TWI517500B - Antenna module and wireless communication device having the antenna module - Google Patents
Antenna module and wireless communication device having the antenna module Download PDFInfo
- Publication number
- TWI517500B TWI517500B TW102107664A TW102107664A TWI517500B TW I517500 B TWI517500 B TW I517500B TW 102107664 A TW102107664 A TW 102107664A TW 102107664 A TW102107664 A TW 102107664A TW I517500 B TWI517500 B TW I517500B
- Authority
- TW
- Taiwan
- Prior art keywords
- antenna
- horizontal
- vertical
- substrate
- frequency
- Prior art date
Links
Landscapes
- Aerials With Secondary Devices (AREA)
Description
本發明是關於一種天線模組,尤指一種全向性之雙頻天線,以及具有該天線模組之無線網路通訊裝置。 The present invention relates to an antenna module, and more particularly to an omnidirectional dual-frequency antenna and a wireless network communication device having the antenna module.
近年來,由於無線通訊產業的蓬勃發展,使得例如手機或個人數位助理等這類的可攜式無線通訊裝置成為人們生活的必需品,更造就了方便的生活環境。然而,在這類的可攜式無線通訊裝置中,天線裝置扮演著傳送與接收無線訊號的重要角色,因此天線裝置的操作特性直接影響了無線通訊裝置的無線訊號收發能力與品質。 In recent years, due to the booming development of the wireless communication industry, portable wireless communication devices such as mobile phones or personal digital assistants have become a necessity for people's lives, and have created a convenient living environment. However, in such portable wireless communication devices, the antenna device plays an important role in transmitting and receiving wireless signals. Therefore, the operational characteristics of the antenna device directly affect the wireless signal transceiving capability and quality of the wireless communication device.
通常,一個設計良好的天線裝置除了要有較低的折返損失(return loss)外,操作頻寬(bandwidth)也是極重要的一環。為了讓無線通訊裝置之使用者能更便利且清晰的接收無線訊號,不會因無線通訊系統商採用不同的信號傳輸頻帶而無法通訊,目前的無線通訊裝置多已藉由增加天線裝置數量或體積來使得無線通訊裝置可以於較大的頻寬或多頻帶中收發無線訊號。然而,在元件體積密度日漸提高以及無線通訊裝置日漸小型化的趨勢下,傳統的方式已無法符合需求。 In general, a well-designed antenna device is a very important part of the bandwidth in addition to the lower return loss. In order to enable the user of the wireless communication device to receive the wireless signal more conveniently and clearly, the wireless communication system does not use different signal transmission bands to communicate, and the current wireless communication device has increased the number or volume of the antenna device. In order to enable the wireless communication device to transmit and receive wireless signals in a large bandwidth or multiple frequency bands. However, in the trend of increasing component bulk density and increasing miniaturization of wireless communication devices, the conventional approach has been unable to meet the demand.
傳統應用於無線網路產品的天線可使用偶極(dipole)或單極(monopole)天線,這些類型的天線場形覆蓋範圍約為360度。從應用面來看,它的好處是可以有更多的使用者都能透過橋接器進入網際網路,但是由於天線的增益不高,無線通訊距離因此受限。為了要讓增益提高,可以應用指向性天線讓傳輸距離增加;但缺點則是,指向性天線場型以外方向的用戶無法有良好的傳輸效率;因此,全向性的天線以較大的訊號覆蓋率來迎合不同方位與距離的無線網路通訊使用者也就因應而生。 Antennas that are traditionally used in wireless networking products may use dipole or monopole antennas, and these types of antennas have a field coverage of approximately 360 degrees. From the application point of view, its advantage is that more users can enter the Internet through the bridge, but because the antenna gain is not high, the wireless communication distance is limited. In order to increase the gain, a directional antenna can be applied to increase the transmission distance; but the disadvantage is that users outside the directional antenna field cannot have good transmission efficiency; therefore, the omnidirectional antenna is covered with a larger signal. The wireless network communication users who are catering to different directions and distances will also be born.
一般來說,具有無線通訊功能的電子產品,例如:無線網路橋接器、無線網路路由器、以及無線網路分享器等,係透過無線天線來發射或接收無線電波,藉以傳遞或交換無線電訊號,進而存取無線網路。因此,本發明為了讓使用者能更隨時方便地存取無線通訊網路,以更理想的天線設置型態方式,達到全向性以及更大的訊號覆蓋範圍,以避免收訊死角的問題發生,進一步強化網路通訊品質為主要的發展目的。 In general, electronic products with wireless communication functions, such as wireless network bridges, wireless network routers, and wireless network sharers, transmit or receive radio waves through wireless antennas to transmit or exchange radio signals. To access the wireless network. Therefore, in order to enable the user to conveniently access the wireless communication network at any time, the present invention achieves omnidirectionality and greater signal coverage in a more ideal antenna setting mode to avoid the problem of receiving dead angles. Further strengthening the quality of network communication is the main development goal.
本發明的主要目的是在於提供一種天線模組,其藉由一水平基板上所設置之三組水平輻射體以及三個垂直於該水平基板之垂直基板上的垂直輻射體,構成全向性360度覆蓋範圍之雙頻天線模組,進一步達到提高增益值並降低死角之目的。 The main object of the present invention is to provide an antenna module that is configured to be omnidirectional 360 by three sets of horizontal radiators disposed on a horizontal substrate and three vertical radiators perpendicular to the vertical substrate of the horizontal substrate. The dual-frequency antenna module covering the range further improves the gain value and reduces the dead angle.
為達上述之目的,本發明之天線模組係包括:至少一水平基板、以及至少三組垂直基板。該水平基板係包括:一頂面、一底面、以及至少三組水平輻射體,且該些水平輻射體係以間隔環形設置於該頂面之上。該些垂直基板係分別包括:一垂直輻射體,而該些垂直基板係分別間隔環繞並垂直設置於該水平基板之該底面上,且各別位於兩水平輻射體之中央間隔處;其中,該些水平輻射體係與該些垂直輻射體相互呈垂直狀態。 For the above purposes, the antenna module of the present invention comprises: at least one horizontal substrate, and at least three sets of vertical substrates. The horizontal substrate comprises: a top surface, a bottom surface, and at least three sets of horizontal radiators, and the horizontal radiation systems are disposed on the top surface at intervals. The vertical substrate systems respectively include: a vertical radiator, and the vertical substrates are respectively spaced around and vertically disposed on the bottom surface of the horizontal substrate, and are respectively located at a central interval of the two horizontal radiators; wherein The horizontal radiation systems are perpendicular to the vertical radiators.
該水平輻射體以及該垂直輻射體係分別由一長天線以及一短天線所構成,係分別震盪產生一第一頻率以及一第二頻率,達到具有雙頻之功能。該第一頻率係為低頻之頻帶,其頻率範圍為2.4GHz;該第二頻率係為高頻之頻帶,其頻率範圍為5GHz。由於水平輻射體以及該垂直輻射體獨特設置之方式,使具有本發明天線模組之無線網路通訊裝置得到更佳之輻射場型與更高之增益值,而可大幅提高天線模組效能達到訊號覆蓋率高之全向性天線目的。 The horizontal radiator and the vertical radiation system are respectively composed of a long antenna and a short antenna, and respectively oscillate to generate a first frequency and a second frequency to achieve the function of dual frequency. The first frequency is a low frequency band having a frequency range of 2.4 GHz; the second frequency is a high frequency band having a frequency range of 5 GHz. The wireless network communication device having the antenna module of the present invention obtains a better radiation field type and a higher gain value due to the horizontal radiator and the unique arrangement of the vertical radiator, and can greatly improve the performance of the antenna module to reach the signal. The purpose of omnidirectional antennas with high coverage.
1‧‧‧天線模組 1‧‧‧Antenna Module
11‧‧‧水平基板 11‧‧‧Horizontal substrate
111‧‧‧頂面 111‧‧‧ top surface
112‧‧‧底面 112‧‧‧ bottom
113‧‧‧水平輻射體(H1、H2、H3) 113‧‧‧Horizontal radiators (H1, H2, H3)
1131‧‧‧U形天線 1131‧‧‧U-shaped antenna
11311‧‧‧長天線 11311‧‧‧Long antenna
11312‧‧‧短天線 11312‧‧‧Short antenna
1132‧‧‧U形天線 1132‧‧‧U-shaped antenna
11321‧‧‧長天線 11321‧‧‧Long antenna
11322‧‧‧短天線 11322‧‧‧Short antenna
1133‧‧‧饋入端 1133‧‧‧Feeding end
1134‧‧‧接地端 1134‧‧‧ Grounding terminal
12‧‧‧垂直基板 12‧‧‧Vertical substrate
121‧‧‧垂直輻射體(V1、V2、V3) 121‧‧‧Vertical radiators (V1, V2, V3)
1211‧‧‧C形天線 1211‧‧‧C antenna
12111‧‧‧長天線 12111‧‧‧Long antenna
12112‧‧‧短天線 12112‧‧‧Short antenna
1212‧‧‧C形天線 1212‧‧‧C-shaped antenna
12121‧‧‧長天線 12121‧‧‧Long antenna
12122‧‧‧短天線 12122‧‧‧Short antenna
1213‧‧‧饋入端 1213‧‧‧Feeding end
1214‧‧‧接地端 1214‧‧‧ Grounding terminal
13‧‧‧水平反射子 13‧‧‧ horizontal reflector
131‧‧‧末端 End of 131‧‧‧
14‧‧‧垂直反射子 14‧‧‧Vertical reflector
141‧‧‧末端 End of 141‧‧
2‧‧‧無線網路通訊裝置 2‧‧‧Wireless network communication device
21‧‧‧基板 21‧‧‧Substrate
22‧‧‧匯流排連接端 22‧‧‧ Busbar connection
211‧‧‧控制電路 211‧‧‧Control circuit
212‧‧‧訊號端 212‧‧‧ Signal end
9‧‧‧同軸電纜線 9‧‧‧ coaxial cable
91‧‧‧內導體 91‧‧‧ Inner conductor
92‧‧‧外導體 92‧‧‧Outer conductor
93‧‧‧訊號連接端 93‧‧‧Signal connection
圖一A係為本發明天線模組之立體示意圖。 A schematic perspective view of an antenna assembly of the system of the present invention.
圖一B係為本發明天線模組另一視角之立體示意圖。 FIG. 1B is a perspective view of another perspective view of the antenna module of the present invention.
圖二係為本發明天線模組之水平輻射體配置示意圖。 FIG. 2 is a schematic diagram of a horizontal radiator configuration of the antenna module of the present invention.
圖三係為本發明天線模組之垂直輻射體配置示意圖。 FIG. 3 is a schematic diagram of a vertical radiator configuration of the antenna module of the present invention.
圖四係為具有本發明天線模組之無線網路通訊裝置示意圖。 Figure 4 is a schematic diagram of a wireless network communication device having the antenna module of the present invention.
圖五係為本發明天線模組之水平輻射體H2與垂直輻射體V2於應用頻帶範圍(2.4~5.85GHz)內之測試折返損失圖。 Figure 5 is a graph of the test foldback loss of the horizontal radiator H2 and the vertical radiator V2 of the antenna module of the present invention in the application frequency range (2.4 to 5.85 GHz).
圖六A係本發明天線模組之水平輻射體H2於應用頻帶範圍(2.45~5.5GHz)之X-Z平面上測試所得的輻射場型圖。 Figure 6A is a radiation pattern diagram of the horizontal radiator H2 of the antenna module of the present invention tested on the X-Z plane of the application band range (2.45 to 5.5 GHz).
圖六B係本發明天線模組之水平輻射體H2於應用頻帶範圍(2.45~5.5GHz)之Y-Z平面上測試所得的輻射場型圖。 Figure 6B is a radiation pattern diagram of the horizontal radiator H2 of the antenna module of the present invention tested on the Y-Z plane of the application band range (2.45 to 5.5 GHz).
圖六C係本發明天線模組之水平輻射體H2於應用頻帶範圍(2.45~5.5GHz)之X-Y平面上測試所得的輻射場型圖。 Figure 6C is a radiation pattern diagram of the horizontal radiator H2 of the antenna module of the present invention tested on the X-Y plane of the application band range (2.45 to 5.5 GHz).
圖七A係本發明天線模組之垂直輻射體V2於應用頻帶範圍(2.45~5.5GHz)之X-Z平面上測試所得的輻射場型圖。 Figure 7A is a radiation pattern diagram of the vertical radiator V2 of the antenna module of the present invention tested on the X-Z plane of the application band range (2.45 to 5.5 GHz).
圖七B係本發明天線模組之垂直輻射體V2於應用頻帶範圍(2.45~5.5GHz)之Y-Z平面上測試所得的輻射場型圖。 Figure 7B is a radiation pattern diagram of the vertical radiator V2 of the antenna module of the present invention tested on the Y-Z plane of the application frequency range (2.45 to 5.5 GHz).
圖七C係本發明天線模組之垂直輻射體V2於應用頻帶範圍(2.45~5.5GHz)之X-Y平面上測試所得的輻射場型圖。 Figure 7C is a radiation pattern diagram of the vertical radiator V2 of the antenna module of the present invention tested on the X-Y plane of the application band range (2.45 to 5.5 GHz).
為了能更清楚地描述本發明所提出之天線模組以及具有該天線模組之無線網路通訊裝置,以下將配合圖式詳細說明之。 In order to more clearly describe the antenna module of the present invention and the wireless network communication device having the antenna module, the following will be described in detail with reference to the drawings.
請參閱圖一A、圖一B、圖二、圖三所示,圖一A、圖一B分別為本發明天線模組之立體示意圖以及另一視角之立體示意圖。圖二為本發明天線模組之水平輻射體配置示意圖。圖三為本發明天線模組之垂直輻射體配置示意圖。如圖一A、圖一B所示,本發明天線模組1係包括有:至少一水平基板11、至少三組垂直基板12、至少三組水平反射子13、以及至少三組垂直反射子14。該水平基板11係包括:一頂面111、一底面112、以及至少三組水平輻射體113(H1、H2、H3),且該些水平輻射體113係以間隔環形設置於該頂面111之上。該三組垂直基板12係分別包括:一垂直輻射體121(V1、V2、V3),而該些垂直基板12係分別間隔環繞並垂直設置於該水平 基板11之該底面112上,且各別位於兩水平輻射體113之中央間隔處;其中,該些水平輻射體113係與該些垂直輻射體121相互呈垂直狀態。 Referring to FIG. 1A, FIG. 1B, FIG. 2, and FIG. 3, FIG. 1A and FIG. 1B are respectively a perspective view of the antenna module of the present invention and a perspective view of another viewing angle. FIG. 2 is a schematic diagram of the horizontal radiator configuration of the antenna module of the present invention. FIG. 3 is a schematic diagram of a vertical radiator configuration of the antenna module of the present invention. As shown in FIG. 1A and FIG. 1B, the antenna module 1 of the present invention comprises: at least one horizontal substrate 11, at least three sets of vertical substrates 12, at least three sets of horizontal reflectors 13, and at least three sets of vertical reflectors 14 . The horizontal substrate 11 includes a top surface 111, a bottom surface 112, and at least three sets of horizontal radiators 113 (H1, H2, H3), and the horizontal radiators 113 are disposed at intervals in the top surface 111. on. The three sets of vertical substrates 12 respectively include: a vertical radiator 121 (V1, V2, V3), and the vertical substrates 12 are respectively spaced around and vertically disposed at the level. The bottom surface 112 of the substrate 11 is located at a central interval between the two horizontal radiators 113; wherein the horizontal radiators 113 are perpendicular to the vertical radiators 121.
該些水平反射子13係分別設置於該水平基板11之該頂面111上,並分別位於兩水平輻射體113中央間隔處,且該些水平反射子13各別之一末端131係相互連接。該些垂直反射子14係分別位於該垂直基板12之上,並與該垂直輻射體121相互間隔對應,且各別之該垂直反射子14其中之一末端141係分別與該水平基板11上之該水平反射子13耦合。 The horizontal reflectors 13 are respectively disposed on the top surface 111 of the horizontal substrate 11, and are respectively located at the central interval of the two horizontal radiators 113, and the one ends 131 of the horizontal reflectors 13 are connected to each other. The vertical reflectors 14 are respectively located on the vertical substrate 12 and are spaced apart from the vertical radiator 121, and one of the vertical reflectors 14 is respectively connected to the horizontal substrate 11 The horizontal reflector 13 is coupled.
也就是說,該天線模組1位於該頂面111上之該些水平反射子13,其各別正投影至該底面112之位置處分別設置有垂直於該水平基板11之該些垂直基板12,而於該頂面111上之兩水平反射子13中央處分別設有該水平輻射體113,且大致位於兩垂直輻射體121之中央處。於本發明實施例中,該水平輻射體113(H1)係大致位於該兩垂直輻射體121(V2、V3)中間;該水平輻射體113(H2)係大致位於該兩垂直輻射體121(V3、V1)中間;該水平輻射體113(H3)係大致位於該兩垂直輻射體121(V1、V2)中間。 That is, the horizontal reflectors 13 of the antenna module 1 on the top surface 111 are respectively disposed at positions corresponding to the bottom surface 112, and the vertical substrates 12 perpendicular to the horizontal substrate 11 are respectively disposed. The horizontal radiator 113 is respectively disposed at the center of the two horizontal reflectors 13 on the top surface 111, and is located substantially at the center of the two vertical radiators 121. In the embodiment of the present invention, the horizontal radiator 113 (H1) is substantially located between the two vertical radiators 121 (V2, V3); the horizontal radiator 113 (H2) is located substantially at the two vertical radiators 121 (V3) , V1) intermediate; the horizontal radiator 113 (H3) is located substantially between the two vertical radiators 121 (V1, V2).
如圖二所示,於本發明實施例中,該水平輻射體113係分別為兩反向開口之U形天線1131、1132所構成,該兩反向開口之U形天線1131、1132係分別包括一長天線11311、11321以及一短天線11312、11322。該水平輻射體113其中之一U型天線1131係藉由一饋入端1133將該長天線11311與對應之該短天線11312相互電性連接;而另一反向開口之U型天線1132則藉由一接地端1134將該另一反向之該長天線11321與對應之該短天線11322相互電性連接。其中,兩反向開口之U形天線1131、1132之該饋入端1133與該接地端1134係分別透過同一同軸電纜線9之一內導體91以及一外導體92電性連接,並藉由該同軸電纜線9之一訊號連接端93與其他電子零組件電性連接。 As shown in FIG. 2, in the embodiment of the present invention, the horizontal radiators 113 are respectively formed by two inverted openings U-shaped antennas 1131 and 1132, and the two inverted-open U-shaped antennas 1131 and 1132 are respectively included. A long antenna 11311, 11321 and a short antenna 11312, 11322. One of the U-shaped antennas 1131 of the horizontal radiator 113 is electrically connected to the corresponding short antenna 11312 by a feeding end 1133; and the U-shaped antenna 1132 of the other reverse opening is borrowed. The other inverted antenna 11321 and the corresponding short antenna 11322 are electrically connected to each other by a ground terminal 1134. The feeding end 1133 of the U-shaped antennas 1131 and 1132 of the two opposite openings and the grounding end 1134 are electrically connected to the inner conductor 91 and the outer conductor 92 of the same coaxial cable 9 respectively. One of the signal terminals 93 of the coaxial cable 9 is electrically connected to other electronic components.
如圖三所示,位於該垂直基板12上之該垂直輻射體121係分別為兩反向對應之C形天線1211、1212所構成,該兩反向對應之C形天線1211、1212係分別包括一長天線12111、12121以及一短天線12112、12122。該垂直輻射體121其中之一C型天線1211係藉由一饋入端1213將該長天線12111與對應之該短天線12112相互電性連接;而另一反向對應之C型天線1212則藉由一接地端1214將該另一反向之該長天線12121與對應之該短天 線12122相互電性連接。其中,兩反向對應之C形天線1211、1212之該饋入端1213與該接地端1214亦分別透過同該同軸電纜線9之該內導體91以及該外導體92電性連接,並藉由該訊號連接端93與其他電子零組件電性連接。 As shown in FIG. 3, the vertical radiators 121 on the vertical substrate 12 are respectively formed by two opposite-corresponding C-shaped antennas 1211 and 1212, and the two inverted corresponding C-shaped antennas 1211 and 1212 are respectively included. A long antenna 12111, 12121 and a short antenna 12112, 12122. One of the C-shaped antennas 1211 of the vertical radiator 121 is electrically connected to the corresponding short antenna 12112 by a feeding end 1213; and the other C-shaped antenna 1212 corresponding to the opposite one is borrowed. The other antenna 12121 is reversed by a ground terminal 1214 and corresponds to the short day The wires 12122 are electrically connected to each other. The feed end 1213 and the ground end 1214 of the two opposite-corresponding C-shaped antennas 1211 and 1212 are also electrically connected to the inner conductor 91 and the outer conductor 92 of the coaxial cable 9 respectively. The signal connection end 93 is electrically connected to other electronic components.
換句話說,本發明一種天線模組1之三組垂直基板12係分別以間隔120度環形垂直設置於該水平基板11之該底面112之上,而於該水平基板11之該頂面111且大致位於兩組垂直基板12中央間隔處分別設置有該水平輻射體113,而該水平輻射體113亦為三組且分別間隔120度環繞設置於該頂面111之上,該三組之水平反射子13係分別位於兩水平輻射體113中央間隔處,並於該頂面111之上以該些水平反射子13各別之該末端131相互呈Y形輻射狀排列連接,且設置於該些垂直基板12上各別之該垂直反射子14其中之該末端141係分別與該水平基板11上所設置之該水平反射子13未直接電性連接,僅為耦合。 In other words, the three sets of vertical substrates 12 of the antenna module 1 of the present invention are vertically disposed on the bottom surface 112 of the horizontal substrate 11 at intervals of 120 degrees, respectively, and on the top surface 111 of the horizontal substrate 11 and The horizontal radiator 113 is disposed at a central interval of the two sets of vertical substrates 12, and the horizontal radiators 113 are also arranged in three groups and are disposed on the top surface 111 at intervals of 120 degrees, and the horizontal reflection of the three groups The sub- 13 lines are respectively located at the central interval of the two horizontal radiators 113, and the end portions 131 of the horizontal reflectors 13 are arranged in a Y-shaped radial arrangement on the top surface 111, and are disposed on the vertical lines. Each of the vertical reflectors 14 on the substrate 12 is not directly electrically connected to the horizontal reflector 13 disposed on the horizontal substrate 11, respectively, and is only coupled.
進一步說,於本發明實施例中,該些水平輻射體113、垂直輻射體121、水平反射子13、以及垂直反射子14係可以是蝕刻印製天線或是導電油墨印刷天線其中之一,且分別設置於該水平基板11以及該垂直基板12之上。如此一來,位於該水平基板11以及該垂直基板12上各別之該水平輻射體113以及該垂直輻射體121皆可分別受到對應設置之該水平反射子13以及該垂直反射子14之助益,令該水平以及垂直之輻射體113、121之增益值大幅提昇,成為360度高訊號覆蓋率之全向性天線模組1。 Further, in the embodiment of the present invention, the horizontal radiator 113, the vertical radiator 121, the horizontal reflector 13, and the vertical reflector 14 may be one of an etched printed antenna or a conductive ink printed antenna, and They are respectively disposed on the horizontal substrate 11 and the vertical substrate 12. In this way, the horizontal radiator 113 and the vertical radiator 121 on the horizontal substrate 11 and the vertical substrate 12 can be respectively protected by the corresponding horizontal reflector 13 and the vertical reflector 14 respectively. The gain value of the horizontal and vertical radiators 113 and 121 is greatly increased, and the omnidirectional antenna module 1 has a 360-degree high signal coverage.
請參閱四所示,圖四為具有本發明天線模組之無線網路通訊裝置示意圖。本發明具有該天線模組1之無線網路通訊裝置2係可以是無線網路橋接器、無線網路路由器、以及無線網路分享器其中之一。於本發明實施例中,該無線網路通訊裝置2除了包括有該天線模組1之外,其更包括有:一基板21以及一匯流排連接端22。該基板21係為具有複數層電路層之印刷電路板;且於該基板21上設有一控制電路211,該控制電路211可提供無線網路通訊功能,該基板21上係具有複數個訊號端212,可透過複數個同軸電纜線9各別之該訊號連接端93分別與該天線模組1各別之該些水平輻射體113以及垂直輻射體121進行電性連接。該匯流排連接端22係與該基板21上之該控制電路211電性連接。 Please refer to FIG. 4, which is a schematic diagram of a wireless network communication device having the antenna module of the present invention. The wireless network communication device 2 having the antenna module 1 of the present invention may be one of a wireless network bridge, a wireless network router, and a wireless network sharer. In addition to the antenna module 1 , the wireless network communication device 2 further includes a substrate 21 and a bus bar connection end 22 . The substrate 21 is a printed circuit board having a plurality of circuit layers; and a control circuit 211 is disposed on the substrate 21, the control circuit 211 can provide a wireless network communication function, and the substrate 21 has a plurality of signal terminals 212. The plurality of coaxial cable lines 9 are electrically connected to the horizontal radiators 113 and the vertical radiators 121 of the antenna module 1 respectively. The busbar connection end 22 is electrically connected to the control circuit 211 on the substrate 21.
也就是說,於本較佳實施例中,該天線模組1之該水平基板 11以及垂直於該水平基板11之垂直基板12係組裝於該無線網路通訊裝置2內部之頂端處,並使該無線網路通訊裝置2具有一高覆蓋率且具有360度雙頻全向性之無線天線模組1,並進一步與位於該無線網路通訊裝置2內之該基板21進行電性連接。該控制電路211係設置於該基板21之上,該基板21則包括有電路佈局、若干積體電路元件與若干電子元件,以提供符合802.11a、802.11b、802.11g、802.11n或超寬頻(Ultrawideband,UWB)等通訊協定之無線網路傳輸功能,可提供較更良好穩定的雙頻無線訊號通訊品質與傳輸效率。由於此所述之控制電路211可選用習知技術來使用且非本發明之主要技術特徵,故以下將不贅述其詳細構成。 That is, in the preferred embodiment, the horizontal substrate of the antenna module 1 11 and a vertical substrate 12 perpendicular to the horizontal substrate 11 is assembled at the top of the interior of the wireless network communication device 2, and the wireless network communication device 2 has a high coverage and 360 degree dual frequency omnidirectionality. The wireless antenna module 1 is further electrically connected to the substrate 21 located in the wireless network communication device 2. The control circuit 211 is disposed on the substrate 21, and the substrate 21 includes a circuit layout, a plurality of integrated circuit components and a plurality of electronic components to provide compliance with 802.11a, 802.11b, 802.11g, 802.11n or ultra-wideband ( Ultrawideband, UWB) and other wireless network transmission functions of communication protocols can provide better and more stable dual-band wireless signal communication quality and transmission efficiency. Since the control circuit 211 described herein can be used with conventional techniques and is not the main technical features of the present invention, its detailed configuration will not be described below.
該無線網路通訊裝置2之該埠匯流排(Universal Serial Bus,USB)連接端22係與該基板21上之該控制電路211電性連接。該匯流排之傳輸規格可以是USB2.0、USB3.0或是RJ-45之網路傳輸介面匯流排。當然,該無線網路通訊裝置2更可以包括一WIFI或是藍芽(Bluetooth)裝置(圖中未示)與該控制電路211做電性連接,藉以達到無線傳輸之功能,由於WIFI與藍芽技術係為習知且廣為市場運用之無線通訊技術,故在此不再詳加贅述。 The universal serial bus (USB) connection 22 of the wireless network communication device 2 is electrically connected to the control circuit 211 on the substrate 21. The transmission specification of the bus can be USB2.0, USB3.0 or RJ-45 network transmission interface bus. Of course, the wireless network communication device 2 may further include a WIFI or a Bluetooth device (not shown) electrically connected to the control circuit 211, thereby achieving the function of wireless transmission, due to WIFI and Bluetooth. The technical department is a wireless communication technology that is well known and widely used in the market, so it will not be described in detail here.
請參閱圖五所示,圖五係為本發明天線模組之水平輻射體H2以及垂直輻射體V2測試折返損失所得之圖形。舉例來說,以該水平基板11上其中之一水平輻射體113(H2)以及其中之一組該垂直基板12上之垂直輻射體121(V2)的折返損失圖例子經由測試後可得下列數據:Ch1 Tr1 s11 1 2.4000000 GHz -20.603dB;Ch1 Tr1 s11 2 2.4500000 GHz -19.177dB;Ch1 Tr1 s11 3 2.5000000 GHz -18.577dB;Ch1 Tr1 s11 4 5.1500000 GHz -12.747dB;Ch1 Tr1 s11 5 5.5000000 GHz -13.704dB;Ch1 Tr1 s11 6 5.8500000 GHz -16.740dB。Ch1 Tr2 s22 1 2.4000000 GHz -21.290dB;Ch1 Tr2 s22 2 2.4500000 GHz -14.089dB;Ch1 Tr2 s22 3 2.5000000 GHz -8.6797dB; Ch1 Tr2 s22 4 5.1500000 GHz -9.9644dB;Ch1 Tr2 s22 5 5.5000000 GHz -8.9896dB;Ch1 Tr2 s22 6 5.8500000 GHz -12.911dB。Ch1 Tr3 s21 1 2.4000000 GHz -27.463dB;Ch1 Tr3 s21 2 2.4500000 GHz -39.404dB;Ch1 Tr3 s21 3 2.5000000 GHz -40.183dB;Ch1 Tr3 s21 4 5.1500000 GHz -40.598dB;Ch1 Tr3 s21 5 5.5000000 GHz -39.600dB;Ch1 Tr3 s21 6 5.8500000 GHz -52.577dB。Ch1 Tr4 s12 1 2.4000000 GHz -27.515dB;Ch1 Tr4 s12 2 2.4500000 GHz -39.517dB;Ch1 Tr4 s12 3 2.5000000 GHz -40.106dB;Ch1 Tr4 s12 4 5.1500000 GHz -42.097dB;Ch1 Tr4 s12 5 5.5000000 GHz -39.277dB;Ch1 Tr4 s12 6 5.8500000 GHz -52.279dB。 Referring to FIG. 5, FIG. 5 is a graph showing the return loss of the horizontal radiator H2 and the vertical radiator V2 of the antenna module of the present invention. For example, the following data can be obtained after the test by using one of the horizontal radiators (H2) on the horizontal substrate 11 and the vertical radiator 121 (V2) on one of the vertical substrates 12; :Ch1 Tr1 s11 1 2.4000000 GHz -20.603dB; Ch1 Tr1 s11 2 2.4500000 GHz -19.177dB; Ch1 Tr1 s11 3 2.5000000 GHz -18.577dB; Ch1 Tr1 s11 4 5.1500000 GHz -12.747dB; Ch1 Tr1 s11 5 5.5000000 GHz -13.704dB ;Ch1 Tr1 s11 6 5.8500000 GHz -16.740dB. Ch1 Tr2 s22 1 2.4000000 GHz -21.290dB; Ch1 Tr2 s22 2 2.4500000 GHz -14.089dB; Ch1 Tr2 s22 3 2.5000000 GHz -8.6797dB; Ch1 Tr2 s22 4 5.1500000 GHz -9.9644dB; Ch1 Tr2 s22 5 5.5000000 GHz -8.9896dB; Ch1 Tr2 s22 6 5.8500000 GHz -12.911dB. Ch1 Tr3 s21 1 2.4000000 GHz -27.463dB; Ch1 Tr3 s21 2 2.4500000 GHz -39.404dB; Ch1 Tr3 s21 3 2.5000000 GHz -40.183dB; Ch1 Tr3 s21 4 5.1500000 GHz -40.598dB; Ch1 Tr3 s21 5 5.5000000 GHz -39.600dB; Ch1 Tr3 s21 6 5.8500000 GHz -52.577dB. Ch1 Tr4 s12 1 2.4000000 GHz -27.515dB; Ch1 Tr4 s12 2 2.4500000 GHz -39.517dB; Ch1 Tr4 s12 3 2.5000000 GHz -40.106dB; Ch1 Tr4 s12 4 5.1500000 GHz -42.097dB; Ch1 Tr4 s12 5 5.5000000 GHz -39.277dB; Ch1 Tr4 s12 6 5.8500000 GHz -52.279dB.
由以上折返損失測試所得之數據可清楚知道,本發明該天線模組1之該水平輻射體113(H2)以及垂直輻射體121(V2)在2.45GHz之該第一頻率(低頻)間的折返損失以及在5.5GHz之該第二頻率(高頻)間的折返損失中表現較佳。 It can be clearly seen from the data obtained by the above-mentioned foldback loss test that the horizontal radiator 113 (H2) and the vertical radiator 121 (V2) of the antenna module 1 of the present invention are folded back at the first frequency (low frequency) of 2.45 GHz. The loss and the return loss at the second frequency (high frequency) of 5.5 GHz are better.
請參考下列表一所示,本發明天線模組之該些水平輻射體113(H1、H2、H3)於不同座標平面之第一頻率(2450MHz,低頻)與第二頻率(5500MHz,高頻)的各別最大、最小、以及平均增益值(dB)之測試數值如下:
請參閱圖六A、圖六B、以及圖六C所示,圖六A係本發明天線模組之水平輻射體H2於應用頻帶範圍(2.45~5.5GHz)之X-Z平面上測試所得的輻射場型圖。圖六B係本發明天線模組之水平輻射體H2於應用頻帶範圍(2.45~5.5GHz)之Y-Z平面上測試所得的輻射場型圖。圖六C係本發明天線模組之水平輻射體H2於應用頻帶範圍(2.45~5.5GHz)之X-Y平面上測試所得的輻射場型圖。 Please refer to FIG. 6A, FIG. 6B, and FIG. 6C. FIG. 6A is a radiation field of the horizontal radiator H2 of the antenna module of the present invention tested on the XZ plane of the application frequency range (2.45-5.5 GHz). Type map. Figure 6B is a radiation pattern diagram of the horizontal radiator H2 of the antenna module of the present invention tested on the Y-Z plane of the application band range (2.45 to 5.5 GHz). Figure 6C is a radiation pattern diagram of the horizontal radiator H2 of the antenna module of the present invention tested on the X-Y plane of the application band range (2.45 to 5.5 GHz).
由於本發明該天線模組1之三組水平輻射體113(H1、H2、H3)其結構與設置的方式與位置皆大致相同,故此,僅針對其中一水平輻射體113(H2)所應用於頻帶範圍(2.45、5.5GHz)進行於X-Z、Y-Z、以及X-Y平面上測試所得的輻射場型圖進行舉例說明並詳加敘述。 Since the three sets of horizontal radiators 113 (H1, H2, H3) of the antenna module 1 of the present invention are substantially identical in structure and arrangement, therefore, only one of the horizontal radiators 113 (H2) is applied. The radiation field pattern obtained by testing the XZ, YZ, and XY planes in the frequency band range (2.45, 5.5 GHz) is exemplified and described in detail.
如圖六A之本發明天線模組之水平輻射體113(H2)於應用頻帶範圍(2.45、5.5GHz)之X-Z平面上測試所得的輻射場型圖以及配合上述表一中可得知,該水平輻射體113(H2)應用於低頻之第一頻率(2.45GHz)時,其X-Z平面方向上之最大增益值可高達3.72dB,最小增益值為-17.02dB,其增益值平均為-0.18 dB;另外,該水平輻射體113(H2)應用於第二頻率(5.5GHz)時,其X-Z平面方向上之最大增益值可高達3.84dB,最小增益值為-16.83dB,其增益值平均為-0.11 dB。 As shown in FIG. 6A, the radiation pattern of the horizontal radiator 113 (H2) of the antenna module of the present invention is tested on the XZ plane of the application frequency range (2.45, 5.5 GHz) and can be seen in Table 1 above. When the horizontal radiator 113 (H2) is applied to the first frequency (2.45 GHz) of the low frequency, the maximum gain value in the XZ plane direction can be as high as 3.72 dB, the minimum gain value is -17.02 dB, and the gain value is -0.18 dB on average. In addition, when the horizontal radiator 113 (H2) is applied to the second frequency (5.5 GHz), the maximum gain value in the XZ plane direction can be as high as 3.84 dB, and the minimum gain value is -16.83 dB, and the gain value is on average - 0.11 dB.
如圖六B之本發明天線模組之水平輻射體113(H2)於應用頻帶範圍(2.45、5.5GHz)之Y-Z平面上測試所得的輻射場型圖以及配合上述表一中可得知,該水平輻射體113(H2)應用於低頻之第一頻率(2.45GHz)時,其Y-Z平面方向上之最大增益值可高達1.60dB,最小增益值為-12.27dB, 其增益值平均為-2.36 dB;另外,該水平輻射體113(H2)應用於第二頻率(5.5GHz)時,其Y-Z平面方向上之最大增益值可高達2.59dB,最小增益值為-10.32dB,其增益值平均為-1.93 dB。 As shown in FIG. 6B, the radiation pattern of the horizontal radiator 113 (H2) of the antenna module of the present invention is tested on the YZ plane of the application frequency range (2.45, 5.5 GHz) and can be seen in the above Table 1. When the horizontal radiator 113 (H2) is applied to the first frequency (2.45 GHz) of the low frequency, the maximum gain value in the YZ plane direction can be as high as 1.60 dB, and the minimum gain value is -12.27 dB. The gain value is -2.36 dB on average; in addition, when the horizontal radiator 113 (H2) is applied to the second frequency (5.5 GHz), the maximum gain value in the YZ plane direction can be as high as 2.59 dB, and the minimum gain value is -10.32. dB with an average gain of -1.93 dB.
如圖六C之本發明天線模組之水平輻射體113(H2)於應用頻帶範圍(2.45、5.5GHz)之X-Y平面上測試所得的輻射場型圖以及配合上述表一中可得知,該水平輻射體113(H2)應用於低頻之第一頻率(2.45GHz)時,其X-Y平面方向上之最大增益值可高達4.73dB,最小增益值為-12.42dB,其增益值平均為-0.71 dB;另外,該水平輻射體113(H2)應用於第二頻率(5.5GHz)時,其X-Y平面方向上之最大增益值可高達4.59dB,最小增益值為-14.84dB,其增益值平均為-1.24 dB。 As shown in FIG. 6C, the radiation pattern of the horizontal radiator 113 (H2) of the antenna module of the present invention is tested on the XY plane of the application frequency range (2.45, 5.5 GHz) and can be seen in the above Table 1. When the horizontal radiator 113 (H2) is applied to the first frequency (2.45 GHz) of the low frequency, the maximum gain value in the XY plane direction can be as high as 4.73 dB, the minimum gain value is -12.42 dB, and the gain value is -0.71 dB on average. In addition, when the horizontal radiator 113 (H2) is applied to the second frequency (5.5 GHz), the maximum gain value in the XY plane direction can be as high as 4.59 dB, and the minimum gain value is -14.84 dB, and the gain value is on average - 1.24 dB.
請參考下列表二所示,本發明天線模組之該些垂直輻射體121(V1、V2、V3)於不同座標平面之第一頻率(2450MHz,低頻)與第二頻率(5500MHz,高頻)的各別最大、最小、以及平均增益值(dB)之測試數值如下:
請參閱圖七A、圖七B、以及圖七C所示,圖七A係本發明天線模組之垂直輻射體V2於應用頻帶範圍(2.45~5.5GHz)之X-Z平面上測試所得的輻射場型圖。圖七B係本發明天線模組之垂直輻射體V2於應用頻帶範圍(2.45~5.5GHz)之Y-Z平面上測試所得的輻射場型圖。圖七C係本發明天線模組之垂直輻射體V2於應用頻帶範圍(2.45~5.5GHz)之X-Y平面上測試所得的輻射場型圖。 Please refer to FIG. 7A, FIG. 7B, and FIG. 7C. FIG. 7A is a radiation field of the vertical radiator V2 of the antenna module of the present invention tested on the XZ plane of the application frequency range (2.45-5.5 GHz). Type map. Figure 7B is a radiation pattern diagram of the vertical radiator V2 of the antenna module of the present invention tested on the Y-Z plane of the application frequency range (2.45 to 5.5 GHz). Figure 7C is a radiation pattern diagram of the vertical radiator V2 of the antenna module of the present invention tested on the X-Y plane of the application band range (2.45 to 5.5 GHz).
由於本發明該天線模組1之三組垂直輻射體121(V1、V2、V3)之結構與設置的方式皆大致相同,故此,僅針對其中之一垂直輻射體121(V2)所應用於頻帶範圍(2.45、5.5GHz)進行於X-Z、Y-Z、以及X-Y平面上測試所得的輻射場型圖進行舉例說明並詳加敘述。 Since the structure and arrangement of the three sets of vertical radiators 121 (V1, V2, V3) of the antenna module 1 of the present invention are substantially the same, therefore, only one of the vertical radiators 121 (V2) is applied to the frequency band. The range (2.45, 5.5 GHz) of the radiation pattern obtained by testing on the XZ, YZ, and XY planes is exemplified and described in detail.
如圖七A之本發明天線模組之垂直輻射體121(V2)於應用頻帶範圍(2.45、5.5GHz)之X-Z平面上測試所得的輻射場型圖以及配合上述表二中可得知,該垂直輻射體121(V2)應用於低頻之第一頻率(2.45GHz)時,其X-Z平面方向上之最大增益值可高達2.23dB,最小增益值為-11.94dB,其增益值平均為-2.59 dB;另外,該垂直輻射體121(V2)應用於第二頻率(5.5GHz)時,其X-Z平面方向上之最大增益值可高達2.39dB,最小增益值為-17.40dB,其增益值平均為-3.34 dB。 As shown in FIG. 7A, the radiation pattern of the vertical radiator 121 (V2) of the antenna module of the present invention is tested on the XZ plane of the application frequency range (2.45, 5.5 GHz) and can be seen in Table 2 above. When the vertical radiator 121 (V2) is applied to the first frequency (2.45 GHz) of the low frequency, the maximum gain value in the XZ plane direction can be as high as 2.23 dB, the minimum gain value is -11.94 dB, and the gain value is -2.59 dB on average. In addition, when the vertical radiator 121 (V2) is applied to the second frequency (5.5 GHz), the maximum gain value in the XZ plane direction can be as high as 2.39 dB, and the minimum gain value is -17.40 dB, and the gain value is on average - 3.34 dB.
如圖七B之本發明天線模組之垂直輻射體121(V2)於應用頻帶範圍(2.45、5.5GHz)之Y-Z平面上測試所得的輻射場型圖以及配合上述表二中可得知,該垂直輻射體121(V2)應用於低頻之第一頻率(2.45GHz)時,其Y-Z平面方向上之最大增益值可高達1.24dB,最小增益值為-12.37dB,其增益值平均為-2.10 dB;另外,該垂直輻射體121(V2)應用於第二頻率(5.5GHz)時,其Y-Z平面方向上之最大增益值可高達3.76dB,最小增益值為-16.07dB,其增益值平均為-0.76 dB。 As shown in FIG. 7B, the radiation pattern of the vertical radiator 121 (V2) of the antenna module of the present invention is tested on the YZ plane of the application frequency range (2.45, 5.5 GHz) and can be seen in Table 2 above. When the vertical radiator 121 (V2) is applied to the first frequency (2.45 GHz) of the low frequency, the maximum gain value in the YZ plane direction can be as high as 1.24 dB, the minimum gain value is -12.37 dB, and the gain value is -2.10 dB on average. In addition, when the vertical radiator 121 (V2) is applied to the second frequency (5.5 GHz), the maximum gain value in the YZ plane direction can be as high as 3.76 dB, and the minimum gain value is -16.07 dB, and the gain value is on average - 0.76 dB.
如圖七C之本發明天線模組之垂直輻射體121(V2)於應用頻帶範圍(2.45、5.5GHz)之X-Y平面上測試所得的輻射場型圖以及配合上述表二中可得知,該垂直輻射體121(V2)應用於低頻之第一頻率(2.45GHz)時,其X-Y平面方向上之最大增益值可高達2.18dB,最小增益值為-8.53dB,其增益值平均為0.00 dB;另外,該垂直輻射體121(V2)應用於第二頻率 (5.5GHz)時,其X-Y平面方向上之最大增益值可高達5.44dB,最小增益值為-9.69dB,其增益值平均為-1.33 dB。 As shown in FIG. 7C, the radiation pattern of the vertical radiator 121 (V2) of the antenna module of the present invention is tested on the XY plane of the application frequency range (2.45, 5.5 GHz) and can be seen in Table 2 above. When the vertical radiator 121 (V2) is applied to the first frequency (2.45 GHz) of the low frequency, the maximum gain value in the XY plane direction can be as high as 2.18 dB, the minimum gain value is -8.53 dB, and the gain value is 0.00 dB on average; In addition, the vertical radiator 121 (V2) is applied to the second frequency At (5.5 GHz), the maximum gain in the X-Y plane can be as high as 5.44 dB, the minimum gain is -9.69 dB, and the gain value is on average -1.33 dB.
綜上所述,本發明之天線模組1係包括:至少一水平基板11、至少三組垂直基板12、至少三組水平反射子13、以及至少三組垂直反射子14。該水平基板11係包括:一頂面111、一底面112、以及至少三組水平輻射體113(H1、H2、H3),且該些水平輻射體113係以間隔環形設置於該頂面111之上。該些垂直基板12係為三組且分別包括:一垂直輻射體121(V1、V2、V3),而該些垂直基板12係分別間隔120度環繞並垂直設置於該水平基板11之該底面112上,且各別位於兩水平輻射體113之中央間隔處,由於該些垂直基板12係分別垂直設置於該水平基板11之該底面112上,因此,位於該水平基板11上之該些水平輻射體113係分別與該些垂直輻射體121相互呈垂直狀態。該些水平反射子13係分別設置於該水平基板11之該頂面111上,並分別位於兩水平輻射體113中央間隔處,且該些水平反射子13各別之一末端131係相互連接。該些垂直反射子14係分別位於該垂直基板12之上,並與該垂直輻射體121相互間隔對應,各別之該垂直反射子14其中之一末端141,與該水平基板11上之該水平反射子13並未直接連接,僅為耦合。 In summary, the antenna module 1 of the present invention includes at least one horizontal substrate 11, at least three sets of vertical substrates 12, at least three sets of horizontal reflectors 13, and at least three sets of vertical reflectors 14. The horizontal substrate 11 includes a top surface 111, a bottom surface 112, and at least three sets of horizontal radiators 113 (H1, H2, H3), and the horizontal radiators 113 are disposed at intervals in the top surface 111. on. The vertical substrates 12 are three groups and respectively include: a vertical radiator 121 (V1, V2, V3), and the vertical substrates 12 are respectively arranged at intervals of 120 degrees and vertically disposed on the bottom surface 112 of the horizontal substrate 11. And the respective horizontal electrodes 12 are vertically disposed on the bottom surface 112 of the horizontal substrate 11, and the horizontal radiations on the horizontal substrate 11 are respectively disposed at the central interval of the two horizontal radiators 113. The body 113 is perpendicular to the vertical radiators 121, respectively. The horizontal reflectors 13 are respectively disposed on the top surface 111 of the horizontal substrate 11, and are respectively located at the central interval of the two horizontal radiators 113, and the one ends 131 of the horizontal reflectors 13 are connected to each other. The vertical reflectors 14 are respectively located on the vertical substrate 12 and are spaced apart from the vertical radiator 121, and one of the ends 141 of the vertical reflectors 14 and the level on the horizontal substrate 11 The reflector 13 is not directly connected, only the coupling.
該水平輻射體113係分別為兩反向開口之U形天線1131、1132所構成,該兩反向開口之U形天線1131、1132係分別包括一長天線11311、11321以及一短天線11312、11322所構成。該垂直輻射體121係分別為兩反向對應之C形天線1211、1212,該兩反向對應之C形天線1211、1212係分別包括一長天線12111、12121以及一短天線12112、12122所構成。該U形天線1131、1132以及該C形天線1211、1212所分別包括之該些長天線11311、11321、12111、12121以及該些短天線11312、11322、12112、12122係分別震盪產生一第一頻率以及一第二頻率,達到具有雙頻之功能。該第一頻率係為低頻之頻帶,其頻率範圍為2.4GHz;該第二頻率係為高頻之頻帶,其頻率範圍為5GHz。由於該些水平輻射體113以及垂直輻射體121配合該些水平反射子13與垂直反射子14獨特設置之方式,使具有本發明天線模組1之無線網路通訊裝置2得到更佳之輻射場型與更高之增益值,而可大幅提高天線效能達到全向性天線之目的。 The horizontal radiators 113 are respectively formed by two inverted openings U-shaped antennas 1131 and 1132. The two inverted-shaped U-shaped antennas 1131 and 1132 respectively comprise a long antenna 11311, 11321 and a short antenna 11312, 11322. Composition. The vertical radiators 121 are respectively two inverted C-shaped antennas 1211 and 1212, and the two inverted corresponding C-shaped antennas 1211 and 1212 respectively comprise a long antenna 12111, 12121 and a short antenna 12112, 12122. . The long antennas 11311, 11321, 12111, and 12121 and the short antennas 11312, 11322, 12112, and 12122 respectively included in the U-shaped antennas 1131 and 1132 and the C-shaped antennas 1211 and 1212 respectively oscillate to generate a first frequency. And a second frequency to achieve the function of having dual frequency. The first frequency is a low frequency band having a frequency range of 2.4 GHz; the second frequency is a high frequency band having a frequency range of 5 GHz. Since the horizontal radiator 113 and the vertical radiator 121 cooperate with the horizontal reflectors 13 and the vertical reflectors 14, the wireless network communication device 2 having the antenna module 1 of the present invention can obtain a better radiation field type. With higher gain values, the antenna performance can be greatly improved to achieve the purpose of an omnidirectional antenna.
唯以上所述之實施例不應用於限制本發明之可應用範圍。本 發明之保護範圍應以本發明之申請專利範圍內容所界定技術精神及其均等變化所含括之範圍為主者。即大凡依本發明申請專利範圍所做之均等變化及修飾,仍將不失本發明之要義所在,亦不脫離本發明之精神和範圍,故都應視為本發明的進一步實施狀況。 The above embodiments are not intended to limit the scope of application of the present invention. this The scope of the invention should be based on the technical spirit defined by the content of the patent application scope of the present invention and the scope thereof. It is to be understood that the scope of the present invention is not limited by the spirit and scope of the present invention, and should be considered as a further embodiment of the present invention.
1‧‧‧天線模組 1‧‧‧Antenna Module
11‧‧‧水平基板 11‧‧‧Horizontal substrate
111‧‧‧頂面 111‧‧‧ top surface
112‧‧‧底面 112‧‧‧ bottom
113‧‧‧水平輻射體(H1、H2、H3) 113‧‧‧Horizontal radiators (H1, H2, H3)
1131‧‧‧U形天線 1131‧‧‧U-shaped antenna
11311‧‧‧長天線 11311‧‧‧Long antenna
11312‧‧‧短天線 11312‧‧‧Short antenna
1132‧‧‧U形天線 1132‧‧‧U-shaped antenna
11321‧‧‧長天線 11321‧‧‧Long antenna
11322‧‧‧短天線 11322‧‧‧Short antenna
1133‧‧‧饋入端 1133‧‧‧Feeding end
1134‧‧‧接地端 1134‧‧‧ Grounding terminal
12‧‧‧垂直基板 12‧‧‧Vertical substrate
121‧‧‧垂直輻射體(V3) 121‧‧‧Vertical radiator (V3)
1211‧‧‧C形天線 1211‧‧‧C antenna
1212‧‧‧C形天線 1212‧‧‧C-shaped antenna
1213‧‧‧饋入端 1213‧‧‧Feeding end
1214‧‧‧接地端 1214‧‧‧ Grounding terminal
13‧‧‧水平反射子 13‧‧‧ horizontal reflector
14‧‧‧垂直反射子 14‧‧‧Vertical reflector
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102107664A TWI517500B (en) | 2013-03-05 | 2013-03-05 | Antenna module and wireless communication device having the antenna module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102107664A TWI517500B (en) | 2013-03-05 | 2013-03-05 | Antenna module and wireless communication device having the antenna module |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201436365A TW201436365A (en) | 2014-09-16 |
TWI517500B true TWI517500B (en) | 2016-01-11 |
Family
ID=51943496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102107664A TWI517500B (en) | 2013-03-05 | 2013-03-05 | Antenna module and wireless communication device having the antenna module |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI517500B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10224615B2 (en) | 2016-11-15 | 2019-03-05 | Pegatron Corporation | Wireless communication device and antenna unit thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10218073B2 (en) * | 2017-04-05 | 2019-02-26 | Lyten, Inc. | Antenna with frequency-selective elements |
-
2013
- 2013-03-05 TW TW102107664A patent/TWI517500B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10224615B2 (en) | 2016-11-15 | 2019-03-05 | Pegatron Corporation | Wireless communication device and antenna unit thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201436365A (en) | 2014-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100941648B1 (en) | Antenna element and wide band antenna apparatus | |
JP2006054847A (en) | Antenna assembly | |
TWI521788B (en) | Antenna assembly and wireless communication device | |
CN101388494B (en) | Multi-antenna integrated module | |
US8130169B2 (en) | Multi-input multi-output antenna system | |
TW200803053A (en) | Planar inverted-F antenna | |
CN114389020A (en) | Antenna structure | |
US7408513B1 (en) | Antenna apparatus | |
TWI517500B (en) | Antenna module and wireless communication device having the antenna module | |
US20070229361A1 (en) | Antenna apparatus | |
CN103972649A (en) | Antenna assembly and wireless communication device with same | |
US9093743B2 (en) | Method for implementing wireless equipment antenna and wireless equipment | |
CN103794868A (en) | Antenna assembly | |
CN102694253B (en) | Balance microstrip line feed ultra-wideband dipole antenna | |
CN102509877A (en) | Small-sized ultra-wide band antenna | |
JP2007135212A (en) | Multiband antenna apparatus | |
CN106356631A (en) | Dual-frequency antenna | |
US8373600B2 (en) | Single-band antenna | |
TWI464965B (en) | Small-scale three-dimensional antenna | |
CN102760944A (en) | Omnidirectional radiation vibrator array antenna for loaded coupled feeding | |
KR100989325B1 (en) | Cellphone imbedded ultra wide band compact antenna and cellphone imbedding the antenna | |
US20140285380A1 (en) | Antenna structure and the manufacturing method therefor | |
TWM461158U (en) | The printed antenna and wireless device with the printed antenna | |
CN213717050U (en) | Bluetooth antenna | |
CN109378569B (en) | Mobile terminal device |