TWI517011B - Capacitive touch screen - Google Patents

Capacitive touch screen Download PDF

Info

Publication number
TWI517011B
TWI517011B TW102122011A TW102122011A TWI517011B TW I517011 B TWI517011 B TW I517011B TW 102122011 A TW102122011 A TW 102122011A TW 102122011 A TW102122011 A TW 102122011A TW I517011 B TWI517011 B TW I517011B
Authority
TW
Taiwan
Prior art keywords
touch
sensing electrodes
sensing
touch screen
capacitance
Prior art date
Application number
TW102122011A
Other languages
Chinese (zh)
Other versions
TW201501009A (en
Inventor
莫良華
歐陽廣
Original Assignee
敦泰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敦泰科技有限公司 filed Critical 敦泰科技有限公司
Priority to TW102122011A priority Critical patent/TWI517011B/en
Publication of TW201501009A publication Critical patent/TW201501009A/en
Application granted granted Critical
Publication of TWI517011B publication Critical patent/TWI517011B/en

Links

Description

電容式觸控式螢幕 Capacitive touch screen

本發明涉及觸控技術領域,尤其涉及一種電容式觸控螢幕。 The present invention relates to the field of touch technologies, and in particular, to a capacitive touch screen.

當前,觸控螢幕廣泛應用於各種電子產品,如筆記型電腦、顯示器、手機以及遊戲機等,其使得使用者無需外接設備,實現了隨時隨地移動辦公。現有的電容式觸控式螢幕普遍存在抗干擾性能差、掃描幀率低、體積大以及製造工藝複雜等問題。 Currently, touch screens are widely used in a variety of electronic products, such as notebook computers, monitors, mobile phones, and game consoles, which enable users to move around anytime and anywhere without the need for external devices. The existing capacitive touch screens generally have problems such as poor anti-interference performance, low scanning frame rate, large volume, and complicated manufacturing process.

有鑑於此,本發明提供一種電容式觸控螢幕,而能夠解決以上問題之中的至少一個。 In view of this, the present invention provides a capacitive touch screen capable of solving at least one of the above problems.

本發明所提供的電容式觸控式螢幕包括:印刷電路板;設置於印刷電路板上的複數感應電極,所述複數感應電極排列成二維陣列;以及以板上晶片(Chip-on-Board,簡稱COB)方式綁定到印刷電路板上的觸控晶片,所述觸控晶片與所述複數感應電極之中的每一個感應電極分別透過導線相連接。 The capacitive touch screen provided by the present invention comprises: a printed circuit board; a plurality of sensing electrodes disposed on the printed circuit board, the plurality of sensing electrodes are arranged in a two-dimensional array; and a chip-on-board (Chip-on-Board) , referred to as COB), is coupled to a touch wafer on a printed circuit board, and each of the touch electrodes and the plurality of sensing electrodes are respectively connected through wires.

於一發明概念中,所述觸控晶片用以檢測每個感應電極的自電容。 In one inventive concept, the touch wafer is used to detect the self-capacitance of each of the sensing electrodes.

於一發明概念中,所述觸控晶片用以透過以下方法檢測每個感應電極的自電容:用電壓源或電流源驅動所述感 應電極;以及檢測所述感應電極的電壓或頻率或電量。 In one inventive concept, the touch wafer is configured to detect the self-capacitance of each of the sensing electrodes by: driving the sense with a voltage source or a current source. The electrode; and the voltage or frequency or amount of electricity of the sensing electrode.

於一發明概念中,所述觸控晶片用以透過以下方 法檢測每個感應電極的自電容:驅動並檢測所述感應電極,同時驅動其餘感應電極;或者驅動並檢測所述感應電極,同時驅動所述感應電極周邊的感應電極。 In one inventive concept, the touch wafer is used to transmit the following The method detects the self-capacitance of each of the sensing electrodes: driving and detecting the sensing electrodes while driving the remaining sensing electrodes; or driving and detecting the sensing electrodes while driving the sensing electrodes around the sensing electrodes.

於一發明概念中,對於各感應電極,所述電壓源 或電流源具有同一頻率;或者對於各感應電極,所述電壓源或電流源具有兩個或兩個以上的頻率。 In the inventive concept, for each sensing electrode, the voltage source Or the current source has the same frequency; or for each sensing electrode, the voltage source or current source has two or more frequencies.

於一發明概念中,所述觸控晶片用以透過以下方 法檢測每個感應電極的自電容:同時檢測所有感應電極的自電容;或者分組檢測各感應電極的自電容。 In one inventive concept, the touch wafer is used to transmit the following The method detects the self-capacitance of each sensing electrode: simultaneously detects the self-capacitance of all the sensing electrodes; or detects the self-capacitance of each sensing electrode in groups.

於一發明概念中,所述觸控晶片用以根據二維的 電容變化陣列來確定觸摸位置。 In an inventive concept, the touch wafer is used according to two-dimensional An array of capacitance changes to determine the touch location.

於一發明概念中,所述觸控晶片還用以透過所述 電壓源或電流源的參數來調整觸摸檢測的靈敏度或動態範圍,所述參數包括幅度、頻率和時序之中的任一個或組合。 In one inventive concept, the touch wafer is further configured to transmit the The parameters of the voltage source or current source adjust the sensitivity or dynamic range of the touch detection, including any one or combination of amplitude, frequency, and timing.

於一發明概念中,所述感應電極的形狀是矩形、 菱形、三角形、圓形或橢圓形。 In an inventive concept, the shape of the sensing electrode is rectangular, Diamond, triangle, circle or ellipse.

於一發明概念中,所述導線透過通孔連接到所述 觸控晶片。 In one inventive concept, the wire is connected to the Touch wafer.

根據本發明的電容式觸控式螢幕,採用複數排列 成二維陣列的感應電極,在實現多點觸控的前提下提高了抗干擾性能。利用本發明,極大地消除了電源雜訊,也能夠減弱射頻(RF)以及來自顯示模組等其他噪音源的干擾。此外,根據 本發明的電容式觸控式螢幕,觸控晶片與每個感應電極分別透過導線相連接,並以板上晶片方式綁定到印刷電路板上,能夠避免管腳數量多可能造成的晶片體積增加和封裝成本提高。另外,藉由在驅動並檢測被測電極的同時,一併驅動其餘感應電極或被測電極周邊的感應電極,有利於降低被測電極的電容,從而降低被測電極的阻抗。透過同時或分組檢測各感應電極,可以降低掃描時間,從而避免感應電極數量多可能引起的問題。 The capacitive touch screen according to the present invention is arranged in a plurality The two-dimensional array of sensing electrodes improves the anti-interference performance under the premise of implementing multi-touch. With the present invention, power supply noise is greatly eliminated, and radio frequency (RF) and interference from other noise sources such as display modules can be attenuated. In addition, according to In the capacitive touch screen of the present invention, the touch wafer and each of the sensing electrodes are respectively connected through wires, and are bonded to the printed circuit board by means of on-board wafers, thereby avoiding an increase in wafer volume caused by a large number of pins. And the cost of packaging is increased. In addition, by driving and detecting the electrode to be tested, driving the remaining sensing electrodes or the sensing electrodes around the electrodes to be tested, it is advantageous to reduce the capacitance of the electrode to be tested, thereby reducing the impedance of the electrode to be tested. By detecting each sensing electrode simultaneously or in groups, the scanning time can be reduced, thereby avoiding problems that may be caused by the large number of sensing electrodes.

10‧‧‧觸控晶片 10‧‧‧ touch chip

16‧‧‧印刷電路板 16‧‧‧Printed circuit board

19‧‧‧感應電極 19‧‧‧Induction electrodes

22‧‧‧匯流排 22‧‧‧ Busbar

23‧‧‧時序控制單元 23‧‧‧Time Control Unit

24‧‧‧驅動源 24‧‧‧ drive source

41‧‧‧驅動源 41‧‧‧ drive source

42‧‧‧對地電容 42‧‧‧ground capacitance

44‧‧‧噪聲 44‧‧‧ Noise

45‧‧‧電荷接收模組 45‧‧‧Charge receiving module

50‧‧‧訊號驅動單元的控制邏輯 50‧‧‧ Signal Drive Unit Control Logic

51‧‧‧電壓源 51‧‧‧Voltage source

52‧‧‧參考電壓 52‧‧‧reference voltage

53、54、55‧‧‧驅動源 53, 54, 55‧‧‧ drive sources

57‧‧‧被測電極 57‧‧‧Measured electrode

56、58‧‧‧相鄰電極 56, 58‧‧‧ adjacent electrodes

59‧‧‧訊號接收單元 59‧‧‧Signal receiving unit

61‧‧‧獲取感應數據 61‧‧‧Get sensory data

62‧‧‧濾波和降噪 62‧‧‧Filtering and noise reduction

63‧‧‧尋找可能觸摸區域 63‧‧‧ Looking for possible touch areas

64‧‧‧異常處理得到合理觸摸區 64‧‧‧Exception handling to get a reasonable touch area

65‧‧‧計算觸摸的座標 65‧‧‧ Calculate the coordinates of the touch

66‧‧‧分析以往幀數據 66‧‧‧Analysis of past frame data

67‧‧‧追蹤觸摸軌跡 67‧‧‧ Tracking touch tracks

第1圖係本發明第一實施例之平面示意圖。 Figure 1 is a plan view showing a first embodiment of the present invention.

第2A圖係本發明第二實施例之平面示意圖。 Fig. 2A is a plan view showing a second embodiment of the present invention.

第2B圖係本發明第二實施例之側面示意圖。 Figure 2B is a side elevational view of a second embodiment of the present invention.

第3圖係本發明第二實施例的感應電極陣列之俯視圖。 Fig. 3 is a plan view showing a sensing electrode array of a second embodiment of the present invention.

第4圖係本發明第三實施例的感應電極驅動方法之示意圖(一)。 Fig. 4 is a schematic view (1) of a method of driving a sensing electrode according to a third embodiment of the present invention.

第5A~5C圖係本發明第三實施例的感應電極驅動方法之示意圖(二)。 5A to 5C are schematic views (2) of a method of driving a sensing electrode according to a third embodiment of the present invention.

第6圖係本發明第三實施例的感應電極驅動方法之示意圖(三)。 Fig. 6 is a schematic view (3) showing a method of driving a sensing electrode according to a third embodiment of the present invention.

第7圖係本發明第三實施例的感應電極驅動方法之示意圖(四)。 Figure 7 is a schematic view (4) of a method of driving a sensing electrode according to a third embodiment of the present invention.

第8圖係本發明第三實施例的四個應用場景之示意圖。 Figure 8 is a schematic diagram of four application scenarios of the third embodiment of the present invention.

第9圖係本發明第三實施例的觸控晶片之訊號流圖。 Figure 9 is a signal flow diagram of a touch wafer of a third embodiment of the present invention.

第10A圖係本發明第四實施例採用重心運算法計算觸摸位 置的座標之示意圖。 10A is a fourth embodiment of the present invention for calculating a touch position by using a centroid calculation method Schematic diagram of the coordinates.

第10B圖係本發明第四實施例於有噪音的情況下採用重心運算法計算觸控位置的座標之示意圖。 FIG. 10B is a schematic diagram of calculating the coordinates of the touch position by using the centroid calculation method in the case where there is noise in the fourth embodiment of the present invention.

第1圖是本發明第一實施例所提供的電容式觸控式螢幕的示意圖。如第1圖所示,所述電容式觸控式螢幕包括:印刷電路板16;設置於印刷電路板上的複數感應電極19,所述複數感應電極19排列成二維陣列;以及以板上晶片(Chip-on-Board,簡稱COB)的方式綁定到印刷電路板16上的觸控晶片(未示出),所述觸控晶片與每個感應電極19分別透過導線相連接。 FIG. 1 is a schematic diagram of a capacitive touch screen provided by a first embodiment of the present invention. As shown in FIG. 1, the capacitive touch screen includes: a printed circuit board 16; a plurality of sensing electrodes 19 disposed on the printed circuit board, the plurality of sensing electrodes 19 are arranged in a two-dimensional array; A Chip-on-Board (COB) method is coupled to a touch wafer (not shown) on the printed circuit board 16, and the touch wafer is connected to each of the sensing electrodes 19 through a wire.

所述複數感應電極19排列成的二維陣列可以是矩形陣列或其他類似形狀的二維陣列。對於電容式觸控式螢幕來說,每個感應電極19是一個電容感測器,所述電容感測器的電容在觸控螢幕上相應位置被觸摸時發生變化。採用排列成二維陣列的複數感應電極19,在實現多點觸控的前提下提高了抗干擾性能,極大地消除了電源雜訊,也能夠減弱RF以及來自液晶顯示模組等其他噪音源的干擾。將結合第四實施例對此進行更詳細的說明。 The two-dimensional array in which the plurality of sensing electrodes 19 are arranged may be a rectangular array or a two-dimensional array of other similar shapes. For a capacitive touch screen, each of the sensing electrodes 19 is a capacitive sensor whose capacitance changes when the corresponding position on the touch screen is touched. The use of a plurality of sensing electrodes 19 arranged in a two-dimensional array improves the anti-interference performance under the premise of implementing multi-touch, greatly eliminates power noise, and can also attenuate RF and other noise sources from liquid crystal display modules. interference. This will be explained in more detail in connection with the fourth embodiment.

每個感應電極19透過導線連接到觸控晶片,所述觸控晶片以COB方式綁定到印刷電路板16上。由於與每個感應電極19分別透過導線相連接,觸控晶片的管腳很多,因此,將觸控晶片以COB方式綁定到印刷電路板16上能夠避免常規封裝的困難,以及管腳數量多可能造成的晶片體積增加和封裝 成本提高。所述觸控晶片本身是無封裝的晶元,也就是說,所述觸控晶片不需要進行封裝,因此,與常規的觸控螢幕使用的觸控晶片相比,佔用的印刷電路板16上的面積小,並且減少了晶片的封裝和封裝測試的成本以及觸控螢幕的整體材料成本。此外,透過COB方式,觸控晶片與觸控螢幕集成為一體,降低了兩者之間的距離,從而減小了整體的體積。 Each of the sensing electrodes 19 is connected to the touch wafer via a wire, and the touch wafer is bonded to the printed circuit board 16 in a COB manner. Since each of the sensing electrodes 19 is connected through a wire, the touch wafer has a large number of pins. Therefore, the COB bonding of the touch wafer to the printed circuit board 16 can avoid the difficulty of conventional packaging and the number of pins. Possible wafer volume increase and packaging The cost is increased. The touch wafer itself is a package-free wafer, that is, the touch wafer does not need to be packaged, and therefore, the occupied printed circuit board 16 is used compared with the touch wafer used in the conventional touch screen. The area is small and reduces the cost of packaging and packaging testing of the wafer as well as the overall material cost of the touch screen. In addition, through the COB method, the touch wafer and the touch screen are integrated into one body, which reduces the distance between the two, thereby reducing the overall volume.

第2A圖是根據本發明第二實施例的電容式觸控式螢幕的平面示意圖。第2B圖是根據本發明第二實施例的電容式觸控式螢幕的側面示意圖。 2A is a plan view of a capacitive touch screen according to a second embodiment of the present invention. 2B is a side view of a capacitive touch screen according to a second embodiment of the present invention.

如第2A圖和第2B圖所示,所述電容式觸控式螢幕包括:雙層印刷電路板16;設置於所述雙層印刷電路板16的頂層上的複數感應電極19,所述複數感應電極19排列成二維陣列;以及以板上晶片(Chip-on-Board,簡稱COB)的方式綁定到所述印刷電路板16的底層上的觸控晶片10,所述觸控晶片10與每個感應電極19分別透過導線相連接。 As shown in FIGS. 2A and 2B, the capacitive touch screen includes: a double-layer printed circuit board 16; a plurality of sensing electrodes 19 disposed on a top layer of the double-layer printed circuit board 16, the plurality The sensing electrodes 19 are arranged in a two-dimensional array; and the touch wafer 10 is bonded to the bottom layer of the printed circuit board 16 in the form of a chip-on-board (COB), the touch wafer 10 Each of the sensing electrodes 19 is connected to a wire through a wire.

於本實施例之一實施態樣中,所述導線可以透過通孔(via)連接到所述觸控晶片10。 In one embodiment of the present embodiment, the wires may be connected to the touch wafer 10 through vias.

第2A圖示出的僅僅是感應電極19的一種排列方式,本發明並不以此為限。在某些實施態樣中,感應電極19可排列成任何二維陣列。此外,各感應電極19在任一方向上的間距可以是相等的,也可以是不等的。所屬領域中具有通常知識者應知感應電極19的數量可多於第2A圖示出的數量。 FIG. 2A shows only one arrangement of the sensing electrodes 19, and the invention is not limited thereto. In some implementations, the sensing electrodes 19 can be arranged in any two-dimensional array. In addition, the spacing of the sensing electrodes 19 in either direction may be equal or unequal. Those of ordinary skill in the art will recognize that the number of sensing electrodes 19 may be greater than the number shown in Figure 2A.

第2A圖示出的僅僅是感應電極19的一種形狀,但本發明並不以此為限。在某些實施態樣中,感應電極19的形 狀可以是矩形、菱形、三角形、圓形或橢圓形,也可以是不規則形狀。所述觸摸感應電極19的邊緣上還可以有鋸齒。各感應電極19的圖案可以是一致的,也可以是不一致的。例如,位於中間的感應電極19採用菱形結構,邊緣的採用三角形結構。 FIG. 2A shows only one shape of the sensing electrode 19, but the invention is not limited thereto. In some embodiments, the shape of the sensing electrode 19 The shape may be a rectangle, a diamond, a triangle, a circle or an ellipse, or may be an irregular shape. The touch sensing electrode 19 may also have serrations on the edge. The patterns of the sensing electrodes 19 may be uniform or inconsistent. For example, the sensing electrode 19 located in the middle has a rhombic structure and the edges have a triangular structure.

此外,各感應電極19的大小可以是一致的,也可 以是不一致的。例如,靠內側的感應電極19尺寸較大,靠外側的尺寸較小,如此有利於線路安排和邊緣的觸摸精準度。 In addition, the size of each sensing electrode 19 may be uniform or It is inconsistent. For example, the inner sensing electrode 19 is larger in size and smaller in outer side, which is advantageous for line arrangement and edge touch precision.

第3圖是根據本發明第二實施例的感應電極陣列 的俯視圖。第3圖所示的感應電極陣列基於自電容的觸摸檢測原理。每個感應電極對應觸控螢幕上特定位置,在第3圖中,2a-2d表示不同感應電極。21表示一個觸摸,當觸摸發生在某感應電極所對應的位置時,所述感應電極上的電荷改變,因此,檢測所述感應電極上的電荷(電流/電壓),能夠知道所述感應電極有沒有發生觸摸事件。一般而言,這可以透過模數轉換器(ADC)把類比量轉換為數位量來實現。感應電極的電荷改變量與感應電極被覆蓋的面積有關,例如,第3圖中感應電極2b和2d的電荷改變量大於感應電極2a和2c的電荷改變量。 3 is a sensing electrode array according to a second embodiment of the present invention Top view. The sensing electrode array shown in FIG. 3 is based on the self-capacitance touch detection principle. Each sensing electrode corresponds to a specific position on the touch screen. In FIG. 3, 2a-2d indicate different sensing electrodes. 21 denotes a touch, when the touch occurs at a position corresponding to a certain sensing electrode, the electric charge on the sensing electrode changes, and therefore, detecting the electric charge (current/voltage) on the sensing electrode, it can be known that the sensing electrode has No touch events occurred. In general, this can be achieved by converting the analog quantity to a digital quantity through an analog-to-digital converter (ADC). The amount of charge change of the sensing electrode is related to the area covered by the sensing electrode. For example, the amount of charge change of the sensing electrodes 2b and 2d in FIG. 3 is larger than the amount of charge change of the sensing electrodes 2a and 2c.

觸控螢幕上的每個位置均有對應的感應電極,感 應電極之間沒有物理連接,因此,本實施例所提供的電容式觸控式螢幕能夠實現真正的多點觸控,避免了現有技術中自電容觸摸檢測的鬼點問題以及雜訊在電極間傳遞而引起的誤差,顯著提高了訊噪比。 Each position on the touch screen has a corresponding sensing electrode, sense There is no physical connection between the electrodes. Therefore, the capacitive touch screen provided in this embodiment can realize true multi-touch, avoiding the ghost point problem of the self-capacitance touch detection in the prior art and the noise between the electrodes. The error caused by the transmission significantly increases the signal-to-noise ratio.

於本實施例之一實施態樣中,在第3圖中各感應 電極可以透過導線連接到匯流排22,然後與觸控晶片相連接。 In one embodiment of the embodiment, each of the sensing in FIG. 3 The electrodes can be connected to the bus bar 22 through wires and then connected to the touch wafer.

第4圖至第7圖示出了根據本發明第三實施例的 感應電極驅動方法。如第4圖所示,感應電極19由驅動源24驅動,驅動源24可以是電壓源或電流源。對於不同的感應電極19,驅動源24不一定採用相同的結構。例如,可以部分採用電壓源,部分採用電流源。此外,對於不同的感應電極19,驅動源24的頻率可以相同,也可以不同。時序控制單元23控制各驅動源24工作的時序。 4 to 7 show a third embodiment of the present invention Induction electrode driving method. As shown in FIG. 4, the sensing electrode 19 is driven by a driving source 24, which may be a voltage source or a current source. For different sensing electrodes 19, the driving source 24 does not necessarily have to have the same structure. For example, a voltage source may be partially used, and a current source may be partially used. Further, for different sensing electrodes 19, the frequency of the driving source 24 may be the same or different. The timing control unit 23 controls the timing at which the respective driving sources 24 operate.

各感應電極19的驅動時序有多種選擇。以下以n 個感應電極(D1、D2……Dj、Dk……Dn)為例說明。 There are various options for the driving timing of each of the sensing electrodes 19. Following n The sensing electrodes (D1, D2, ..., Dj, Dk, ... Dn) are taken as an example.

如第5A圖所示,所有感應電極同時驅動,同時 檢測。這種方式完成一次掃描所需要的時間最短,驅動源數量最多(與感應電極的數量一致)。如第5B圖所示,感應電極的驅動源被分成若干組,每組依次驅動特定區域內的電極。這種方式能夠實現驅動源重複使用,但會增加掃描時間,不過透過選擇合適的分組數量,可以使驅動源重複使用和掃描時間達到折衷。 As shown in Figure 5A, all of the sensing electrodes are driven simultaneously, while Detection. In this way, the time required to complete a scan is the shortest, and the number of driving sources is the largest (consistent with the number of sensing electrodes). As shown in Fig. 5B, the driving sources of the sensing electrodes are divided into groups, each of which sequentially drives the electrodes in a specific region. This approach enables drive source reuse, but increases scan time, but by choosing the right number of packets, drive source reuse and scan time can be compromised.

第5C圖表示出習知互電容觸摸檢測的掃描方 式。假設有n個驅動通道(TX),每個TX的掃描時間為Ts,則掃描完一幀的時間為n*Ts。而採用本實施例的感應電極驅動方法,可以將所有感應電極一起檢測,掃描完一幀的時間最快僅Ts。也就是說,與習知互電容觸摸檢測相比,本實施例的方案能夠將掃描頻率提高n倍。 Figure 5C shows the scanning side of the conventional mutual capacitance touch detection formula. Assuming that there are n drive channels (TX), the scan time of each TX is Ts, and the time of scanning one frame is n*Ts. With the sensing electrode driving method of the embodiment, all the sensing electrodes can be detected together, and the time for scanning one frame is only Ts. That is to say, the scheme of the present embodiment can increase the scanning frequency by n times as compared with the conventional mutual capacitance touch detection.

對於一個有40個驅動通道的互電容觸控螢幕,如 果每個驅動通道的掃描時間為500μs,則整個觸控螢幕(一幀) 的掃描時間為20ms,即幀率為50Hz。50Hz往往不能達到良好使用體驗的要求。透過本實施例的方案,這個問題可以被解決。藉由採用排列成二維陣列的感應電極,所有電極可以同時檢測,在每個電極的檢測時間保持500μs的情況下,幀率達到2000Hz。這大大超出了多數觸控螢幕的應用要求。多出來的掃描資料可以被數位訊號處理端利用,用於例如抗干擾或優化觸摸軌跡,從而得到更好的效果。 For a mutual capacitance touch screen with 40 drive channels, such as If the scan time of each drive channel is 500μs, the entire touch screen (one frame) The scan time is 20ms, that is, the frame rate is 50Hz. 50Hz often does not meet the requirements of a good experience. This problem can be solved by the solution of this embodiment. By using the sensing electrodes arranged in a two-dimensional array, all the electrodes can be simultaneously detected, and the frame rate reaches 2000 Hz with the detection time of each electrode being maintained for 500 μs. This greatly exceeds the application requirements of most touch screens. The extra scan data can be used by the digital signal processing terminal for, for example, anti-interference or optimized touch trajectory for better results.

優選地,檢測每個感應電極的自電容。感應電極的自電容可以是其對地電容。 Preferably, the self capacitance of each of the sensing electrodes is detected. The self-capacitance of the sensing electrode can be its capacitance to ground.

於一實施態樣中,可採用電荷檢測法。如第6圖所示,驅動源41提供恒定電壓V1。電壓V1可以是正壓、負壓或地。S1和S2表示兩個受控開關,42表示感應電極的對地電容(Cx),45表示電荷接收模組,電荷接收模組45可將輸入端電壓限制至指定值V2,並測量出輸入或輸出的電荷量。首先,S1閉合S2斷開,Cx的上極板被充電至驅動源41所提供的電壓V1;然後S1斷開S2閉合,Cx與電荷接收模組45發生電荷交換。設電荷轉移量為Q1,Cx的上極板電壓變為V2,則由C=Q/△V,Cx=Q1/(V2-V1),從而實現了電容檢測。 In one embodiment, a charge detection method can be employed. As shown in Fig. 6, the drive source 41 supplies a constant voltage V1. The voltage V1 can be positive pressure, negative pressure or ground. S1 and S2 denote two controlled switches, 42 denotes the capacitance to ground (Cx) of the sensing electrode, 45 denotes a charge receiving module, and the charge receiving module 45 can limit the voltage of the input terminal to a specified value V2, and measure the input or The amount of charge output. First, S1 is closed and S2 is turned off, and the upper plate of Cx is charged to the voltage V1 supplied from the driving source 41; then S1 is turned off and S2 is closed, and Cx is charged and exchanged with the charge receiving module 45. Let the charge transfer amount be Q1, and the upper plate voltage of Cx becomes V2, then C=Q/ΔV, Cx=Q1/(V2-V1), thereby achieving capacitance detection.

於另一個實施態樣中,也可採用電流源,或者透過感應電極的頻率來獲得其自電容。 In another embodiment, a current source can also be used, or the frequency of the sensing electrode can be used to obtain its self-capacitance.

可選擇地,在使用複數驅動源的情況下,當檢測一個感應電極時,對於與所述感應電極相鄰的或周邊的感應電極,可選擇不同於所述被測電極的驅動源的電壓。第7圖僅示出了三個感應電極:一個被測電極57和兩個相鄰電極56和58。 但本發明並不以此為限,以下例子也適用於更多個感應電極的情況。 Alternatively, in the case of using a plurality of driving sources, when detecting one sensing electrode, a voltage different from the driving source of the electrode to be measured may be selected for the sensing electrode adjacent to or surrounding the sensing electrode. Figure 7 shows only three sensing electrodes: one measured electrode 57 and two adjacent electrodes 56 and 58. However, the present invention is not limited thereto, and the following examples are also applicable to the case of more sensing electrodes.

與被測電極57相連接的驅動源54透過開關S2連接到電壓源51,以實現對被測電極57的驅動;而與被測電極57相鄰的感應電極56和58與驅動源53和55相連接,它們可以透過開關S1和S3連接到電壓源51或特定的參考電壓52(Vref,舉例而言)。若開關S1和S3連接到電壓源51,也就是說,用同一電壓源同時驅動被測電極及其周邊的電極,這樣能夠減小被測電極和其周邊電極的電壓差,有利於減小被測電極的電容和有利於防範水滴形成的虛假觸摸。 The driving source 54 connected to the electrode to be measured 57 is connected to the voltage source 51 through the switch S2 to drive the electrode 57 to be tested; and the sensing electrodes 56 and 58 adjacent to the electrode 57 to be tested and the driving sources 53 and 55 Connected, they can be connected to voltage source 51 or a specific reference voltage 52 (Vref, for example) via switches S1 and S3. If the switches S1 and S3 are connected to the voltage source 51, that is, the same voltage source is used to simultaneously drive the electrode to be tested and its surrounding electrodes, the voltage difference between the electrode to be tested and its peripheral electrode can be reduced, which is advantageous for reducing the The capacitance of the electrode and the false touch that helps prevent the formation of water droplets.

優選地,觸控晶片用以透過驅動源的參數來調整觸摸檢測的靈敏度或動態範圍,所述參數包括幅度、頻率和時序之中的任一個或組合。於一個實施態樣中,如第7圖所示,驅動源的參數(例如,驅動電壓、電流和頻率)以及各驅動源的時序可由觸控晶片內的訊號驅動單元的控制邏輯50控制。透過這些參數,可以調整不同的電路工作狀態,例如高靈敏度、中等靈敏度或低靈敏度,或不同的動態範圍。 Preferably, the touch wafer is configured to adjust the sensitivity or dynamic range of the touch detection by using parameters of the driving source, and the parameters include any one or combination of amplitude, frequency, and timing. In one embodiment, as shown in FIG. 7, the parameters of the drive source (eg, drive voltage, current, and frequency) and the timing of each drive source can be controlled by control logic 50 of the signal drive unit within the touch wafer. Through these parameters, different circuit operating states can be adjusted, such as high sensitivity, medium sensitivity or low sensitivity, or different dynamic ranges.

不同的電路工作狀態可適用于不同的應用場景。第8圖顯示了根據本發明第三實施例的電容式觸控式螢幕的四個應用場景:手指正常觸摸,手指懸浮觸控,有電源/無電源筆或微小導體,以及戴手套觸摸。結合上述參數,可以實現對一個或多個正常觸摸以及一個或多個微小導體觸摸的檢測。儘管第7圖示出的訊號接收單元59和訊號驅動單元是分離的,在其他實施例中,它們可以由同一個電路實現。 Different circuit operating states can be applied to different application scenarios. Figure 8 shows four application scenarios of a capacitive touch screen according to a third embodiment of the present invention: normal finger touch, finger hover touch, power/no power pen or tiny conductor, and glove touch. In combination with the above parameters, detection of one or more normal touches and one or more tiny conductor touches can be achieved. Although the signal receiving unit 59 and the signal driving unit shown in Fig. 7 are separated, in other embodiments, they may be implemented by the same circuit.

第9圖示出了根據本發明第三實施例的觸控晶片的訊號流圖。當感應電極上有觸摸發生時,感應電極的電容會改變,這個改變量透過ADC轉換成數位量,就能恢復出觸摸資訊。一般而言,電容改變量與所述感應電極被觸摸物遮蓋的面積相關。訊號接收單元59接收感應電極的感應資料,經訊號處理單元恢復出觸摸資訊。 Fig. 9 is a view showing a signal flow diagram of a touch wafer according to a third embodiment of the present invention. When a touch occurs on the sensing electrode, the capacitance of the sensing electrode changes, and the amount of change is converted into a digital amount by the ADC, and the touch information can be recovered. In general, the amount of capacitance change is related to the area covered by the sensing electrode by the touch object. The signal receiving unit 59 receives the sensing data of the sensing electrode, and recovers the touch information by the signal processing unit.

以下具體描述訊號處理單元的資料處理方法。 The data processing method of the signal processing unit will be specifically described below.

步驟61:獲取感應資料。 Step 61: Acquire sensing data.

步驟62:對感應資料進行濾波和降噪。所述步驟的目的是儘量消除原始圖像中的雜訊,以利後續計算。所述步驟具體可採用空間、時間或閥值濾波辦法。 Step 62: Filter and reduce noise of the sensing data. The purpose of the steps is to eliminate noise in the original image as much as possible for subsequent calculations. The step may specifically adopt a space, time or threshold filtering method.

步驟63:尋找其中可能的觸摸區域。這些區域包括真實的觸摸區域以及無效訊號。無效訊號包括大面積觸摸訊號、電源雜訊訊號、懸空異常訊號、以及水滴訊號等等。這些無效訊號有的與真實觸摸接近,有的會干擾真實觸摸,有的則不應被解讀成正常觸摸。 Step 63: Find the possible touch areas therein. These areas include real touch areas and invalid signals. Invalid signals include large-area touch signals, power noise signals, floating abnormal signals, and water droplet signals. Some of these invalid signals are close to real touch, some may interfere with real touch, and some should not be interpreted as normal touch.

步驟64:異常處理,以消除上述無效訊號並得到合理觸摸區。 Step 64: Exception processing to eliminate the invalid signal and obtain a reasonable touch area.

步驟65:根據合理觸摸區的資料進行計算,以得到觸摸位置的座標。 Step 65: Calculate according to the data of the reasonable touch area to obtain the coordinates of the touch position.

優選地,可以根據二維的電容變化陣列來確定觸摸位置。具體來說,可以採用重心演算法來根據二維的電容變化陣列確定觸摸位置的座標。 Preferably, the touch location can be determined from a two-dimensional array of capacitance variations. Specifically, a center of gravity algorithm can be employed to determine the coordinates of the touch location from the two-dimensional array of capacitance changes.

於一實施態樣中,觸控晶片可以包括:訊號驅動/ 接收單元,用以驅動各觸摸感應電極,並接收來自各觸摸感應電極的感應資料;以及訊號處理單元,用以根據感應資料來確定觸摸位置。具體而言,訊號驅動/接收單元可以用以利用電壓源或電流源驅動所述感應電極;訊號處理單元可以用以透過感應電極的電壓或頻率或電量來計算其自電容(例如,對地電容),並根據自電容的變化量來確定觸摸位置。 In one embodiment, the touch wafer can include: signal driving / The receiving unit is configured to drive each of the touch sensing electrodes and receive the sensing data from each of the touch sensing electrodes; and the signal processing unit is configured to determine the touch position according to the sensing data. Specifically, the signal driving/receiving unit can be configured to drive the sensing electrode by using a voltage source or a current source; the signal processing unit can calculate the self-capacitance (for example, the capacitance to the ground) through the voltage or frequency or the amount of electricity of the sensing electrode. ), and determine the touch position according to the amount of change in self capacitance.

此外,訊號驅動/接收單元可以用以於每個感應電極驅動所述感應電極的同時,驅動其餘感應電極;或者用以於每個感應電極驅動所述感應電極的同時,驅動所述感應電極周邊的感應電極。 In addition, the signal driving/receiving unit may be configured to drive the sensing electrodes while driving the sensing electrodes, or to drive the sensing electrodes while driving the sensing electrodes. Induction electrode.

第10A圖示出了根據本發明第四實施例採用重心演算法計算觸摸位置的座標的一個例子。在以下描述中僅計算了觸摸位置的一個維度的座標;然而,所屬領域中具有通常知識者應知可以採用相同或類似的方法獲得觸摸位置的完整座標。假設第7圖所示的感應電極56-58被手指覆蓋,對應的感應資料分別為PT1,PT2,PT3,且感應電極56-58所對應的座標分別為x1,x2,x3。則採用重心演算法得到的手指觸摸位置的座標是: Fig. 10A shows an example of the coordinates of the touch position calculated by the center of gravity algorithm according to the fourth embodiment of the present invention. Only the coordinates of one dimension of the touch location are calculated in the following description; however, those of ordinary skill in the art will recognize that the same or similar methods can be used to obtain the full coordinates of the touch location. It is assumed that the sensing electrodes 56-58 shown in FIG. 7 are covered by the fingers, and the corresponding sensing materials are PT1, PT2, and PT3, respectively, and the coordinates corresponding to the sensing electrodes 56-58 are x1, x2, and x3, respectively. The coordinates of the finger touch position obtained by the center of gravity algorithm are:

可選擇地,在得到觸摸位置的座標之後還可以進行步驟66:分析以往幀的資料,以便利用多幀資料來獲得當前幀資料。 Alternatively, after obtaining the coordinates of the touch location, step 66 may be performed: analyzing the data of the previous frame to obtain the current frame data by using the multi-frame data.

可選擇地,在得到觸摸位置的座標之後也可以進行步驟67:根據多幀資料來追蹤觸摸軌跡。此外,還可以根據使用者的操作過程,得出事件資訊並上傳。 Alternatively, step 67 may be performed after the coordinates of the touch location are obtained: the touch trajectory is tracked according to the multi-frame data. In addition, event information can be obtained and uploaded according to the user's operation process.

根據本實施例的電容式觸控式螢幕,能夠在實現多點觸控的前提下,解決現有技術中雜訊疊加的問題。 According to the capacitive touch screen of the embodiment, the problem of noise superposition in the prior art can be solved under the premise of implementing multi-touch.

以在第7圖中引入電源共模雜訊為例,以下分析雜訊對觸摸位置的計算之影響。 Taking the introduction of power common mode noise in Figure 7 as an example, the following analysis of the influence of noise on the calculation of the touch position.

在現有技術的基於互電容觸摸檢測的觸摸系統中,有複數驅動通道(TX)和複數接收通道(RX),而且每個RX與所有的TX連通。當系統中引入了一個共模干擾訊號時,由於RX的連通性,雜訊會在整個RX上傳導。特別是,當在一個RX上有複數噪音源時,這些噪音源的雜訊會疊加,從而使雜訊幅度增加。雜訊使測量的電容上的電壓訊號等發生擺動,從而導致非觸摸點發生誤報。 In prior art mutual capacitance touch detection based touch systems, there are a plurality of drive channels (TX) and a plurality of receive channels (RX), and each RX is in communication with all of the TXs. When a common mode interference signal is introduced into the system, the noise will be transmitted throughout RX due to the RX connectivity. In particular, when there are multiple noise sources on one RX, the noise of these noise sources will be superimposed, thereby increasing the noise amplitude. The noise causes the voltage signal on the measured capacitance to oscillate, resulting in a false alarm at the non-touch point.

在本實施例所提供的電容式觸控式螢幕中,各感應電極間在連接到晶片內部前沒有物理連接,雜訊無法在感應電極間傳遞和疊加,避免了誤報。 In the capacitive touch screen provided in this embodiment, the sensing electrodes are not physically connected before being connected to the inside of the wafer, and the noise cannot be transmitted and superimposed between the sensing electrodes, thereby avoiding false alarms.

以電壓檢測法為例,雜訊會引起被觸摸電極上的電壓變化,從而引起被觸摸電極的感應資料變化。根據自電容觸摸檢測原理,雜訊所導致的感應值與正常觸摸所導致的感應值均正比於被觸摸電極被覆蓋的面積。 Taking the voltage detection method as an example, the noise causes a voltage change on the touched electrode, thereby causing a change in the sensed data of the touched electrode. According to the self-capacitance touch detection principle, the sensing value caused by the noise and the sensing value caused by the normal touch are proportional to the area covered by the touch electrode.

第10B圖示出了根據本發明第四實施例有雜訊的情況下採用重心演算法計算觸摸位置的座標。假設正常觸摸引起的感應值分別是PT1、PT2、PT3,雜訊引起的感應值是PN1、 PN2、PN3,則(以感應電極56-58為例):PT1 C58,PT2 C57,PT3 C56 Fig. 10B is a diagram showing the coordinates of the touch position calculated by the center of gravity algorithm in the case where there is noise according to the fourth embodiment of the present invention. Assume that the induced values caused by the normal touch are PT1, PT2, and PT3, respectively, and the induced values caused by the noise are PN1, PN2, and PN3, then (using the sensing electrodes 56-58 as an example): PT1 C58, PT2 C57, PT3 C56

PN1 C58,PN2 C57,PN3 C56 PN1 C58, PN2 C57, PN3 C56

可得:PN1=K*PT1,PN2=K*PT2,PN3=K*PT3,其中K為常數。 Available: PN1=K*PT1, PN2=K*PT2, PN3=K*PT3, where K is a constant.

當雜訊與驅動源的電壓極性一致時,由於電壓疊加最終的感應資料為:PNT1=PN1+PT1=(1+K)*PT1 When the polarity of the voltage of the noise and the driving source is the same, the final sensing data due to the voltage superposition is: PNT1=PN1+PT1=(1+K)*PT1

PNT2=PN2+PT2=(1+K)*PT2 PNT2=PN2+PT2=(1+K)*PT2

PNT3=PN3+PT3=(1+K)*PT3 PNT3=PN3+PT3=(1+K)*PT3

那麼,採用重心演算法得到的座標為: Then, the coordinates obtained by the center of gravity algorithm are:

可見,式(2)與式(1)相等。因此,本實施例的電容式觸控式螢幕不會受到共模雜訊的影響。只要雜訊不超出系統的動態範圍,就不會影響到最終確定的座標。 It can be seen that equation (2) is equal to equation (1). Therefore, the capacitive touch screen of the embodiment is not affected by common mode noise. As long as the noise does not exceed the dynamic range of the system, it will not affect the final coordinates.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。 While the present invention has been described above in the foregoing embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of patent protection shall be subject to the definition of the scope of the patent application attached to this specification.

10‧‧‧觸控晶片 10‧‧‧ touch chip

16‧‧‧印刷電路板 16‧‧‧Printed circuit board

19‧‧‧感應電極 19‧‧‧Induction electrodes

Claims (10)

一種電容式觸控式螢幕,包括:一印刷電路板;設置於印刷電路板上的複數感應電極,該些感應電極排列成二維陣列;以及以板上晶片(Chip-on-Board)方式綁定到印刷電路板上的一觸控晶片,該觸控晶片與該些感應電極之中的每一個感應電極分別透過一獨立導線相連接;該觸控晶片用以檢測每個感應電極的自電容。 A capacitive touch screen includes: a printed circuit board; a plurality of sensing electrodes disposed on the printed circuit board, the sensing electrodes are arranged in a two-dimensional array; and tied in a chip-on-board manner a touch chip is disposed on the printed circuit board, and each of the sensing electrodes is connected to each of the sensing electrodes through a separate wire; the touch chip is configured to detect the self-capacitance of each sensing electrode . 如請求項1所述的電容式觸控式螢幕,其中該觸控晶片用以透過以下方法檢測每個感應電極的自電容:用電壓源或電流源驅動該感應電極;以及檢測該感應電極的電壓或頻率或電量。 The capacitive touch screen of claim 1, wherein the touch wafer is configured to detect a self-capacitance of each of the sensing electrodes by: driving the sensing electrode with a voltage source or a current source; and detecting the sensing electrode Voltage or frequency or power. 如請求項1所述的電容式觸控式螢幕,其中該觸控晶片用以透過以下方法檢測每個感應電極的自電容:驅動並檢測該感應電極,同時驅動其餘感應電極;或者驅動並檢測該感應電極,同時驅動該感應電極周邊的感應電極。 The capacitive touch screen of claim 1, wherein the touch wafer is configured to detect a self-capacitance of each of the sensing electrodes by: driving and detecting the sensing electrode while driving the remaining sensing electrodes; or driving and detecting The sensing electrode simultaneously drives the sensing electrode around the sensing electrode. 如請求項2所述的電容式觸控式螢幕,其中對於各感應電極:該電壓源或電流源具有同一頻率;或者對於各感應電極,該電壓源或電流源具有兩個或兩個以上的頻率。 The capacitive touch screen of claim 2, wherein for each of the sensing electrodes: the voltage source or the current source has the same frequency; or for each sensing electrode, the voltage source or the current source has two or more frequency. 如請求項1所述的電容式觸控式螢幕,其中該觸控晶片用以透過以下方法檢測每個感應電極的自電容: 同時檢測所有感應電極的自電容;或者分組檢測各感應電極的自電容。 The capacitive touch screen of claim 1, wherein the touch wafer is configured to detect a self-capacitance of each of the sensing electrodes by: Simultaneously detecting the self-capacitance of all the sensing electrodes; or detecting the self-capacitance of each sensing electrode in groups. 如請求項1所述的電容式觸控式螢幕,其中該觸控晶片用以根據二維的電容變化陣列來確定觸摸位置。 The capacitive touch screen of claim 1, wherein the touch wafer is configured to determine a touch position according to a two-dimensional array of capacitance changes. 如請求項2所述的電容式觸控式螢幕,其中該觸控晶片更進一步用以透過該電壓源或電流源的參數來調整觸摸檢測的靈敏度或動態範圍,該參數包括幅度、頻率和時序之中的任一個或組合。 The capacitive touch screen of claim 2, wherein the touch chip is further configured to adjust a sensitivity or a dynamic range of the touch detection by using parameters of the voltage source or the current source, the parameters including amplitude, frequency, and timing. Any one or combination of them. 如請求項1所述的電容式觸控式螢幕,其中該感應電極的形狀係選自矩形、菱形、三角形、圓形及橢圓形所構成之群組之一。 The capacitive touch screen of claim 1, wherein the shape of the sensing electrode is selected from the group consisting of a rectangle, a diamond, a triangle, a circle, and an ellipse. 如請求項1所述的電容式觸控式螢幕,其中該導線透過通孔連接到該觸控晶片。 The capacitive touch screen of claim 1, wherein the wire is connected to the touch wafer through a through hole. 如請求項1所述的電容式觸控式螢幕,其中該印刷電路板是雙層印刷電路板;該些感應電極設置於該雙層印刷電路板的頂層上;該觸控晶片以板上晶片方式綁定到該雙層印刷電路板的底層上。 The capacitive touch screen of claim 1, wherein the printed circuit board is a double-layer printed circuit board; the sensing electrodes are disposed on a top layer of the double-layer printed circuit board; The method is bound to the bottom layer of the dual layer printed circuit board.
TW102122011A 2013-06-20 2013-06-20 Capacitive touch screen TWI517011B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102122011A TWI517011B (en) 2013-06-20 2013-06-20 Capacitive touch screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102122011A TWI517011B (en) 2013-06-20 2013-06-20 Capacitive touch screen

Publications (2)

Publication Number Publication Date
TW201501009A TW201501009A (en) 2015-01-01
TWI517011B true TWI517011B (en) 2016-01-11

Family

ID=52717975

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102122011A TWI517011B (en) 2013-06-20 2013-06-20 Capacitive touch screen

Country Status (1)

Country Link
TW (1) TWI517011B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112102738B (en) * 2020-09-15 2021-08-17 深圳市奥拓电子股份有限公司 Interactive COB display module and LED display screen

Also Published As

Publication number Publication date
TW201501009A (en) 2015-01-01

Similar Documents

Publication Publication Date Title
KR101572866B1 (en) Touch display device
KR101578092B1 (en) Organic light-emitting diode display device integrated with touch control function
US20140362030A1 (en) Capacitive touch screen and method for manufacturing the same
CN105867706B (en) Touch input device
KR102416377B1 (en) Electrode arrangement for gesture detection and tracking
CN103294319A (en) Capacitive touch screen
KR101888096B1 (en) Touch sensitive screen
CN103279246B (en) Capacitive type touch pad
CN103309535A (en) Capacitive touch screen
TW201710835A (en) Sensor design for enhanced touch and gesture decoding
CN203502941U (en) Capacitive touch pad
TWI517011B (en) Capacitive touch screen
CN203324956U (en) Capacitive touch screen
TWI494813B (en) Integrated touch organic light emitting diode display device
KR101727590B1 (en) Method and device of controlling touch sensing display
KR101727589B1 (en) Method and device of controlling touch sensing display
CN203376723U (en) Capacitive touch screen
TWI514226B (en) Capacitive touch screen
TWI493420B (en) Capacitive touch screen
TWI503722B (en) Touch display apparatus
TWI488101B (en) Capacitive touch screen and method for making the same
KR101678059B1 (en) Method of controlling touch sensor and stylus device
TW202405639A (en) Control method with multiple sensing functions