TWI519289B - Flexible artificial retina devices - Google Patents

Flexible artificial retina devices Download PDF

Info

Publication number
TWI519289B
TWI519289B TW101135406A TW101135406A TWI519289B TW I519289 B TWI519289 B TW I519289B TW 101135406 A TW101135406 A TW 101135406A TW 101135406 A TW101135406 A TW 101135406A TW I519289 B TWI519289 B TW I519289B
Authority
TW
Taiwan
Prior art keywords
light
semiconductor device
microelectrodes
circuit
electrode
Prior art date
Application number
TW101135406A
Other languages
Chinese (zh)
Other versions
TW201316971A (en
Inventor
范龍生
Original Assignee
晶祈生技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/282,423 external-priority patent/US9114004B2/en
Application filed by 晶祈生技股份有限公司 filed Critical 晶祈生技股份有限公司
Publication of TW201316971A publication Critical patent/TW201316971A/en
Application granted granted Critical
Publication of TWI519289B publication Critical patent/TWI519289B/en

Links

Landscapes

  • Prostheses (AREA)

Description

可撓性人工視網膜裝置 Flexible artificial retinal device

本發明通常係關於一種微結構,更特別的是關於一種可刺激神經細胞之可撓性整合電路元件。 The present invention relates generally to a microstructure, and more particularly to a flexible integrated circuit component that stimulates nerve cells.

老年性黃斑病變(Age-related macular degeneration,簡稱AMD)與視網膜色素變性(Retinitis Pigmentosa,簡稱RP)為全世界主要造成眼盲的病變,特別是對年長老人而言。人工視網膜裝置為眼盲提供一種修復部份視覺的可能。一般而言,此元件包含微電極,且需要分離連接線植入的微電極,以控制每一微電極。然而,該元件所提供的視力範圍是由微電極的數量以及包含在該元件內的微電極的強度(pitch)來決定,因此可能因為連接線植入的尺寸受限,而嚴重地限制視力範圍。 Age-related macular degeneration (AMD) and Retinitis Pigmentosa (RP) are the main causes of blindness in the world, especially for the elderly. Artificial retinal devices provide a possibility for eye blindness to repair part of the vision. In general, this component contains microelectrodes and requires the separation of the microwires implanted by the wires to control each microelectrode. However, the range of vision provided by the component is determined by the number of microelectrodes and the pitch of the microelectrodes contained within the component, and thus may limit the range of vision due to the limited size of the connector implantation. .

再者,人工視網膜裝置的影像解析度可能與該元件內之微電極密度有關。傳統的人工視網膜裝置可能包含與電極分離的驅動電路晶片或植入視網膜組織的影像感測晶片。因此,在微電極晶片與驅動電路晶片間所需要的電子內連接數量會大幅增加,而且也在可達成的畫素數量上增加了非必要的限度。 Furthermore, the image resolution of an artificial retina device may be related to the microelectrode density within the component. Conventional artificial retinal devices may include a driver circuit wafer that is separate from the electrodes or an image sensing wafer that is implanted with retinal tissue. Therefore, the number of electronic interconnections required between the microelectrode wafer and the driver circuit wafer is greatly increased, and an unnecessary limit is also increased in the number of achievable pixels.

此外,現存的人工視網膜裝置可能是由平面晶片所製成的微電極,並非符合非平面形狀的視網膜組織。由於形狀上的不匹配,因此可能會導致微電極之間的額外干擾,進而限制該元件的影像解析度。 In addition, existing artificial retinal devices may be microelectrodes made of planar wafers that do not conform to non-planar shaped retinal tissue. Due to the mismatch in shape, additional interference between the microelectrodes may result, which in turn limits the image resolution of the component.

據此,傳統的人工視網膜裝置固有地限制用來幫助病人從未修復視覺性能復元之影像解析度程度、視力範圍、或其他達到接近真實視網膜的狀態視覺之特徵。 Accordingly, conventional artificial retinal devices inherently limit the degree of image resolution, range of vision, or other state of vision that is close to the true retina that is used to help the patient recover from visual performance recovery.

在一實施例中,在超過至少毫米至幾毫米的視網膜區域,且係相對於幾個等及到幾十個等級的人工視網膜視覺場上,可撓性整合元件提供電子刺激(例如往下朝個別視網膜細胞的高度)的高解析度。可撓性整合元件可以調整且校正,以對目標視網膜神經調整刺激。在一實施例中,可以使用上視網膜(epi-retina)(例如從面對入射光的視網膜正面或在視網膜上)方法或下視網膜(sub-retinal)(例如在視網膜後)方法來植入可撓性整合元件。 In one embodiment, the flexible integration element provides electrical stimulation (eg, downwards) over a retinal region that is at least a millimeter to a few millimeters, and relative to several equal to tens of grades of artificial retinal visual fields. High resolution of individual retinal cells). The flexible integration element can be adjusted and calibrated to modulate the stimulation of the target retinal nerve. In an embodiment, an epi-retina (eg, from the front of the retina facing the incident light or on the retina) or a sub-retinal (eg, behind the retina) may be used to implant Flexible integrated components.

在另一實施例中,單一可撓性CMOS晶片可以整合成畫素單元陣列。每一畫素單元包含微電極、光感元件、單一處理器及驅動電路。可撓性晶片可以做得很薄,以符合視網膜的形狀。例如可撓性晶片的半徑約為3毫米,則可能可從晶片中心到晶片邊緣彎曲到約90微米,以形成與隱型眼鏡相似的二維類球形狀彎曲表面。 In another embodiment, a single flexible CMOS wafer can be integrated into a pixel cell array. Each pixel unit includes a microelectrode, a light sensing element, a single processor, and a driver circuit. The flexible wafer can be made thin to conform to the shape of the retina. For example, a flexible wafer having a radius of about 3 mm may be bent from the center of the wafer to the edge of the wafer to about 90 microns to form a two-dimensional ball-shaped curved surface similar to a contact lens.

在另一實施例中,可撓性整合元件包含被邊界區隔開的馬賽克下模組(sub-modules)。除了某些導線(如金屬導線)之外,在這些下模組之間的元件材料會從邊界移除掉,以增加元件的成形性(moldability)(例如與不同形狀相符的可撓性)。在某些實施例中,可撓性整合元件會被穿孔(例如具有穿孔),以讓某些流體可以流通過元件。選擇性的,或是或者,可撓性整合元件可包含一薄基板,讓部份光可以穿過晶片被面因而進入到整合光感元件中,且可用在人工上視網膜中。 In another embodiment, the flexible integration element includes sub-modules that are separated by a boundary zone. In addition to certain wires (such as metal wires), the material between the lower modules is removed from the boundary to increase the moldability of the components (e.g., flexibility to conform to different shapes). In some embodiments, the flexible integration element can be perforated (eg, with perforations) to allow certain fluids to flow through the element. Alternatively, or alternatively, the flexible integrated component can comprise a thin substrate such that a portion of the light can pass through the wafer and thereby enter the integrated light sensing element and can be used in the artificial retina.

在另一實施例中,可撓性整合元件可包含與區域迴路(或防護環)匹配的電極,以限制且縮短自電極的總電流距離。因此,可以降低在傳送電流時的電力損失量,以防止不想要的且距離目標神經細胞較遠的神經細胞,例如在下視網膜中雙極細胞或神經節細胞之刺激。電極表面可設置成具有以元件基板為基準的複數個電極高度之三維方向,以有差異地刺激不同層的神經細胞,例如ON與OFF細胞的組織層(stratum)。 In another embodiment, the flexible integration element can include an electrode that mates with the zone loop (or guard ring) to limit and shorten the total current distance from the electrode. Therefore, the amount of power loss at the time of transmitting current can be reduced to prevent unwanted nerve cells farther from the target nerve cells, such as stimulation of bipolar cells or ganglion cells in the lower retina. The electrode surface may be arranged to have a three-dimensional orientation of a plurality of electrode heights based on the element substrate to differentially stimulate different layers of nerve cells, such as the stratum of ON and OFF cells.

在另一實施例中,可撓性整合元件可包含可以對畫素單元產生適當刺激波形的晶片內訊號處理電路,且其係自複數個畫素單元輸入,例如鄰近的畫素單元。可撓性整合元件可包含電子感測電路,此電子感測電路係自目標神經細胞(例如為於靠近畫素單元)透過可接受場與點火圖案(firing patterns),而具有連通每一畫素單元的目標神經細胞。 In another embodiment, the flexible integration component can include an in-wafer signal processing circuit that can generate a suitable stimulus waveform for the pixel unit, and is input from a plurality of pixel units, such as adjacent pixel units. The flexible integrated component can include an electronic sensing circuit that transmits each pixel from an acceptable field and firing patterns from a target neural cell (eg, near a pixel unit) Unit of target nerve cells.

在另一實施例中,預備系統(provision system)包含整合視網膜晶片,以作為人工是網模植入到使用者,且其可透過外部指令來微調晶片。例如,以外部指令而言,且根據使用者的視覺覺知,晶片中的每一畫素單元可包含特定的接收端且/或用以接收光且/或無線傳輸訊號之電路,以選擇且/或組裝部份的晶片。預備系統可包含遙控件,以選擇性或無線的發佈外部指令。 In another embodiment, the provision system includes an integrated retina wafer for implantation as a manual mesh mold to the user, and which can fine tune the wafer through external commands. For example, in terms of external instructions, and depending on the user's visual awareness, each pixel unit in the wafer may include a particular receiving end and/or circuitry for receiving light and/or wirelessly transmitting signals to select and / or assemble part of the wafer. The provisioning system can include remote controls to issue external commands selectively or wirelessly.

在另一實施例中,一種植入設備,包含:複數光感元件,其用以接收一光線;複數微電極,及一電路,其耦接至該複數光感元件和該複數微電極,該電路驅動該複數微電極,以給予神經細胞一刺激,使感知由該複數光感元件所擷取的該光線的一影像,其中該植入設備被部署於一可撓性材料,以符合一人類眼珠的形狀,及允許該複數微電極貼近該神經細胞。 In another embodiment, an implant device includes: a plurality of light sensing elements for receiving a light; a plurality of microelectrodes, and a circuit coupled to the plurality of light sensing elements and the plurality of microelectrodes, The circuit drives the plurality of microelectrodes to impart a stimulus to the neural cells to sense an image of the light captured by the plurality of light sensing elements, wherein the implant device is deployed in a flexible material to conform to a human The shape of the eyeball, and allowing the plurality of microelectrodes to be in close proximity to the nerve cell.

在另一實施例中,一種可植入至包含複數神經細胞之組織的設備,包含:複數畫素單元,其配置於一二維陣列以感知進入該複數畫素單元的 一光線的一影像,每一畫素單元包含:一光感元件,其用以接收該光線;一微電極,其傳送一刺激至該複數神經細胞之目標神經細胞,以用於感知;及一電路,其從該光線取得該刺激,並驅動該微電極,其中該二維陣列被配置於一半導體裝置中,該半導體裝置具有一前表面,及相對於該前表面之一後表面;及生物可相容層,其包裝該半導體裝置,以雙向保護該半導體裝置和該組織,該生物可相容層具有開口以允許該複數畫素單元的該複數微電極刺激該神經細胞,其中該半導體裝置包含一可撓性材料,以允許該半導體裝置在二維方向上彎曲,以符合一人類眼珠的形狀,及其中該可撓性材料呈半透明,以使該半導體裝置能接收來自該半導體裝置的該前表面或該後表面的該光線。 In another embodiment, an apparatus implantable into a tissue comprising a plurality of neural cells, comprising: a plurality of pixel units disposed in a two-dimensional array to sense entry into the plurality of pixel units An image of a light, each pixel unit comprising: a light sensing element for receiving the light; a microelectrode transmitting a stimulus to the target nerve cell of the plurality of nerve cells for sensing; and a circuit that takes the stimulus from the light and drives the microelectrode, wherein the two-dimensional array is disposed in a semiconductor device having a front surface and a back surface relative to the front surface; and a biological a compatible layer that packages the semiconductor device to protect the semiconductor device and the tissue in both directions, the biocompatible layer having an opening to allow the plurality of microelectrodes of the plurality of pixel units to stimulate the nerve cell, wherein the semiconductor device A flexible material is included to allow the semiconductor device to bend in a two-dimensional direction to conform to the shape of a human eye, and wherein the flexible material is translucent to enable the semiconductor device to receive from the semiconductor device The light of the front surface or the back surface.

在另一實施例中,一種用於人工視網膜之積體電路裝置,包含:畫素單元陣列,以感知一光線的一影像,每一畫素單元包含:一光感元件,其用以感測該光線;一微電極,其傳送一刺激至該複數神經細胞之目標神經細胞,以用於感知;及一電路,其從該光線取得該刺激,並驅動該微電極,其中該畫素單元陣列被配置為每平方毫米高於250個的密度,及其中該半導體裝置係可彎曲,以允許該畫素單元陣列能依據一人類眼珠的一形狀,變形為具有至少12.5毫米的一曲率半徑。 In another embodiment, an integrated circuit device for an artificial retina includes: an array of pixel units to sense an image of a light, each pixel unit comprising: a light sensing element for sensing a light electrode; a microelectrode that transmits a target nerve cell stimulated to the plurality of nerve cells for sensing; and a circuit that takes the stimulus from the light and drives the microelectrode, wherein the pixel unit array The density is configured to be greater than 250 per square millimeter, and wherein the semiconductor device is bendable to allow the pixel unit array to be deformed to have a radius of curvature of at least 12.5 millimeters depending on a shape of a human eye.

至於本發明之其他特徵與圖式,將詳細地揭露於隨後的說明。 Other features and figures of the present invention will be disclosed in detail in the following description.

100A、100B‧‧‧元件 100A, 100B‧‧‧ components

101、111‧‧‧光感元件 101, 111‧‧‧Light sensing elements

103‧‧‧電極 103‧‧‧electrode

105‧‧‧處理電路 105‧‧‧Processing circuit

113‧‧‧電極 113‧‧‧Electrode

107、109‧‧‧畫素單元 107, 109‧‧‧ pixel unit

115‧‧‧電路 115‧‧‧ Circuitry

200A‧‧‧分布示意圖 200A‧‧‧ distribution diagram

203‧‧‧晶片 203‧‧‧ wafer

201‧‧‧視網膜 201‧‧‧ retina

200B‧‧‧關係表 200B‧‧‧Relationship

205‧‧‧曲度 205‧‧‧ curvature

300‧‧‧元件 300‧‧‧ components

301‧‧‧模組 301‧‧‧Module

303‧‧‧邊界 303‧‧‧ border

400A、400B‧‧‧剖面部 400A, 400B‧‧‧ section

401‧‧‧高分子 401‧‧‧ Polymer

403‧‧‧電晶體 403‧‧‧Optoelectronics

405‧‧‧光感元件 405‧‧‧Light sensor

407‧‧‧矽層 407‧‧‧矽

409‧‧‧氧化金屬內連線層 409‧‧‧Oxidized metal interconnect layer

411‧‧‧鋁 411‧‧‧Aluminium

413‧‧‧電極 413‧‧‧electrode

433‧‧‧穿孔 433‧‧‧Perforation

417、419、421、425‧‧‧畫素單元 417, 419, 421, 425‧‧ ‧ pixel units

423‧‧‧金屬導線 423‧‧‧Metal wire

500A~500J‧‧‧結構 500A~500J‧‧‧ structure

501‧‧‧矽基板 501‧‧‧矽 substrate

503‧‧‧矽層 503‧‧‧矽

505‧‧‧電晶體 505‧‧‧Optoelectronics

507‧‧‧光感元件 507‧‧‧Light sensor

509‧‧‧氧化/金屬層 509‧‧‧Oxidation/metal layer

511‧‧‧鋁 511‧‧‧Aluminium

513、515、517、519‧‧‧畫素單元 513, 515, 517, 519‧‧ ‧ pixel units

521‧‧‧電極 521‧‧‧electrode

523‧‧‧生物可相容高分子(I) 523‧‧‧Biocompatible Polymers (I)

525‧‧‧阻障層 525‧‧‧Barrier layer

527‧‧‧阻障層 527‧‧‧Barrier layer

531‧‧‧分割道 531‧‧‧ dividing road

529‧‧‧生物可相容高分子層(II) 529‧‧‧Biocompatible polymer layer (II)

533‧‧‧搬運基板(II) 533‧‧‧Transporting substrate (II)

537‧‧‧前側 537‧‧‧ front side

534‧‧‧介電層 534‧‧‧Dielectric layer

535‧‧‧後側 535‧‧‧ Back side

539‧‧‧保護層 539‧‧‧Protective layer

541‧‧‧氧化層 541‧‧‧Oxide layer

543‧‧‧搬運基板(I) 543‧‧‧Transporting substrate (I)

555‧‧‧密封 555‧‧‧ Seal

545‧‧‧膠 545‧‧ ‧ glue

510A~510F‧‧‧結構 510A~510F‧‧‧ structure

5101‧‧‧保護層 5101‧‧‧Protective layer

5103‧‧‧金屬 5103‧‧‧Metal

5105‧‧‧氧化/金屬層 5105‧‧‧Oxidation/metal layer

5107‧‧‧主動矽層 5107‧‧‧Active layer

5109‧‧‧電極 5109‧‧‧electrode

5111、5119‧‧‧阻障層 5111, 5119‧‧‧ barrier layer

5115‧‧‧電極導電層 5115‧‧‧electrode conductive layer

5113、5121‧‧‧生物可相容高分子 5113, 5121‧‧‧Biocompatible polymer

5117‧‧‧黏膠層 5117‧‧‧Adhesive layer

5123‧‧‧電晶體 5123‧‧‧Optoelectronics

5125‧‧‧光感元件 5125‧‧‧Light sensing element

5127‧‧‧溝槽 5127‧‧‧ trench

5129‧‧‧矽基板 5129‧‧‧矽 substrate

5131‧‧‧氧化層 5131‧‧‧Oxide layer

5133‧‧‧載體晶圓 5133‧‧‧ Carrier Wafer

600A~600D‧‧‧元件 600A~600D‧‧‧ components

601‧‧‧生物可相容高分子層 601‧‧‧Biocompatible polymer layer

603、629‧‧‧矽層 603, 629‧‧ ‧ layers

605‧‧‧電晶體/感測元件 605‧‧‧Optoelectronic/sensing components

607、633‧‧‧光感元件 607, 633‧‧‧Light sensing elements

609‧‧‧氧化層 609‧‧‧Oxide layer

613、639‧‧‧鋁 613, 639‧‧‧Aluminium

615、637‧‧‧電極 615, 637‧‧‧ electrodes

619‧‧‧穿孔 619‧‧‧Perforation

623、647、649、653‧‧‧光線 623, 647, 649, 653 ‧ ‧ rays

625、651‧‧‧雙極細胞 625, 651‧‧‧ bipolar cells

627‧‧‧氧化與金屬內連線層 627‧‧‧Oxidation and metal interconnect layer

631‧‧‧電晶體電路 631‧‧‧Crystal circuit

635‧‧‧阻障層 635‧‧‧Barrier layer

641‧‧‧穿孔 641‧‧‧Perforation

643‧‧‧組織膠 643‧‧‧ tissue glue

700A~700B‧‧‧元件 700A~700B‧‧‧ components

705‧‧‧阻障/黏著 705‧‧‧Block/adhesive

701、703‧‧‧生物可相容高分子(I)、(II) 701, 703‧‧‧Biocompatible polymers (I), (II)

707‧‧‧矽層 707‧‧‧矽

709‧‧‧電晶體電路 709‧‧‧Crystal circuit

711‧‧‧光感元件 711‧‧‧Light sensor

713‧‧‧防護件 713‧‧‧ Guards

715‧‧‧電極 715‧‧‧electrode

717‧‧‧鋁 717‧‧‧Aluminium

719‧‧‧氧化層 719‧‧‧Oxide layer

721‧‧‧組織 721‧‧‧ Organization

723‧‧‧電流 723‧‧‧ Current

725‧‧‧介電層 725‧‧‧ dielectric layer

727‧‧‧電場 727‧‧‧ electric field

800‧‧‧元件 800‧‧‧ components

801‧‧‧神經細胞 801‧‧‧ nerve cells

803‧‧‧電極 803‧‧‧electrode

807‧‧‧金屬/介電層 807‧‧‧Metal/dielectric layer

809‧‧‧主動元件 809‧‧‧Active components

811‧‧‧高分子與阻障層 811‧‧‧Polymer and barrier layer

813‧‧‧高分子阻障層 813‧‧‧ polymer barrier layer

900‧‧‧元件 900‧‧‧ components

901、915‧‧‧神經細胞 901, 915‧‧‧ nerve cells

903、917‧‧‧電極 903, 917‧‧‧ electrodes

909‧‧‧主動元件 909‧‧‧Active components

911‧‧‧高分子與阻障層 911‧‧‧Polymer and barrier layer

913‧‧‧高分子阻障層 913‧‧‧ polymer barrier layer

1000A‧‧‧元件 1000A‧‧‧ components

1001、1003、1005、1007、1009‧‧‧畫素單元 1001, 1003, 1005, 1007, 1009‧‧‧ pixel units

1000B‧‧‧電路 1000B‧‧‧ Circuit

1011、1013‧‧‧權重設定 1011, 1013‧‧‧ weight setting

1015‧‧‧處理元件 1015‧‧‧Processing components

1017‧‧‧輸出訊號 1017‧‧‧ Output signal

1019‧‧‧輸入訊號 1019‧‧‧ Input signal

1101‧‧‧處理電路 1101‧‧‧Processing circuit

1103‧‧‧微電極連接陣列 1103‧‧‧Microelectrode connection array

1105‧‧‧視網膜神經節細胞 1105‧‧‧Retinal ganglion cells

1107‧‧‧神經細胞網絡 1107‧‧‧Neural Cell Network

1109‧‧‧光接受細胞 1109‧‧‧ light receiving cells

1111‧‧‧入射光I(xi,yi) 1111‧‧‧Incoming light I(xi,yi)

1115‧‧‧感測輸出訊號O(pi,qi) 1115‧‧‧Sensing output signal O(pi,qi)

1123‧‧‧光接受 1123‧‧‧ light acceptance

1133‧‧‧元件 1133‧‧‧ components

1135‧‧‧處理特徵H(pi,qj,xi,yi) 1135‧‧‧Processing features H(pi,qj,xi,yi)

1200‧‧‧系統 1200‧‧‧ system

1201‧‧‧遙控元件 1201‧‧‧Remote control components

1203‧‧‧外部指令 1203‧‧‧External instructions

1207‧‧‧使用者控制介面 1207‧‧‧User Control Interface

1209‧‧‧光學輸入 1209‧‧‧Optical input

1300‧‧‧方法 1300‧‧‧ method

1301~1307‧‧‧步驟 1301~1307‧‧‧Steps

第1A-1B圖為本發明之一實施例中,用於人工視網膜的整合可撓性元件之方塊示意圖。 1A-1B is a block diagram of an integrated flexible element for an artificial retina in an embodiment of the present invention.

第2A-2B圖為本發明之一實施例中彎曲的可撓性元件之關係表的示意圖。 2A-2B is a schematic view showing a relationship table of curved flexible members in an embodiment of the present invention.

第3圖是本發明之一實施例中具有穿孔的元件之示意圖。 Figure 3 is a schematic illustration of an element having perforations in one embodiment of the invention.

第4A-4B圖為本發明之一實施例中可撓性元件的剖面示意圖。 4A-4B are schematic cross-sectional views of a flexible member in accordance with an embodiment of the present invention.

第5A-5J圖為本發明之一實施例中製作可撓性元件的流程示意圖。 5A-5J are schematic views showing the flow of manufacturing a flexible member in an embodiment of the present invention.

第5.1A-5.1F圖為本發明之一實施例中,另一種製作可撓性元件的結構剖面流程圖。 5.1A-5.1F is a cross-sectional view showing another structure of a flexible member in an embodiment of the present invention.

第6A-6D圖為利用不同方法植入人工視網膜之可撓性元件的疊層結構之剖面流程示意圖。 6A-6D is a schematic cross-sectional flow diagram of a laminated structure of flexible elements implanted into an artificial retina by different methods.

第7A-7B圖為本發明之一實施例中提供鄰近迴路與限制電流之防護環的剖面示意圖。 7A-7B are cross-sectional views showing a guard ring for providing an adjacent loop and limiting current in an embodiment of the present invention.

第8圖為本發明之一實施例中的可撓性元件具有突起電極的疊層結構之剖面示意圖。 Figure 8 is a schematic cross-sectional view showing a laminated structure in which a flexible member has protruding electrodes in an embodiment of the present invention.

第9圖為本發明之一實施例中的可撓性元件具有多位階電極高度的疊層結構之剖面示意圖。 Figure 9 is a schematic cross-sectional view showing a laminated structure in which a flexible member has a multi-step electrode height in an embodiment of the present invention.

第10A-10B圖為本發明之一實施例中可撓性元件中的訊號處理電路的方塊圖。 10A-10B are block diagrams of signal processing circuits in a flexible component in accordance with an embodiment of the present invention.

第11A-11B圖為本發明之一實施例中描述可撓性元件的操作示意圖。 11A-11B are schematic views showing the operation of the flexible member in one embodiment of the present invention.

第12圖為本發明之一實施例中可撓性元件的系統方塊示意圖。 Figure 12 is a block diagram showing the system of a flexible member in one embodiment of the present invention.

第13圖為本發明一實施例中描述組裝可撓性元件的方法流程圖。 Figure 13 is a flow chart depicting a method of assembling a flexible component in accordance with one embodiment of the present invention.

本發明為一種可撓性人工視網膜裝置,詳細介紹如下說明。在以下描述說明中,大多數特定的細節是為了提供解釋本發明的一實施例。然而,明顯地,在不需要這些特定細節的情況下,熟悉本領域者也能實施本 發明之一實施例。在其他例子中,為了不要模糊此說明的理解,已知的組成、結構與技術則不在此詳細地加以贅述。 The present invention is a flexible artificial retina device, and the following description will be described in detail. In the following description, the specific details are set forth to provide an explanation of an embodiment of the invention. However, it will be apparent that those skilled in the art can implement the present invention without these specific details. An embodiment of the invention. In other instances, well-known components, structures, and techniques are not described in detail herein in order not to obscure the understanding of the description.

說明書中提到的「一個實施例」或「一實施例」,其係指在本發明至少一實施例所包含的特定特徵、結構或與實施例描述相關的特徵。在說明書中此名稱「在一實施例中」的各種外觀並不特別指相同的實施例。 The word "one embodiment" or "an embodiment" as used in the specification refers to a specific feature, structure or feature associated with the description of the embodiment included in at least one embodiment of the invention. The various appearances of the name "in an embodiment" are not specifically referring to the same embodiment.

一可撓性IC(積體電路)元件可將一畫素陣列整合於。每一畫素可包含電極、感測元件(例如光感元件、電感測元件或其他可應用的感測元件)、單一處理器且/或驅動電路。此整合可以簡化打線、擴散(fan out)或多工(multiplexing)或其他需要,以完成具有所需要功能的元件。如此,便能消除在感測元件/處理電路與電極陣列之間進行高代價地例如透過電磁波(electromagnetic;EM)的訊號傳輸。每一畫素可連接進入該元件,使元件中成千或成萬的畫素連接神經細胞。例如,可撓性整合元件可以提供所需密度,以恢復到符合約二到四毫米大且具有10,000~20,000畫素單元的高密度陣列之20/80視力(visual acuity)。 A flexible IC (integrated circuit) component can integrate a pixel array. Each pixel may comprise an electrode, a sensing element (eg, a light sensing element, an electrical sensing element, or other applicable sensing element), a single processor, and/or a drive circuit. This integration can simplify wire bonding, fan out or multiplexing or other needs to accomplish the components with the required functionality. In this way, signal transmission between the sensing element/processing circuit and the electrode array at high cost, for example by electromagnetic waves (EM), can be eliminated. Each pixel can be connected to the element, causing thousands or thousands of pixels in the element to connect to the nerve cells. For example, the flexible integrated component can provide the desired density to restore 20/80 visual acuity to a high density array that is about two to four millimeters in size and has 10,000 to 20,000 pixel units.

在一實施例中,整合元件的可撓性係由元件的控制厚度來決定。舉例來說,此元件可以薄到可以從中心到邊緣彎曲至90微米,以符合視網膜的形狀(如人體眼球)。在某一實施例中,可以製做(如根據一製程方法)非常薄的元件,薄到可以彎曲至曲度半徑小於12毫米,約為人體視網膜的平均曲度半徑,且仍然在元件材料強度的安全限度。 In an embodiment, the flexibility of the integrated component is determined by the controlled thickness of the component. For example, the element can be as thin as can be bent from center to edge to 90 microns to conform to the shape of the retina (eg, the human eye). In one embodiment, a very thin component can be made (eg, according to a process method) that is thin enough to bend to a curvature radius of less than 12 mm, which is about the average curvature radius of the human retina, and still at the component material strength. The safety limit.

當元件為可彎曲的且符合視網膜曲度,在元件電極與視網膜的目標神經細胞之間的神經電極(neuron-to-electrode)距離會降低。因此,可以降低用於激起或刺激神經細胞的每一畫素所需要的電力,以產生具有可供給電力密度之較高畫素密度,且同時可以提高透過元件植入病人的神經細 胞所接收的影像解析度。在特定實施例中,元件會針對刺激個別視網膜神經(例如每一電極,標的一個別神經細胞)的需要,而達到符合的條件。 When the element is bendable and conforms to the retinal curvature, the neuron-to-electrode distance between the element electrode and the target nerve cell of the retina is reduced. Therefore, it is possible to reduce the power required for activating or stimulating each pixel of the nerve cell to produce a higher pixel density with a supplyable power density, and at the same time, to improve the nerve fineness of the patient through the implanted component. The image resolution received by the cell. In a particular embodiment, the component will meet the conditions for stimulating the need for individual retinal nerves (eg, each electrode, one of the other neuronal cells).

在一實施例中,用於人工視網膜的可撓性整合電路(或元件)可以用180奈米的CMOS技術來製備,在兩生物可相容高分子層與阻障層(例如polyimide/Sic,parylene/SiC)之間夾設一層厚度小於30微米的矽元件層。生物可相容高分子層(例如polyimide,parylene,液晶高分子等)與阻障層(如SiC,TiN,類鑽碳(diamond-like carbon;DLC)或鑽石層等)可以與ISO 10993標準相容(如生物可相容),因此當元件植入組織中,在可撓性整合元件與周邊組織間提供雙向保護(例如可長久接觸)。 In one embodiment, the flexible integrated circuit (or component) for the artificial retina can be fabricated using 180 nanometer CMOS technology in two biocompatible polymer layers and barrier layers (eg, polyimide/Sic, A layer of tantalum elements having a thickness of less than 30 microns is interposed between parylene/SiC. Biocompatible polymer layers (such as polyimide, parylene, liquid crystal polymer, etc.) and barrier layers (such as SiC, TiN, diamond-like carbon (DLC) or diamond layer) can be compared with ISO 10993 The content (eg, biocompatible), thus providing bidirectional protection (eg, prolonged contact) between the flexible integrated element and the surrounding tissue as the component is implanted into the tissue.

可撓性整合元件的製作方法可以使高密度CMOS影像感測元件與訊號處理電路,以及在相同需要醫療植入的可撓性補片(patch)之神經模擬電極陣列全部整合在一起。在某些實施例中,半導體基板可用於此元件中,讓必要光學且/或電子組成的內容物,可作為感應光學影像且產生電子模擬之一感應光學影像的功能。 The flexible integrated component can be fabricated by integrating high-density CMOS image sensing components with signal processing circuitry, as well as neural analog electrode arrays that are the same flexible patches that require medical implantation. In some embodiments, a semiconductor substrate can be used in the component to allow for the content of optical and/or electronic components to function as an optical image and to generate an electronic analog image.

在另一實施例中,可撓性整合元件可應用於不同視網膜植入的方法。舉例來說,可以製做非常薄的元件,讓特定部份的光線進入到此元件中。感測元件與電極可以位於此半透明元件的相反側(或相反表面)或相同側。因此,可以用上視網膜(epi-retina)方法來植入此元件,如此便可以在不利用視網膜神經網絡的情況下,直接透過元件的電極來模擬視網膜神經節細胞(retinal ganglion cells;RGC)。或者,也可以使用下視網膜(sub-retinal)方法來植入此元件,以便於透過電極且從雙極細胞面來刺激視網膜,例如與剩下的由各種神經細胞所形成的神經網絡一起作用,其中上述神經細胞例如為雙極細胞、水平細胞與無長突細胞(amacrine cells)等。 In another embodiment, the flexible integration element can be applied to different methods of retinal implantation. For example, a very thin component can be made to allow a specific portion of the light to enter the component. The sensing element and the electrode may be on the opposite side (or opposite surface) or the same side of the translucent element. Therefore, the element can be implanted by the epi-retina method, so that retinal ganglion cells (RGC) can be directly transmitted through the electrodes of the element without using the retinal neural network. Alternatively, a sub-retinal method can be used to implant the element so as to penetrate the electrode and stimulate the retina from the bipolar cell surface, for example, together with the remaining neural network formed by various nerve cells. The above neural cells are, for example, bipolar cells, horizontal cells, and amacrine cells.

在一實施例中,根據對光刺激有反應的神經細胞之特徵,可撓性整合元件可以激起目標神經細胞或神經。例如,此特徵係指目標神經細胞為ON型細胞、OFF型細胞或其他型細胞。ON型細胞實質上會同時對光刺激的起始(onset of light stimuli)有反應,OFF型細胞實質上會同時對光刺激的抵消(offset of the light sitmuli)有反應。可撓性整合元件可以包含處理能力(processing capability),如此便可從已接收的光來產生刺激,進而適當地如透過特殊的活動圖案(或波形)、時間延遲、點火(ignition)、壓迫或其他可用的刺激方法等,來激發目標神經細胞(舉例來說,假如直接用已接收光來刺激神經細胞)。在一實施例中,可撓性整合元件可以包含複數電極層(例如分布在三維空間),讓神經細胞(例如因為分層連接神經)的不同層之物理選擇(如基於相鄰位置)進行溝通(或刺激)。舉例而言,在不影響其他不被挑選的神經細胞情況下,可以將每一電極或微電極以對準一小數量而設置(例如限制在小於一預定數量,如4、8或其他可用數量)。 In one embodiment, the flexible integration element can evoke target nerve cells or nerves based on characteristics of nerve cells that are responsive to light stimulation. For example, this feature means that the target nerve cell is an ON type cell, an OFF type cell, or another type of cell. The ON-type cells essentially react to the onset of light stimuli at the same time, and the OFF-type cells essentially react to the offset of the light sitmuli at the same time. The flexible integrated component can include a processing capability such that the stimulus can be generated from the received light, suitably as well as through a particular active pattern (or waveform), time delay, ignition, compression, or Other available stimulation methods, etc., stimulate the target nerve cells (for example, if the received light is used directly to stimulate the nerve cells). In one embodiment, the flexible integration element can comprise a plurality of electrode layers (eg, distributed in three dimensions) that allow physical selection of different layers of nerve cells (eg, due to stratified connective nerves) (eg, based on adjacent locations) to communicate (or irritating). For example, each electrode or microelectrode can be placed in a small amount (eg, limited to less than a predetermined amount, such as 4, 8, or other available quantities) without affecting other unselected nerve cells. ).

可撓性整合元件可以依不同視網膜植入需求提供客製化官能。例如,根據實際病人接收到的視覺感知狀態,可以在體內(in vitro)手動且/或自動校準操作,以分辨已目標神經細胞的種類且/或調整此元件的感測元件/電極陣列參數。進行中的功能可以被活化或程式化(如透過可程式化的電路),以提供相同訊號處理效率,如取代受傷的神經細胞網絡,進而改善病人接收到的修復視覺。 Flexible integrated components can provide customized functionality for different retinal implant requirements. For example, based on the visual perception state received by the actual patient, the operation can be manually and/or automatically calibrated in vitro to resolve the type of target neural cell and/or to adjust the sensing element/electrode array parameters of the element. The ongoing functions can be activated or programmed (eg, through a programmable circuit) to provide the same signal processing efficiency, such as replacing the injured neural cell network, thereby improving the repair vision received by the patient.

第1A-1B圖,為本發明之一實施例中,用於人工視網膜的整合可撓性元件之方塊示意圖。如第1A-1B圖所示,元件100A包含兩方向陣列的畫素單元。每一畫素單元包含相似結構。舉例來說,畫素單元107包含用來接收入射光的光感元件101、執行操作的處理電路105、以及用來刺激目標神經細胞且讓入射光投射的視覺感知之電極103。在一實施例中,處理電路 105包含數位、類比或其他可用電路,以處理從光感元件101所感測到的光,進而產生刺激或波形、活動圖形(activation patterns)等,以驅動電極103進而刺激目標神經細胞。 1A-1B is a block diagram of an integrated flexible element for an artificial retina in an embodiment of the present invention. As shown in Figures 1A-1B, element 100A includes a pixel unit of a two-directional array. Each pixel unit contains a similar structure. For example, the pixel unit 107 includes a light sensing element 101 for receiving incident light, a processing circuit 105 that performs an operation, and an electrode 103 for visually sensing the target nerve cells and projecting the incident light. In an embodiment, the processing circuit 105 includes digits, analogs, or other circuitry available to process light sensed from light sensing element 101, thereby generating stimuli or waveforms, activation patterns, etc., to drive electrode 103 and thereby stimulate target neural cells.

或者,如第1B圖所示,元件100B包含畫素單元109,且畫素單元109具有光感元件111、電極113與電路115。電極113與目標神經細胞接合,以從被標的的神經細胞中傳送一刺激給且/或感測一電子活動。這種刺激是來自於由光感元件111所捕捉到的光。在一實施例中,為了接收、處理、且/或驅動電子訊號,電路115提供處理(如訊號處理)功能。例如,可以透過自光感元件111所感測到的光或來自電極13所感測到的電場接收到一電子訊號。當電子訊號透過電極113時,電路115可驅動刺激。 Alternatively, as shown in FIG. 1B, the element 100B includes a pixel unit 109, and the pixel unit 109 has a light sensing element 111, an electrode 113, and a circuit 115. The electrode 113 is engaged with the target nerve cell to deliver a stimulus from the labeled neural cell and/or to sense an electronic activity. This stimulus is derived from the light captured by the light sensing element 111. In one embodiment, circuit 115 provides processing (e.g., signal processing) functionality for receiving, processing, and/or driving electronic signals. For example, an electronic signal can be received by the light sensed from the light sensing element 111 or the electric field sensed from the electrode 13. When the electronic signal passes through the electrode 113, the circuit 115 can drive the stimulus.

在人工視網膜晶片元件100B中,在時間順序中,電子感測電路115的合併可以透過已感測到的可接收場(如電場)與神經延遲模式(spiking patterns),使得可神經細胞自動辨識或手動辨識。舉例而言,在功能不對稱的主要視網膜的開(ON)與關(OFF)神經節細胞中,ON細胞的可接收場比OFF細胞多出20%,導致較高的全場敏感性(full-field sensitivity),而且比起OFF細胞,ON細胞具有約~20%快的反應動力。符合視網膜且皆可感測與刺激細胞大小的微電極大陣列,可以選擇性刺激或抑制ON與OFF視網膜神經節細胞。 In the artificial retina wafer element 100B, in chronological order, the combination of the electronic sensing circuit 115 can pass through the sensed receivable field (such as an electric field) and nerve spiking patterns, so that the nerve cells can be automatically recognized or Manual identification. For example, in open (ON) and OFF (OFF) ganglion cells of a functionally asymmetric primary retina, the acceptable field of ON cells is 20% more than OFF cells, resulting in higher full field sensitivity (full -field sensitivity), and ON cells have about ~20% faster response kinetics than OFF cells. A large array of microelectrodes that conform to the retina and are capable of sensing and stimulating cell size can selectively stimulate or inhibit ON and OFF retinal ganglion cells.

第2A-2B圖,為本發明之一實施例中,彎曲的可撓性元件之關係表的示意圖。一般而言,人工視網膜裝置的影像解析度以及所需的趨動電路(例如臨界電流密度)是靠元件的曲度來決定。在一實施例中,人工視網膜的可撓性整合元件可包含由平面IC微影技術製成的且如細胞間距(cell-pitched)的電極陣列(如每一電極約為單一神經細胞的大小)。第2A圖是根據人體眼球的彎曲度,通常略為平均半徑為25毫米的球形,植入與視網 膜接觸的毫米平面電極陣列晶片,其神經電極距離(neuron-to-electrode distance)之分布示意圖200A。 2A-2B is a schematic view showing a relationship table of curved flexible members in an embodiment of the present invention. In general, the image resolution of an artificial retina device and the required oscillating circuit (eg, critical current density) are determined by the curvature of the component. In an embodiment, the flexible integration element of the artificial retina may comprise an array of electrodes, such as cell-pitched, fabricated by planar IC lithography (eg, each electrode is approximately the size of a single nerve cell) . Figure 2A is based on the curvature of the human eyeball, usually slightly spherical with an average radius of 25 mm, implanted and viewed Membrane-contacted millimeter planar electrode array wafer with a distribution of neuro-to-electrode distances 200A.

如分布圖200A所示,毫米尺寸的平面電極陣列晶片203,以該晶片203中心點來接觸視網膜201,可以約90微米的距離與視網膜迅速分離,且自該中心點到該晶片203邊緣距離為1.5毫米。神經電極距離的增加是必然的,例如增加所需電極的臨界電流,以去極化(depolarize)目標神經。第2B圖是在穿過10微米細胞對分隔距離所產生30mV壓降的臨界電流間的關係圖。如第2B圖中關係表200B所示,根據曲度205,所需臨界電流的增加在強度上比相鄰的大1~2等級(orders)。此外,因為來自電極的場線與電流(例如對已送出的刺激訊號而言)可能會以一距離擴散且覆蓋一大面積,進而到達距離神經,所以神經電極距離的增加會降低解析度,以去極化特定神經。在一實施例中,本發明的可撓性整合元件可以不需要在大距離或分別植入的情況下,便可以進行植入,如第2A與2B圖所示。 As shown in the profile 200A, the millimeter-sized planar electrode array wafer 203 contacts the retina 201 at the center point of the wafer 203, and can be rapidly separated from the retina by a distance of about 90 microns, and the distance from the center point to the edge of the wafer 203 is 1.5 mm. An increase in the distance of the nerve electrode is inevitable, such as increasing the critical current of the desired electrode to depolarize the target nerve. Figure 2B is a plot of the critical current for a 30 mV drop across a 10 micron cell versus separation distance. As shown in the relationship table 200B in FIG. 2B, according to the curvature 205, the increase in the required critical current is greater in intensity than the adjacent ones by two orders. In addition, since the field lines from the electrodes and the current (for example, the sent stimulus signal) may spread over a distance and cover a large area, thereby reaching the distance nerve, the increase in the distance of the nerve electrode reduces the resolution. Depolarize specific nerves. In one embodiment, the flexible integrated component of the present invention can be implanted without the need for large distance or separate implantation, as shown in Figures 2A and 2B.

第3圖,是本發明之一實施例中具有穿孔的元件之示意圖。元件300可以是多向可撓性,以利於彎曲成具有至少平均人體眼球的一曲度(例如半徑為25毫米)。在一實施例中,元件300可以包含複數個六角形封裝模組,且在相鄰兩六角形封裝模組之間的邊界為穿孔所定義出來的。 Figure 3 is a schematic illustration of an element having perforations in one embodiment of the invention. Element 300 can be multi-directionally flexible to facilitate bending to have a curvature of at least an average human eye (e.g., a radius of 25 mm). In one embodiment, component 300 can include a plurality of hexagonal package modules, and the boundary between adjacent two hexagonal package modules is defined by the vias.

每一模組,例如模組301,在元件分隔區中包含一畫素單元群組。分隔區可以為六角形狀、四邊形、或其他適用的形狀。在一實施例中,穿孔可以讓流體在元件300的不同表面交換。介於相鄰模組間的邊界,例如作為直接與其他模組連接的邊界303,其係包含對相鄰模組連通的訊號線之金屬線路層(metal trace)(或其他導線線路層或導線)。金屬線路層係在模組間提供電力分布。穿孔則是供某些流體可以穿過穿孔而在元間兩邊組織間(例 如組織間的植入)流動。在高分子與阻障層之間,除了沿著邊界的金屬線之外,全部移除整合電路材料可以增加元件的成型性。 Each module, such as module 301, includes a group of pixel units in the component separation area. The separation zone can be a hexagonal shape, a quadrilateral shape, or other suitable shape. In an embodiment, the perforations allow fluid to be exchanged at different surfaces of element 300. The boundary between adjacent modules, for example, as a boundary 303 directly connected to other modules, which is a metal trace (or other wire layer or wire) of a signal line that connects adjacent modules. ). The metal circuit layer provides power distribution between the modules. Perforation is for some fluids to pass through the perforations between the two sides of the meta (eg Such as the implantation between tissues) flow. Between the polymer and the barrier layer, in addition to the metal lines along the boundary, the removal of the integrated circuit material can increase the formability of the component.

第4A-4B圖,為本發明之一實施例中可撓性元件的剖面示意圖。第4A圖的剖面部400A為包含複數個畫素單元417、419、421、425的可撓性整合元件,其中畫素單元為多層結構,例如矽層407、氧化金屬內連線層409或包含高分子與阻障層之。單元417包含電晶體403、矽層407中的光感元件405以及透過鋁411與電路(例如包含電晶體403)連接的電極413。穿孔433可以形成在穿過元件且沿著相鄰模組間的邊界。例如,單元417、419視為模組中的一群組,且此群組與相鄰另一包含單元421、425的分離模組,係透過穿孔433間隔開。 4A-4B are schematic cross-sectional views showing a flexible member in accordance with an embodiment of the present invention. The section 400A of FIG. 4A is a flexible integrated component including a plurality of pixel units 417, 419, 421, 425, wherein the pixel unit is a multilayer structure such as a germanium layer 407, an oxide metal interconnect layer 409 or Polymer and barrier layer. The unit 417 includes a transistor 403, a photosensitive element 405 in the germanium layer 407, and an electrode 413 that is coupled to the circuit (eg, including the transistor 403) via aluminum 411. The perforations 433 can be formed through the elements and along the boundaries between adjacent modules. For example, the units 417, 419 are considered as a group in the module, and the separated modules of the group and the adjacent another containing unit 421, 425 are spaced apart by the through holes 433.

剖面部400B是指可撓性整合元件中相鄰模組(或畫素單元)之間,具有橫跨模組邊界且無須切穿穿孔的一切面。保護金屬線(passivated metal lines)或其他可撓性導線,例如金屬導線423,會穿過邊界(如介於穿孔之間),以在單元之間傳送電子訊號。 The section 400B refers to an area between adjacent modules (or pixel units) in the flexible integrated component, having a surface that straddles the boundary of the module without having to cut through the perforations. Passivated metal lines or other flexible wires, such as metal wires 423, pass through the boundary (eg, between the perforations) to transmit electronic signals between the cells.

第5A-5J圖,為本發明之一實施例中,製作可撓性元件的流程示意圖。在一實施例中,在矽晶圓上,可以使用標準或微調整的CMOS技術或CMOS影像感測(CIS)技術,來整合CMOS以及在第5A圖中結構500A中光感元件與電極陣列。較佳地,矽晶圓可包含絕緣層矽(Silicon On Insulator;SOl)晶圓,此晶圓具有幾微米厚的矽磊晶層。透過改良的CMOS技術,PN接合二極體可作為光感元件。或者是,也可以透過CIS技術來製作具有適當摻雜輪廓與抗反射塗佈層之光感元件。在特定一實施例中,在圖案化電極之前,在電極層(例如鋁511)的頂面沉積如TiN的CMOS相容導電膜。電極會在傳統CMOS製程的後墊開口步驟中暴露出來。 5A-5J are schematic views showing the flow of a flexible member in an embodiment of the present invention. In one embodiment, standard or fine-tuned CMOS technology or CMOS image sensing (CIS) techniques can be used on the germanium wafer to integrate the CMOS and the light sensing elements and electrode arrays in structure 500A in FIG. 5A. Preferably, the germanium wafer may comprise a Silicon On Insulator (SO1) wafer having a germanium epitaxial layer a few microns thick. The PN junction diode can be used as a light sensing element through improved CMOS technology. Alternatively, a light sensing element having an appropriate doping profile and an anti-reflective coating layer can also be fabricated by CIS technology. In a particular embodiment, a CMOS compatible conductive film such as TiN is deposited on the top surface of the electrode layer (e.g., aluminum 511) prior to patterning the electrodes. The electrodes are exposed during the back pad opening step of a conventional CMOS process.

在一實施中,第5A圖中的結構500A包含可撓性整合元件的疊層結構,其中可撓性整合元件有之於畫素單元513的電晶體505、光感元件507、鋁511,且其係設置於矽層(或半導體層)503、氧化/金屬層509、矽基板501以及選擇性的氧化層541上。結構500A可包含與畫素單元513相同組成之畫素單元515、517、519。結構500A具有一前側(或前表面,電晶體側邊)537以及與前側相反之後側535。因例如CMOS製程,結構500A可包含保護層539。前側537與晶圓或矽晶片的晶片表面相應。 In one implementation, the structure 500A in FIG. 5A includes a laminated structure of flexible integrated components, wherein the flexible integrated component has a transistor 505, a photosensitive element 507, and an aluminum 511 of the pixel unit 513, and It is disposed on the germanium layer (or semiconductor layer) 503, the oxide/metal layer 509, the germanium substrate 501, and the selective oxide layer 541. The structure 500A may include pixel units 515, 517, 519 having the same composition as the pixel unit 513. The structure 500A has a front side (or front surface, transistor side) 537 and a back side 535 opposite the front side. Structure 500A can include a protective layer 539 for example, for example, a CMOS process. The front side 537 corresponds to the wafer surface of the wafer or wafer.

接著,如第5B圖所示,基於例如SiC、鑽石、或DLC(類鑽碳)材料或膜層疊層結構的前表面更可以一層作為保護的黏著膜/阻障薄膜(例如約0.1微米到幾為幾厚度)。在一實施例中,由於此保護,第5B圖中的結構500B可包含一阻障層525。例如,在最後CMOS製程步驟時,黏著膜/阻障薄膜會覆蓋可撓性整合元件中已暴露出來的墊且電極區域。 Next, as shown in FIG. 5B, the front surface based on, for example, SiC, diamond, or DLC (Drilling Carbon) material or a film laminate structure may be further provided as a protective adhesive film/barrier film (for example, about 0.1 micron to several For a few thicknesses). In an embodiment, the structure 500B in FIG. 5B may include a barrier layer 525 due to this protection. For example, in the final CMOS process step, the adhesive film/barrier film covers the exposed pads and electrode areas of the flexible integrated component.

在保護製程後,墊與電極區會因微影與蝕刻製程再次暴露出,且具有比原來視窗尺寸略小的視窗尺寸,其中此視窗尺寸比CMOS製程中所形成的墊尺寸與電極尺寸小。因此,在墊與電極附近暴露出來的側壁會被保護製程中所形成的黏著膜/阻障層所保護。暴露出來的側壁,如果沒被保護或被覆蓋的話,則可能暴露標準CMOS保護層的材料,例如PECVD(電漿增強式化學汽相沉積)氧化矽與氮化矽。 After the protection process, the pad and electrode regions are again exposed by the lithography and etching process, and have a window size slightly smaller than the original window size, wherein the window size is smaller than the pad size and electrode size formed in the CMOS process. Therefore, the exposed sidewalls in the vicinity of the pad and the electrode are protected by the adhesive film/barrier layer formed in the protective process. The exposed sidewalls, if unprotected or covered, may expose materials of standard CMOS protective layers such as PECVD (plasma enhanced chemical vapor deposition) yttrium oxide and tantalum nitride.

在一實施例中,如鋁511之金屬電極可以作為電極。生物可相容高分子的沉積步驟,例如生物可相容高分子(I)523可形成於如阻障層525之阻障層上。生物可相容高分子可以為聚醯亞胺(polyimide)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、聚對二甲苯(parylene)、液晶高分子或其他可用生物可相容的材料。在一實施例中,生物可相容材料係依據ISO 10993標準來選擇。在形成生物可相容層後,在一實施例中,第一處理晶片(handle wafer)可以與元件的前側結合。例如來說,如第5C圖,結構500C包含透過膠545連接的搬運基板(I)543。結構500C可以背面進行薄化處理。在某一實施例中,電極會在生物可相容高分子層,如生物可相容高分子層(I)523之後被暴露出來。 In an embodiment, a metal electrode such as aluminum 511 can be used as the electrode. A deposition step of a biocompatible polymer, such as biocompatible polymer (I) 523, may be formed on the barrier layer such as barrier layer 525. The biocompatible polymer may be a polyimide, a polydimethylsiloxane (PDMS), a parylene, a liquid crystal polymer or other biocompatible material. In one embodiment, the biocompatible material is selected in accordance with the ISO 10993 standard. After forming the biocompatible layer, in one embodiment, the first handle wafer (handle Wafer) can be combined with the front side of the component. For example, as shown in FIG. 5C, the structure 500C includes a carrier substrate (I) 543 that is connected via a glue 545. The structure 500C can be thinned on the back side. In one embodiment, the electrode is exposed after a biocompatible polymeric layer, such as biocompatible polymer layer (I) 523.

參見第5D圖,結合研磨(lapping)與化學蝕刻步驟,元件晶圓的矽基板,例如第5C圖的基板501可以被薄化到一適當厚度。在結合到如第5C圖中處理基板(I)543之載體基板之後,利用晶圓研磨機使得如基板501之矽晶圓基板機械式地變薄到厚度約為50微米或其他適當的厚度大小。研磨過的表面會有因研磨程序而引起微裂紋(microcrack)損害。在一實施例中,矽化學蝕刻製程,例如SF6電漿蝕刻、乾XeF2蝕刻、或其他可用蝕刻製程,都可以用在一控制厚度上,以移除這些損害。或者,在基板上使用SOI來蝕刻,且會停止在作為蝕刻終止的埋置氧化層(buried oxide)。一般來說,厚度會控制在從幾微米到小於幾十微米,如此光感元件則可透過厚度有效吸收光子,且基板仍可彎曲到所需的曲度。第5D圖的結構500D可包含透過薄化製程中,實質上已經被薄化的晶圓基板。 Referring to FIG. 5D, in conjunction with the lapping and chemical etching steps, the germanium substrate of the component wafer, such as the substrate 501 of FIG. 5C, can be thinned to a suitable thickness. After bonding to the carrier substrate of the substrate (I) 543 as depicted in FIG. 5C, the wafer substrate such as the substrate 501 is mechanically thinned to a thickness of about 50 microns or other suitable thickness using a wafer grinder. . The ground surface may be damaged by microcracks due to the grinding process. In one embodiment, a germanium chemical etching process, such as SF6 plasma etching, dry XeF2 etching, or other available etching processes, can be used at a controlled thickness to remove such damage. Alternatively, SOI is used for etching on the substrate, and the buried oxide as a termination of etching is stopped. In general, the thickness is controlled from a few microns to less than a few tens of microns, such that the photosensitive element can effectively absorb photons through the thickness and the substrate can still be bent to the desired curvature. The structure 500D of FIG. 5D may include a wafer substrate that has been substantially thinned through the thinning process.

請參見第5E圖,在薄化製程後,黏著膜/阻障薄膜係沉積於一已研磨且/或已蝕刻的表面。形成用來分割道(dicing lanes)的溝槽(或穿孔),例如分割道531。阻障層527係沉積於第5E圖的結構500E之背面。因此,在元件正面與背面之間的穿孔(或穿過孔)會被圖案化且被穿孔,例如以微影或反應性離子蝕刻(Reactive Ion Etching;RIE)製程或其他可用製程。舉例來說,如第5F圖的結構500F可包含穿孔或分割道531。在某些實施例中,可撓性元件的側邊可以有與第5F圖的開口相似的開口。 Referring to Figure 5E, after the thinning process, the adhesive film/barrier film is deposited on a ground and/or etched surface. Grooves (or perforations) are formed for dicing lanes, such as dividing lanes 531. The barrier layer 527 is deposited on the back side of the structure 500E of Figure 5E. Thus, the perforations (or through holes) between the front and back sides of the component are patterned and perforated, such as by lithography or reactive ion etching (RIE) processes or other processes available. For example, structure 500F as shown in FIG. 5F can include perforations or split lanes 531. In some embodiments, the sides of the flexible element can have openings similar to the openings of Figure 5F.

請參見第5G圖,高分子層更可以被蝕刻穿過一搬運基板,以形成穿孔。舉例來說,結構500G可以包含自生物可相容高分子(I)523蝕刻到搬 運基板(I)543的穿孔531。然後,沉積並圖案化第二生物可相容高分子層,以形成開口。例如,在結構500G的背面上沉積一生物可相容高分子層(II)529,並且於其上開設穿孔531。兩生物可相容層會密封在一起,以如第5G圖的密封555所示包住元件。在一實施例中,生物可相容高分子(II)529(例如10微米厚),可比阻障層527(例如約1或2微米厚)還要薄。生物可相容高分子(I)523、生物可相容高分子(II)529可以具有為相似大小的厚度。 Referring to Figure 5G, the polymer layer can be etched through a carrier substrate to form a perforation. For example, the structure 500G can include etching from the biocompatible polymer (I) 523 to the moving The perforations 531 of the substrate (I) 543 are transported. A second biocompatible polymer layer is then deposited and patterned to form an opening. For example, a biocompatible polymer layer (II) 529 is deposited on the back side of the structure 500G, and a perforation 531 is formed thereon. The two biocompatible layers will be sealed together to enclose the component as shown by seal 555 of Figure 5G. In one embodiment, the biocompatible polymer (II) 529 (eg, 10 microns thick) may be thinner than the barrier layer 527 (eg, about 1 or 2 microns thick). The biocompatible polymer (I) 523 and the biocompatible polymer (II) 529 may have a thickness of a similar size.

接著,將第二搬運基板連接到元件上,且係連接到元件上第一搬運基板的相對側面。第一搬運基板可自元件上移除。例如,第5H圖的結構500H包含新的且已連接到已經從正面被移除的第一搬運基板背面如搬運基板(I)543之搬運基板(II)533。 Next, the second carrier substrate is attached to the component and is attached to the opposite side of the first carrier substrate on the component. The first carrier substrate can be removed from the component. For example, the structure 500H of FIG. 5H includes a new carrier substrate (II) 533 that has been attached to the back side of the first carrier substrate that has been removed from the front side, such as the carrier substrate (I) 543.

在正面移除搬運基板後,進行微影且RIE(反應性離子蝕刻)製程或其他可用製程,使電極暴露出來。例如,第5I圖的結構500I包含在正面上的電極521且穿過生物可相容高分子層(I)523的開口。電極521包含導電金屬材料,例如金、鉑且/或銅。在一實施例中,電極521可以被其他金屬層(IrOx、Pt、TiN、FeOx等)所覆蓋,以作為較佳的電極電解質界面(electrode-to-electrolyte interface)。或者或選擇性的,電極可包含選擇性的介電層(如0.1微米厚的高k介電層),例如第5I圖的介電層534,以提供取代直流電的取代電流的刺激。在某實施例中,另一方式為黏著層,例如於電極頂面上沉積約幾微米到小於0.1微米的層黏蛋白(laminin),以幫助電極黏著在組織,進而提高植入。最後,移除第二處理晶圓,以完成可撓性整合元件的製程。例如,第5J圖的結構500J為一沒有第二搬運基板,如第5I圖的搬運基板(II)533的可撓性整合元件。 After the substrate is removed from the front side, a lithography and RIE (Reactive Ion Etching) process or other available process is performed to expose the electrodes. For example, the structure 500I of FIG. 5I includes an electrode 521 on the front side and passes through the opening of the biocompatible polymer layer (I) 523. Electrode 521 comprises a conductive metal material such as gold, platinum and/or copper. In one embodiment, the electrode 521 may be covered by other metal layers (IrOx, Pt, TiN, FeOx, etc.) as a preferred electrode-to-electrolyte interface. Alternatively or alternatively, the electrode may comprise a selective dielectric layer (e.g., a 0.1 micron thick high-k dielectric layer), such as dielectric layer 534 of Figure 5I, to provide a stimulus to replace the direct current of the direct current. In one embodiment, another means is an adhesive layer, such as laminin deposited on the top surface of the electrode from about a few microns to less than 0.1 micron to help the electrode adhere to the tissue, thereby enhancing implantation. Finally, the second processing wafer is removed to complete the process of the flexible integrated component. For example, the structure 500J of FIG. 5J is a flexible integrated component of the carrier substrate (II) 533 without the second carrier substrate, as shown in FIG.

第5.1A-5.1F圖,為本發明之一實施例中,另一種製作可撓性元件的結構剖面流程圖。如第5.1A圖的結構510A,CMOS電路以及與光感元件 與微電極陣列的整合可以在矽晶圓上使用一標準或微調整的CMO/CIS技術或其他可用的技術而製作成。可以在不需要超過一載體基板的情況下,於正面製作用於分割道(如約50-100微米寬)的溝槽以及選擇性穿孔。因此,當薄化製程(如背板研磨)被視為有污染性的製程(dirty process)並且限制由背後來進行清洗製程時,此製作程序會有效率。 5.1A-5.1F is a cross-sectional view showing another structure for fabricating a flexible member in an embodiment of the present invention. Structure 510A as shown in Figure 5.1A, CMOS circuit and light sensing element Integration with the microelectrode array can be fabricated on a germanium wafer using a standard or micro-adjusted CMO/CIS technology or other available technology. Grooves for dividing the tracks (e.g., about 50-100 microns wide) and selective perforations can be fabricated on the front side without the need for more than one carrier substrate. Therefore, this production process is efficient when the thinning process (such as back-plate grinding) is considered to be a dirty process and the cleaning process is limited by the back.

在一實施例中,根據如CMOS/CIS製程,結構510A包含設置於矽或SOI晶圓(圖中未顯示)上的氧化/金屬層5105與主動矽層5107。主動矽層5107包含電晶體5123與光感元件5125,且其係位在選擇性具有氧化層5131的矽基板5129上。換言之,氧化層5131係位於矽層5107與5129之間。在CMOS/CIS製程末端,結構510A包含具有金屬接觸墊、如金屬5103的暴露的微電極之保護層5101(如氮化矽或氧化矽)。 In one embodiment, structure 510A includes an oxide/metal layer 5105 and an active germanium layer 5107 disposed on a germanium or SOI wafer (not shown) in accordance with a CMOS/CIS process, for example. The active germanium layer 5107 includes a transistor 5123 and a light sensing element 5125, and is tied to a germanium substrate 5129 having an oxide layer 5131 selectively. In other words, the oxide layer 5131 is located between the germanium layers 5107 and 5129. At the end of the CMOS/CIS process, structure 510A includes a protective layer 5101 (such as tantalum nitride or hafnium oxide) having exposed metal electrodes such as metal 5103.

請參見第5.1B圖,結構510B包含電極5109以及在可撓性元件中作為分割道或穿孔的溝槽5127。例如,在結構510A的晶圓上覆蓋一薄金屬膜。在薄金屬膜晶圓上,以旋轉塗佈(spin coating)近而形成一厚光阻材料。電極5109可以與最終覆蓋高分子層的所需厚度(如10微米)約略相同。額外的光阻塗佈與微影曝光製程可用於表面上,且RIE製程是用於蝕穿保護層、矽二氧化層並且進入到矽基板中,以定義出溝槽5127。溝槽5127可以蝕刻穿矽區(或主動矽層)5107。 Referring to Figure 5.1B, structure 510B includes an electrode 5109 and a trench 5127 as a split or perforated in the flexible element. For example, a thin metal film is overlaid on the wafer of structure 510A. On a thin metal film wafer, a thick photoresist material is formed by spin coating. The electrode 5109 can be about the same as the desired thickness (e.g., 10 microns) of the final covering polymer layer. Additional photoresist coating and lithography processes can be used on the surface, and the RIE process is used to etch through the protective layer, the germanium dioxide layer, and into the germanium substrate to define trenches 5127. The trench 5127 can etch the tunneling region (or active germanium layer) 5107.

接著,請參見第5.1C圖,結構510C包含在第5.1B圖結構510B上沉積阻障層5111。阻障層5111主要係DLC(類鑽碳)、SiC或其他可用的材料。在形成電極5109後所形成的阻障層是為了要保護電極5109的側壁。接著,則可塗佈生物可相容高分子層,以覆蓋阻障層5111。例如,第5.1D圖的結構510D包含生物可相容高分子5113。在一實施例中,厚度約為20微米的高 分子層係可利用旋轉塗佈以及後續的加熱製程來形成。透過研磨製程錯反應性離子蝕刻製程使得高分子層平坦化,以接近電極厚度(如約10微米厚)。 Next, referring to Figure 5.1C, structure 510C includes depositing a barrier layer 5111 on structure 510B of Figure 5.1B. The barrier layer 5111 is primarily DLC (Drilling Carbon), SiC or other useful materials. The barrier layer formed after the formation of the electrode 5109 is for protecting the sidewall of the electrode 5109. Next, a biocompatible polymer layer may be coated to cover the barrier layer 5111. For example, structure 510D of Figure 5.1D comprises a biocompatible polymer 5113. In one embodiment, the thickness is about 20 microns high The molecular layer system can be formed by spin coating and subsequent heating processes. The polymer layer is planarized by a grinding process mis-reactive ion etching process to approximate the electrode thickness (e.g., about 10 microns thick).

結構510E包含以SIROF(濺鍍氧化銥薄膜;sputtered iridium oxide film)形成的電極導電層5115。在一實施例中,在含氧電漿中,SIROF可以銥標靶來濺鍍,且執行剝落(lift-off)製程來定義電極區。最後,可以將選擇性的薄介電層沉積於微電極的表面,以在電壓模式操作微電極。 The structure 510E includes an electrode conductive layer 5115 formed of a SIROF (sputtered iridium oxide film). In one embodiment, in an oxygen-containing plasma, the SIROF can be sputtered with a target and a lift-off process is performed to define the electrode regions. Finally, a selective thin dielectric layer can be deposited on the surface of the microelectrode to operate the microelectrode in voltage mode.

請參見第5.E圖,結構510E包含利用黏膠層(例如蠟)5117,以將第5.1D圖的結構510D的正面黏貼在載體晶圓5133上。背面矽基板(例如第5.1D圖的矽基板5129)可藉由研磨製程、化學蝕刻成而變薄,且停止在總厚度約為20微米(例如停止在阻障層5111或者是如果使用SOI晶圓時,則停留在埋置氧化層)。因此,在後續的其他生物可相容高分子塗佈製程時,阻障層可以形成在已薄化的結構510E頂面。 Referring to Figure 5.E, structure 510E includes the use of an adhesive layer (e.g., wax) 5117 to adhere the front side of structure 510D of Figure 5.1D to carrier wafer 5133. The backside germanium substrate (eg, germanium substrate 5129 of FIG. 5.1D) can be thinned by a polishing process, chemical etching, and stopped at a total thickness of about 20 microns (eg, stopping at barrier layer 5111 or if SOI crystals are used) When it is round, it stays in the buried oxide layer). Thus, in subsequent biocompatible polymer coating processes, a barrier layer can be formed on the top surface of the thinned structure 510E.

舉例來說,請參見第5.1F圖,結構510F包含阻障層5119與生物可相容高分子層5121,例如利用背面保護製程,塗佈在第5.1E圖的結構510E上。用溶解方法移除膠層5117,則結構510F可以自載體晶圓5115脫離。因此,任一阻障層,例如阻障層5119,可沉積於且接觸另一阻障層,如阻障層5111。二生物可相容高分子層,例如高分子層5121、5113,除了在微電極區域,可以完全覆蓋且包覆薄晶片。 For example, referring to Figure 5.1F, structure 510F includes barrier layer 5119 and biocompatible polymer layer 5121, for example, applied to structure 510E of Figure 5.1E using a backside protection process. The glue layer 5117 is removed by a dissolution process, and the structure 510F can be detached from the carrier wafer 5115. Thus, any barrier layer, such as barrier layer 5119, can be deposited on and in contact with another barrier layer, such as barrier layer 5111. The second biocompatible polymer layer, such as the polymer layers 5121, 5113, can completely cover and coat the thin wafer except in the microelectrode region.

在一實施例中,晶粒的分離可以利用刀片切穿如溝槽5127上的分割道。或者,或選擇性的,可以利用額外的微影與電漿蝕刻及反應性蝕刻製程來定義出穿孔,以移除高分子與穿過溝槽5127的阻障層。在微電極表面上形成一選擇性的黏著層(例如層黏蛋白(laminin)、纖維黏連蛋白(fibronectin)),以提升組織與微電極的接觸。 In one embodiment, the separation of the dies can be cut through a segment such as a trench on the trench 5127. Alternatively, or alternatively, additional lithography and plasma etching and reactive etching processes may be utilized to define the perforations to remove the polymer and the barrier layer through trenches 5127. A selective adhesive layer (such as laminin, fibronectin) is formed on the surface of the microelectrode to enhance the contact of the tissue with the microelectrode.

第6A-6D圖,為利用不同方法植入人工視網膜之可撓性元件的疊層結構之剖面流程示意圖。在一實施例中,人工視網膜的可撓性整合元件可以包含一薄基板,讓沒有被金屬遮蔽的部份光進入到此元件(或晶片)中。因此,單晶(monolithic chip)可以應用在人工上視網膜(epi-retina),甚至當光感元件與電極同時在晶片的正面形成時。 6A-6D is a schematic cross-sectional flow diagram of a laminated structure of a flexible member implanted with an artificial retina by different methods. In one embodiment, the flexible integrated component of the artificial retina may comprise a thin substrate into which a portion of the light that is not obscured by the metal enters the component (or wafer). Therefore, a monolithic chip can be applied to an artificial epithelium (epi-retina) even when a photosensitive element is formed simultaneously with an electrode on the front side of the wafer.

例如,第6A圖的元件600A包含同時在元件的正面(或電晶體面)的光感元件607與電極615。元件600A可以利用上視網膜(epi-retina)方法且從光線623元件的背面來植入。在一實施例中,元件600A的電極與光感元件係面對朝向視網膜神經節細胞的一面。元件600A包含疊層結構,此疊層結構包含具有電晶體/感測元件605的矽層603、氧化層609、鋁613與用於電極615的選擇性組織膠(例如層黏蛋白、纖維黏連蛋白等)、包覆元件的生物可相容高分子層601以及穿透元件的選擇性穿孔619。 For example, element 600A of Figure 6A includes photo-sensing element 607 and electrode 615 that are simultaneously on the front side (or the crystal side) of the element. Element 600A can be implanted from the back side of the ray 623 element using an epi-retina method. In one embodiment, the electrodes and photosensor elements of element 600A face one side of the retinal ganglion cells. Element 600A includes a laminate structure comprising a tantalum layer 603 having an optic/sensing element 605, an oxide layer 609, aluminum 613, and a selective tissue gel for electrode 615 (eg, laminin, fiber adhesion) The protein, etc.), the biocompatible polymer layer 601 of the cladding element, and the selective perforation 619 of the penetrating member.

在一實施例中,當矽中可見光的衰退長度為幾微米時,元件600A包含厚度小於10微米的薄矽基板,使得來自元件背面且超過少部份的光能到達光感元件。薄矽基板可以利用SOI(絕緣層上覆蓋矽)晶圓與來製作,且在MOS製程後進行薄化晶圓的步驟。 In one embodiment, when the decay length of the visible light in the crucible is a few microns, the element 600A comprises a thin tantalum substrate having a thickness of less than 10 microns such that more than a small portion of the light energy from the back side of the element reaches the light sensing element. The thin tantalum substrate can be fabricated by using an SOI (on-insulator overlay) wafer and performing a thinning process after the MOS process.

請參見第6B圖,元件600B包含如第6A圖元件600A的相似疊層結構。在一實施例中,元件600B可利用下視網膜(sub-retinal)方法且光線649從元件的正片來植入。元件600B的電極與光感元件係面對朝向視網膜雙極細胞625(retina bipolar cells)且入射光的那一面。 Referring to Figure 6B, element 600B includes a similar laminate structure as element 600A of Figure 6A. In an embodiment, element 600B may utilize a sub-retinal method and ray 649 is implanted from a positive of the element. The electrode and photosensor element of element 600B face the side of the retina bipolar cells that are incident on the light.

在另一實施例中,如第6C圖所示,元件600C包含在正面的光感元件633以及在元件背面的電極637。有利地,元件600C的電極不會阻擋入射光進入光感元件。在一實施例中,元件600C可以來自正面的光線647與面對視網膜神經節細胞的上視網膜(epi-retina)方法植入。元件600C包含疊層結 構,疊層結構含有具有電晶體/光感元件的矽層629、氧化與金屬內連線層627、對電極637的選擇性組織膠643、覆蓋元件的生物可相容高分子與阻障層635以及穿過元件正面與背面的穿孔641。電極637與處理電路連接,例如電晶體電路631,穿過如鋁639中的矽穿孔(through silicon via;TSV)之導電孔。 In another embodiment, as shown in FIG. 6C, element 600C includes a light sensitive element 633 on the front side and an electrode 637 on the back side of the element. Advantageously, the electrodes of element 600C do not block incident light from entering the photosensitive element. In an embodiment, element 600C can be implanted from a frontal light 647 and an epi-retina approach to retinal ganglion cells. Element 600C includes a laminated junction The laminated structure comprises a germanium layer 629 having a transistor/light sensing element, an oxidation and metal interconnect layer 627, a selective adhesive 643 of the counter electrode 637, a biocompatible polymer covering the element, and a barrier layer. 635 and perforations 641 through the front and back of the component. The electrode 637 is connected to a processing circuit, such as a transistor circuit 631, through a conductive via such as a through silicon via (TSV).

或者,在第6D圖中,元件600D包含如第6C圖元件600C的相似疊層結構。元件600D可以來自元件背面的光線653且以下視網膜方法植入。元件600D的電極係對面朝向視網膜雙極細胞(retina bipolar cells)651的那一面。 Alternatively, in Figure 6D, element 600D comprises a similar laminate structure as element 6C of Figure 6C. Element 600D can be implanted from light 653 on the back of the element and by the following retinal method. The electrode of element 600D faces the side of the retina bipolar cells 651.

第7A-7B圖,為本發明之一實施例中,提供鄰近迴路與限制電流之防護環的剖面示意圖。第7A圖凸緣件700A包含與區域迴路或防護環相符的電極,以自電極中限制電流。在一實施例中,元件700A可以是具有疊層結構的可撓性整合元件,此疊層結構包含具有電晶體電路709與光感元件711之矽層707、氧化層719、於鋁717上的電極715以及包覆元件周圍且位於阻障/黏著層705上的生物可相容高分子(II)701、生物可相容高分子(I)703。元件700A可以在電流驅動模式中植入到組織721中。例如,來自電極715的電流723可以流向最低阻抗路徑。元件700A可以包含如防護環(或區域迴路電極)之防護件713,以自所需目標方向提供區域迴路導電流723。 7A-7B are cross-sectional views showing a guard ring for adjacent loops and current limiting in an embodiment of the present invention. Section 7A flange member 700A includes an electrode that conforms to the zone loop or guard ring to limit current flow from the electrode. In an embodiment, the component 700A may be a flexible integrated component having a laminated structure including a germanium layer 707 having a transistor circuit 709 and a light sensing element 711, an oxide layer 719, and an aluminum 717. The electrode 715 and the biocompatible polymer (II) 701 and the biocompatible polymer (I) 703 around the cladding member and located on the barrier/adhesion layer 705. Element 700A can be implanted into tissue 721 in a current driven mode. For example, current 723 from electrode 715 can flow to the lowest impedance path. Element 700A can include a guard 713, such as a guard ring (or regional return electrode), to provide regional loop conductive flow 723 from the desired target direction.

相似於第7B圖,元件700B可以從透過防護件713限制的電極715,在具有電場727的電壓驅動模式中操作。元件700B包含相對電極715之選擇性介電層725。 Similar to Figure 7B, element 700B can operate from a voltage driven mode having an electric field 727 from electrode 715 that is shielded through shield 713. Element 700B includes a selective dielectric layer 725 opposite electrode 715.

較佳地,可以透過防護環被區域地限制(或被降較低、較窄)電場或電流接近到原始電極。因此,可以避免不想要的神經細胞的刺激,而不是針對每一電極的目標神經,例如在不需要激起神經節細胞的情況下刺激雙 極細胞。在具有防護環的可撓性整合元件,來自電極的電場可能不會受其他來自分離且使用防護環電極的電場干擾。 Preferably, the electric field or current can be regionally confined (or lowered, narrowed) through the guard ring to the original electrode. Therefore, it is possible to avoid the stimulation of unwanted nerve cells, rather than the target nerve for each electrode, for example, without stimulating the ganglion cells. Polar cells. In a flexible integrated component with a guard ring, the electric field from the electrode may not be disturbed by other electric fields from the separation and using the guard ring electrode.

第8圖,為本發明之一實施例中的可撓性元件,具有突起電極的疊層結構之剖面示意圖。例如,元件800包含具有突起電極陣列的可撓性整合晶片。元件800包含疊層結構,此疊層結構具有金屬/介電層807、具有主動元件809的矽以及與高分子阻障層813一起包覆元件之高分子與阻障層811。電極803可以在接近目標神經細胞801以一突起端突出來。較佳地,當植入時,已突起的刺激電極可以透過組織的某些分離層來推擠,以便更靠近刺激的標的位置。因此,可能會降低用來偏極目標神經之所需的臨界電流或電力,進而使得較高數量的電極具有較佳的解析度(例如較高於,如至少250每平方毫米)。 Fig. 8 is a schematic cross-sectional view showing a laminated structure having a protruding electrode in a flexible member according to an embodiment of the present invention. For example, component 800 includes a flexible integrated wafer having a raised electrode array. The component 800 includes a laminate structure having a metal/dielectric layer 807, a germanium having an active device 809, and a polymer and barrier layer 811 covering the device with the polymer barrier layer 813. The electrode 803 can protrude toward the target nerve cell 801 at a protruding end. Preferably, when implanted, the protruding stimulating electrodes can be pushed through certain discrete layers of tissue to be closer to the target location of the stimulus. Thus, the critical current or power required to bias the target nerve may be reduced, thereby allowing a higher number of electrodes to have better resolution (e.g., higher than, e.g., at least 250 per square millimeter).

第9圖,為本發明之一實施例中的可撓性元件,具有多位階電極高度的疊層結構之剖面示意圖。例如,元件900包含具有多位階突起的電極陣列之可撓性整合晶片。元件900包含疊層結構,此疊層結構具有金屬/介電層、具有主動元件909的矽、以及與高分子阻障層913一起包覆元件的高分子與阻障層911。電極917、903係位於兩不同位階上,以分別地刺激神經細胞901、915。 Figure 9 is a cross-sectional view showing a laminated structure of a flexible member having a multi-step electrode height in an embodiment of the present invention. For example, component 900 includes a flexible integrated wafer of electrode arrays having multiple levels of protrusions. The element 900 includes a laminated structure having a metal/dielectric layer, a crucible having an active element 909, and a polymer and barrier layer 911 covering the element together with the polymer barrier layer 913. The electrodes 917, 903 are located at two different levels to stimulate the neural cells 901, 915, respectively.

在一實施例中,多位階突起電極,例如電極917、903,可分別刺激不同種類的神經細胞(例如ON型細胞、OFF型細胞、或其他可用型細胞)的不同組織層。例如,當雙極細胞與神經節細胞間連接的視網膜分隔成兩不同的組織層位階,多位階突起電極可以分別標的神經ON途徑與OFF途徑。 In one embodiment, a multi-level protuberance electrode, such as electrodes 917, 903, can respectively stimulate different tissue layers of different types of neural cells (eg, ON-type cells, OFF-type cells, or other available cells). For example, when the retina connected between bipolar cells and ganglion cells is divided into two different tissue layer steps, the multi-level protruding electrodes can be labeled with the neural ON pathway and the OFF pathway, respectively.

第10A-10B圖,為本發明之一實施例中,可撓性元件中的訊號處理電路的方塊圖。第10A圖的元件1000A包含畫素單元1005,且此畫素單元 1005二維畫素單元陣列方向連接其鄰近的畫素單元1001、1003、1007、1009。畫素單元1005以(m,n)做為在二維畫素單元陣列陣列方向上的標記,進而標示為(m,n,t)的時間點上接收入射光。每一畫素單元可以在相鄰單元(或其他可用畫素單元)所接收光上交換資訊。 10A-10B are block diagrams of signal processing circuits in a flexible component in accordance with an embodiment of the present invention. Element 1000A of FIG. 10A includes a pixel unit 1005, and this pixel unit The 1005 two-dimensional pixel unit array direction connects its neighboring pixel units 1001, 1003, 1007, 1009. The pixel unit 1005 receives (n, n) as a mark in the direction of the two-dimensional pixel unit array array, and further receives incident light at a time point indicated as (m, n, t). Each pixel unit can exchange information on the light received by neighboring units (or other available pixel units).

在一實施例中,每一畫素單元包含單一處理電路,以接收來自相鄰畫素單元的輸入訊號。例如,如第10A圖所示,訊號I(m,n+1,t)、I(m-1,n,t)、I(m,,n-1,t)以及I(m+1,n,t)分別代表光接收或感測到來自相鄰畫素單元1001、1003、1007、1009,可以給畫素單元1005。畫素單元的排列可以為矩形、六角形(例如與具有六個接近相鄰的畫素單元的每一畫素單元)、或其他可用的二維或多維陣列。 In one embodiment, each pixel unit includes a single processing circuit to receive input signals from adjacent pixel units. For example, as shown in Figure 10A, the signals I(m,n+1,t), I(m-1,n,t), I(m,,n-1,t), and I(m+1, n, t) may be given to the pixel unit 1005, respectively, from the neighboring pixel units 1001, 1003, 1007, 1009. The arrangement of pixel cells can be rectangular, hexagonal (eg, with each pixel element having six neighboring pixel cells), or other available two-dimensional or multi-dimensional arrays.

在某一實施例中,可撓性整合元件可包含可以刺激神經網絡的訊號處理電路,且此神經網絡的處理機制與中央/周圍對抗可接受神經場相似。舉例來說,畫素單元可以產生畫素電流輸出(或刺激),且其在相鄰處中央畫素光密度總和以及周圍光密度的平均差成比例,以激起適當RGC穿刺(spiking)。一般而言,例如這些最接近的相鄰物、第二接近的相鄰物、第三接近的相鄰物等從捕捉光線取得一已處理訊號,進而產生刺激。 In an embodiment, the flexible integration element can include a signal processing circuit that can stimulate the neural network, and the processing mechanism of the neural network is similar to the central/surrounding against an acceptable neural field. For example, a pixel unit can produce a pixel current output (or stimulus) that is proportional to the sum of the central pixel optical density and the average difference in ambient optical density at adjacent locations to provoke proper RGC spiking. In general, for example, the closest neighbors, the second adjacent neighbors, the third adjacent neighbors, etc., obtain a processed signal from the captured light, which in turn produces a stimulus.

舉例來說,第10B圖的電路1000B包含一處理元件1015,用以自已感測到的輸入訊號1019中,分別經權重設定1011、1013權重後,產生一經權重後的輸出訊號Id(m,n)1017。在一實施例中,第10A圖畫素單元1005包含為了作訊號處理的電路1000B。四個已感測訊號I(m-1,n)、I(m+1,n)、I(m,n-1)以及I(m,n+1)1019(例如自相鄰畫素單元來的輸入訊號),可能會透過阻抗成份被均等的權重已感測訊號的1/4。在某實施例中,除了那些在儀表器位置上的畫素單元,為了主要的相鄰畫素單元多數,可以設定權重(例如動態設定)到約為0(例如相等於自相對應相鄰畫素單元的不連接),以降低 如在數位相機中多點儀表器所使用的相似方法中背景絕對光密度的效果。在某些實施例中,可以在從相鄰畫素單元交換來的處理訊號上運作訊號相減,以產生相對於入射光密度的刺激,進而取代絕對密度。 For example, the circuit 1000B of FIG. 10B includes a processing component 1015 for generating a weighted output signal Id(m, n) from the sensed input signal 1019 by weighting 1011 and 1013, respectively. ) 1017. In one embodiment, the 10A picture element unit 1005 includes circuitry 1000B for signal processing. Four sensed signals I(m-1,n), I(m+1,n), I(m,n-1), and I(m,n+1)1019 (eg, from neighboring pixel units The incoming input signal) may be equal to 1/4 of the sensed signal through the equal weight of the impedance component. In an embodiment, in addition to those pixel units at the instrument location, for a majority of the main adjacent pixel units, a weight (eg, dynamic setting) can be set to approximately zero (eg, equal to the corresponding adjacent picture) Prime unit is not connected) to reduce The effect of background absolute optical density in a similar method used by multi-point meters in digital cameras. In some embodiments, the signal subtraction can be performed on the processed signals exchanged from adjacent pixel units to produce a stimulus relative to the incident optical density, thereby replacing the absolute density.

第11A-11B圖,為本發明之一實施例中描述可撓性元件的操作示意圖。例如,在本發明之一實施例中,可撓性整合元件可提供部份自神經細胞辨識的官能,例如視網膜神經節細胞1105且/或神經細胞網絡1107,以重新建立損害或退化的視覺感知。神經細胞網絡可以包含如水平細胞、雙極細胞(bipolar cells)、無軸突細胞(amacrine cell)、或其他視網膜神經細胞。元件1133包含與微電極連接陣列1103的處理電路1101,可以發送刺激給且/或自神經細胞感測回應。 11A-11B are schematic views showing the operation of the flexible member in one embodiment of the present invention. For example, in one embodiment of the invention, the flexible integration element can provide a partial autonomic recognition function, such as retinal ganglion cell 1105 and/or neural cell network 1107, to re-establish visual perception of damage or degradation. . The neural cell network may comprise, for example, horizontal cells, bipolar cells, amacrine cells, or other retinal nerve cells. Element 1133 includes processing circuitry 1101 that is coupled to microelectrode array 1103 and can send stimulation to and/or sense responses from nerve cells.

在一實施例中,當在校正/程序化模式(calibration/programming mode)操作時,可以製備元件1133。元件1133可以在其他模式下操作,例如正常模式,以從入射光來刺激神經細胞,進而得到視覺感知。在某一實施例中,在校正/程序化模式時,感測元件與處理電路1101可以在感測模式與驅動模式間轉換,以辨識並且安裝處理特徵(例如透過可程式化的邏輯陣列或其他可用的可程式化電路),如此,當部份神經細胞不能適當的作用時(例如已損害、衰退、退化等),便能從入射光I(xi,yi)1111(如產生的光)且為所需的感測輸出訊號O(pi,qi)1115產生適當的刺激。 In an embodiment, element 1133 may be prepared when operating in a calibration/programming mode. Element 1133 can operate in other modes, such as normal mode, to stimulate nerve cells from incident light to provide visual perception. In an embodiment, in the correction/programming mode, the sensing component and processing circuitry 1101 can transition between sensing mode and driving mode to identify and install processing features (eg, through a programmable logic array or other Available programmable circuits), such that when some of the nerve cells are not functioning properly (eg, damaged, decayed, degraded, etc.), they can be incident on the light I(xi, yi) 1111 (as produced by the light) and The appropriate stimulus is generated for the desired sensed output signal O(pi, qi) 1115.

例如,對使正常工作或相對健康的神經細胞來說,感測元件與處理電路1101可以在從入射光I(xi,yi)1111送出刺激後立刻進入感測模式,進而產生感測輸出訊號O(pi,qi)1115。在某實施例中,光I(xi,yi)1111可以被產生來視覺上選擇且安裝元件1133的一部份(例如畫素單元或畫素單元群組)。在感測模式中的處理電路1101可以用來偵測神經細胞的反應,例如視網膜神經節細胞1105。此反應可以為電壓、波形、或其他可用訊號或超過 一段時間的延遲(spike),以表示感測輸出訊號O(pi,qi)1115。處理電路1101可以儲存具有入射光與相對應偵測到反應之間的關係之資訊。在神經細胞中,資料可表示固有處理特徵H(pi,qj,xi,yi)1135,例如基於所指表示O=H*I的關係。 For example, for a nerve cell that is normally or relatively healthy, the sensing element and processing circuit 1101 can enter the sensing mode immediately after sending the stimulus from the incident light I(xi, yi) 1111, thereby generating a sensing output signal O. (pi, qi) 1115. In an embodiment, light I(xi, yi) 1111 can be generated to visually select and mount a portion of component 1133 (eg, a pixel unit or a group of pixel units). The processing circuit 1101 in the sensing mode can be used to detect the response of nerve cells, such as retinal ganglion cells 1105. This reaction can be voltage, waveform, or other available signal or more A period of time (spike) to indicate the sensed output signal O(pi, qi) 1115. Processing circuit 1101 can store information having a relationship between incident light and a corresponding detected response. In a neural cell, the data may represent an intrinsic processing characteristic H(pi, qj, xi, yi) 1135, for example based on the relationship indicated by O=H*I.

接著,如第11B圖所示,處理電路1101可以用來執行操作,以補償損失或由神經細胞處理過的已改變的視覺資訊。例如,光接受細胞1109可能會受傷或退色,進而阻擋神經細胞網絡1107自處理已感測的光訊號。因此,視覺覺知可以基於視網膜神經節細胞1105的處理特徵G'(pi,qj,x'i,y'j)1135。 Next, as shown in FIG. 11B, the processing circuit 1101 can be used to perform operations to compensate for the loss or altered visual information processed by the nerve cells. For example, the light-receiving cells 1109 may be injured or discolored, thereby blocking the neural cell network 1107 from self-processing the sensed light signals. Thus, visual awareness can be based on the processing characteristics G'(pi, qj, x'i, y'j) 1135 of retinal ganglion cells 1105.

在一實施例中,處理電路1101可以(自動或手動)執行操作(或轉換操作)H'(x'i,y'j,xi,yj)。例如,根據有效光輸入I'=H' *I,在處理電路1101中可以刺激視網膜神經節細胞1105,讓覺知的輸出訊號O'(pi,qj)1123係根據G'*I'來接近O(pi,qj)1115。在一實施例中,基於固有的處理特徵H(pi,qj,xi,yj)程式化或安裝H'(x'i,y'j,xi,yj)。在具有處理能力的驅動模式下操作處理電路1101。在正常操作模式下操作,或在校正操作模式操作元件1133,以更進一步微調或調整。 In an embodiment, the processing circuit 1101 may perform an operation (or conversion operation) H'(x'i, y'j, xi, yj) (either automatically or manually). For example, according to the effective light input I'=H'*I, the retinal ganglion cell 1105 can be stimulated in the processing circuit 1101, so that the perceived output signal O'(pi, qj) 1123 is approximated according to G'*I'. O(pi, qj) 1115. In an embodiment, H'(x'i, y'j, xi, yj) is programmed or installed based on the inherent processing characteristics H(pi, qj, xi, yj). The processing circuit 1101 is operated in a driving mode having processing capability. Operate in the normal mode of operation, or operate the component 1133 in the correct mode of operation to further fine tune or adjust.

在一實施例中,處理電路可與電子感測電路合併,進而在校正模式時使得視網膜神經反應動力測量,例如當元件1133以上視網膜方法植入時。就在電子刺激後,隨著電子感測具有轉換元件(或晶片)的能力,ON細胞與OFF細胞可以透過反應時間來辨識,而且當元件上的光感元件感測到區域光線資訊,這個資訊可以用來公式化來自鄰近電極的特定的電子刺激。 In an embodiment, the processing circuitry can be combined with the electronic sensing circuitry to cause retinal neural response dynamics measurements in the calibration mode, such as when the retinal method of component 1133 is implanted. Immediately after the electronic stimulation, as the electronic sensing has the ability to convert the element (or wafer), the ON cell and the OFF cell can be identified by the reaction time, and when the light sensing element on the element senses the regional light information, this information It can be used to formulate specific electronic stimuli from adjacent electrodes.

第12圖,為本發明之一實施例中可撓性元件的系統方塊示意圖。系統1200包含可組裝的人工視網膜裝置,且此元件具有與選擇性的或無限的與外部或遙控元件1201連接之晶片處理電路1101,進而對調整/改變可組 裝的元件1133提供控制或回饋路徑。在一實施例中,處理電路與電極陣列1103可包含能透過外部指令更新的電子參數或設定,例如對個別畫素程度且達成所需視覺覺知而調整光敏銳度、刺激強度或其他可用參數。在一實施例中,病人可在視覺皮層(visual cortex)中基於覺知視覺,透過使用者控制介面1207來操作遙控元件1201。 Figure 12 is a block diagram showing the system of a flexible member in accordance with one embodiment of the present invention. System 1200 includes an assembleable artificial retina device, and this component has a wafer processing circuit 1101 that is selectively or infinitely coupled to external or remote control component 1201, thereby enabling adjustment/changeable grouping The mounted component 1133 provides a control or feedback path. In one embodiment, the processing circuit and electrode array 1103 can include electronic parameters or settings that can be updated by external commands, such as adjusting the sharpness of the light, the intensity of the stimulus, or other available parameters, for individual pixel levels and achieving the desired visual awareness. . In one embodiment, the patient can operate the remote control component 1201 through the user control interface 1207 based on a perceptual vision in a visual cortex.

在一實施例中,外部指令1203可以是包含光學輸入1209之光學指令,光學輸入可能包含預定的視覺圖案。或者,外部指令1203可以透過無限收發機來進行無線傳輸(例如基於EM訊號或RF訊號)到元件1133。元件1133可包含特定光感測畫素以及在晶片上的特殊解碼電路,以從光學輸入1203中偵測特殊光脈衝(light pulse)圖案,進而進入晶片的調整/改變的校正模式。 In an embodiment, the external command 1203 may be an optical command that includes an optical input 1209, which may include a predetermined visual pattern. Alternatively, the external command 1203 can wirelessly transmit (eg, based on an EM signal or RF signal) to the component 1133 via an infinite transceiver. Element 1133 can include a particular light-sensing pixel and a special decoding circuit on the wafer to detect a particular light pulse pattern from optical input 1203, which in turn enters the wafer's adjustment/change correction mode.

在一實施例中,透過光反射(例如在植入區域中進入眼睛),可以分別以光學的或無線的方式進入元件1133的每一畫素或畫素區域。畫素或區域可以電子連接進入到晶片,以微調電子刺激參數,進而達到視覺感知的目標效果。在一實施例中,可以投射測試圖案,例如透過光學輸入1209,至植入的視網膜中或直接由已植入的病人所看見。可藉由病人來描述目標視覺效果,以處理手動調整植入人工視網膜晶片的參數,使用光輸入元件,進而達到最好目標視覺效果。 In one embodiment, each pixel or pixel region of element 1133 can be accessed optically or wirelessly, respectively, through light reflection (e.g., into the eye in the implanted region). The pixels or regions can be electronically connected to the wafer to fine tune the electronic stimulation parameters to achieve the desired effect of visual perception. In an embodiment, the test pattern can be projected, for example, through optical input 1209, into the implanted retina or directly by the implanted patient. The target visual effect can be described by the patient to handle the manual adjustment of the parameters of the implanted artificial retina wafer, using the light input elements to achieve the best target visual effect.

第13圖,為本發明一實施例中描述組裝可撓性元件的方法流程圖。利用處理電路來執行方法1300,包含硬體(電路、專用邏輯等)、軟體(例如在機器中執行機器碼或處理元件)或兩者之組合。例如,方法1300可以利用某些第12圖系統1200的成份。 Figure 13 is a flow chart showing a method of assembling a flexible member in accordance with an embodiment of the present invention. Method 1300 is performed using processing circuitry, including hardware (circuitry, dedicated logic, etc.), software (eg, executing machine code or processing elements in a machine), or a combination of both. For example, method 1300 can utilize some of the components of system 12 of FIG.

在一實施例中,如步驟1301,方法1300可透過光感元件中並自接收光中偵測光圖案(例如預定的)。方法1300的處理邏輯係解碼擷取到的光 線,以取得選擇性在光中編碼的光圖案。在偵測光圖案,方法1300的處理邏輯會導致元件進入校正模式。此元件可能包含畫素單元陣列,以得到光線,因而獲得由光線來的視覺覺知。畫素單元可包含以電子參數設定的電路,例如對光感元件之偵測電路且/或對電極之驅動電路。 In one embodiment, as in step 1301, method 1300 can pass through the light sensing element and detect a light pattern (eg, predetermined) from the received light. The processing logic of method 1300 decodes the captured light Lines to obtain a pattern of light that is selectively encoded in light. In detecting the light pattern, the processing logic of method 1300 causes the component to enter a calibration mode. This component may contain an array of pixel cells to obtain light, thus obtaining visual awareness from the light. The pixel unit may include circuitry that is set with electronic parameters, such as a detection circuit for the light sensing element and/or a drive circuit for the counter electrode.

在一實施例中,如步驟1303,方法1300的處理邏輯可以接收光圖案,以自可撓性整合元件的畫素單元陣列中選擇畫素單元。光圖案可以與已知的視覺感知效果有關。例如,植入元件的病人可能會意識到哪種是可預期的視覺感知。例如光影像的形狀、光影像的相關強度或其他視覺效果。在步驟1305,方法1300的處理邏輯會從所選擇的畫素單元中產生刺激,以刺激神經細胞,進而造成實際的視覺感知效果相似於正常人應接收的光圖案。在某一實施例中,光圖案可包含選擇光圖案,以辨識哪個畫素單元應該被選擇。 In an embodiment, as in step 1303, the processing logic of method 1300 can receive a light pattern to select a pixel unit from a pixel unit array of flexible integration elements. The light pattern can be related to known visual perception effects. For example, a patient implanting an element may be aware of which is a predictable visual perception. For example, the shape of a light image, the relative intensity of a light image, or other visual effects. At step 1305, the processing logic of method 1300 generates a stimulus from the selected pixel unit to stimulate the nerve cells, thereby causing the actual visual perception to be similar to the light pattern that the normal person should receive. In an embodiment, the light pattern can include a selection light pattern to identify which pixel unit should be selected.

接著,在一實施例中,如步驟1307,方法1300的處理邏輯係接收外部指令,進而更新可撓性整合元件的電子參數。可以是選擇性的或無線的接收外部指令。方法1300的處理邏輯可以更新電子參數,進而透過所選擇具有電子參數的畫素單元且自已接收到的光圖案(或其他可用的入射光),造成實際視覺感知效果的改變。捕捉到的光(如光圖案)可以與已知的視覺效果有關。由於更新,因此可以改變實際的視覺感知效果,使其已知的視覺感知效果搭配到適當組裝元件。在某一實施例中,對畫素選擇且對電子或電路更新的選擇的畫素,可以分別產生光圖案。 Next, in an embodiment, as in step 1307, the processing logic of method 1300 receives an external command to update the electronic parameters of the flexible integrated component. The external command can be received selectively or wirelessly. The processing logic of method 1300 can update the electronic parameters to cause a change in the actual visual perception effect through the selected pixel pattern with the electronic parameters and the self-received light pattern (or other available incident light). The captured light (such as a light pattern) can be related to known visual effects. Due to the update, the actual visual perception can be changed to match the known visual perception to the appropriate assembly components. In one embodiment, the selected pixels of the pixel selection and updated for the electronic or circuit may respectively generate a light pattern.

在上述說明中,本發明已描述相關的特定實施例。在不偏離本發明申請專利範圍較廣範圍的情況下,說明書可以做各種修正,且上述詳細說明可作為支撐。本發明並不僅限定於特定形式、圖式、刻度以及如說明 說揭露的詳細資訊。因此,說明書與圖式可以作為一種描述說明,而非用以限制。 In the above description, the invention has been described in connection with specific embodiments. Various modifications may be made to the specification without departing from the broader scope of the invention, and the above detailed description can be used as a support. The invention is not limited to specific forms, drawings, scales, and as illustrated Say the details of the disclosure. Accordingly, the specification and drawings are to be regarded as a description

200A‧‧‧分布示意圖 200A‧‧‧ distribution diagram

201‧‧‧視網膜 201‧‧‧ retina

203‧‧‧晶片 203‧‧‧ wafer

Claims (10)

一種可撓性人工視網膜裝置,包含:複數光感元件,其用以接收一光線;複數微電極,及一電路,其耦接至該複數光感元件和該複數微電極,該電路驅動該複數微電極,以給予神經細胞一刺激,使感知由該複數光感元件所擷取的該光線的一影像;其中,該複數光感元件、該複數微電極和該電路係整合於一半導體裝置;其中,該半導體裝置包含一承載複數個該複數微電極的矽基板;其中,該矽基板的厚度允許使該半導體裝置具有撓性以符合一人類眼珠的形狀,及允許該複數微電極貼近該神經細胞。 A flexible artificial retinal device comprising: a plurality of light sensing elements for receiving a light; a plurality of microelectrodes; and a circuit coupled to the plurality of light sensing elements and the plurality of microelectrodes, the circuit driving the plurality a microelectrode for stimulating a nerve cell to sense an image of the light captured by the plurality of light sensing elements; wherein the plurality of light sensing elements, the plurality of microelectrodes, and the circuit are integrated in a semiconductor device; Wherein the semiconductor device comprises a germanium substrate carrying a plurality of the plurality of microelectrodes; wherein the thickness of the germanium substrate allows the semiconductor device to have flexibility to conform to the shape of a human eye, and allows the plurality of microelectrodes to be close to the nerve cell. 如申請專利範圍第1項所述之可撓性人工視網膜裝置,其中該半導體裝置更包含一畫素單元陣列,其中每一畫素單元包括該複數微電極之一者、該複數光感元件之一者、及該電路的一對應部分。 The flexible artificial retina device according to claim 1, wherein the semiconductor device further comprises an array of pixel units, wherein each pixel unit comprises one of the plurality of microelectrodes, and the plurality of photosensors One, and a corresponding portion of the circuit. 如申請專利範圍第1項所述之可撓性人工視網膜裝置,其中該半導體裝置包含層狀結構,其包含一半導體層和複數金屬內連線層,該半導體層包含該複數光感元件和電晶體,該複數微電極與該半導體和該複數金屬內連線層分開,該複數微電極藉由該複數金屬內連線層耦接該電路。 The flexible artificial retina device according to claim 1, wherein the semiconductor device comprises a layered structure comprising a semiconductor layer and a plurality of metal interconnect layers, the semiconductor layer comprising the plurality of light sensing elements and electricity a crystal, the plurality of microelectrodes being separated from the semiconductor and the plurality of metal interconnect layers, the plurality of microelectrodes being coupled to the circuit by the plurality of metal interconnect layers. 如申請專利範圍第3項所述之可撓性人工視網膜裝置,其中該層狀結構包含一基板,其中該半導體層設置於該層狀結構接近該半導體裝置之一前側,及該基板設置於該層狀結構接近該半導體裝置相對於該前側之一後側。 The flexible artificial retina device according to claim 3, wherein the layered structure comprises a substrate, wherein the semiconductor layer is disposed on the front side of the layered structure adjacent to the semiconductor device, and the substrate is disposed on the substrate The layered structure is adjacent to the back side of the semiconductor device relative to one of the front sides. 如申請專利範圍第4項所述之可撓性人工視網膜裝置,其中該半導體裝置允許該光線從該前側達到在該半導體層上的該複數光感元件。 The flexible artificial retina device of claim 4, wherein the semiconductor device allows the light to reach the plurality of light sensing elements on the semiconductor layer from the front side. 如申請專利範圍第4項所述之可撓性人工視網膜裝置,其中該複數微電極從該半導體裝置的該前側接觸該神經細胞。 The flexible artificial retina device of claim 4, wherein the plurality of microelectrodes contact the nerve cells from the front side of the semiconductor device. 如申請專利範圍第3項所述之可撓性人工視網膜裝置,其中該刺激係基於從該複數微電極流至該神經細胞的電流,其中該層狀結構包含複數防護環,及其中每一微電極是由該複數防護環之一者所圍繞,以提供一區域迴路,以限制從該複數微電極流至目標神經細胞的該電流。 The flexible artificial retina device according to claim 3, wherein the stimulation is based on a current flowing from the plurality of microelectrodes to the nerve cells, wherein the layered structure comprises a plurality of guard rings, and each of the micro The electrode is surrounded by one of the plurality of guard rings to provide a zone loop to limit the current flow from the plurality of microelectrodes to the target nerve cells. 一種可植入至包含複數神經細胞之組織的設備,包含:複數畫素單元,其配置於一二維陣列以感知進入該複數畫素單元的一光線的一影像,每一畫素單元包含:一光感元件,其用以接收該光線;一微電極,其傳送一刺激至該複數神經細胞之目標神經細胞,以用於感知;及一電路,其從該光線取得該刺激,並驅動該微電極,其中該二維陣列被配置於一半導體裝置中,該半導體裝置具有一前表面,及相對於該前表面之一後表面,該半導體裝置包含一承載該複數畫素單元的該微電極的矽基板;及生物可相容層,其包裝該半導體裝置,以雙向保護該半導體裝置和該組織,該生物可相容層具有開口以允許該複數畫素單元的該複數微電極刺激該神經細胞;其中該矽基板的厚度允許該半導體裝置在二維方向上彎曲,以符合一人類眼珠的形狀,及允許該複數微電極貼近該神經細胞; 其中,該矽基板的厚度允許該光感元件擷取從該前表面或從該後表面進入的光線。 An apparatus implantable into a tissue comprising a plurality of neural cells, comprising: a plurality of pixel units disposed in a two-dimensional array to sense an image of a light entering the plurality of pixel units, each pixel unit comprising: a light sensing element for receiving the light; a microelectrode that transmits a target nerve cell that is stimulated to the plurality of nerve cells for sensing; and a circuit that takes the stimulus from the light and drives the light a microelectrode, wherein the two-dimensional array is disposed in a semiconductor device having a front surface and a rear surface of the front surface, the semiconductor device including the microelectrode carrying the plurality of pixel units a germanium substrate; and a biocompatible layer encapsulating the semiconductor device to protect the semiconductor device and the tissue in both directions, the biocompatible layer having an opening to allow the plurality of microelectrodes of the plurality of pixel units to stimulate the nerve a cell; wherein the thickness of the germanium substrate allows the semiconductor device to bend in a two-dimensional direction to conform to the shape of a human eye, and to allow the plurality of microelectrodes Near the nerve cells; Wherein the thickness of the germanium substrate allows the light sensing element to extract light entering from the front surface or from the rear surface. 如申請專利範圍第8項所述之設備,另包含:穿過該半導體裝置的複數穿孔,以允許流體穿過該複數穿孔在該前表面和該後表面間流動。 The apparatus of claim 8 further comprising: a plurality of perforations through the semiconductor device to allow fluid to flow between the front surface and the back surface through the plurality of perforations. 一種用於人工視網膜之積體電路裝置,包含:畫素單元陣列,以感知一光線的一影像,每一畫素單元包含:一光感元件,其用以感測該光線;一微電極,其傳送一刺激至該複數神經細胞之目標神經細胞,以用於感知;及一電路,其從該光線取得該刺激,並驅動該微電極;其中,該光感元件、該微電極和該電路係整合於一半導體裝置,該半導體裝置包含一承載該每一畫素單元的該微電極;其中該畫素單元陣列被配置為每平方毫米高於250個的密度;其中該裝置的厚度係可彎曲,以允許該畫素單元陣列能依據一人類眼珠的一形狀,變形為具有至少12.5毫米的一曲率半徑,及允許該微電極貼近該目標神經細胞。 An integrated circuit device for an artificial retina, comprising: an array of pixel units for sensing an image of a light, each pixel unit comprising: a light sensing element for sensing the light; a microelectrode, Transmitting a target nerve cell that is stimulated to the plurality of nerve cells for sensing; and a circuit that takes the stimulus from the light and drives the microelectrode; wherein the photosensitive element, the microelectrode, and the circuit Integrating in a semiconductor device, the semiconductor device includes a microelectrode carrying each of the pixel units; wherein the pixel unit array is configured to have a density of more than 250 per square millimeter; wherein the thickness of the device is Bending to allow the pixel element array to be deformed to have a radius of curvature of at least 12.5 mm depending on a shape of a human eye, and to allow the microelectrode to be in close proximity to the target nerve cell.
TW101135406A 2011-10-26 2012-09-26 Flexible artificial retina devices TWI519289B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/282,423 US9114004B2 (en) 2010-10-27 2011-10-26 Flexible artificial retina devices

Publications (2)

Publication Number Publication Date
TW201316971A TW201316971A (en) 2013-05-01
TWI519289B true TWI519289B (en) 2016-02-01

Family

ID=48871612

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101135406A TWI519289B (en) 2011-10-26 2012-09-26 Flexible artificial retina devices

Country Status (1)

Country Link
TW (1) TWI519289B (en)

Also Published As

Publication number Publication date
TW201316971A (en) 2013-05-01

Similar Documents

Publication Publication Date Title
JP6260969B2 (en) Flexible artificial retina device
US9114004B2 (en) Flexible artificial retina devices
US8954156B2 (en) Methods and apparatuses for configuring artificial retina devices
US8530265B2 (en) Method of fabricating flexible artificial retina devices
US20170296819A1 (en) Methods and apparatuses for configuring artificial retina devices
KR100485053B1 (en) Multi-phasic microphotodiode retinal implant and adaptive imaging stimulation system
US20060036296A1 (en) Electrode array for neural stimulation
EP0696907A4 (en) Independent photoelectric artificial retina device and method
US9731130B2 (en) Flexible artificial retina device
AU2016200484B2 (en) Non-planar chip assembly
US11464975B2 (en) Methods and apparatuses for configuring artificial retina devices
TWI519289B (en) Flexible artificial retina devices
TWI519288B (en) Methods and apparatuses for configuring artificial retina devices
TWI507182B (en) Methods of fabricating flexible artificial retina devices
AU2017268552B2 (en) Flexible artificial retina devices
AU2004235627A1 (en) Retinal color prosthesis for color sight restoration