組成一第六迴光器模組,其中該第十一迴光器包含一第十一輸入端與一第十一輸出端,該第十二迴光器包含一第十二輸入端與一第十二輸出端;其中,該些迴光器模組分別與該些陣列波導光柵及對應地該些光柵搭配而依序地形成第一至第六等效2x2光互連交換裝置,其中該第一輸入端至該第四輸入端接收外部光信號,而為信號輸入端,並由該第九輸出端至該第十二輸出端輸出光信號,而為信號輸出端,該第一輸出端連接於該第七輸入端,該第二輸出端連接於該第五輸入端,該第三輸出端連接於該第八輸入端,該第四輸出端連接於該第六輸入端,該第五輸出端連接於該第十一輸入端,該第六輸出端連接於該第九輸入端,該第七輸出端連接於該第十二輸入端,該第八輸出端連接於該第十輸入端,藉此組成一等效4x4光互連交換裝置。 A 4x4 optical interconnect switching device capable of configuring a white light wavelength channel, comprising: two arrayed waveguide gratings, each comprising: six first connecting ports disposed on one side of each of the arrayed waveguide gratings, and one of the arrays a waveguide grating corresponding to the first connection ports in the other of the arrayed waveguide gratings; and N second connection ports disposed on the other side of each of the arrayed waveguide gratings, and one of the arrayed waveguide gratings and the other Corresponding to the second connections 中 in the arrayed waveguide grating, wherein N is a positive integer greater than or equal to twelve; a plurality of gratings are respectively disposed between the second connection ports of the two arrayed waveguide gratings, and Forming N optical channels; a first photoreactor and a second photoreactor connected to the first one of the first one of the arrayed waveguide gratings and the other of the other of the arrayed waveguide gratings The first switcher and the second photoreactor comprise a first photoreceptor module, wherein the first photoreactor comprises a first input end and a first output end, The second photoreactor includes a second input end and a a second output end; a third photoreactor and a fourth photoreactor connected to a second one of the first connection port of the arrayed waveguide grating and the second of the other of the arrayed waveguide gratings a connection port, and the third photoreactor and the fourth photoreactor form a second photoreactor module, wherein The third photoreactor includes a third input end and a third output end, the fourth photoreactor includes a fourth input end and a fourth output end; a fifth photoreactor and a sixth return light Connected to a third of the first connection ports of one of the arrayed waveguide gratings and a third of the first connection ports of the other of the arrayed waveguide gratings, and the fifth and the sixth returning device The optical device comprises a third optical switch module, wherein the fifth optical switch comprises a fifth input end and a fifth output end, the sixth optical switch comprises a sixth input end and a sixth output end a seventh optical switch and an eighth optical switch respectively connected to a fourth of the first connection port of the one of the arrayed waveguide gratings and a fourth of the first connection ports of the other of the arrayed waveguide gratings And the seventh photoreactor and the eighth photoreactor comprise a fourth photoreactor module, wherein the seventh photoreactor comprises a seventh input end and a seventh output end, the eighth return light The device includes an eighth input end and an eighth output end; a ninth optical switch and a tenth optical switch are respectively connected to one of the arrays a fifth one of the first connection ports of the grating and a fifth one of the other of the arrayed waveguide gratings, and the ninth photoreactor and the tenth photoreactor form a fifth photoreactor a module, wherein the ninth illuminator comprises a ninth input end and a ninth output end, and the tenth illuminator comprises a tenth input end and a tenth output end; An eleventh illuminator and a twelfth illuminator are respectively connected to a sixth one of the first connection 其中 of the one of the arrayed waveguide gratings and the sixth one of the other of the arrayed waveguide gratings埠, and the eleventh photoreactor and the twelfth photoreactor form a sixth photoreactor module, wherein the eleventh photoreactor comprises an eleventh input end and an eleventh output end The twelfth optical reflector includes a twelfth input end and a twelfth output end; wherein the photoreceiver modules are respectively matched with the arrayed waveguide gratings and correspondingly the gratings, and sequentially Forming first to sixth equivalent 2x2 optical interconnect switching devices, wherein the first input end to the fourth input end receive an external optical signal, and is a signal input end, and the ninth output end to the twelfth The output end outputs an optical signal, and is a signal output end, the first output end is connected to the seventh input end, the second output end is connected to the fifth input end, and the third output end is connected to the eighth input end The fourth output is connected to the sixth input, and the fifth output is connected to the eleventh In the input end, the sixth output end is connected to the ninth input end, the seventh output end is connected to the twelfth input end, and the eighth output end is connected to the tenth input end, thereby forming an equivalent 4x4 Optical interconnect switching device. 如申請專利範圍第1項所述之可組態白光波長通道之4x4光互連交換裝置,其中該些光通道之奇數條上所傳遞之該光信號之波長係遵循下列之原則而配置:傳遞λM、λN+M、λ2N+M及λ3N+M等波長的一波長信號,其中N為大於等於十二的正整數,M為任意的奇數;及 該些光通道之偶數條上所傳遞之該光信號之波長係遵循下列之原則而配置:傳遞λM、λN+M、λ2N+M及λ3N+M等波長的一波長信號,其中N為大於等於十二的正整數,M為任意的偶數。 The 4x4 optical interconnect switching device of the configurable white light wavelength channel according to claim 1, wherein the wavelength of the optical signal transmitted on the odd-numbered strips of the optical channels is configured according to the following principles: a wavelength signal of wavelengths λ M , λ N+M , λ 2N+M , and λ 3N+M , where N is a positive integer greater than or equal to twelve, M is an arbitrary odd number; and an even number of the optical channels The wavelength of the transmitted optical signal is configured according to the following principles: a wavelength signal of wavelengths such as λ M , λ N+M , λ 2N+M , and λ 3N+M is transmitted, where N is greater than or equal to twelve. Integer, M is any even number. 如申請專利範圍第1項所述之可組態白光波長通道之4x4光互連交換裝置,其中各該陣列波導光柵係一NxN陣列波導光柵,其中N為大於等於十二的正整數。 The 4x4 optical interconnect switching device of the configurable white light wavelength channel according to claim 1, wherein each of the arrayed waveguide gratings is an NxN arrayed waveguide grating, wherein N is a positive integer greater than or equal to twelve. 如申請專利範圍第1項所述之可組態白光波長通道之4x4光互連交換裝置,其中該複數個光柵中的每一個係一多重可調式布雷格光纖光柵。 The 4x4 optical interconnect switching device of the configurable white light wavelength channel of claim 1, wherein each of the plurality of gratings is a multi-adjustable Bragg fiber grating. 一種可組態白光波長通道之4x4光互連交換裝置之設置方法,其包含:設置二個陣列波導光柵;分別設置六個第一連接埠在各該陣列波導光柵之一側,且其中一該陣列波導光柵與另一該陣列波導光柵中的該些第一連接埠相對應;分別設置N個第二連接埠在各該陣列波導光柵之另一側,並其中一該陣列波導光柵與另一該陣列波導光柵中的該些第二連接埠相對應,其中N為大於等於十二的正整數;分別設置複數個光柵在該二個陣列波導光柵之該些第二連接埠之間,而形成N條光通道; 將一第一迴光器與一第二迴光器分別連接至其中一該陣列波導光柵的第一個該第一連接埠與另一該陣列波導光柵中的第一個該第一連接埠,且該第一迴光器與該第二迴光器組成一第一迴光器模組,其中該第一迴光器包含一第一輸入端與一第一輸出端,該第二迴光器包含一第二輸入端與一第二輸出端;將一第三迴光器與一第四迴光器分別連接至其中一該陣列波導光柵的第二個該第一連接埠與另一該陣列波導光柵中的第二個該第一連接埠,且該第三迴光器與該第四迴光器組成一第二迴光器模組,其中該第三迴光器包含一第三輸入端與一第三輸出端,該第四迴光器包含一第四輸入端與一第四輸出端;將一第五迴光器與一第六迴光器分別連接至其中一該陣列波導光柵的第三個該第一連接埠與另一該陣列波導光柵中的第三個該第一連接埠,且該第五迴光器與該第六迴光器組成一第三迴光器模組,其中該第五迴光器包含一第五輸入端與一第五輸出端,該第六迴光器包含一第六輸入端與一第六輸出端;將一第七迴光器與一第八迴光器分別連接至其中一該陣列波導光柵的第四個該第一連接埠與另一該陣列波導光柵中的第四個該第一連接埠,且該第七迴光器與該第八迴光器組成一第四迴光器模組,其 中該第七迴光器包含一第七輸入端與一第七輸出端,該第八迴光器包含一第八輸入端與一第八輸出端;將一第九迴光器與一第十迴光器分別連接至其中一該陣列波導光柵的第五個該第一連接埠與另一該陣列波導光柵中的第五個該第一連接埠,且該第九迴光器與該第十迴光器組成一第五迴光器模組,其中該第九迴光器包含一第九輸入端與一第九輸出端,該第十迴光器包含一第十輸入端與一第十輸出端;及將一第十一迴光器與一第十二迴光器分別連接至其中一該陣列波導光柵的第六個該第一連接埠與另一該陣列波導光柵中的第六個該第一連接埠,且該第十一迴光器與該第十二迴光器組成一第六迴光器模組,其中該第十一迴光器包含一第十一輸入端與一第十一輸出端,該第十二迴光器包含一第十二輸入端與一第十二輸出端;其中,該些迴光器模組分別與該些陣列波導光柵及對應地該些光柵搭配而依序地形成第一至第六等效2x2光互連交換裝置,其中該第一輸入端至該第四輸入端接收外部光信號,而為信號輸入端,並由該第九輸出端至該第十二輸出端輸出光信號,而為信號輸出端,該第一輸出端連接於該第七輸入端,該第二輸出端連接於該第五輸入端,該第三輸出端連接於該第八輸入端,該第四輸出端連接於該第六輸入端,該第五 輸出端連接於該第十一輸入端,該第六輸出端連接於該第九輸入端,該第七輸出端連接於該第十二輸入端,該第八輸出端連接於該第十輸入端,藉此組成一等效4x4光互連交換裝置。 A method for setting a 4x4 optical interconnect switching device capable of configuring a white light wavelength channel, comprising: disposing two arrayed waveguide gratings; respectively, providing six first connection ports on one side of each of the arrayed waveguide gratings, and one of the The arrayed waveguide grating corresponds to the first connection ports in the other of the arrayed waveguide gratings; N second connection ports are respectively disposed on the other side of each of the arrayed waveguide gratings, and one of the arrayed waveguide gratings is coupled to the other Corresponding to the second connections 该 in the arrayed waveguide grating, wherein N is a positive integer greater than or equal to twelve; and a plurality of gratings are respectively disposed between the second connection ports of the two arrayed waveguide gratings to form N light channels; Connecting a first photoreactor and a second photoreactor to the first one of the first connection port of the one of the arrayed waveguide gratings and the first one of the other of the arrayed waveguide gratings, The first photoreactor and the second photoreactor comprise a first photoreactor module, wherein the first photoreactor comprises a first input end and a first output end, the second photoreactor a second input end and a second output end are respectively connected; a third photoreactor and a fourth photoreceptor are respectively connected to the second one of the first array of the arrayed waveguide grating and the other of the array a second one of the waveguides, wherein the third photoreactor and the fourth photoreactor comprise a second photoreceptor module, wherein the third photoreactor comprises a third input end And a third output end, the fourth photoreactor includes a fourth input end and a fourth output end; respectively connecting a fifth photoreactor and a sixth photoreactor to one of the arrayed waveguide gratings a third of the first connection port and a third one of the other of the arrayed waveguide gratings, and the fifth photoreceptor The sixth photoreactor comprises a third photoreactor module, wherein the fifth photoreactor comprises a fifth input end and a fifth output end, the sixth photoreactor comprises a sixth input end and a first a sixth output end; connecting a seventh photoreactor and an eighth photoreactor to the fourth of the first array of the arrayed waveguide grating and the fourth of the other of the arrayed waveguide gratings a connection port, and the seventh photoreactor and the eighth photoreactor form a fourth photoreactor module, The seventh photoreactor includes a seventh input end and a seventh output end, the eighth photoreactor includes an eighth input end and an eighth output end; and a ninth photoreactor and a tenth The photoreceiver is respectively connected to a fifth one of the first connection port of the one of the arrayed waveguide gratings and the fifth one of the other of the arrayed waveguide gratings, and the ninth photoreactor and the tenth The reticle comprises a ninth input end and a ninth output end, and the tenth photoreactor comprises a tenth input end and a tenth output end And connecting an eleventh photoreactor and a twelfth photoreceptor to a sixth one of the first one of the arrayed waveguide gratings and the other of the other of the arrayed waveguide gratings a first port, and the eleventh photoreactor and the twelfth photoreactor comprise a sixth photoreceptor module, wherein the eleventh photoreactor comprises an eleventh input end and a tenth An output end, the twelfth photoreactor comprises a twelfth input end and a twelfth output end; wherein the photoreceiver modules respectively The arrayed waveguide gratings and correspondingly the gratings are sequentially formed to form the first to sixth equivalent 2x2 optical interconnection switching devices, wherein the first input terminal to the fourth input terminal receive an external optical signal and are signals Input end, and outputting an optical signal from the ninth output end to the twelfth output end, and being a signal output end, the first output end is connected to the seventh input end, and the second output end is connected to the fifth end An input end, the third output end is connected to the eighth input end, and the fourth output end is connected to the sixth input end, the fifth end The output end is connected to the eleventh input end, the sixth output end is connected to the ninth input end, the seventh output end is connected to the twelfth input end, and the eighth output end is connected to the tenth input end Thereby forming an equivalent 4x4 optical interconnect switching device. 如申請專利範圍第5項所述之可組態白光波長通道之4x4光互連交換裝置之設置方法,其中該些光通道之奇數條上所傳遞之該光信號之波長係遵循下列之原則而配置:傳遞λM、λN+M、λ2N+M及λ3N+M等波長的一波長信號,其中N為大於等於十二的正整數,M為任意的奇數;及該些光通道之偶數條上所傳遞之該光信號之波長係遵循下列之原則而配置:傳遞λM、λN+M、λ2N+M及λ3N+M等波長的一波長信號,其中N為大於等於十二的正整數,M為任意的偶數。 A method for setting a 4x4 optical interconnect switching device of a configurable white light wavelength channel according to claim 5, wherein the wavelength of the optical signal transmitted on the odd-numbered strips of the optical channels follows the following principles Configuration: transmitting a wavelength signal of wavelengths λ M , λ N+M , λ 2N+M , and λ 3N+M , where N is a positive integer greater than or equal to twelve, M is an arbitrary odd number; and the optical channels The wavelength of the optical signal transmitted on the even strips is configured according to the following principles: a wavelength signal of wavelengths such as λ M , λ N+M , λ 2N+M , and λ 3N+M is transmitted, wherein N is greater than or equal to ten A positive integer of two, M is an arbitrary even number. 如申請專利範圍第5項所述之可組態白光波長通道之4x4光互連交換裝置之設置方法,其中各該陣列波導光柵係一NxN陣列波導光柵,其中N為大於等於十二的正整數。 A method for setting a 4x4 optical interconnect switching device of a configurable white light wavelength channel according to claim 5, wherein each of the arrayed waveguide gratings is an NxN arrayed waveguide grating, wherein N is a positive integer greater than or equal to twelve . 如申請專利範圍第5項所述之可組態白光波長通道之4x4光互連交換裝置之設置方法,其中該複數個光柵中的每一個係一多重可調式布雷格光纖光柵。 A method of arranging a 4x4 optical interconnect switching device of a configurable white light wavelength channel according to claim 5, wherein each of the plurality of gratings is a multi-adjustable Bragg fiber grating.
TW103115239A 2014-04-28 2014-04-28 4x4 OPTICAL CROSS-CONNECTER? WITH? RECONFIGURABLE WHITE WAVELENGTH CHANNEL TWI520623B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103115239A TWI520623B (en) 2014-04-28 2014-04-28 4x4 OPTICAL CROSS-CONNECTER? WITH? RECONFIGURABLE WHITE WAVELENGTH CHANNEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103115239A TWI520623B (en) 2014-04-28 2014-04-28 4x4 OPTICAL CROSS-CONNECTER? WITH? RECONFIGURABLE WHITE WAVELENGTH CHANNEL

Publications (2)

Publication Number Publication Date
TW201541970A TW201541970A (en) 2015-11-01
TWI520623B true TWI520623B (en) 2016-02-01

Family

ID=55220652

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103115239A TWI520623B (en) 2014-04-28 2014-04-28 4x4 OPTICAL CROSS-CONNECTER? WITH? RECONFIGURABLE WHITE WAVELENGTH CHANNEL

Country Status (1)

Country Link
TW (1) TWI520623B (en)

Also Published As

Publication number Publication date
TW201541970A (en) 2015-11-01

Similar Documents

Publication Publication Date Title
US9252910B2 (en) Expandable multicast optical switch
CN105474565B (en) Photon switch chip for expansible reconfigurable optical add/drop multiplexer
JPH0923457A (en) Non-closed cross connection exchange
CN104350698A (en) Optical routing apparatus and method
JP2014027562A (en) Optical cross-connect device
US8521021B2 (en) Method and apparatus for switching optical wavelengths
US11190860B2 (en) Switch with a shuffle
US9654851B2 (en) Optical cross-connect device
JP6622113B2 (en) Optical cross-connect device and module
US6519059B1 (en) Wavelength division add/drop multiplexer
JP6404769B2 (en) Wavelength cross-connect device and optical cross-connect device
JPH11275616A (en) Reconstructible branch unit for submarine communication system
KR100442663B1 (en) Optical cross-connect system
JP5982669B2 (en) Optical path cross-connect device
JP5526389B2 (en) Hierarchical optical path cross-connect equipment for optical path networks
TWI520623B (en) 4x4 OPTICAL CROSS-CONNECTER? WITH? RECONFIGURABLE WHITE WAVELENGTH CHANNEL
WO2016165053A1 (en) Optical cross-connect node and optical signal exchange method
EP1407567B1 (en) Optical filtering by using an add-drop node
US7231149B2 (en) Bidirectional optical add-drop multiplexer
JP2000224108A (en) Wavelength division multiplexer demltiplexer
US6856719B2 (en) Optical switch system
JPH08242208A (en) Hyper cube type interconnection network
JP4651012B2 (en) Optical branching module
WO2016002736A1 (en) Optical cross-connect device
JP3616991B2 (en) Optical communication network

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees