TWI518766B - Method of forming opening on semiconductor substrate - Google Patents
Method of forming opening on semiconductor substrate Download PDFInfo
- Publication number
- TWI518766B TWI518766B TW100112943A TW100112943A TWI518766B TW I518766 B TWI518766 B TW I518766B TW 100112943 A TW100112943 A TW 100112943A TW 100112943 A TW100112943 A TW 100112943A TW I518766 B TWI518766 B TW I518766B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- boron nitride
- forming
- opening
- boron
- Prior art date
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
本發明係關於一種在半導體基底中形成開口的方法,特別是一種以氮化硼為硬遮罩來形成開口的方法,其可有效避免習知鑲嵌製程中線路變形(line distortion)的情況。SUMMARY OF THE INVENTION The present invention relates to a method of forming an opening in a semiconductor substrate, and more particularly to a method of forming an opening by using boron nitride as a hard mask, which can effectively avoid line distortion in a conventional damascene process.
鑲嵌內連線技術是目前積體電路內形成金屬內連線(metal interconnects)之主要技術,亦可說是目前半導體工業中銅導線之主要製作方式,其可概分為單鑲嵌(single damascene)製程以及雙鑲嵌(dual damascene)製程。其中雙鑲嵌製程因可減少製程步驟、降低導線與插塞間之接觸電阻、增進可靠性等優點,而被大幅採用於鑲嵌內連線技術中。此外,為降低金屬內連線的電阻值以及寄生電容效應(RC delay),以增加訊號傳遞速度,現行的雙鑲嵌製程大多是在低介電(low-K)材料所構成之介電層中蝕刻出具有溝渠(trench)與介層洞(via)之雙鑲嵌圖案,再填入銅金屬並加以平坦化,進而完成金屬內連線之製作。根據在介電層中蝕刻圖案之方式來區分,雙鑲嵌製程又可再細分為溝渠優先(trench-first)製程、介層洞優先(via-first)、部分介層洞優先(partial-via-first)製程、以及自行對準(self-aligned)製程等。Inlaid interconnect technology is the main technology for forming metal interconnects in integrated circuits. It can also be said that the main manufacturing methods of copper wires in the semiconductor industry can be divided into single damascene. Process and dual damascene process. Among them, the dual damascene process is widely used in the inlaid interconnect technology because it can reduce the process steps, reduce the contact resistance between the wires and the plug, and improve the reliability. In addition, in order to reduce the resistance value of the metal interconnect and the RC delay to increase the signal transmission speed, the current dual damascene process is mostly in the dielectric layer composed of low-k materials. A double damascene pattern having a trench and a via is etched, and then copper metal is filled and planarized to complete the fabrication of the metal interconnect. According to the way of etching patterns in the dielectric layer, the dual damascene process can be further subdivided into a trench-first process, a via-first, and a partial-via-partial-via- First) process, and self-aligned process.
在一般的鑲嵌製程中,通常硬遮罩層具有一壓縮應力(compressive stress),其值最大可以至-500百萬帕斯卡(mega Pascal,MPa)。而當此壓縮應力直接施加於其下具低機械強度(mechanical strength)及伸張應力(tensile stress)之介電層時,將造成介電層發生線路變形(line distortion)的狀況,使得原先應為直線之溝渠或者介層洞產生扭曲(wiggling)的情況,進而影響後續金屬化製程的良率。In a typical damascene process, the hard mask layer typically has a compressive stress that can be as high as -500 megapascals (MPa). When the compressive stress is directly applied to the dielectric layer having low mechanical strength and tensile stress, the dielectric layer will be subjected to line distortion, so that the original should be Straight ditches or via holes create wigling, which in turn affects the yield of subsequent metallization processes.
本發明於是提出一種在半導體基底中形成開口的方法,其可以有效避免線路變形的情況,且特別適用於金屬內連線的鑲嵌製程。The present invention thus proposes a method of forming an opening in a semiconductor substrate, which can effectively avoid the deformation of the line, and is particularly suitable for the damascene process of the metal interconnect.
根據本發明之一實施例,本發明提供了一種在半導體基底上形成開口的方法。此方法首先提供一基底。接著於基底上形成一介電層以及一蓋層,其中介電層的厚度與蓋層的厚度比值實質上介於15至1.5之間。然後於蓋層上形成一圖案化之氮化硼層。最後進行一蝕刻製程,利用圖案化之氮化硼層為遮罩,蝕刻蓋層以及介電層,且於蓋層以及介電層中形成一開口。In accordance with an embodiment of the present invention, the present invention provides a method of forming an opening in a semiconductor substrate. This method first provides a substrate. A dielectric layer and a cap layer are then formed on the substrate, wherein the ratio of the thickness of the dielectric layer to the thickness of the cap layer is substantially between 15 and 1.5. A patterned boron nitride layer is then formed over the cap layer. Finally, an etching process is performed, using the patterned boron nitride layer as a mask, etching the cap layer and the dielectric layer, and forming an opening in the cap layer and the dielectric layer.
根據本發明另一實施例,本發明提供了一種在半導體基底上形成開口的方法。此方法首先提供一基底,接著於基底上形成一介電層。然後於介電層上形成一圖案化之複合硬遮罩層,其中圖案化之複合硬遮罩層至少包含一金屬氮化物層以及一氮化硼層。最後進行一蝕刻製程,利用圖案化之複合硬遮罩層為遮罩,蝕刻介電層,且於介電層中形成一開口。In accordance with another embodiment of the present invention, the present invention provides a method of forming an opening in a semiconductor substrate. The method first provides a substrate and then forms a dielectric layer on the substrate. A patterned composite hard mask layer is then formed over the dielectric layer, wherein the patterned composite hard mask layer comprises at least a metal nitride layer and a boron nitride layer. Finally, an etching process is performed, using the patterned composite hard mask layer as a mask, etching the dielectric layer, and forming an opening in the dielectric layer.
根據本發明又一實施例,本發明提供了一種在半導體基底上形成開口的方法。此方法首先提供一基底,接著於基底上形成一介電層。然後於介電層上形成一圖案化之複合硬遮罩層,其中圖案化之複合硬遮罩層至少包含一第一氮化硼層以及一第二氮化硼層,其中第二氮化硼層設置於第一氮化硼層上,且第二氮化硼層中硼的濃度不同於第一氮化硼層中硼的濃度。最後進行一蝕刻製程,利用圖案化之複合硬遮罩層為遮罩,蝕刻介電層且於介電層中形成一開口。In accordance with yet another embodiment of the present invention, the present invention provides a method of forming an opening in a semiconductor substrate. The method first provides a substrate and then forms a dielectric layer on the substrate. Forming a patterned composite hard mask layer on the dielectric layer, wherein the patterned composite hard mask layer comprises at least a first boron nitride layer and a second boron nitride layer, wherein the second boron nitride layer The layer is disposed on the first boron nitride layer, and the concentration of boron in the second boron nitride layer is different from the concentration of boron in the first boron nitride layer. Finally, an etching process is performed, using the patterned composite hard mask layer as a mask, etching the dielectric layer and forming an opening in the dielectric layer.
本發明主要利用氮化硼層作為硬遮罩層,並搭配不同濃度的硼原子,或者搭配金屬氮化物層,以形成複合式的硬遮罩層。複合式的硬遮罩層相較於介電層可具有高蝕刻選擇比,且可有效避免線路變形的情況發生。The invention mainly utilizes a boron nitride layer as a hard mask layer, and is matched with boron atoms of different concentrations or with a metal nitride layer to form a composite hard mask layer. The composite hard mask layer can have a high etching selectivity ratio compared to the dielectric layer, and can effectively avoid the occurrence of line deformation.
為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之數個較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。The present invention will be further understood by those skilled in the art to which the present invention pertains. The effect.
請參考第1圖至第3圖,所繪示為本發明第一實施例中在半導體基底上形成開口的方法的步驟示意圖。如第1圖所示,首先提供一基底300,基底300例如是矽基底(silicon substrate)、磊晶矽(epitaxial silicon substrate)、矽鍺半導體基底(silicon germanium substrate)、矽覆絕緣(silicon-on-insulator,SOI)基底,甚至是玻璃基底、石英基底或陶瓷基底等,但並不以此為限。基底300表面上形成有至少一導電元件(圖未示),該導電元件可為金屬氧化物半導體電晶體元件的汲極/源極與閘極、電阻、直通矽晶穿孔(Through-Silicon Via,TSV)、摻雜區、金屬導線層等。且視產品設計與製程需求,此導電元件與基底300之間另可形成有至少一層間介電層(圖未示)。Referring to FIGS. 1 to 3, there are shown schematic steps of a method of forming an opening on a semiconductor substrate in a first embodiment of the present invention. As shown in FIG. 1, a substrate 300 is first provided. The substrate 300 is, for example, a silicon substrate, an epitaxial silicon substrate, a silicon germanium substrate, and a silicon-on insulator. -insulator, SOI) substrate, even glass substrate, quartz substrate or ceramic substrate, etc., but not limited thereto. At least one conductive element (not shown) is formed on the surface of the substrate 300, and the conductive element may be a drain/source and a gate of the metal oxide semiconductor transistor, a resistor, and a through-silicon via (Through-Silicon Via). TSV), doped regions, metal wire layers, and the like. Between the conductive element and the substrate 300, at least one interlayer dielectric layer (not shown) may be formed depending on product design and process requirements.
接著,於基底300上形成一介電層302,形成的方法例如使用電漿加強化學氣相沈積(plasma enhanced chemical vapor deposition,PECVD)或高密度電漿化學氣相沈積(high density plasma CVD)等,但並不以此為限。介電層302可以包含一層或多層的介電材質,其可以使用各種介電材質,於本發明較佳實施例中,介電層302宜選用介電常數低於3.5的材質,例如FSG(fluorine-doped oxide)、HSQ(hydrogen silsesquioxane)(SiO:H)、MSQ(methyl silsesquioxane)(SiO:CH3)、HOSP、H-PSSQ(hydrio polysilsesquioxane)、M-PSSQ(methyl polysilsesquioxane)、P-PSSQ(phenyl polysilsesquioxane)或多孔性凝膠(porous sol-gel)等,但並不以此為限,例如介電層302也可以採用如二氧化矽等材料。而於本發明較佳實施例中,可選擇性地在介電層302上形成一蓋層304。蓋層304可加強後續形成圖案化之硬遮罩層306(第1圖未示)在介電層302上的貼附力。蓋層的材質例如是氮化矽(SiN)、氧化矽(SiO2)、碳化矽(SiC)、氮碳化矽(SiCN)或氮氧化矽(SiON)等,但並不以此為限。介電層302的厚度與蓋層304的厚度比值實質上介於15至1.5之間。於一實施例中,介電層302的厚度實質上介於1000埃至3000埃之間,蓋層304的厚度實質上介於200埃至600埃之間。Next, a dielectric layer 302 is formed on the substrate 300 by using, for example, plasma enhanced chemical vapor deposition (PECVD) or high density plasma CVD. , but not limited to this. The dielectric layer 302 may comprise one or more layers of dielectric materials, and various dielectric materials may be used. In the preferred embodiment of the present invention, the dielectric layer 302 is preferably made of a material having a dielectric constant of less than 3.5, such as FSG (fluorine). -doped oxide), HSQ (hydrogen silsesquioxane) (SiO:H), MSQ (methyl silsesquioxane) (SiO:CH 3 ), HOSP, H-PSSQ (hydrio polysilsesquioxane), M-PSSQ (methyl polysilsesquioxane), P-PSSQ ( Phenyl polysilsesquioxane) or porous sol-gel, etc., but not limited thereto. For example, the dielectric layer 302 may also be made of a material such as cerium oxide. In a preferred embodiment of the invention, a cap layer 304 is selectively formed over the dielectric layer 302. The cap layer 304 enhances the adhesion of the subsequently patterned hard mask layer 306 (not shown) on the dielectric layer 302. The material of the cap layer is, for example, tantalum nitride (SiN), yttrium oxide (SiO 2 ), tantalum carbide (SiC), niobium oxynitride (SiCN) or bismuth oxynitride (SiON), but is not limited thereto. The ratio of the thickness of the dielectric layer 302 to the thickness of the cap layer 304 is substantially between 15 and 1.5. In one embodiment, the thickness of the dielectric layer 302 is substantially between 1000 angstroms and 3000 angstroms, and the thickness of the cap layer 304 is substantially between 200 angstroms and 600 angstroms.
接著如第2圖所示,於蓋層304上形成一圖案化之硬遮罩層306。例如於蓋層304的表面上全面沈積一硬遮罩層(圖未示),然後在硬遮罩層的表面上塗布一光阻層(圖未示),並進行一微影暨蝕刻製程,以形成圖案化之硬遮罩層306,使得圖案化之硬遮罩層306至少具有一開口308,開口308用於定義後續在介電層302中形成開口的位置,例如鑲嵌製程中的溝渠或介層孔的位置。本實施例其中一個特點在於,圖案化之硬遮罩層306係為一氮化硼(boron nitride,BN)層。形成氮化硼層的方式可用習知同位(in-situ)沈積的方式形成,例如在沈積製程中將硼原子與氮原子一起通入而形成氮化硼層,而藉由通入的流量可控制氮化硼層中硼原子的濃度。當然,氮化硼層亦可用其他方式形成,例如以沈積製程配合離子佈植(ion implant)等方式。Next, as shown in FIG. 2, a patterned hard mask layer 306 is formed over the cap layer 304. For example, a hard mask layer (not shown) is deposited on the surface of the cap layer 304, and then a photoresist layer (not shown) is coated on the surface of the hard mask layer, and a lithography and etching process is performed. To form a patterned hard mask layer 306 such that the patterned hard mask layer 306 has at least one opening 308 for defining a subsequent location in the dielectric layer 302, such as a trench in the damascene process or The location of the via. One of the features of this embodiment is that the patterned hard mask layer 306 is a boron nitride (BN) layer. The manner of forming the boron nitride layer can be formed by conventional in-situ deposition, for example, by introducing a boron atom together with a nitrogen atom to form a boron nitride layer in a deposition process, and the flow rate through the pass can be Controlling the concentration of boron atoms in the boron nitride layer. Of course, the boron nitride layer can also be formed in other ways, such as by a deposition process in conjunction with an ion implant.
如第3圖所示,接著進行一蝕刻製程,利用圖案化之硬遮罩層306(可選擇性地與圖案化之光阻層一同)為遮罩,蝕刻蓋層304以及介電層302,且於蓋層304以及介電層304中形成一開口310。開口310的實施方式(形狀、深度)可視各種製程或產品需求而做調整,例如在鑲嵌製程中,開口310可以作為單鑲嵌製程中的溝渠或者是雙鑲嵌中的溝渠或者介層洞之至少一者。As shown in FIG. 3, an etching process is then performed to etch the cap layer 304 and the dielectric layer 302 by using a patterned hard mask layer 306 (optionally with the patterned photoresist layer) as a mask. An opening 310 is formed in the cap layer 304 and the dielectric layer 304. The embodiment (shape, depth) of the opening 310 can be adjusted according to various processes or product requirements. For example, in the damascene process, the opening 310 can be used as a ditch in a single damascene process or at least one ditch or via hole in a dual damascene process. By.
本發明由於使用了氮化硼作為圖案化之硬遮罩層306,因此可避免習知圖案化硬遮罩層,其過大的壓縮應力而使得位於低介電常數介電層302中之開口310的內壁產生線路變形的問題。請參考第4圖,所繪示為本發明使用氮化硼作為圖案化之硬遮罩層時,其應力與硼原子濃度的關係示意圖,其中橫軸為硼原子在圖案化硬遮罩層中所佔全部原子的百分比(單位:%),縱軸為其應力數值(單位:MPa)。由第4圖可知,隨著圖案化之硬遮罩層306中硼原子濃度的增加,其應力可從壓縮應力(-500 MPa)逐漸轉為伸張應力(750Mpa)。故若適當地調整硼原子濃度,即可產生具有不同應力的圖案化之硬遮罩層306,如此一來,即可調和(tune)作用於下方介電層302之應力,而避免開口310之內壁在蝕刻製程後產生線路變形的問題。Since the present invention uses boron nitride as the patterned hard mask layer 306, the conventional patterned hard mask layer can be avoided, which has excessive compressive stress and causes the opening 310 in the low-k dielectric layer 302. The inner wall creates a problem of line deformation. Please refer to FIG. 4 , which is a schematic diagram showing the relationship between stress and boron atom concentration when boron nitride is used as a patterned hard mask layer, wherein the horizontal axis is a boron atom in the patterned hard mask layer. The percentage of all atoms (unit: %), and the vertical axis is the stress value (unit: MPa). As can be seen from Fig. 4, as the concentration of boron atoms in the patterned hard mask layer 306 increases, the stress can be gradually changed from compressive stress (-500 MPa) to tensile stress (750 MPa). Therefore, if the boron atom concentration is appropriately adjusted, a patterned hard mask layer 306 having different stresses can be generated, so that the stress acting on the lower dielectric layer 302 can be tuned to avoid the opening 310. The inner wall causes a problem of line deformation after the etching process.
請參考第5圖,所繪示為本發明使用氮化硼作為圖案化之硬遮罩層時,其蝕刻速率與硼原子濃度的示意圖,其中橫軸為硼原子在圖案化硬遮罩層中所佔全部原子的百分比(單位:%),縱軸為蝕刻速率(單位:埃/分鐘,/min)。由第5圖可知,隨著圖案化之硬遮罩層306中硼原子濃度的增加,其蝕刻速率逐漸下降。相較於介電層302的蝕刻速率(第5圖中以方點表示),其值大致上為920埃/分鐘。故若圖案化之硬遮罩層306中硼原子濃度越大,其對於介電層302的蝕刻選擇比也會相對增加。Please refer to FIG. 5, which is a schematic diagram showing the etching rate and boron atom concentration when boron nitride is used as a patterned hard mask layer, wherein the horizontal axis is boron atoms in the patterned hard mask layer. The percentage of all atoms (unit: %), and the vertical axis is the etching rate (unit: angstrom/minute, /min). As can be seen from Fig. 5, as the concentration of boron atoms in the patterned hard mask layer 306 increases, the etching rate gradually decreases. The value is substantially 920 angstroms/minute compared to the etch rate of the dielectric layer 302 (indicated by a square dot in Fig. 5). Therefore, if the concentration of boron atoms in the patterned hard mask layer 306 is larger, the etching selectivity ratio to the dielectric layer 302 will also increase relatively.
由第4圖與第5圖可以得知,圖案化之硬遮罩層306中硼原子的濃度一方面會影響其應力,一方面又會影響和介電層302的蝕刻選擇比,故適當的硼原子濃度是必需的。於本發明較佳實施例中,圖案化之硬遮罩層306中,硼的濃度佔全部原子的比例大體上介於50%至80%之間,較佳者為60%至70%之間,其中又以65%最佳。此外,本實施例圖案化之硬遮罩層中的氮化硼會具有一應力,其範圍大體上介於-50 MPa至400 MPa之間,較佳者為10 MPa至100 MPa之間,其中又以65 MPa最佳。It can be seen from FIGS. 4 and 5 that the concentration of boron atoms in the patterned hard mask layer 306 affects the stress on the one hand, and affects the etching selectivity ratio of the dielectric layer 302 on the one hand, so that appropriate A boron atom concentration is required. In a preferred embodiment of the invention, in the patterned hard mask layer 306, the concentration of boron in the total atomic proportion is generally between 50% and 80%, preferably between 60% and 70%. , which is 65% best. In addition, the boron nitride in the patterned hard mask layer of the present embodiment may have a stress ranging substantially from -50 MPa to 400 MPa, preferably from 10 MPa to 100 MPa, wherein It is also best at 65 MPa.
請參考第6圖與第7圖,所繪示為本發明第二實施例中在半導體基底上形成開口的方法的步驟示意圖。如第6圖所示,首先提供一基底400,接著在基底400上形成一介電層402以及選擇性的一蓋層404。基底400、介電層406以及蓋層404的實施方式和第一實施例相同,在此不加以贅述。接著在介電層406(或選擇性的蓋層404)上形成一圖案化之硬遮罩層406,其具有一開口408。於本實施例中,圖案化之硬遮罩層406為一複合層,其包含一氮化硼層407以及一金屬氮化物層409。氮化硼層407和金屬氮化物層409的上下位置與堆疊層數可視產品而做調整,較佳者,金屬氮化物層409會設置於氮化硼層407上。於本發明較佳實施例中,金屬氮化物層409係為一氮化鈦(TiN)。氮化硼層407的形成方式與實施方式於第一實施例相同,在此不加以贅述。最後如第7圖所示,進行一蝕刻製程,利用圖案化之硬遮罩層406為遮罩,蝕刻蓋層404以及介電層402,且於蓋層404以及介電層404中形成一開口410。於本實施例中,由於金屬氮化物層409係設置於氮化硼層407之上方,故金屬氮化物層409例如氮化鈦於蝕刻製程時,相較於介電層402可提供較佳的蝕刻選擇比,而較靠近介電層402的氮化硼層407則可調和介電層402的應力情況,以避免習知線路變形的情況發生。Please refer to FIG. 6 and FIG. 7 , which are schematic diagrams showing the steps of a method for forming an opening on a semiconductor substrate in a second embodiment of the present invention. As shown in FIG. 6, a substrate 400 is first provided, followed by a dielectric layer 402 and an optional cap layer 404 formed on the substrate 400. The embodiment of the substrate 400, the dielectric layer 406, and the cap layer 404 are the same as those of the first embodiment, and are not described herein. A patterned hard mask layer 406 is then formed over the dielectric layer 406 (or the optional cap layer 404) having an opening 408. In the present embodiment, the patterned hard mask layer 406 is a composite layer comprising a boron nitride layer 407 and a metal nitride layer 409. The upper and lower positions of the boron nitride layer 407 and the metal nitride layer 409 and the number of stacked layers can be adjusted depending on the product. Preferably, the metal nitride layer 409 is disposed on the boron nitride layer 407. In a preferred embodiment of the invention, the metal nitride layer 409 is a titanium nitride (TiN). The manner of forming the boron nitride layer 407 is the same as that of the first embodiment, and will not be described herein. Finally, as shown in FIG. 7, an etching process is performed, using the patterned hard mask layer 406 as a mask, etching the cap layer 404 and the dielectric layer 402, and forming an opening in the cap layer 404 and the dielectric layer 404. 410. In the present embodiment, since the metal nitride layer 409 is disposed above the boron nitride layer 407, the metal nitride layer 409 such as titanium nitride can provide better contrast than the dielectric layer 402 during the etching process. The etching selectivity is selected, and the boron nitride layer 407 closer to the dielectric layer 402 adjusts the stress of the dielectric layer 402 to avoid the occurrence of conventional line deformation.
請參考第8至9圖,所繪示為本發明第三實施例在半導體基底上形成開口的方法的步驟示意圖。如第9圖所示,首先提供一基底500,接著在基底500上形成一介電層502以及選擇性的一蓋層504。基底500、介電層502以及蓋層504的實施方式和第一實施例相同,在此不加以贅述。接著在介電層502(或選擇性的蓋層504)上形成一圖案化之硬遮罩層506,其具有一開口508。於本實施例中,圖案化之硬遮罩層506為一複合層,其包含一第一氮化硼層507以及一第二氮化硼層509。於本發明較佳實施例中,第一氮化硼507以及第二氮化硼層509中硼的濃度佔全部原子的比例大體上介於50%至80%之間。於本實施例中,第二氮化硼層509中硼原子的濃度會不同於第一氮化硼層507中硼原子的濃度,較佳者,第二氮化硼層509中硼原子的濃度會大於第一氮化硼層507中硼原子的濃度。最後,如第9圖所示,進行一蝕刻製程,利用圖案化之硬遮罩層506為遮罩,蝕刻蓋層504以及介電層502,且於蓋層504以及介電層504中形成一開口510。於本實施例中,由於具有較高硼原子濃度的第二氮化硼層509係設置於較低硼原子濃度的第一氮化硼層507之上方,故第二氮化硼層509於蝕刻製程時,相較於介電層502可提供較佳的蝕刻選擇比(請參考第5圖),而較靠近介電層502之第一氮化硼層507則可調和介電層502的應力情況(請參考第4圖),避免習知線路變形的情況發生。Please refer to FIGS. 8-9, which are schematic diagrams showing the steps of a method for forming an opening on a semiconductor substrate according to a third embodiment of the present invention. As shown in FIG. 9, a substrate 500 is first provided, followed by a dielectric layer 502 and an optional cap layer 504 formed on the substrate 500. The embodiment of the substrate 500, the dielectric layer 502, and the cap layer 504 is the same as that of the first embodiment, and will not be described herein. A patterned hard mask layer 506 is then formed over dielectric layer 502 (or optional cap layer 504) having an opening 508. In the present embodiment, the patterned hard mask layer 506 is a composite layer comprising a first boron nitride layer 507 and a second boron nitride layer 509. In a preferred embodiment of the invention, the concentration of boron in the first boron nitride 507 and the second boron nitride layer 509 is substantially between 50% and 80% of the total atomic ratio. In this embodiment, the concentration of boron atoms in the second boron nitride layer 509 may be different from the concentration of boron atoms in the first boron nitride layer 507. Preferably, the concentration of boron atoms in the second boron nitride layer 509 It will be greater than the concentration of boron atoms in the first boron nitride layer 507. Finally, as shown in FIG. 9, an etching process is performed, using the patterned hard mask layer 506 as a mask, etching the cap layer 504 and the dielectric layer 502, and forming a cap layer 504 and a dielectric layer 504. Opening 510. In the present embodiment, since the second boron nitride layer 509 having a higher boron atom concentration is disposed above the first boron nitride layer 507 having a lower boron atom concentration, the second boron nitride layer 509 is etched. During the process, a better etch selectivity ratio can be provided compared to the dielectric layer 502 (refer to FIG. 5), and the first boron nitride layer 507 closer to the dielectric layer 502 can adjust the stress of the dielectric layer 502. Situation (please refer to Figure 4) to avoid the occurrence of conventional line deformation.
值得注意的是,本第三實施例複合式的圖案化之硬遮罩層506並不限於第一氮化硼層507以及一第二氮化硼層509,於其他相關實施例中,圖案化之硬遮罩層506還可以包含第三氮化硼層(圖未示)設置於第二氮化硼層509上,或者是第四氮化硼層(圖未示)設置於第三氮化硼層上,較佳者,在於越上方的氮化硼層內硼的濃度越高,而越下方的氮化硼層內硼的濃度越低。而於本發明其他實施例中,第三實施例亦可與第二實施例結合,例如圖案化之硬遮罩層507可以包含複數個氮化硼層,而這些氮化硼層的上方可設置有一層或多層之金屬氮化物層,例如氮化鈦層。It should be noted that the composite patterned hard mask layer 506 of the third embodiment is not limited to the first boron nitride layer 507 and the second boron nitride layer 509. In other related embodiments, the patterning is performed. The hard mask layer 506 may further include a third boron nitride layer (not shown) disposed on the second boron nitride layer 509, or a fourth boron nitride layer (not shown) disposed on the third nitride layer. Preferably, on the boron layer, the boron concentration in the upper boron nitride layer is higher, and the boron concentration in the lower boron nitride layer is lower. In other embodiments of the present invention, the third embodiment may also be combined with the second embodiment. For example, the patterned hard mask layer 507 may include a plurality of boron nitride layers, and the boron nitride layers may be disposed above There are one or more layers of metal nitride, such as a layer of titanium nitride.
此外,本發明所提供在半導體基底上形成開口的方法,尤其適合應用於金屬內連線系統中的單鑲嵌製程或雙鑲嵌製程。舉例來說,當基底上設置有導電層(例如是下層的金屬連線)時,即可利用本發明之方法來形成開口以暴露該導電層,將導電層填入介電層之開口後,再進行平坦化製程,即可與下方導電層連接而形成金屬內連線系統。Furthermore, the present invention provides a method of forming an opening in a semiconductor substrate that is particularly suitable for use in a single damascene process or a dual damascene process in a metal interconnect system. For example, when a conductive layer (for example, a metal wiring of a lower layer) is disposed on the substrate, the method of the present invention can be used to form an opening to expose the conductive layer, and after filling the conductive layer into the opening of the dielectric layer, After the planarization process, the lower conductive layer can be connected to form a metal interconnect system.
綜上而言,本發明提出了一種在半導體基底上形成開口的方法,其主要利用氮化硼層作為硬遮罩層,並搭配不同濃度的硼原子,或者搭配金屬氮化物層,以形成複合式的硬遮罩層。複合式的硬遮罩層可具有高蝕刻選擇比,且可同時調和介電層的應力狀態而避免線路變形的情況發生。此外,由於低介電常數的介電層與氮化硼層之間常有貼附率不佳的問題,故亦可選擇性的在介電層與氮化硼之間設置蓋層,以增加圖案化之硬遮罩層之貼附率。本發明尤其可應用在金屬內連線系統中之單鑲嵌製程或雙鑲嵌製程中,用以避免溝渠或者介層孔產生線路變形的情況。In summary, the present invention proposes a method of forming an opening on a semiconductor substrate, which mainly utilizes a boron nitride layer as a hard mask layer, and is combined with boron atoms of different concentrations or with a metal nitride layer to form a composite. Hard mask layer. The composite hard mask layer can have a high etching selectivity ratio and can simultaneously adjust the stress state of the dielectric layer to avoid deformation of the line. In addition, since the low dielectric constant dielectric layer and the boron nitride layer often have a problem of poor adhesion, it is also possible to selectively provide a cap layer between the dielectric layer and the boron nitride to increase The adhesion rate of the patterned hard mask layer. The invention is particularly applicable to single damascene or dual damascene processes in metal interconnect systems to avoid deformation of the trench or via.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
300,400,500...基底300,400,500. . . Base
302,402,502...介電層302,402,502. . . Dielectric layer
304,404,504...蓋層304,404,504. . . Cover
306,406,506...圖案化之硬遮罩層306,406,506. . . Patterned hard mask layer
308,408,508...開口308,408,508. . . Opening
310,410,510...開口310,410,510. . . Opening
407...氮化硼層407. . . Boron nitride layer
409...金屬氮化物層409. . . Metal nitride layer
507...第一氮化硼層507. . . First boron nitride layer
509...第二氮化硼層509. . . Second boron nitride layer
第1圖至第3圖所繪示為本發明第一實施例中在半導體基底上形成開口的方法的步驟示意圖。1 to 3 are schematic views showing the steps of a method of forming an opening on a semiconductor substrate in the first embodiment of the present invention.
第4圖所繪示為本發明使用氮化硼作為圖案化之硬遮罩層時,其應力與硼原子濃度的示意圖。Figure 4 is a schematic view showing the stress and boron atom concentration when boron nitride is used as a patterned hard mask layer according to the present invention.
第5圖所繪示為本發明使用氮化硼作為圖案化之硬遮罩層時,其蝕刻速率與硼原子濃度的示意圖。FIG. 5 is a schematic view showing the etching rate and boron atom concentration when boron nitride is used as a patterned hard mask layer according to the present invention.
第6圖與第7圖所繪示為本發明第二實施例中在半導體基底上形成開口的方法的步驟示意圖。6 and 7 are schematic diagrams showing the steps of a method of forming an opening on a semiconductor substrate in a second embodiment of the present invention.
第8圖至第9圖所繪示為本發明第三實施例中在半導體基底上形成開口的方法的步驟示意圖。8 to 9 are schematic views showing the steps of a method of forming an opening on a semiconductor substrate in a third embodiment of the present invention.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100112943A TWI518766B (en) | 2011-04-14 | 2011-04-14 | Method of forming opening on semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100112943A TWI518766B (en) | 2011-04-14 | 2011-04-14 | Method of forming opening on semiconductor substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201241909A TW201241909A (en) | 2012-10-16 |
TWI518766B true TWI518766B (en) | 2016-01-21 |
Family
ID=47600201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100112943A TWI518766B (en) | 2011-04-14 | 2011-04-14 | Method of forming opening on semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI518766B (en) |
-
2011
- 2011-04-14 TW TW100112943A patent/TWI518766B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201241909A (en) | 2012-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9754882B2 (en) | Interconnect structure having air gap and method of forming the same | |
US11011421B2 (en) | Semiconductor device having voids and method of forming same | |
CN107017225B (en) | Semiconductor structure and forming method thereof | |
US9613880B2 (en) | Semiconductor structure and fabrication method thereof | |
TWI570840B (en) | Semiconductor device and manufacturing method thereof | |
US7465676B2 (en) | Method for forming dielectric film to improve adhesion of low-k film | |
US20100022084A1 (en) | Method for Forming Interconnect Structures | |
US9824918B2 (en) | Method for electromigration and adhesion using two selective deposition | |
US20070232048A1 (en) | Damascene interconnection having a SiCOH low k layer | |
US7790601B1 (en) | Forming interconnects with air gaps | |
US8647989B2 (en) | Method of forming opening on semiconductor substrate | |
US20070205507A1 (en) | Carbon and nitrogen based cap materials for metal hard mask scheme | |
JP2006041519A (en) | Method of manufacturing dual damascene wiring | |
US9870944B2 (en) | Back-end-of-line (BEOL) interconnect structure | |
US20060043588A1 (en) | Semiconductor device including a low-k metallization layer stack for enhanced resistance against electromigration | |
TWI588935B (en) | Method for forming semiconductor device structure | |
US20080188074A1 (en) | Peeling-free porous capping material | |
US10453794B2 (en) | Interconnect structure for semiconductor devices | |
JP2006135363A (en) | Semiconductor device and method of manufacturing the semiconductor device | |
TWI518766B (en) | Method of forming opening on semiconductor substrate | |
US20060166491A1 (en) | Dual damascene interconnection having low k layer and cap layer formed in a common PECVD process | |
JP2005005697A (en) | Manufacturing method of semiconductor device | |
JP2010165760A (en) | Semiconductor device and method for manufacturing the semiconductor device | |
JP2007294967A (en) | Interconnecting structure of longer lifetime, and manufacturing method therefor | |
KR100731085B1 (en) | Method of forming copper interconnection using dual damascene process |