TWI515305B - Cold rolled steel sheet and manufacturing method thereof - Google Patents

Cold rolled steel sheet and manufacturing method thereof Download PDF

Info

Publication number
TWI515305B
TWI515305B TW102106032A TW102106032A TWI515305B TW I515305 B TWI515305 B TW I515305B TW 102106032 A TW102106032 A TW 102106032A TW 102106032 A TW102106032 A TW 102106032A TW I515305 B TWI515305 B TW I515305B
Authority
TW
Taiwan
Prior art keywords
steel sheet
rolled steel
cold
temperature
iron
Prior art date
Application number
TW102106032A
Other languages
English (en)
Other versions
TW201400626A (zh
Inventor
Kengo Hata
Toshiro Tomida
Norio Imai
Jun Haga
Takuya Nishio
Original Assignee
Nippon Steel & Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel & Sumitomo Metal Corp filed Critical Nippon Steel & Sumitomo Metal Corp
Publication of TW201400626A publication Critical patent/TW201400626A/zh
Application granted granted Critical
Publication of TWI515305B publication Critical patent/TWI515305B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

冷軋鋼板及其製造方法
本發明是關於冷軋鋼板及其製造方法。更詳細地說,本發明是關於具有高強度和優異的加工性之冷軋鋼板及其製造方法。
以往曾經被檢討之用來提昇冷軋鋼板的機械特性的方法之一,是謀求金屬組織的細微化。
下列的專利文獻1中所揭示的冷軋鋼板,是具有由肥粒鐵、麻田散鐵、變韌鐵以及殘留γ(殘留沃斯田鐵)的1種或2種以上所形成的低溫變態相的金屬組織,這個低溫變態相的體積率為10~50%,且平均結晶粒徑為2μm以下。
專利文獻2是揭示出:使用在熱軋後以短時間進行冷卻所製造出來的熱軋鋼板,來進行製造冷軋鋼板的方法。例如:係揭示出藉由在熱軋後,以400℃/秒以上的冷卻速度,在0.4秒以內進行冷卻至720℃以下,因而製造出具有以平均結晶粒徑很小的肥粒鐵作為主相的細微組織之熱軋鋼板,然後對此熱軋鋼板實施一般的冷軋和退火。
[先前技術文獻] [專利文獻]
[專利文獻1]日本特開2008-231480號公報
[專利文獻2]國際公開第2007/015541號公報手冊
根據專利文獻1,係可獲得具有細微的組織之冷軋鋼板。然而,為了謀求組織的細微化,必須含有析出(晶析)元素也就是Ti、Nb以及V之中的1種或2種以上。如果含這種析出元素過多的話,將會損及鋼板的延性,因此專利文獻1所揭示的冷軋鋼板,難以確保優異的延性,亦即難以確保優異的加工性。
關於這一點,根據專利文獻2所揭示的方法,即使不含有析出元素還是可以謀求組織的細微化,可製造出具有優異的延性之冷軋鋼板。所製得的冷軋鋼板,因為其原本的素材之熱軋鋼板是具有細微的組織,所以是具有冷軋以及再結晶後之細微的組織。因此,由此所生成的沃斯田鐵也變得細微,而可製得具有細微的組織之冷軋鋼板。然而,因為冷軋後的退火方法是採用一般的方法,因此在退火時的加熱工序中會產生再結晶,再結晶結束之後,將會以再結晶後的組織的粒界作為「核生成部位」而產生沃斯田鐵變態。亦即,存在於熱軋鋼板中的大角粒界、細微的碳化物粒子以及低溫變態相之類的沃斯田鐵變態的優先核生成部位的大部分,在進行退火時的加熱中消失殆盡之 後,就產生沃斯田鐵變態。因此,根據專利文獻2所揭示的方法所製得的冷軋鋼板,雖然是具有細微的組織,但是因為退火過程中的沃斯田鐵粒的細微化,在於是以再結晶後的組織為前提的這一點上受到了限制,因此,也無法說是:可將熱軋鋼板所具備的細微的組織充分予以活用到冷軋以及退火後的組織的細微化。特別是在以沃斯田鐵單相域來進行退火的情況下,很難將熱軋鋼板的細微的組織予以活用到冷軋以及退火後之組織的細微化。
本發明之目的,是先將:即使不必大量添加Ti、Nb之類的析出(晶析)元素亦可使得冷軋以及退火後的組織有效地細微化的作法變成可能,藉此,可以提供:既有高強度又兼具優異的延性以及延伸凸緣性之冷軋鋼板及其製造方法。
本發明人等,為了獲得具有高強度且兼具優異的延性以及延伸凸緣性的組織,乃著眼於:以肥粒鐵作為主相,且在第2相中含有:用來確保鋼板強度的低溫變態相以及可獲得因變態誘起塑性所產生的提昇延性效果的殘留沃斯田鐵之複合組織。
此外,如果是混合著:肥粒鐵之類的軟質相以及低溫變態相、殘留沃斯田鐵之類的硬質相的組織的話,一般而言,讓人擔心其延伸凸緣性(擴孔性)會變差,因此,乃根據所謂的「藉由肥粒鐵以及硬質相的細微化以及控制殘留沃斯田鐵的形態來儘可能地抑制延伸凸緣性變差」的這種材質設計思想,加以檢討。
針對於應如何才可獲得這種組織的手法,係在冷軋後的退火工序中,並不採用以往之在於再結晶結束後,進行沃斯田鐵變態之傳統的退火方法,而是改採新的想法,嚐試在於再結晶結束前,就進行沃斯田鐵變態之新的作法。
其結果,係獲得下列的新穎創見。
1)如果是在於再結晶結束後才進行沃斯田鐵變態之傳統的退火方法的話,因為會以再結晶後的組織的粒界作為核生成部位來產生沃斯田鐵變態,所以在退火過程中的沃斯田鐵粒(退火後之舊沃斯田鐵粒,在爾後的說明之中,也簡稱為「舊沃斯田鐵粒」)的細微化,在於是以「從再結晶後的組織進行沃斯田鐵變態」為前提的這一點,受到了限制。
相對於此,如果是根據:在到達會生成沃斯田鐵的溫度範圍之前,進行急速加熱,在於再結晶結束前就進行沃斯田鐵變態之退火方法的話,將會從位在熱軋鋼板中的沃斯田鐵變態的優先核生成部位的大角粒界、細微的碳化物粒子、低溫變態相來產生沃斯田鐵變態,因此,在退火過程中的沃斯田鐵粒將會大幅地細微化。其結果,可有效地將退火後之冷軋鋼板的組織中的肥粒鐵、低溫變態相以及殘留沃斯田鐵予以細微化。
2)在冷軋後的退火工序中,根據在於再結晶結束前就進行沃斯田鐵變態之退火方法所製得的鋼板,在所有的殘留沃斯田鐵之中,長寬比未達5的塊狀殘留沃斯田鐵所佔的百分率會增加。這是被認為:因為隨著舊沃斯田鐵粒的 細微化,存在於舊沃斯田鐵粒界上、封包(packet)境界上或者區塊(block)境界上的殘留沃斯田鐵會增加,而生成於變韌鐵、麻田散鐵的薄晶間的殘留沃斯田鐵則會減少的緣故。這種塊狀的殘留沃斯田鐵,與生成於變韌鐵、麻田散鐵的薄晶間的殘留沃斯田鐵比較,是存在於鋼板加工時應力容易集中的粒界。因此,因變態誘起塑性所產生的提昇延性效果很高,可有效地提昇鋼板的延性。
如果是混合著肥粒鐵之類的軟質相以及殘留沃斯田鐵的組織的話,一般而言,讓人擔心其延伸凸緣性會變差。但是,如果是以上述的方式,在退火後的冷軋鋼板的組織中,將肥粒鐵、低溫變態相以及殘留沃斯田鐵有效地予以細微化的話,就可以抑制延伸凸緣性變差。因此,亦可確保優異的延伸凸緣性。
3)如上所述之在冷軋後的退火工序中,在於再結晶結束前就進行沃斯田鐵變態之退火方法,將會從熱軋鋼板中的沃斯田鐵變態的優先核生成部位,也就是大角粒界、細微的碳化物粒子以及低溫變態相來產生沃斯田鐵變態的核生成,因而可謀求舊沃斯田鐵粒之有效的細微化。因此,熱軋鋼板的製造方法係適合採用專利文獻2所揭示之可製得:高密度地含有這些沃斯田鐵變態的優先核生成部位之熱軋鋼板的製造方法。將利用專利文獻2所揭示的製造方法所製得的熱軋鋼板,應用上述退火方法來進行退火處理,如此一來,將可使得退火過程中的沃斯田鐵粒更加細微化,進而可使得退火後的冷軋鋼板的組織中的肥粒鐵、 低溫變態相以及殘留沃斯田鐵更為細微化。
本發明人等找出了一種創見,就是:藉由將上述組織予以細微化以及控制殘留沃斯田鐵的形態後的結果,可使得冷軋鋼板的延性大幅度提昇,並且可顯著地提昇延性與延伸凸緣性之兩者間的均衡性。
根據上述的新創見所發展出來的本發明的冷軋鋼板,其特徵為:其化學組成分,以質量%計,係含有C:0.06~0.3%、Si:0.4~2.5%、Mn:0.6~3.5%、P:0.1%以下、S:0.05%以下、Ti:0~0.08%、Nb:0~0.04%、Ti與Nb的合計含量:0~0.10%、sol.Al:0~2.0%、Cr:0~1%、Mo:0~0.3%、V:0~0.3%、B:0~0.005%、Ca:0~0.003%、REM:0~0.003%、其餘部分是Fe以及雜質;其金相微觀組織的主相是肥粒鐵佔據40面積%以上,第2相是含有:由麻田散鐵以及變韌鐵之1種或2種所成的低溫變態相,合計佔據10面積%以上,以及殘留沃斯田鐵佔據3面積%以上,且符合下列數式(1)~(4)的關係:dF≦5.0…(1)
dM+B≦2.0…(2)
dAs≦1.5…(3)
rAs≧50…(4)
在上列數式中,dF是表示由傾角15°以上的大角粒界所界定的肥粒鐵 的平均粒徑(單位:μm),dM+B是表示前述低溫變態相的平均粒徑(單位:μm),dAs是表示長寬比未達5的殘留沃斯田鐵的平均粒徑(單位:μm),rAs是表示長寬比未達5的殘留沃斯田鐵之相對於總殘留沃斯田鐵的面積率(%)。
所稱的金相微觀組織中的主相,係指:面積率最大的相;第2相係指:包含主相以外之所有的相以及組織。平均粒徑係指:使用SEM-EBSD電子顯微鏡,根據後述的數式(6)來求出之換算成圓的直徑的平均值。
在較佳的實施方式中,本發明的冷軋鋼板又具有下列(1)~(7)中的1種或2種以上的特徵。
(1)具有集合組織,該集合組織在板厚的1/2深度位置之從{100}<011>起迄{211}<011>為止的方位群的X射線強度的平均值,相對於不具有集合組織之散亂組織的X射線強度的平均值的比值未達6。
(2)前述化學組成分,以質量%計,含有從Ti:0.005~0.08%以及Nb:0.003~0.04%所構成的群組中所選出的1種或2種。
(3)前述化學組成分,以質量%計,含有sol.Al:0.1~2.0%。
(4)前述化學組成分,以質量%計,含有從Cr:0.03~1%、Mo:0.01~0.3%以及V:0.01~0.3%所構成的群組中所選出的1種或2種以上。
(5)前述化學組成分,以質量%計,含有B:0.0003~0.005%。
(6)前述化學組成分,以質量%計,含有從Ca:0.0005~0.003%以及REM:0.0005~0.003%所構成的群組中所選出的1種或2種。
(7)在鋼板表面具有鍍覆層。
從另一方面來說,本發明是以具有下列工序(A)以及(B)作為特徵之上述冷軋鋼板的製造方法。
(A)對於具有上述化學組成分的熱軋鋼板進行冷軋以作成冷軋鋼板的冷軋工序;以及(B)對於在工序(A)中所製得的冷軋鋼板,在包含下列要素的條件下實施退火的退火工序,亦即,以15℃/秒以上的平均加熱速度來進行加熱,使得在到達(Ac1點+10℃)時的尚未進行沃斯田鐵變態的領域中所佔據的未再結晶率為30面積%以上,然後,又在(0.9×Ac1點+0.1×Ac3點)以上(Ac3點+100℃)以下的溫度範圍保持30秒鐘以上。
此處,前述Ac1點以及Ac3點,是從以2℃/秒的加熱速度進行昇溫時的熱膨脹曲線所求出的變態點。
在較佳的實施方式中,本發明的冷軋鋼板的製造方法又具有下列(8)~(12)中的1種或2種以上的特徵。
(8)前述熱軋鋼板是藉由:在熱軋結束後,以300℃以下的溫度條件進行捲取,然後,在500~700℃的溫度範圍實施熱處理而製得的。
(9)前述熱軋鋼板是在Ar3點以上的條件下,結束進行 輥軋之熱軋結束後,藉由:以符合下列數式(5)的冷卻速度(Crate),在從輥軋結束溫度起迄(輥軋結束溫度-100℃)為止的溫度範圍進行冷卻的熱軋工序而製得的,並且由傾角15°以上的大角粒界所界定的BCC相的平均粒徑是6μm以下。
在上述數式(5)中,Crate(T)是表示冷卻速度(℃/s)(正值),T是表示將輥軋結束溫度設成零的相對溫度(℃,負值),Crate是表示:假設有溫度為零的情況下,將在於該溫度下的滯留時間(△t)除以IC(T)之後的數值,當作該區間的積分來進行加算。
(10)在前述(9)所述的溫度範圍內的冷卻,係包含:以400℃/秒以上的冷卻速度,開始進行冷卻,並且以這個冷卻速度,將30℃以上的溫度區間予以冷卻。
(11)在前述(9)所述的溫度範圍內的冷卻,係包含:以400℃/秒以上的冷卻速度,利用水冷方式開始進行冷卻,並且以這個冷卻速度,將30℃以上80℃以下的溫度區間予以冷卻之後,設置0.2~1.5秒的水冷停止期間,在該期 間進行測定板形狀,然後以50℃/秒以上的速度進行冷卻。
(12)在前述工序(B)之後,又具有對於冷軋鋼板實施鍍覆處理的工序。
根據本發明,即使不必多量添加Ti、Nb等的析出(晶析)元素,也是可以將冷軋以及退火後的組織予以有效地細微化,而可達成:延性以及延伸凸緣性優異的高強度冷軋鋼板及其製造方法。本發明所利用的將組織予以細微化機制,係與傳統方法所利用的機制不同,因此,即使是在沃斯田鐵單相域中進行退火的情況下,也是有效果的,此外,在於可獲得穩定的材質的程度下,即使延長退火時的保持時間,還是可獲得細微組織。
以下將說明本發明的冷軋鋼板及其製造方法。在以下的說明中,關於化學組成分的%,除非有特別的指定,不然都是表示質量%。又,本發明中的平均粒徑係指:使用SEM-EBSD電子顯微鏡,依據後述的數式(5)所求出的換算成圓的直徑的平均值。
1. 冷軋鋼板 1-1:化學組成分 [C:0.06~0.3%]
C是具有提高鋼強度的作用。此外,C是可藉由在沃 斯田鐵中進行濃縮而具有讓沃斯田鐵穩定化,提高在冷軋鋼板中的殘留沃斯田鐵的百分比,提昇鋼的延性的作用。此外,在退火工序中,利用C所產生的在昇溫過程中的肥粒鐵的再結晶抑制作用,可藉由急速加熱而保持在未再結晶率較高的狀態下,很容易到達(Ac1點+10℃)以上的溫度範圍,如此一來,可將冷軋鋼板的金相微觀組織予以細微化。此外,C是具有降低A3點的作用,所以在熱軋工序中,可使得熱軋在較低溫範圍中結束,藉此,可很容易將熱軋鋼板的組織予以細微化。
如果C含量未達0.06%的話,難以獲得上述作用所帶來的效果。因此,C含量是設定在0.06%以上。較好是0.08%以上,更好是0.10%以上。另一方面,如果C含量超過0.3%的話,冷軋鋼板的加工性、焊接性的變差現象會趨於明顯。因此,將C含量設定為0.3%以下。較好是0.25%以下。
[Si:0.4~2.5%]
Si是具有:藉由促進麻田散鐵、變韌鐵之類的低溫變態相的生成,因而提昇鋼強度的作用。此外,Si也具有:藉由促進殘留沃斯田鐵的生成,因而提昇鋼的延性之作用。如果Si含量未達0.4%的話,難以獲得上述作用所帶來的效果。因此,將Si含量設定為0.4%以上。較好是0.6%以上,更好是0.8%以上,1.0%以上更優。另一方面,如果Si含量超過2.5%的話,鋼的延性變差現象趨於 明顯,其鍍覆性也變差。因此,將Si含量設定為2.5%以下。更好是2.0%以下。
[Mn:0.6~3.5%]
Mn是具有提昇鋼強度的作用。此外,Mn也具有使得變態溫度降低的作用,所以在退火工序中,可很容易藉由急速加熱而保持在未再結晶率較高的狀態下,到達(Ac1點+10℃)以上的溫度範圍,如此一來,可將冷軋鋼板的組織予以細微化。如果Mn含量未達0.6%的話,難以獲得上述作用所帶來的效果。因此,將Mn含量設定為0.6%以上。另一方面,如果Mn含量超過3.5%的話,鋼會被過度高強度化,其延性將會明顯變差。因此,乃將Mn含量設定為3.5%以下。
[P:0.1%以下]
P是作為雜質含在鋼中,是具有:因偏析在粒界而使得鋼變脆的作用。如果P含量超過0.1%的話,有時候會因為上述作用而使得脆化趨於明顯。因此,將P含量設定在0.1%以下。更好是0.06%以下。因為P含量愈低愈好,所以沒有必要限定其下限值,但是基於成本觀點的考量,將其含量設定為0.001%以上為宜。
[S:0.05%以下]
S是作為雜質含在鋼中,是具有:在鋼中形成硫化物 系介在物,因而使得鋼的延性變差的作用。如果S含量超過0.05%的話,有時候會因為上述作用而使得延性變差的現象趨於明顯。因此,將S含量設定為0.05%以下。更好是0.008%以下,0.003%以下更優。因為S含量愈低愈好,所以沒有必要限定其下限值,但是基於成本觀點的考量,將其含量設定為0.001%以上為宜。
[Ti:0~0.08%、Nb:0~0.04%、Ti以及Nb的合計含量:0~0.10%]
Ti以及Nb是作為碳化物、氮化物而在鋼中晶析出來的析出元素,是具有:藉由抑制在退火工序中的沃斯田鐵的粒成長,而可促進鋼的組織細微化的作用。因此,亦可配合需求來含有這些元素的1種或2種。但是,如果各元素的含量超過上述上限值的話,或者是合計含量超過上述上限值的話,上述作用所帶來的效果會趨於飽和,而在成本上較為不利。因此,將各元素的含量以及合計含量設定為如上所述的量。Ti的含量是設定在0.05%以下為宜,更好是0.03%以下。Nb的含量是設定在0.02%以下為宜。此外,Nb以及Ti的合計含量是設定在0.05%以下為宜,更好是0.03%以下。為了要確實地獲得這些元素的上述作用所帶來的效果,只要能夠符合Ti:0.005%以上或者Nb:0.003%以上的其中一種條件即可。
[sol.Al:0~2.0%]
Al是具有提昇鋼的延性之作用。所以亦可含有Al。但是,因為Al具有使得Ar3變態點上昇的作用,如果sol.Al含量超過2.0%的話,就不得不讓熱軋在更高溫範圍內結束。其結果,將導致難以將熱軋鋼板的組織予以細微化,也難以將冷軋鋼板的組織予以細微化。此外,有時候會使得連續鑄造變得困難。因此,將sol.Al含量設定在2.0%以下。為了要更確實地獲得Al的上述作用所帶來的效果,將sol.Al含量設定在0.1%以上為宜。
[Cr:0~1%、Mo:0~0.3%、V:0~0.3%]
Cr、Mo以及V都是具有提昇鋼的強度之作用。此外,Mo是具有可抑制結晶粒的粒成長,促進鋼的組織細微化的作用。V是具有可促進朝肥粒鐵進行變態,因而提昇鋼板的延性之作用。因此,亦可含有Cr、Mo、V之中的1種或2種以上。
但是,如果Cr含量超過1%的話,肥粒鐵變態會被過度抑制,有時候將無法確保住想要獲得的組織。此外,如果Mo含量超過0.3%,或者V含量超過0.3%的話,在熱軋工序的加熱階段中,將會生成大量的析出物,有時候延性會明顯地變差。因此,乃將這些各元素的含量設定成如上所述的量。此外,Mo含量是設定在0.25%以下為宜。又,為了要確實地獲得這些元素的上述作用所帶來的效果,只要能夠符合Cr:0.03%以上、Mo:0.01%以上或者V:0.01%以上的其中一種條件即可。
[B:0~0.005%]
B是具有:可提高鋼的淬火硬化性,藉由促進低溫變態相的生成而可提昇鋼的強度之作用。因此,亦可含有B。但是,如果B含量超過0.005%的話,鋼將會過度硬質化,有時候延性的變差現象趨於明顯。因此,將B含量設定在0.005%以下。為了更確實地獲得上述作用所帶來的效果,將B含量設定在0.0003%以上為宜。
[Ca:0~0.003%、REM:0~0.003%]
Ca以及REM(稀土族金屬)是具有:可將在熔融鋼的凝固過程中析出的氧化物、氮化物予以細微化,提昇鑄片的健全性之作用。因此,亦可含有這些元素的其中1種或2種。但是,這些元素都是高價元素,所以將各元素的含量設定在0.003%以下。將這些元素的合計含量設定在0.005%以下為宜。為了更確實地獲得這些元素的上述作用所帶來的效果,是含有其中任何一種元素,含量在0.0005%以上為宜。
此處,REM(稀土族金屬)係指:Sc、Y以及鑭系元素之合計17種元素,如果是鑭系元素的話,在工業上一般是以密鈰合金(Misch metal)的形態來進行添加。在本發明中的REM的含量係指:這些元素的合計含量。
上述以外的其餘部分是Fe以及雜質。
1-2:金相微觀組織以及集合組織 [主相]
主相是佔據40面積%以上的肥粒鐵,且符合上述數式(1)。
因為主相是軟質的肥粒鐵,藉此可提昇冷軋鋼板的延性。此外,由傾角為15°以上的大角粒界所界定的肥粒鐵的平均粒徑dF是符合上述數式(1)的條件,藉此,硬質的第2相是在肥粒鐵的粒界上細微地分散,得以抑制鋼板進行加工時發生細微的裂隙。又,藉由肥粒鐵的細微化,可緩和應力集中到細微裂隙前端的現象,因此可抑制裂隙的不斷進展。此一結果,可提昇冷軋鋼板的延伸凸緣性。
如果肥粒鐵面積率未達40%的話,就難以確保優異的延性。因此,肥粒鐵面積率是設定在40%以上。肥粒鐵面積率更好是在50%以上。
如果由傾角15°以上的大角粒界所界定的肥粒鐵的平均粒徑dF不符合上述數式(1)的話,第2相就不會均勻地分散,因此難以確保優異的延伸凸緣性。所以前述肥粒鐵的平均粒徑dF必須符合上述數式(1)的條件。dF的數值更好是符合下列數式(1a)。
dF≦4.0…(1a)
以由傾角15°以上的大角粒界所圍繞的肥粒鐵的平均粒徑dF來作為指標的理由,是因為如果是傾角未達15°的 小角粒界的話,係為相鄰的結晶粒之間的方位差很小的低能量界面,因此第2相很難析出,可使第2相細微地分散的效果很小,對於提昇延伸凸緣性的幫助很少的緣故。
在以下的說明當中,係將由傾角15°以上的大角粒界所界定的肥粒鐵的平均粒徑單純稱為「肥粒鐵的平均粒徑」。在本發明中,肥粒鐵的平均粒徑是5.0μm以下,更好是4.0μm以下。
[第2相]
第2相是含有:由麻田散鐵以及變韌鐵的1種或2種所構成的低溫變態相的合計佔據10面積%以上,以及殘留沃斯田鐵佔據3面積%以上,而且符合上述數式(2)~(4)的條件。
藉由在第2相中含有:麻田散鐵、變韌鐵之類的由低溫變態所生成的硬質相或硬質組織,可提高鋼的強度。另一方面,殘留沃斯田鐵是具有提昇鋼板的延性之作用,所以藉由提高殘留沃斯田鐵面積率,可獲得優異的延性。此外,低溫變態相以及殘留沃斯田鐵係分別符合上述數式(2)以及上述數式(3)的條件,非常地細微,藉此,在對於鋼板進行加工時,可抑制細微的裂隙的產生與進展,可提昇鋼板的延伸凸緣性。此外,長寬比未達5的塊狀殘留沃斯田鐵存在於粒界的頻度很高,在進行加工時,可有效地將應力集中的現象予以緩和。基於這些理由,藉由符合上述數式(4)的條件,就可以顯著地提昇鋼板的延性(尤其是 均勻的延伸特性)。
如果由麻田散鐵以及變韌鐵的1種或2種所構成的低溫變態相的合計面積率未達10%的話,難以確保高強度。因此,將上述低溫變態相的合計面積率設定為10%以上。此外,作為低溫變態相,並不必同時包含麻田散鐵以及變韌鐵的雙方,只要含有其中任何1種即可。此處,所稱的變韌鐵,係包含變韌鐵化肥粒鐵。
又,如果上述低溫變態相(麻田散鐵及/或變韌鐵)的平均粒徑dM+B不符合上述數式(2)的條件的話,難以抑制延伸凸緣加工時的細微裂隙的產生與進展,因而難以確保優異的延伸凸緣性。因此,乃將低溫變態相的平均粒徑dM+B設定為符合上述數式(2)的條件。並且dM+B的數值係符合下列數式(2a)的條件為佳: dM+B≦1.6…(2a)
如果殘留沃斯田鐵的面積率未達3%的話,難以確保優異的延性。因此,乃將殘留沃斯田鐵面積率設定為3%以上。更好是5%以上。
如果長寬比未達5未達之塊狀的殘留沃斯田鐵的平均粒徑dAs不符合上述數式(3)的條件的話,因為對於鋼板進行加工時的殘留沃斯田鐵的變態,將會生成粗大的塊狀麻田散鐵,因此鋼的延伸凸緣性會變差。因此,乃將長寬比未達5未達的殘留沃斯田鐵的平均粒徑dAs設定為符合上 述數式(3)的關係。dAs的數值設定為符合下列數式(3a)的關係為佳。
dAs≦1.0…(3a)
長寬比未達5的殘留沃斯田鐵之相對於總殘留沃斯田鐵的面積率rAs不符合上述數式(4)的關係的話,難以提昇延性。因此,乃將長寬比未達5的殘留沃斯田鐵之相對於總殘留沃斯田鐵的面積率rAs設定成可符合上述數式(4)的關係。rAs數值是設定成符合下列數式(4a)的關係為佳。
rAs≧60…(4a)
藉由使其符合上述數式(3)以及(4)的關係,可將提昇延性的效果發揮到最大限度,並且可極力地抑制延伸凸緣性(擴孔性)的變差。
此外,在第2相中有時候會有波來鐵、雪明鐵混入其中,但是這些的合計含量若是在10%以下的話,則可允許它們混入。
肥粒鐵的平均粒徑DF係使用SEM-EBSD,以由傾角15°以上的大角粒界所圍繞的肥粒鐵當作對象來求出其平均粒徑。SEM-EBSD係指:掃描型電子顯微鏡(SEM)之中,利用電子線後方散亂繞射(EBSD)來進行微小區域的方位測定之方法。藉由將所獲得的方位地圖進行解析,可計 算出平均粒徑。對於低溫變態相以及長寬比未達5的殘留沃斯田鐵的平均粒徑也可使用同樣的方法來求出來。
此外,肥粒鐵以及低溫變態相的面積率也可使用SEM-EBSD來求出來。殘留沃斯田鐵的面積率,係直接將利用X射線繞射法所求得的沃斯田鐵的體積百分率當作面積率。
在本發明中,針對於上述的平均粒徑以及面積率,都是採用在鋼板的板厚1/4深度位置處的測定值。
[集合組織]
本發明的冷軋鋼板係具有集合組織為佳,而該集合組織在板厚的1/2深度位置處,從{100}<011>起迄{211}<011>為止的方位群的X射線強度的平均值,相對於不具有集合組織之散亂的組織的X射線強度的平均值的比值係未達6為宜。
如果可抑制從{100}<011>起迄{211}<011>為止的方位群的集合組織的發達的話,係可提昇鋼的加工性。因此,藉由減少上述的方位群的X射線強度比,可提昇鋼的加工性。藉由將上述的方位群之X射線強度的平均值之相對於不具有集合組織之散亂的組織的X射線強度的平均值的比值予以設定成未達6,可更進一步提昇延性以及延伸凸緣性。因此,乃將上述的方位群的X射線強度的平均值之相對於不具有集合組織之散亂的組織的X射線強度的平均值的比值,設定成未達6。上述的比值更好是未達5,最好 是未達4。此外,集合組織的{hkl}<uvw>係表示:對板面呈垂直方向係與{hkl}的法線保持平行,且輥軋方向與<uvw>保持平行的結晶方位。
這種特定方位的X射線強度,是將鋼板利用氟酸進行化學研磨直到板厚1/2深度之後,在該板面上,測定出肥粒鐵相之{200}、{110}以及{211}面的正極點圖,再使用該測定值利用級數展開法,將方位分布函數(ODF)進行解析而獲得的。
不具有集合組織之散亂的組織的X射線強度,係使用粉末狀的鋼,進行與上述同樣的測定而求得的。
1-3:鍍覆層
亦可基於提昇上述冷軋鋼板表面的耐蝕性之目的,而設置了鍍覆層來作成表面處理鋼板。鍍覆層既可以是電鍍鍍覆層,也可以是熔融鍍覆層。電鍍鍍覆層,係可舉出:電鍍鋅、電鍍Zn-Ni合金等。熔融鍍覆層係可舉出:熔融鍍鋅、合金化熔融鍍鋅、熔融鍍鋁、熔融鍍Zn-Al合金、熔融鍍Zn-Al-Mg合金、熔融鍍Zn-Al-Mg-Si合金等。
鍍覆層附著量並未特別限制,亦可與傳統方式相同。此外,亦可在鍍覆層表面形成適當的化成處理皮膜(例如:藉由塗敷矽酸鹽系的不含鉻的化成處理液並且烘乾),而可更為提昇耐蝕性。此外,亦可披覆有機樹脂皮膜。
2. 製造方法 2-1:熱軋與輥軋後的冷卻
本發明因為是藉由容後詳述的退火處理來使得冷軋鋼板的組織細微化,因此供執行冷軋的熱軋鋼板,亦可採用一般常用方法所製造的鋼板。但是,為了使得冷軋鋼板的組織更進一步地細微化,最好是將供執行冷軋的熱軋鋼板的組織予以細微化,使其增大沃斯田鐵變態的核生成部位為佳。具體而言,係指:將由傾角15°以上的大角粒界所圍繞的晶粒予以細微化,以及將雪明鐵、麻田散鐵等的第2相予以細微分散化。
對於具有細微組織的熱軋鋼板實施了冷軋之後,又執行急速加熱退火的話,藉由急速加熱係可抑制在加熱過程中之因再結晶所產生的核生成部位的消失現象,所以可增大沃斯田鐵、再結晶肥粒鐵的核生成數,可更容易將最終組織予以細微化。
在本發明中適合作為冷軋鋼板的素材之熱軋鋼板,具體而言,其被傾角為15°以上的大角粒界所界定的BCC相的平均粒徑是6μm以下。前述BCC相的平均粒徑更好是5μm以下。這個平均粒徑也是利用SEM-EBSD求出來的。
藉由使得熱軋鋼板的前述BCC相的平均粒徑保持在6μm以下,可使得冷軋鋼板的組織更為細微化,可更進一步提昇機械特性。此外,因為熱軋鋼板的BCC相的平均粒徑愈小愈好,因此並未規定其下限值,但是通常其下限 值是1.0μm以上。此處所稱的BCC相,係指:包含肥粒鐵、變韌鐵以及麻田散鐵,由其中的1種或2種以上所構成的。麻田散鐵正確地說,並不是BCC相,但是因為係將上述粒徑利用SEM-EBSD解析而求出平均粒徑的關係,為了方便起見,乃將麻田散鐵當作BCC相來處理。
具有這種細微組織的熱軋鋼板,係可依據以下所說明的方法,藉由執行熱軋以及冷卻來製作出來。
利用連續鑄造來製作成具有前述的化學組成分之鋼胚,提供此鋼胚進行熱軋。此時,鋼胚係可使用還維持在連續鑄造時的高溫狀態的鋼胚,也可以使用先冷卻至室溫之後,再經過加熱的鋼胚。
供熱軋用的鋼胚的溫度是1000℃以上為宜。如果鋼胚的加熱溫度低於1000℃的話,會對於輥軋機造成過大的負荷,在進行輥軋中,鋼的溫度會下降到達肥粒鐵變態溫度,因此係有:在組織中含有變態後的肥粒鐵的狀態下進行輥軋之虞慮。因此,供熱軋用的鋼胚的溫度,最好是維持在充分的高溫狀態,並且是在沃斯田鐵溫度範圍內結束熱軋的工作。
熱軋係使用可逆式輥軋機或者串列式輥軋機來進行的。基於工業生產性的觀點而言,至少在最終的數段係使用串列式輥軋機為佳。在輥軋中為了將鋼板維持在沃斯田鐵溫度範圍內,輥軋結束溫度係設定在Ar3點以上為佳。
熱軋的輥軋量,當被輥軋材的溫度處於Ar3點起迄(Ar3點+150℃)的溫度範圍時,以板厚減少率計,係設定 在40%以上為宜。這種輥軋量更好是60%以上。輥軋不必限定為單一次過板(one pass)進行輥軋,亦可採用連續的複數次過板的輥軋。藉由將輥軋量加大,可將更多的變形能量導入到沃斯田鐵,可提高朝向BCC相產生變態的驅動力量,可將熱軋鋼板的組織更為細微粒化。為了避免對於輥軋設備的負荷之過度增加,一次過板的輥軋量係設定在60%以下為宜。
輥軋結束後的冷卻係採用如下詳述的方法來進行為宜。
從輥軋結束溫度起算的冷卻,係採用:符合下列數式(5)的條件的冷卻速度(Crate),來將從輥軋結束溫度起迄(輥軋結束溫度-100℃)為止的溫度範圍予以進行冷卻為宜。
此處,T係將輥軋結束溫度設成零度時的相對溫度(T=(冷卻中的鋼板的溫度-輥軋結束溫度)℃,負值);Crate(T)係溫度為T時的冷卻速度(℃/秒)(正值)。若有Crate為零的溫度存在的話,將在該溫度下的滯留時間(△t)除以IC(T)之後的值,當作該區間的積分來進行加算。
上述數式(5)係表示:熱軋過程中,原本蓄積在鋼板 中的變形能量在被熱軋結束後的回復和再結晶所消耗之前,用來冷卻至沃斯田鐵未再結晶溫度範圍(輥軋結束溫度-100℃)為止的條件。更詳細說明的話,IC(T)係從與Fe原子的體擴散相關的計算所求出的數值,係表示:從熱軋結束起迄沃斯田鐵開始回復為止的時間。此外,(1/(Crate(T).IC(T)))係表示:將依據冷卻速度(Crate(T))來冷卻1℃所需的時間利用IC(T)來予以規格化後的數值,亦即,冷卻時間相對於因回復和再結晶而使得變形能量消失為止的時間之百分率。因此,將(1/Crate(T).IC(T))在T=0~-100℃的區間進行積分而求出的數值,就成為表示:冷卻中的變形能量的消失量的指標。藉由限制這個數值,來規定出:在一定量的變形能量消失之前,進行100℃冷卻所需的冷卻條件(冷卻速度和滯留時間)。上述數式(5)的右邊的數值,是設定在3.0為宜;更好是2.0;更優是1.0。
可符合上述數式(5)之較佳的冷卻方法,從輥軋結束溫度起算的1次冷卻,是以400℃/秒以上的冷卻速度開始進行冷卻,最好是以這種冷卻速度來對於30℃以上的溫度區間進行冷卻為宜。這個溫度區間更好是60℃以上。如果是未設置後述的水冷停止期間的情況下,將其設定成100℃以上更好。將1次冷卻的冷卻速度設定在600℃/秒以上更好,設定在800℃/秒以上尤佳。這種1次冷卻,亦可在輥軋結束溫度做5秒以下的短時間保持之後才開始進行1次冷卻。從輥軋結束至開始進行1次冷卻之前的時 間,是以可符合上述數式(5)的關係,設定在未達0.4秒為宜。
又,在輥軋結束之後,隨即以400℃/秒以上的冷卻速度以水冷方式開始進行冷卻,以這種冷卻速度來將30℃以上80℃以下的溫度區間進行冷卻之後,設置了0.2~1.5秒的水冷停止期間,在這個期間進行測定板厚以及板寬度等的鋼板形狀,然後再以50℃/秒以上的速度進行冷卻(2次冷卻)的作法也是可以的。藉由以這種方式來測定鋼板形狀,可進行鋼板形狀的回饋控制,而提昇生產性。上述的水冷停止期間是設定在1秒以下為宜。水冷停止期間中,可採用放冷或者空冷。
上述的1次冷卻以及2次冷卻,以工業規模而言,都是利用水冷方式來實施的。
藉由將從輥軋結束溫度起迄(輥軋結束溫度-100℃)的溫度為止的輥軋之後隨即的冷卻設定成符合上述數式(5)的條件,可極力地抑制因實施熱軋而被導入到沃斯田鐵的變形的回復以及再結晶所消耗的能量,可將累積在鋼中的變形能量予以最大限度地利用當作從沃斯田鐵變態成BCC相時的變態驅動力。將輥軋之後隨即的冷卻速度設定為400℃/秒以上的理由也是與上述同樣地,是因為想要增大變態驅動力的緣故。藉此,可使其增加從沃斯田鐵變態成BCC相之變態核的生成數目,可將熱軋鋼板的組織予以細微化。藉由採用以這種方式來製造的具有細微組織的熱軋鋼板作為素材,可將冷軋鋼板的組織予以更進一步地細微 化。
以上述的方式執行1次冷卻或者1次冷卻和2次冷卻之後,在執行降低溫度到捲取溫度為止的冷卻之前,亦可藉由將鋼板在任意的溫度範圍內保持任意的時間,來進行由肥粒鐵變態、Nb、Ti所構成的細微粒子的析出之類的組織控制。此處所稱的「保持」係包含:放冷、保溫等。適合於進行組織控制的溫度範圍以及保持時間,例如:在600~680℃的溫度範圍內實施3~15秒程度的放冷,利用這種作法,可將細微的肥粒鐵導入熱軋板組織中。
然後,進行冷卻直到鋼板的捲取溫度為止。此時的冷卻方法,係可採用從水冷、霧滴冷卻以及氣體冷卻(包含:空冷)所選出的方法,以任意的冷卻速度來進行冷卻。鋼板的捲取溫度,基於可使組織更確實地細微化的觀點考量,係設定在650℃以下為宜。
依照以上所述的熱軋工序來製作的熱軋鋼板,係被導入充分數量的大角粒界,而會成為:由傾角為15°以上的大角粒界所界定的平均粒徑是6μm以下,而且可令麻田散鐵、雪明鐵之類的第2相呈細微地分散的組織。是以,對於這種存在著大量的大角粒界,而且第2相呈細微地分散的熱軋鋼板,很適合實施冷軋以及退火。因為這些大角粒界、細微的第2相都是沃斯田鐵變態的優先核生成部位,因此,可藉由急速加熱退火,而從這些的位置生成許多沃斯田鐵以及再結晶肥粒鐵,以資謀求組織的細微化。
熱軋鋼板的組織,其第2相可以是:含有波來鐵的肥 粒鐵組織、由變韌鐵以及麻田散鐵所構成的組織、或者由這些組織混合而成的組織。
2-2:熱軋鋼板的退火
亦可針對於上述的熱軋鋼板,以500~700℃的溫度實施退火。這種退火,尤其是適合以300℃以下的溫度進行捲取的熱軋鋼板。
退火的方法,可以是將熱軋鋼帶卷通過連續退火處理線來實施退火,也可以是維持著熱軋鋼帶卷的狀態下,使用整批式退火爐來實施退火。在對於熱軋鋼板進行加熱時,在抵達500℃的退火溫度之前的加熱速度,係可以在10℃/小時程度的緩慢加熱速度至30℃/秒的急速加熱速度的範圍內,以任意的加熱速度來進行加熱。
退火溫度(均熱保持溫度)係設定在500~700℃的溫度範圍。在這個溫度範圍的保持時間雖然沒有必要特別地限定,但是係設定在3小時以上為宜。基於抑制碳化物粗大化的觀點考量,保持時間的上限係在15小時以下為宜,更好是10小時以下。
藉由執行這種熱軋鋼板的退火,可使得細微的碳化物分散在熱軋鋼板中的粒界、封包(packet)境界、區塊(block)境界,並且藉由與上述熱軋結束隨後的極短時間的急冷之組合,可使得碳化物更進一步細微地分散。其結果,在退火中可使得沃斯田鐵的核生成部位的數量增加,可將最終組織予以細微化。熱軋鋼板的退火也具有:將熱 軋鋼板軟化進而減輕冷軋設備的負荷之作用。
2-3:酸洗暨冷軋
將依據上述方法來製作的熱軋鋼板予以酸洗之後,就進行冷軋。這些都只要採用一般常用方法即可。冷軋亦可使用潤滑油來進行。又,冷軋率的下限並無特別地規定之必要,但通常是在20%以上。如果冷軋率超過85%的話,對於冷軋設備的負擔會加大,因此冷軋率係設定在85%以下為宜。
2-4:退火
經過上述的冷軋而製得的鋼板之退火,係以15℃/秒以上的平均加熱速度來進行加熱,以資使得在到達(Ac1點+10℃)時之在尚未進行沃斯田鐵變態的區域中所佔據的未再結晶率係30面積%以上。
以這種方式,保持著具有未再結晶組織的狀態,進行加熱至(Ac1點+10℃),藉此,可以熱軋鋼板的大角粒界、第2相當作核生成部位,而可使得細微的沃斯田鐵生成許多的核。此時,熱軋鋼板的組織很細微的話,可獲得更多數的核生成,因此是比較好的。藉由使得沃斯田鐵的核生成數目增加,可使得退火中的沃斯田鐵粒明顯地細粒化,而可使得其後所生成的肥粒鐵、低溫變態相以及殘留沃斯田鐵變得細微化。
另一方面,如果在到達(Ac1點+10℃)時之在尚未進行 沃斯田鐵變態的區域中所佔據的未再結晶率未達30面積%的話,再結晶結束後,已經進行過沃斯田鐵變態的區域將會變成佔據大部分。其結果,在這種區域中,又會從再結晶粒的粒界進行沃斯田鐵變態,因此,退火中的沃斯田鐵粒會變粗大,最終組織也會粗大化。
因此,乃將平均加熱速度設定在15℃/秒以上,以資使得在到達(Ac1點+10℃)時之在尚未進行沃斯田鐵變態的區域中所佔據的未再結晶率係30面積%以上。平均加熱速度,較好是30℃/秒以上,更好是80℃/秒以上,特優是100℃/秒以上。平均加熱速度的上限雖然沒有特別地限定,但是考量到溫度控制變得困難之理由,係設在1000℃/秒以下為宜。
開始進行上述的15℃/秒以上的急速加熱時的溫度,只要是落在再結晶開始之前的話即可,係可任意的溫度,相對於在10℃/秒的加熱速度下所測定到的軟化開始溫度(再結晶開始溫度)Ts,亦可為Ts-30℃。在其以前的溫度範圍內的加熱速度係任意的加熱速度。例如:即使從600℃程度開始進行急速加熱,亦可獲得充分的細粒化效果。又,即使是從室溫開始進行急速加熱,也不會對於本發明造成不良影響。
為了要獲得足夠的急速加熱速度,加熱方法係採用:通電加熱、感應加熱、直火加熱為宜,但只要是能夠符合本發明的要件的話,亦可採用:以輻射管來進行加熱。此外,藉由應用這些加熱裝置,鋼板的加熱時間可大幅縮 短,可將退火設備更為小型緊緻化,可提昇生產性,亦可期待具有降低設備投資費用之效果。此外,亦可在既有的連續退火處理線以及熔融鍍覆處理線上,增設急速加熱裝置來實施上述加熱。
加熱到達(Ac1點+10℃)之後,再進行加熱直到(0.9×Ac1點+0.1×Ac3點)以上、(Ac3點+100℃)以下的退火溫度為止。在這個溫度區間的加熱速度係可採用任意的速度。藉由放慢在這個溫度區間的加熱速度,可取得充分的時間,亦可促進肥粒鐵的再結晶。此外,也可以只在最初的部分進行急速加熱(例如:與上述急速加熱相同的速度),然後,再以較低的加熱速度的方式,來改變加熱速度。
在退火過程中,充分地進行沃斯田鐵變態,並且使鋼板中的碳化物熔解。因此,係將退火溫度設定在(0.9×Ac1+0.1×Ac3點)以上。更好的退火溫度是(0.3×Ac1點+0.7×Ac3點)以上,這種情況下,特別是在冷軋鋼板的集合組織中,從{100}<011>起迄{211}<011>為止的方位群的強度會降低,可提昇鋼板的加工性。另一方面,若將退火溫度設定成(Ac3點+100℃)的溫度,來進行保持均熱的情況下,將會導致沃斯田鐵粒之急遽的粒成長,最終組織會變成粗粒化。基於這種理由,乃將退火溫度設定在(Ac3點+100℃)以下,更好是(Ac3點+50℃)以下。
本發明中的Ac1點以及Ac3點,是從:將進行過冷軋的鋼板以2℃/秒的加熱速度進行昇溫至1100℃時所測定的熱膨脹曲線來求得的數值。
保持在上述退火溫度範圍的退火時間若是30秒鐘以下的話,碳化物的熔解與沃斯田鐵變態並未充分進行,因此,冷軋鋼板的加工性會變差。又,很容易產生退火中的溫度分布不均現象,對於製造上的安定性會有問題。因此,乃將退火時間設定在30秒鐘以上,讓碳化物的熔解以及沃斯田鐵變態充分地進行。退火時間的上限雖然沒有特別規定的必要,但是基於要更確實地抑制沃斯田鐵的粒成長的觀點考量,係設定在未達10分鐘為宜。
退火後的冷卻,是藉由控制:冷卻速度、低溫保持的溫度和時間等的溫度履歷,使其生成適度的面積率的肥粒鐵、低溫變態相以及殘留沃斯田鐵,藉此來控制冷軋鋼板的組織。退火後的冷卻時的冷卻速度如果太慢的話,低溫變態相將會減少到未達10面積%,鋼板的強度會降低。因此,在從650℃起迄500℃為止的溫度範圍內的平均冷卻速度係設定在1℃/秒以上為宜。另一方面,冷卻速度若太快的話,低溫變態相的面積率會過度地增加,鋼板的延性將會變差。因此,在上述溫度範圍內的平均冷卻速度係設定在60℃/秒以下為宜。上述的冷卻是可採用任意的方法來進行。係可採用例如:氣體、霧滴、水、或者利用這些的組合來進行的冷卻。
在執行過上述溫度範圍內的冷卻之後,再藉由:停止冷卻或者以緩冷卻方式保持在低溫域,可在冷軋鋼板中生成適度的面積率的低溫變態相,並且可促進碳原子在未變態沃斯田鐵內進行擴散,藉此可使其生成殘留沃斯田鐵。
上述退火之後,在抵達常溫之前的冷卻過程中,亦可實施熔融鍍覆處理來製作成熔融鍍覆鋼板,或者亦可在冷卻到達常溫之後,在其他的工序中,實施熔融鍍覆處理或電鍍處理來製作成熔融鍍覆鋼板或電鍍鋼板。在到達常溫之前的冷卻過程中,實施熔融鍍覆處理來製作成熔融鍍覆鋼板的情況下,亦可在實施熔融鍍覆處理之前,將鋼板溫度保持在較之熔融鍍覆槽更高溫或更低溫。熔融鍍覆層、電鍍鍍覆層以及鍍覆附著量係如上所述。此外,為了更進一步提高耐蝕性,亦可在鍍覆處理之後,實施適當的化成處理。
[實施例]
使用真空感應爐熔製出具有表1所示的化學組成分之鋼種A~N的鋼塊。在表1中也一併標示出鋼種A~N的Ac1點以及Ac3點。這些變態溫度的數值係從:將依照後述的製造條件進行至冷軋為止後的鋼板,以2℃/秒的加熱速度昇溫到達1100℃時所測定的熱膨脹曲線所求出來的。表1中也標示出(Ac1點+10℃)、(0.9×Ac1點+0.1×Ac3點)以及(Ac3點+100℃)的數值。
將這些鋼塊進行熱鍛造之後,為了供進行熱軋之用,將其裁切成鋼胚狀的鋼片。將這些鋼片在1000℃以上的溫度加熱1個小時之後,使用試驗用小型輥軋機,依照表2所示的輥軋結束溫度(表2中也標示出FT)來實施結束輥軋 工作的熱軋作業,再以表2所示的冷卻條件以及捲取溫度,製作成板厚為2.0~2.6mm的熱軋鋼板。
輥軋結束後的冷卻,係採用下列的其中任一種方法來實施:1)輥軋結束後,隨即以至少100℃的溫度降下量僅進行1次冷卻;2)在輥軋結束溫度(FT)保持預定的時間(放冷)之後,以至少100℃的溫度降下量僅進行1次冷卻;或者3)輥軋結束後,隨即進行1次冷卻,在從輥軋結束溫度(FT)冷卻至30~80℃的階段,停止1次冷卻,在該溫度下保持預定的時間(放冷)之後,進行2次冷卻。
僅進行了1次冷卻的情況下,是在1次冷卻停止後,而進行了2次冷卻的情況下,是在2次冷卻停止後,實施3~15秒鐘的放冷,然後再以30~100℃/秒的冷卻速度進行水冷,冷卻至捲取溫度為止。然後,將鋼板裝入爐內,實施了模擬捲取之緩慢冷卻。捲取後的鋼帶捲是經過放冷。在表2也標示出數式(5)的左邊數值以及熱軋鋼板的BCC相的平均粒徑。
熱軋鋼板的BCC相的平均結晶粒徑的測定方式,是將鋼板之與輥軋方向以及板厚方向保持平行的剖面的組織,使用SEM-EBSD裝置(日本電子株式會社製的型號JSM-7001F的SEM-EBSD裝置),針對於被傾角為15°以上的大角粒界所界定的BCC相的粒徑進行解析而求出來的。BCC相的平均粒徑d係使用下列的數式(6)來求得 的。此處,Ai係表示第i號粒子的面積,di係表示第i號粒子之換算成圓的直徑。
針對於一部分的熱軋鋼板,使用加熱爐依照表2所示的條件實施了熱軋鋼板退火處理。
針對於以這種方式來製得的熱軋鋼板,依照一般常用方法,以鹽酸實施酸洗,並且以表2所示的輥軋率實施冷軋,製作成板厚為1.0~1.2mm的鋼板。然後,利用實驗室規模的退火設備,依照表2所示的加熱速度、退火溫度、退火時間來實施退火處理,在650℃起迄500℃的溫度範圍,係依照表2所示的冷卻速度來進行冷卻,此外,又實施了下列的A~I所示的熱處理之後,以2℃/秒的速度進行冷卻到達常溫為止,而製得冷軋鋼板。此外,退火後的冷卻是利用氮氣來進行的。在表2以及表3中,下線部的數值係表示:落在本發明的範圍外。
A:在375℃保持330秒;B:在400℃保持330秒;C:在425℃保持330秒;D:在480℃保持15秒後,冷卻至460℃之後,模擬浸泡在熔融鍍鋅槽,並且再加熱到500℃,模擬進行合金 化處理;E:在480℃保持60秒後,冷卻至460℃之後,模擬浸泡在熔融鍍鋅槽,並且再加熱到520℃,模擬進行合金化處理;F:在480℃保持60秒後,冷卻至460℃之後,模擬浸泡在熔融鍍鋅槽,並且再加熱到540℃,模擬進行合金化處理;G:在375℃保持60秒後,加熱至460℃之後,模擬浸泡在熔融鍍鋅槽,並且再加熱到500℃,模擬進行合金化處理;H:在400℃保持60秒後,加熱至460℃之後,模擬浸泡在熔融鍍鋅槽,並且再加熱到500℃,模擬進行合金化處理;I:在425℃保持60秒後,加熱至460℃之後,模擬浸泡在熔融鍍鋅槽,並且再加熱到500℃,模擬進行合金化處理。
表2中也標示出:在到達(Ac1點+10℃)時之在尚未進行沃斯田鐵變態的區域中所佔據的未再結晶率。這個數值是利用下述的方法所求得的。亦即,依照本發明的製造條件直到完成冷軋為止,再使用該鋼板,依照各鋼板編號所示的加熱速度予以昇溫到達(Ac1點+10℃)之後,隨即進行水冷。利用SEM來拍攝鋼板組織,在鋼板組織的照片上,針對於麻田散鐵以外的區域,亦即,在到達(Ac1點+10℃)時之尚未進行沃斯田鐵變態的區域以外的區域,藉 由測定:再結晶組織與加工組織的百分率,而可求出未再結晶率。
針對於以這種方式製造出來的冷軋鋼板的金相微觀組織以及機械的特性,係利用下述的方式進行了調查。將調查結果匯整標示於表3。
冷軋鋼板的肥粒鐵平均粒徑、低溫變態相的平均粒徑以及長寬比未達5的殘留沃斯田鐵的平均粒徑,係針對於在鋼板的板厚1/4深度位置處之與輥軋方向以及板厚方向保持平行的剖面的組織,使用SEM-EBSD裝置來測定出來的。針對肥粒鐵以及低溫變態相的面積率,也是使用SEM-EBSD的解析結果來求得的。又,沃斯田鐵相的體積率係使用後述的裝置,利用X射線繞射法求得的,將這個體積率當成殘留沃斯田鐵(殘留γ)的面積率。此外,在進行包含殘留沃斯田鐵相在內的組織的EBSD解析時,會擔心受到試料調整時的外部干擾因素(殘留沃斯田鐵變態成麻田散鐵等)所影響,而無法正確地測定出殘留沃斯田鐵。因此,在本實施例中,作為解析精度的指標,係以根據EBSD解析所獲得的殘留沃斯田鐵的面積百分率(γEBSD)相對於根據X射線繞射法所獲得的殘留沃斯田鐵的體積百分率(γXRD),係符合(γEBSD/γXRD)>0.7的條件,來作為評量的前提。
冷軋鋼板的集合組織的測定方式,係針對板厚1/2深度位置的平面進行X射線繞射試驗,從肥粒鐵的{200}、{110}、{211}的正極點圖的測定結果,進行ODF(方位分布函數)解析而求得的。再從這個解析結果,針對於{100}<011>、{411}<011>、{211}<011>的各個方位,求出相對於不具有集合組織之散亂組織的強度比,將這些強度比的平均值當作:從{100}<011>起迄{211}<011>為止的方位群的平均強度比。不具有集合組織之散亂組織的X射 線強度,係針對粉末狀的鋼,利用X射線繞射而求得的。X射線繞射所採用的裝置是理學電子社製的型號RINT-2500HL/PC的機器。
退火後的冷軋鋼板的機械特性,是利用拉伸試驗與擴孔試驗來進行調查。拉伸試驗係使用日本工業規格JIS5號拉伸試驗片來進行的,藉此而求出拉伸強度(TS)以及斷裂拉伸量(總拉伸長度,EI)。擴孔試驗係依據日本工業規格JIS Z 2256:2010的規定來進行的,藉此而求出擴孔率λ(%)。作為強度與延性的均衡性的指標,係計算出TS×EI的數值,作為強度與延伸凸緣性的均衡性的指標,係計算出TS×λ的數值,並且分別予以標示於表3。
編號No.5、8、11、14、16、19、22、25、27、32、34、36、40、42、47、49的鋼板,因為退火時的加熱速度未達15℃/秒,因此在Ac1+10℃時的未再結晶率也未達30%。因此,冷軋鋼板的金相微觀組織變得粗大化,肥粒鐵平均粒徑超過本發明所規定的上限值。其結果,機械特性不佳。
編號No.4、29的鋼板,退火時的加熱速度雖然是15℃/秒以上,但因為退火溫度係超過Ac3+100℃的緣故,冷軋鋼板的金相微觀組織變得粗大化,肥粒鐵粒徑超過本發明所規定的上限值。其結果,機械特性不佳。
編號No.45、46的鋼板,Nb含量超過上限值,因此鋼太過度硬質化,加工性也惡化。其結果,冷軋鋼板的機械特性並不取決於加熱速度,而成為機械特性不佳的鋼板。
編號No.47、48的鋼板,Si含量較之下限值更低,因此在冷軋鋼板中並沒有生成殘留沃斯田鐵。所以延性很低。其結果,冷軋鋼板的機械特性並不取決於加熱速度,而成為機械特性不佳的鋼板。
相對於這些鋼板,具有本發明所規定的化學組成分以及組織的鋼板,只要與相同鋼種進行比較的話即可看出:其既有高強度,而且與比較例進行比較的話,延性係特別明顯地變優異,而且延伸凸緣性也是良好的。

Claims (13)

  1. 一種冷軋鋼板,其特徵為:其化學組成分,以質量%計,係含有C:0.06~0.3%、Si:0.4~2.5%、Mn:0.6~3.5%、P:0.1%以下、S:0.05%以下、Ti:0~0.08%、Nb:0~0.04%、Ti和Nb的合計含量:0~0.10%、sol.Al:0~2.0%、Cr:0~1%、Mo:0~0.3%、V:0~0.3%、B:0~0.005%、Ca:0~0.003%、REM:0~0.003%、其餘部分是Fe和雜質;其金相微觀組織,主相是肥粒鐵佔據40面積%以上,第2相是含有:由麻田散鐵和變韌鐵的1種或2種所構成的低溫變態相合計佔據10面積%以上以及殘留沃斯田鐵佔據3面積%以上,並且符合下列數式(1)~(4)的關係:dF≦4.3...(1) dM+B≦1.6...(2) dAs≦1.5...(3) rAs≧50...(4)在上述數式中,dF是由傾角15°以上的大角粒界所界定的肥粒鐵的平均粒徑(單位:μm);dM+B是前述低溫變態相的平均粒徑(單位:μm);dAs是長寬比未達5的殘留沃斯田鐵的平均粒徑(單位:μm);rAs是長寬比未達5的殘留沃斯田鐵之相對於總殘留 沃斯田鐵的面積率(%)。
  2. 如申請專利範圍第1項所述的冷軋鋼板,其中,係具有集合組織,該集合組織,在板厚的1/2深度位置處,從{100}<011>起迄{211}<011>為止的方位群的X射線強度的平均值,相對於不具有集合組織之散亂組織的X射線強度的平均值的比值未達6。
  3. 如申請專利範圍第1項或第2項所述的冷軋鋼板,其中,前述化學組成分,以質量%計,係含有從Ti:0.005~0.08%以及Nb:0.003~0.04%所構成的群組所選擇的1種或2種。
  4. 如申請專利範圍第1項或第2項所述的冷軋鋼板,其中,前述化學組成分,以質量%計,係含有sol.Al:0.1~2.0%。
  5. 如申請專利範圍第1項或第2項所述的冷軋鋼板,其中,前述化學組成分,以質量%計,係含有從Cr:0.03~1%、Mo:0.01~0.3%以及V:0.01~0.3%所構成的群組所選擇的1種或2種以上。
  6. 如申請專利範圍第1項或第2項所述的冷軋鋼板,其中,前述化學組成分,以質量%計,係含有B:0.0003~0.005%。
  7. 如申請專利範圍第1或第2項所述的冷軋鋼板,其中,前述化學組成分,以質量%計,係含有從Ca:0.0005~0.003%以及REM:0.0005~0.003%所構成的群組所選擇的1種或2種。
  8. 如申請專利範圍第1項或第2項所述的冷軋鋼板,其中,在鋼板表面具有鍍覆層。
  9. 一種冷軋鋼板的製造方法,係用來製造如申請專利範圍第1項或第2項所述的冷軋鋼板,其特徵為:具有下列工序(A)以及工序(B),工序(A)係具有如申請專利範圍第1項或第3項所述的化學組成分的熱軋鋼板,並且對該熱軋鋼板實施冷軋以製作成冷軋鋼板的冷軋工序,該熱軋鋼板是在Ar3點以上的溫度下,結束輥軋之熱軋結束後,以符合下列數式(5)的冷卻速度(Crate),實施將從輥軋結束溫度起迄(輥軋結束溫度-100℃)為止的溫度範圍予以冷卻的熱軋工序而製得的鋼板,該鋼板中之由傾角15°以上的大角粒界所界定的BCC相的平均粒徑是6μm以下;工序(B)係針對於工序(A)所製得的冷軋鋼板,在包含下列要素的條件下實施退火的退火工序,亦即,以15℃/秒以上的平均加熱速度來進行加熱,使得在到達(Ac1點+10℃)時的尚未進行沃斯田鐵變態的領域中所佔據的未再結晶率為30面積%以上,然後,又在(0.9×Ac1點+0.1×Ac3點)以上(Ac3點+100℃)以下的溫度範圍保持30秒鐘以上; 在上述數式中,Crate(T)是冷卻速度(℃/s)(正值); T是將輥軋結束溫度設成零度時的相對溫度(℃,負值);Crate是當有零度的溫度存在的情況下,將該溫度下的滯留時間(△t)除以IC(T)之後的數值當作該區間的積分進行加算。
  10. 如申請專利範圍第9項所述的冷軋鋼板的製造方法,其中,前述熱軋鋼板是在熱軋結束後,在300℃以下的溫度進行捲取,然後,在500~700℃的溫度範圍實施熱處理而製得的熱軋鋼板。
  11. 如申請專利範圍第9項或第10項所述的冷軋鋼板的製造方法,其中,在前述溫度範圍內的冷卻,是包含:以400℃/秒以上的冷卻速度開始進行冷卻,再以這種冷卻速度將30℃以上的溫度區間予以冷卻。
  12. 如申請專利範圍第9項或第10項所述的冷軋鋼板的製造方法,其中,在前述溫度範圍內的冷卻,是包含:以400℃/秒以上的冷卻速度利用水冷方式開始進行冷卻,再以這種冷卻速度將30℃以上80℃以下的溫度區間予以冷卻之後,設置了0.2~1.5秒的水冷停止期間,在該期間進行測定鋼板形狀,然後再以50℃/秒以上的速度進行冷卻。
  13. 一種冷軋鋼板的製造方法,係用來製造如申請專利範圍第8項所述的冷軋鋼板,其特徵為:具有下列工序(A)至工序(C),工序(A)係具有如申請專利範圍第1項或第2項所述 的化學組成分的熱軋鋼板,並且對該熱軋鋼板實施冷軋以製作成冷軋鋼板的冷軋工序,該熱軋鋼板是在Ar3點以上的溫度下,結束輥軋之熱軋結束後,以符合下列數式(5)的冷卻速度(Crate),實施將從輥軋結束溫度起迄(輥軋結束溫度-100℃)為止的溫度範圍予以冷卻的熱軋工序而製得的鋼板,該鋼板中之由傾角15°以上的大角粒界所界定的BCC相的平均粒徑是6μm以下;工序(B)係針對於工序(A)所製得的冷軋鋼板,在包含下列要素的條件下實施退火的退火工序,亦即,以15℃/秒以上的平均加熱速度來進行加熱,使得在到達(Ac1點+10℃)時的尚未進行沃斯田鐵變態的領域中所佔據的未再結晶率為30面積%以上,然後,又在(0.9×Ac1點+0.1×Ac3點)以上(Ac3點+100℃)以下的溫度範圍保持30秒鐘以上;工序(C)係針對於工序(B)實施鍍覆處理的工序; 在上述數式中,Crate(T)是冷卻速度(℃/s)(正值);T是將輥軋結束溫度設成零度時的相對溫度(℃,負值);Crate是當有零度的溫度存在的情況下,將該溫度下的滯留時間(△t)除以IC(T)之後的數值當作該區間的積分 進行加算。
TW102106032A 2012-02-22 2013-02-21 Cold rolled steel sheet and manufacturing method thereof TWI515305B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012036475 2012-02-22

Publications (2)

Publication Number Publication Date
TW201400626A TW201400626A (zh) 2014-01-01
TWI515305B true TWI515305B (zh) 2016-01-01

Family

ID=49005587

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102106032A TWI515305B (zh) 2012-02-22 2013-02-21 Cold rolled steel sheet and manufacturing method thereof

Country Status (12)

Country Link
US (2) US9580767B2 (zh)
EP (1) EP2818569B1 (zh)
JP (1) JP5590244B2 (zh)
KR (1) KR101609969B1 (zh)
CN (1) CN104245988B (zh)
BR (1) BR112014020567B1 (zh)
ES (1) ES2673111T3 (zh)
IN (1) IN2014DN07404A (zh)
MX (1) MX356409B (zh)
PL (1) PL2818569T3 (zh)
TW (1) TWI515305B (zh)
WO (1) WO2013125400A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102051A1 (ja) 2014-01-06 2015-07-09 新日鐵住金株式会社 熱間成形部材およびその製造方法
EP3093358B1 (en) * 2014-01-06 2019-08-14 Nippon Steel Corporation Steel and method of manufacturing the same
JP6256184B2 (ja) * 2014-05-12 2018-01-10 Jfeスチール株式会社 高強度鋼板の製造方法
JP6379716B2 (ja) * 2014-06-23 2018-08-29 新日鐵住金株式会社 冷延鋼板及びその製造方法
MX2017010754A (es) * 2015-02-24 2017-11-28 Nippon Steel & Sumitomo Metal Corp Hoja de acero laminada en frio, metodo para fabricar la misma.
WO2016143270A1 (ja) * 2015-03-06 2016-09-15 Jfeスチール株式会社 高強度電縫鋼管およびその製造方法
SE539519C2 (en) * 2015-12-21 2017-10-03 High strength galvannealed steel sheet and method of producing such steel sheet
JP7094665B2 (ja) * 2017-06-13 2022-07-04 キヤノン株式会社 記録装置および記録制御方法
CN111936658B (zh) * 2018-03-30 2021-11-02 杰富意钢铁株式会社 高强度钢板及其制造方法
KR102385480B1 (ko) * 2018-03-30 2022-04-12 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
KR20200123473A (ko) * 2018-03-30 2020-10-29 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
CN108588565B (zh) * 2018-06-14 2021-01-05 北京工业大学 一种含铝高硼高速钢轧辊材料及其制造方法
KR102590522B1 (ko) * 2019-04-08 2023-10-18 닛폰세이테츠 가부시키가이샤 냉연 강판 및 그 제조 방법
MX2022012277A (es) * 2020-04-07 2022-10-27 Nippon Steel Corp Hoja de acero.
KR20230012028A (ko) * 2020-07-20 2023-01-25 닛폰세이테츠 가부시키가이샤 강판 및 그 제조 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3749615B2 (ja) 1998-03-31 2006-03-01 新日本製鐵株式会社 疲労特性に優れた加工用高強度冷延鋼板およびその製造方法
US6395108B2 (en) * 1998-07-08 2002-05-28 Recherche Et Developpement Du Groupe Cockerill Sambre Flat product, such as sheet, made of steel having a high yield strength and exhibiting good ductility and process for manufacturing this product
JP4062118B2 (ja) * 2002-03-22 2008-03-19 Jfeスチール株式会社 伸び特性および伸びフランジ特性に優れた高張力熱延鋼板とその製造方法
CN100434557C (zh) * 2004-02-10 2008-11-19 鞍山钢铁集团公司 低碳高强度复合强化超细晶粒热轧线材生产工艺
JP2005325393A (ja) * 2004-05-13 2005-11-24 Jfe Steel Kk 高強度冷延鋼板およびその製造方法
CN101238233B (zh) 2005-08-03 2012-11-28 住友金属工业株式会社 热轧钢板及冷轧钢板及它们的制造方法
JP5095958B2 (ja) * 2006-06-01 2012-12-12 本田技研工業株式会社 高強度鋼板およびその製造方法
JP5320681B2 (ja) 2007-03-19 2013-10-23 Jfeスチール株式会社 高強度冷延鋼板及び高強度冷延鋼板の製造方法
JP5151246B2 (ja) * 2007-05-24 2013-02-27 Jfeスチール株式会社 深絞り性と強度−延性バランスに優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP4894863B2 (ja) * 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5463685B2 (ja) 2009-02-25 2014-04-09 Jfeスチール株式会社 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
JP4737319B2 (ja) * 2009-06-17 2011-07-27 Jfeスチール株式会社 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
WO2011087057A1 (ja) 2010-01-13 2011-07-21 新日本製鐵株式会社 成形性に優れた高強度鋼板及びその製造方法
JP5549238B2 (ja) 2010-01-22 2014-07-16 新日鐵住金株式会社 冷延鋼板およびその製造方法
JP5488129B2 (ja) * 2010-03-31 2014-05-14 新日鐵住金株式会社 冷延鋼板およびその製造方法
KR20130036763A (ko) * 2010-08-12 2013-04-12 제이에프이 스틸 가부시키가이샤 가공성 및 내충격성이 우수한 고강도 냉연 강판 및 그 제조 방법

Also Published As

Publication number Publication date
ES2673111T3 (es) 2018-06-19
BR112014020567B1 (pt) 2019-03-26
MX2014009994A (es) 2015-02-20
JPWO2013125400A1 (ja) 2015-07-30
CN104245988B (zh) 2016-07-06
MX356409B (es) 2018-05-24
US20150037610A1 (en) 2015-02-05
WO2013125400A1 (ja) 2013-08-29
CN104245988A (zh) 2014-12-24
EP2818569A4 (en) 2015-12-30
KR20140129209A (ko) 2014-11-06
EP2818569B1 (en) 2018-05-02
PL2818569T3 (pl) 2018-09-28
IN2014DN07404A (zh) 2015-04-24
US9580767B2 (en) 2017-02-28
US20170121788A1 (en) 2017-05-04
EP2818569A1 (en) 2014-12-31
JP5590244B2 (ja) 2014-09-17
TW201400626A (zh) 2014-01-01
KR101609969B1 (ko) 2016-04-06
US10407749B2 (en) 2019-09-10

Similar Documents

Publication Publication Date Title
TWI515305B (zh) Cold rolled steel sheet and manufacturing method thereof
TWI515306B (zh) Cold rolled steel sheet and manufacturing method thereof
EP3000905B1 (en) Hot-rolled steel sheet and manufacturing method thereof
JP6008039B2 (ja) 焼き付け硬化性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板
JP6379716B2 (ja) 冷延鋼板及びその製造方法
TWI449797B (zh) Cold rolled steel sheet and manufacturing method thereof
CN108138277A (zh) 高强度钢板用原材料、高强度钢板用热轧材料、高强度钢板用热轧退火材料、高强度钢板、高强度熔融镀敷钢板及高强度电镀钢板、以及它们的制造方法
CN113637923A (zh) 钢板及镀覆钢板
JP2014034716A (ja) 鋼板およびその製造方法
TW201211268A (en) Cold rolled steel sheet having excellent shape fixability and method for manufacturing the same
TW202248436A (zh) 無方向性電磁鋼板

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees