TWI514481B - Method for designing stressor pattern - Google Patents

Method for designing stressor pattern Download PDF

Info

Publication number
TWI514481B
TWI514481B TW101116573A TW101116573A TWI514481B TW I514481 B TWI514481 B TW I514481B TW 101116573 A TW101116573 A TW 101116573A TW 101116573 A TW101116573 A TW 101116573A TW I514481 B TWI514481 B TW I514481B
Authority
TW
Taiwan
Prior art keywords
stress layer
layer pattern
pattern
distance
designing
Prior art date
Application number
TW101116573A
Other languages
Chinese (zh)
Other versions
TW201347045A (en
Inventor
Chun Hsien Huang
Ming Jui Chen
Chia Wei Huang
Ting Cheng Tseng
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW101116573A priority Critical patent/TWI514481B/en
Publication of TW201347045A publication Critical patent/TW201347045A/en
Application granted granted Critical
Publication of TWI514481B publication Critical patent/TWI514481B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

應力層圖案的設計方法Design method of stress layer pattern

本發明是有關於一種半導體元件圖案的設計方法,且特別是有關於一種應力層圖案的設計方法。The present invention relates to a method of designing a pattern of a semiconductor element, and more particularly to a method of designing a pattern of a stress layer.

目前,業界提出一種以材料為矽鍺(SiGe)的應力層來製作金氧半電晶體的源極/汲極區之方法,其藉由應力層來控制施加到通道區的應力,以增加電子和電洞的遷移率(mobility),進而提高半導體元件的效能。At present, the industry proposes a method for fabricating a source/drain region of a MOS transistor by using a stress layer of germanium (SiGe), which controls the stress applied to the channel region by a stress layer to increase electrons. And the mobility of the holes, thereby improving the performance of the semiconductor components.

然而,在利用電腦輔助邏輯運算法來設計SiGe圖案時,若應用於P型金氧半電晶體(PMOS transistor)的SiGe圖案與N型金氧半電晶體(NMOS transistor)的主動區圖案之間的距離過小,在實際進行互補式金氧半電晶體(CMOS transistor)的製作時,常會因為製程變動(process variation)而使得原本應該覆蓋NMOS電晶體之主動區的圖案化光阻層無法完全覆蓋住NMOS電晶體之主動區,而暴露出部分NMOS電晶體的主動區。However, when a SiGe pattern is designed by a computer-aided logic operation, if a SiGe pattern applied to a P-type MOS transistor and an active region pattern of an N-type NMOS transistor are used, The distance is too small. In the actual fabrication of a complementary CMOS transistor, the patterned photoresist layer that should cover the active region of the NMOS transistor cannot be completely covered due to process variation. The active region of the NMOS transistor is exposed, and the active region of a portion of the NMOS transistor is exposed.

圖1所繪示為習知之一種CMOS電晶體的剖面圖。1 is a cross-sectional view of a conventional CMOS transistor.

請參照圖1,CMOS電晶體包含PMOS電晶體10與NMOS電晶體18。原本應該覆蓋NMOS電晶體18之主動區20的圖案化光阻層16無法完全覆蓋住NMOS電晶體之主動區,而暴露出部分NMOS電晶體的主動區。因此,在形成SiGe層14的沈積製程中,會在由圖案化光阻層16 所暴露出NMOS電晶體18的主動區20周圍成長出材料為SiGe的突出缺陷(extrusive defect)22,進而降低NMOS電晶體18的電性效能。此外,當SiGe圖案與虛擬擴散圖案之間產生部分重疊時,亦會在虛擬擴散區周圍產生如上所述的突出缺陷。Referring to FIG. 1, the CMOS transistor includes a PMOS transistor 10 and an NMOS transistor 18. The patterned photoresist layer 16 that should otherwise cover the active region 20 of the NMOS transistor 18 does not completely cover the active region of the NMOS transistor, exposing the active region of a portion of the NMOS transistor. Therefore, in the deposition process for forming the SiGe layer 14, the photoresist layer 16 is patterned. An exposed defect 22 of SiGe is grown around the active region 20 where the NMOS transistor 18 is exposed, thereby reducing the electrical performance of the NMOS transistor 18. In addition, when a partial overlap occurs between the SiGe pattern and the dummy diffusion pattern, a protruding defect as described above is also generated around the dummy diffusion region.

本發明提供一種應力層圖案的設計方法,其可防止在主動區周圍產生突出缺陷。The present invention provides a method of designing a stress layer pattern that prevents generation of protruding defects around the active region.

本發明提供另一種應力層圖案的設計方法,其可避免在虛擬擴散區周圍形成突出缺陷。The present invention provides another method of designing a stress layer pattern that avoids the formation of protruding defects around the dummy diffusion region.

本發明提出一種應力層圖案的設計方法,其中應力層圖案用以形成第二型金氧半電晶體的源極/汲極區。上述方法包括下列步驟。首先,計算出應力層圖案的邊界與第一型金氧半電晶體的第一主動區圖案之間的第一距離。接著,當第一距離小於安全距離時,縮小應力層圖案,而使得第一距離至少等於安全距離。The present invention provides a method of designing a stress layer pattern in which a stress layer pattern is used to form a source/drain region of a second type of MOS transistor. The above method includes the following steps. First, a first distance between the boundary of the stress layer pattern and the first active region pattern of the first type MOS transistor is calculated. Then, when the first distance is less than the safety distance, the stress layer pattern is reduced such that the first distance is at least equal to the safety distance.

依照本發明的一實施例所述,在上述之應力層圖案的設計方法中,其中應力層圖案與第一主動區圖案例如是相互分離。According to an embodiment of the present invention, in the method for designing a stress layer pattern, the stress layer pattern and the first active region pattern are separated from each other, for example.

依照本發明的一實施例所述,在上述之應力層圖案的設計方法中,安全距離例如是由所應用的製程世代的製程能力所決定。According to an embodiment of the present invention, in the above method of designing the stress layer pattern, the safety distance is determined, for example, by the process capability of the applied process generation.

依照本發明的一實施例所述,在上述之應力層圖案的 設計方法中,上述方法的設計規則(design rule)包括使應力層圖案的邊界與第二型金氧半電晶體的第二主動區圖案之間的第二距離至少等於安全距離。According to an embodiment of the present invention, in the stress layer pattern described above In the design method, the design rule of the above method includes causing the second distance between the boundary of the stress layer pattern and the second active region pattern of the second type MOS transistor to be at least equal to the safety distance.

依照本發明的一實施例所述,在上述之應力層圖案的設計方法中,第二主動區圖案例如是位於應力層圖案內部。According to an embodiment of the present invention, in the method for designing the stress layer pattern, the second active region pattern is, for example, located inside the stress layer pattern.

依照本發明的一實施例所述,在上述之應力層圖案的設計方法中,上述方法的設計規則包括使應力層圖案的寬度至少等於所應用的製程世代所能定義的最小應力層寬度。According to an embodiment of the present invention, in the above method for designing a stress layer pattern, the design rule of the above method includes making the width of the stress layer pattern at least equal to the minimum stress layer width that can be defined by the applied process generation.

依照本發明的一實施例所述,在上述之應力層圖案的設計方法中,更包括當第一距離等於安全距離時,縮小應力層圖案,而使得第一距離大於安全距離。According to an embodiment of the present invention, in the method for designing the stress layer pattern, the method further includes reducing the stress layer pattern when the first distance is equal to the safety distance, such that the first distance is greater than the safety distance.

本發明提出另一種應力層圖案的設計方法,其中應力層圖案用以形成金氧半電晶體的源極/汲極區。上述方法包括下列步驟。首先,找出與初始應力層圖案部分重疊的虛擬擴散圖案(diffusion dummy pattern)。接著,計算出完全覆蓋住虛擬擴散圖案的輔助應力層圖案。然後,合併初始應力層圖案與輔助應力層圖案,而獲得應力層圖案。The present invention proposes another method of designing a stress layer pattern in which a stress layer pattern is used to form a source/drain region of a MOS transistor. The above method includes the following steps. First, a dummy dummy pattern partially overlapping the initial stress layer pattern is found. Next, an auxiliary stress layer pattern that completely covers the virtual diffusion pattern is calculated. Then, the initial stress layer pattern and the auxiliary stress layer pattern are combined to obtain a stress layer pattern.

依照本發明的另一實施例所述,在上述之應力層圖案的設計方法中,當初始應力層圖案與多個虛擬擴散圖案部分重疊,而計算出覆蓋虛擬擴散圖案的多個輔助應力層圖案時,上述方法更包括合併相鄰的輔助應力層圖案。According to another embodiment of the present invention, in the above method for designing a stress layer pattern, when the initial stress layer pattern partially overlaps the plurality of dummy diffusion patterns, a plurality of auxiliary stress layer patterns covering the dummy diffusion pattern are calculated. The above method further includes merging adjacent auxiliary stress layer patterns.

依照本發明的另一實施例所述,在上述之應力層圖案的設計方法中,合併相鄰的輔助應力層圖案的步驟是在合 併初始應力層圖案與輔助應力層圖案的步驟之後進行。According to another embodiment of the present invention, in the above method for designing a stress layer pattern, the step of merging adjacent auxiliary stress layer patterns is And the step of initial stress layer pattern and auxiliary stress layer pattern is performed.

基於上述,在本發明所提出之應力層圖案的設計方法中,由於應力層圖案的邊界與第一型金氧半電晶體的第一主動區圖案之間的第一距離至少等於安全距離,所以具有較大的製程裕度,因此可防止因製程變動而在第一型金氧半電晶體的第一主動區周圍形成突出缺陷的情況發生。Based on the above, in the design method of the stress layer pattern proposed by the present invention, since the first distance between the boundary of the stress layer pattern and the first active region pattern of the first type MOS transistor is at least equal to the safety distance, With a large process margin, it is possible to prevent the formation of a protruding defect around the first active region of the first type MOS transistor due to process variation.

此外,在本發明所提出之應力層圖案的設計方法中,由於應力層圖案完全覆蓋住虛擬擴散圖案,因此可避免在虛擬擴散區周圍形成突出缺陷。Further, in the design method of the stress layer pattern proposed by the present invention, since the stress layer pattern completely covers the dummy diffusion pattern, it is possible to avoid formation of protruding defects around the dummy diffusion region.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖2A至圖2B所繪示為本發明之一實施例的應力層圖案設計流程的示意圖。FIG. 2A to FIG. 2B are schematic diagrams showing a design flow of a stress layer pattern according to an embodiment of the present invention.

首先,請參照圖2A,半導體元件圖案100包括第一型金氧半電晶體的第一主動區圖案102、第二型金氧半電晶體的第二主動區圖案104及應力層圖案106。其中應力層圖案106可用以形成第二型金氧半電晶體的源極/汲極區,以控制施加於通道區的應力。此外,應力層圖案106與第一主動區圖案102例如是相互分離。第二主動區圖案104例如是位於應力層圖案106內部。First, referring to FIG. 2A, the semiconductor device pattern 100 includes a first active region pattern 102 of a first type of gold oxide semiconductor, a second active region pattern 104 of a second type of gold oxide semiconductor, and a stress layer pattern 106. The stress layer pattern 106 can be used to form a source/drain region of the second type of MOS transistor to control the stress applied to the channel region. Further, the stress layer pattern 106 and the first active region pattern 102 are, for example, separated from each other. The second active region pattern 104 is, for example, located inside the stress layer pattern 106.

當第一型金氧半電晶體為NMOS電晶體且第二型金氧半電晶體為PMOS電晶體時,藉由應力層圖案106所形 成的應力層之材料可為SiGe。當第一型金氧半電晶體為PMOS電晶體且第二型金氧半電晶體為NMOS電晶體時,藉由應力層圖案106所形成的應力層之材料可為SiC。When the first type of MOS transistor is an NMOS transistor and the second type MOS transistor is a PMOS transistor, the stress layer pattern 106 is formed. The material of the resulting stressor layer can be SiGe. When the first type of gold oxide semiconductor is a PMOS transistor and the second type of gold oxide half is an NMOS transistor, the material of the stress layer formed by the stress layer pattern 106 may be SiC.

本實施例所提出之應力層圖案的設計方法是先計算出應力層圖案106的邊界與第一型金氧半電晶體的第一主動區圖案102之間的第一距離D11、D21、D31。其中,第一距離D11、D21例如是小於安全距離Ds,而第一距離D31例如是等於安全距離Ds。安全距離Ds例如是由所應用的製程世代的製程能力所決定。The design method of the stress layer pattern proposed in this embodiment first calculates the first distances D11, D21, and D31 between the boundary of the stress layer pattern 106 and the first active region pattern 102 of the first type MOS transistor. The first distance D11, D21 is, for example, smaller than the safety distance Ds, and the first distance D31 is equal to the safety distance Ds, for example. The safety distance Ds is determined, for example, by the process capability of the applied process generation.

然後,請參照圖2B,虛線部分表示初始的應力層圖案106的邊界,而實線部分表示經調整後的應力層圖案106a的邊界。當第一距離D11、D21小於安全距離Ds時,將應力層圖案106縮小為應力層圖案106a。藉此,可將第一距離D11、D21分別調整為至少等於安全距離Ds的第一距離D12、D22。其中,第一距離D12例如是等於安全距離Ds,而第一距離D22例如是大於安全距離Ds。Then, referring to FIG. 2B, the broken line portion indicates the boundary of the initial stress layer pattern 106, and the solid line portion indicates the boundary of the adjusted stress layer pattern 106a. When the first distances D11, D21 are smaller than the safety distance Ds, the stress layer pattern 106 is reduced to the stress layer pattern 106a. Thereby, the first distances D11 and D21 can be respectively adjusted to be at least equal to the first distances D12 and D22 of the safety distance Ds. The first distance D12 is equal to, for example, the safety distance Ds, and the first distance D22 is, for example, greater than the safety distance Ds.

此時,由於應力層圖案106a的邊界與第一型金氧半電晶體的第一主動區圖案102之間的第一距離D12、D22至少等於安全距離Ds,因此可提供足夠製程裕度(process window),以應付在進行微影、蝕刻等製程時可能產生的製程變動。舉例來說,在應力層圖案106a的邊界與第一型金氧半電晶體的第一主動區圖案102之間的第一距離D12、D22至少等於安全距離Ds的情況下,就算覆蓋於第一主動區圖案102上的圖案化光阻層因製程變動而縮小, 位於第一主動區圖案102上的圖案化光阻層仍可完全覆蓋住第一主動區圖案102。因此,在後續形成應力層的沈積製程中,可避免在第一主動區102的周圍形成突出缺陷。At this time, since the first distance D12, D22 between the boundary of the stress layer pattern 106a and the first active region pattern 102 of the first type MOS transistor is at least equal to the safety distance Ds, sufficient process margin can be provided (process Window) to cope with process variations that may occur during lithography, etching, etc. For example, in a case where the first distance D12, D22 between the boundary of the stress layer pattern 106a and the first active region pattern 102 of the first type MOS transistor is at least equal to the safety distance Ds, even if it covers the first The patterned photoresist layer on the active region pattern 102 is reduced due to process variation. The patterned photoresist layer on the first active region pattern 102 can still completely cover the first active region pattern 102. Therefore, in the subsequent deposition process of forming the stress layer, it is possible to avoid the formation of protruding defects around the first active region 102.

接著,雖然第一距離D31已等於安全距離Ds,仍可選擇性地將此處的應力層圖案106縮小為應力層圖案106a。藉此,可將第一距離D31調整為大於安全距離Ds的第一距離D32,以更進一步地提升此處的製程裕度。Next, although the first distance D31 is equal to the safety distance Ds, the stress layer pattern 106 here can be selectively reduced to the stress layer pattern 106a. Thereby, the first distance D31 can be adjusted to be greater than the first distance D32 of the safety distance Ds to further enhance the process margin here.

此外,在將應力層圖案106縮小為應力層圖案106a的步驟中,上述應力層圖案106a的設計方法的設計規則包括使應力層圖案106a的邊界與第二型金氧半電晶體的第二主動區圖案104之間的第二距離D4、D5、D6至少等於安全距離Ds。其中,第二距離D4、D5例如是等於安全距離Ds,而第二距離D6例如是大於安全距離Ds。另外,上述應力層圖案106a的設計方法的設計規則亦包括使應力層圖案106a的寬度至少等於所應用的製程世代所能定義的最小應力層寬度,以防止應力層發生頸縮(necking)問題。Further, in the step of reducing the stress layer pattern 106 to the stress layer pattern 106a, the design rule of the design method of the stress layer pattern 106a includes the boundary of the stress layer pattern 106a and the second active of the second type MOS transistor. The second distances D4, D5, D6 between the zone patterns 104 are at least equal to the safety distance Ds. The second distance D4, D5 is equal to, for example, the safety distance Ds, and the second distance D6 is, for example, greater than the safety distance Ds. In addition, the design rule of the design method of the stress layer pattern 106a described above also includes making the width of the stress layer pattern 106a at least equal to the minimum stress layer width that can be defined by the applied process generation to prevent the stress layer from being necking.

基於上述實施例可知,由於應力層圖案106a的邊界與第一型金氧半電晶體的第一主動區圖案102之間的第一距離D12、D22、D32至少等於安全距離Ds,所以具有較大的製程裕度,因此可防止因製程變動而在第一型金氧半電晶體的第一主動區102周圍形成突出缺陷的情況發生,進而有效地增進半導體元件的電性效能。According to the above embodiment, since the first distance D12, D22, D32 between the boundary of the stress layer pattern 106a and the first active region pattern 102 of the first type MOS transistor is at least equal to the safety distance Ds, it has a larger The process margin can prevent the occurrence of protruding defects around the first active region 102 of the first type MOS transistor due to process variation, thereby effectively improving the electrical performance of the semiconductor device.

圖3所繪示為圖2B的實施例應用於40nm之半導體製程的示意圖。此外,圖3與圖2B中相同標號的構件具 有相同的配置關係、用途及功效,故於此不再贅述。FIG. 3 is a schematic diagram of the embodiment of FIG. 2B applied to a 40 nm semiconductor process. In addition, the same reference numerals are used in FIG. 3 and FIG. 2B. Have the same configuration relationship, use and effect, so it will not be described here.

在圖3的實施例中,第一主動區102例如是NMOS電晶體的主動區,第二主動區104例如是PMOS電晶體的主動區,應力層圖案106a可用以形成材料為SiGe的應力層,且此應力層可作為PMOS電晶體的源極/汲極區。虛線部分表示初始的應力層圖案106的邊界,而實線部分表示經調整後的應力層圖案106a的邊界。In the embodiment of FIG. 3, the first active region 102 is, for example, an active region of an NMOS transistor, and the second active region 104 is, for example, an active region of a PMOS transistor, and the stress layer pattern 106a can be used to form a stress layer of SiGe. And the stress layer can serve as the source/drain region of the PMOS transistor. The dotted line portion indicates the boundary of the initial stress layer pattern 106, and the solid line portion indicates the boundary of the adjusted stress layer pattern 106a.

請同時參照圖3、圖2A及圖2B,經計算可知,第一距離D11、D21為30nm,第一距離D31為36nm。此外,將安全距離Ds設為36nm。由此可知,第一距離D11、D21小於安全距離Ds,而第一距離D31等於安全距離Ds。因此,需將應力層圖案106縮小為應力層圖案106a,以將第一距離D11、D21調整為至少等於安全距離Ds的第一距離D12與D22。其中,第一距離D12為36nm,而使得第一距離D12等於安全距離Ds。第一距離D22為46nm,而使得第一距離D22大於安全距離Ds。此外,雖然第一距離D31已等於安全距離Ds,仍可選擇性地將第一距離D31調整為大於安全距離Ds的第一距離D32,以更進一步地提升此處的製程裕度。其中,第一距離D32為56nm。Referring to FIG. 3, FIG. 2A and FIG. 2B simultaneously, it is calculated that the first distances D11 and D21 are 30 nm, and the first distance D31 is 36 nm. Further, the safety distance Ds was set to 36 nm. It can be seen that the first distance D11, D21 is smaller than the safety distance Ds, and the first distance D31 is equal to the safety distance Ds. Therefore, the stress layer pattern 106 needs to be reduced to the stress layer pattern 106a to adjust the first distances D11, D21 to at least the first distances D12 and D22 of the safety distance Ds. Wherein, the first distance D12 is 36 nm, and the first distance D12 is made equal to the safety distance Ds. The first distance D22 is 46 nm such that the first distance D22 is greater than the safety distance Ds. Furthermore, although the first distance D31 is already equal to the safety distance Ds, the first distance D31 can be selectively adjusted to be greater than the first distance D32 of the safety distance Ds to further enhance the process margin herein. Wherein, the first distance D32 is 56 nm.

在將應力層圖案106縮小為應力層圖案106a的步驟中,須遵循的設計規則包括將應力層圖案106a的邊界與第二主動區圖案104之間的第二距離D4、D5、D6分別設為36nm、36nm、41nm。亦即,第二距離D4、D5等於安全距離Ds,且第二距離D6大於安全距離Ds。然而,在其他 實施例中,第二距離D4、D5亦可大於安全距離Ds,且第二距離D6亦可等於安全距離Ds。此外,設計規則亦包括應力層圖案106a的寬度需至少等於162nm,而使得應力層圖案106a的寬度至少等於40nm之半導體製程所能定義的最小應力層寬度。In the step of reducing the stress layer pattern 106 to the stress layer pattern 106a, the design rule to be followed includes setting the second distances D4, D5, and D6 between the boundary of the stress layer pattern 106a and the second active region pattern 104, respectively. 36 nm, 36 nm, 41 nm. That is, the second distance D4, D5 is equal to the safety distance Ds, and the second distance D6 is greater than the safety distance Ds. However, in other In an embodiment, the second distance D4, D5 may also be greater than the safety distance Ds, and the second distance D6 may also be equal to the safety distance Ds. In addition, the design rule also includes that the width of the stress layer pattern 106a needs to be at least equal to 162 nm, such that the width of the stress layer pattern 106a is at least equal to the minimum stress layer width that can be defined by a semiconductor process of 40 nm.

請繼續參照圖3,在利用圖3的半導體元件圖案100來形成用以設置應力層的溝渠的製作過程中,應力層圖案106、106a表示用以設置應力層的溝渠範圍,未被應力層圖案106、106a覆蓋的區域表示覆蓋第一主動區102的圖案化光阻層範圍。Referring to FIG. 3, in the process of fabricating the trench for forming the stress layer by using the semiconductor device pattern 100 of FIG. 3, the stress layer patterns 106, 106a represent the trench range for the stress layer, the unstressed layer pattern. The area covered by 106, 106a represents the extent of the patterned photoresist layer covering the first active area 102.

此外,在對應力層圖案進行調整前後,覆蓋第一主動區102的圖案化光阻層範圍的變化整理如表1。In addition, before and after the adjustment of the stress layer pattern, the variation of the range of the patterned photoresist layer covering the first active region 102 is as shown in Table 1.

由表1可知,在將第一距離D11(30nm)調整為第一距離D12(36nm)的位置處,於將安全距離Ds設為36nm 且第二距離D4為36nm的設計規則下,覆蓋第一主動區102的圖案化光阻層範圍最多可向外擴張6nm,且相對於安全距離Ds(36nm)所額外增加的製程裕度為0。As can be seen from Table 1, at the position where the first distance D11 (30 nm) is adjusted to the first distance D12 (36 nm), the safety distance Ds is set to 36 nm. And under the design rule that the second distance D4 is 36 nm, the range of the patterned photoresist layer covering the first active region 102 can be expanded outward by at most 6 nm, and the additional processing margin with respect to the safety distance Ds (36 nm) is 0. .

在將第一距離D21(30nm)調整為第一距離D22(46nm)的位置處,於將安全距離Ds設為36nm且第二距離D5為36nm的設計規則下,覆蓋第一主動區102的圖案化光阻層範圍最多可向外擴張16nm,且相對於安全距離Ds(36nm)所額外增加的製程裕度為10nm。At a position where the first distance D21 (30 nm) is adjusted to the first distance D22 (46 nm), the pattern covering the first active region 102 is covered under a design rule that the safety distance Ds is 36 nm and the second distance D5 is 36 nm. The photoresist layer can be expanded up to 16 nm outward, and the additional processing margin relative to the safe distance Ds (36 nm) is 10 nm.

在將第一距離D31(36nm)調整為第一距離D32(56nm)的位置處,於將安全距離Ds設為36nm且第二距離D6為41nm的設計規則下,覆蓋第一主動區102的圖案化光阻層範圍最多可向外擴張20nm,且相對於安全距離Ds(36nm)所額外增加的製程裕度為20nm。At a position where the first distance D31 (36 nm) is adjusted to the first distance D32 (56 nm), the pattern covering the first active region 102 is covered under a design rule that the safety distance Ds is 36 nm and the second distance D6 is 41 nm. The photoresist layer can be expanded up to 20 nm outward, and the additional processing margin relative to the safe distance Ds (36 nm) is 20 nm.

同樣地,由上述實施例可知,由於應力層圖案106a的邊界與NMOS電晶體的第一主動區圖案102之間的第一距離D12、D22、D32至少等於安全距離Ds,所以具有較大的製程裕度,因此可防止因製程變動而在第一主動區102周圍形成突出缺陷的情況發生,進而有效地增進半導體元件的電性效能。Similarly, as can be seen from the above embodiment, since the first distance D12, D22, D32 between the boundary of the stress layer pattern 106a and the first active region pattern 102 of the NMOS transistor is at least equal to the safety distance Ds, the process has a larger process. The margin can prevent the occurrence of protruding defects around the first active region 102 due to process variations, thereby effectively improving the electrical performance of the semiconductor device.

圖4A至圖4D所繪示為本發明之另一實施例的應力層圖案設計流程的示意圖。4A to 4D are schematic views showing a design flow of a stress layer pattern according to another embodiment of the present invention.

請參照圖4A,半導體元件圖案200包括金氧半電晶體的元件圖案202、虛擬擴散圖案204與初始應力層圖案206。金氧半電晶體例如是NMOS電晶體或PMOS電晶 體。元件圖案202例如是字元線圖案。虛擬擴散圖案204的作用在於平衡圖案密度。Referring to FIG. 4A, the semiconductor element pattern 200 includes an element pattern 202 of a MOS transistor, a dummy diffusion pattern 204, and an initial stress layer pattern 206. The MOS transistor is, for example, an NMOS transistor or a PMOS transistor. body. The element pattern 202 is, for example, a word line pattern. The function of the virtual diffusion pattern 204 is to balance the pattern density.

首先,找出與初始應力層圖案206部分重疊的虛擬擴散圖案204。在此實施例中,與初始應力層圖案206部分重疊的虛擬擴散圖案204的數量是以六個為例進行說明,但並不用以限制本發明,只要與初始應力層圖案206部分重疊的虛擬擴散圖案204的數量為至少一個,即屬於本發明所主張的範圍。First, a virtual diffusion pattern 204 partially overlapping the initial stress layer pattern 206 is found. In this embodiment, the number of the dummy diffusion patterns 204 partially overlapping the initial stress layer pattern 206 is illustrated by taking six examples, but is not intended to limit the present invention as long as the virtual diffusion partially overlaps with the initial stress layer pattern 206. The number of patterns 204 is at least one, which is within the scope of the claimed invention.

接著,請參照圖4B,計算出完全覆蓋住與初始應力層圖案206部分重疊的虛擬擴散圖案204的輔助應力層圖案208,用以解決初始應力層圖案206與虛擬擴散圖案204部分重疊的問題。Next, referring to FIG. 4B, the auxiliary stress layer pattern 208 completely covering the dummy diffusion pattern 204 partially overlapping the initial stress layer pattern 206 is calculated to solve the problem that the initial stress layer pattern 206 partially overlaps the dummy diffusion pattern 204.

然後,請參照圖4C,合併初始應力層圖案206與輔助應力層圖案208,而獲得應力層圖案210。其中,應力層圖案210完全覆蓋住與初始應力層圖案206部分重疊的虛擬擴散圖案204。應力層圖案210可用以形成金氧半電晶體的源極/汲極區,以控制施加於通道區的應力。Then, referring to FIG. 4C, the initial stress layer pattern 206 and the auxiliary stress layer pattern 208 are combined to obtain the stress layer pattern 210. Wherein, the stress layer pattern 210 completely covers the dummy diffusion pattern 204 partially overlapping the initial stress layer pattern 206. The stress layer pattern 210 can be used to form a source/drain region of the MOS transistor to control the stress applied to the channel region.

接下來,請參照圖4D,當初始應力層圖案206與多個虛擬擴散圖案204部分重疊,而計算出覆蓋虛擬擴散圖案204的多個輔助應力層圖案208時,更可選擇性地合併相鄰的輔助應力層圖案208而形成輔助應力層圖案208a,藉此形成應力層圖案210a。如此一來,在形成用以設置應力層的溝渠時,可避免在相鄰的輔助應力層圖案208之間形成的圖案化光阻層因寬度太小而倒塌的現象。Next, referring to FIG. 4D, when the initial stress layer pattern 206 partially overlaps the plurality of dummy diffusion patterns 204, and the plurality of auxiliary stress layer patterns 208 covering the dummy diffusion pattern 204 are calculated, the adjacent ones are more selectively merged. The auxiliary stress layer pattern 208 forms the auxiliary stress layer pattern 208a, thereby forming the stress layer pattern 210a. As a result, when the trench for providing the stress layer is formed, the phenomenon that the patterned photoresist layer formed between the adjacent auxiliary stress layer patterns 208 is too small and collapses can be avoided.

基於上述實施例可知,由於虛擬擴散圖案204是用以形成虛擬擴散區,且虛擬擴散區並不影響電性,所以可將應力層圖案210、210a設計成完全覆蓋住虛擬擴散圖案204。如此一來,藉由將應力層圖案210、210a設計成完全覆蓋住虛擬擴散圖案204,可在形成用以設置應力層的溝渠的步驟中將虛擬擴散區移除。因此,在形成應力層的沈積製程中,可防止在虛擬擴散區周圍形成突出缺陷,進而有效地增進半導體元件的電性效能。Based on the above embodiments, since the dummy diffusion pattern 204 is used to form a dummy diffusion region, and the dummy diffusion region does not affect electrical properties, the stress layer patterns 210, 210a may be designed to completely cover the dummy diffusion pattern 204. As such, by designing the stress layer patterns 210, 210a to completely cover the dummy diffusion pattern 204, the dummy diffusion regions can be removed in the step of forming the trenches for providing the stress layers. Therefore, in the deposition process for forming the stress layer, it is possible to prevent the formation of protruding defects around the dummy diffusion region, thereby effectively enhancing the electrical performance of the semiconductor element.

綜上所述,上述實施例至少具有下列優點:In summary, the above embodiment has at least the following advantages:

1.藉由上述實施例所提出之應力層圖案的設計方法,可防止在主動區周圍形成突出缺陷的情況發生。1. By the design method of the stress layer pattern proposed in the above embodiment, it is possible to prevent the occurrence of protruding defects around the active region.

2.藉由上述實施例所提出之應力層圖案的設計方法,可避免在虛擬擴散區周圍形成突出缺陷2. By the design method of the stress layer pattern proposed in the above embodiment, it is possible to avoid forming a protruding defect around the virtual diffusion region.

3.上述實施例所提出之應力層圖案的設計方法能有效地增進半導體元件的電性效能。3. The design method of the stress layer pattern proposed in the above embodiments can effectively improve the electrical performance of the semiconductor device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧PMOS電晶體10‧‧‧ PMOS transistor

14‧‧‧SiGe層14‧‧‧SiGe layer

16‧‧‧圖案化光阻層16‧‧‧ patterned photoresist layer

18‧‧‧NMOS電晶體18‧‧‧ NMOS transistor

20‧‧‧主動區20‧‧‧active area

22‧‧‧突出缺陷22‧‧‧ Outstanding defects

100、200‧‧‧半導體元件圖案100, 200‧‧‧ semiconductor component pattern

102‧‧‧第一主動區圖案102‧‧‧First active area pattern

104‧‧‧第二主動區圖案104‧‧‧Second active area pattern

106、106a‧‧‧應力層圖案106, 106a‧‧‧ stress layer pattern

202‧‧‧元件圖案202‧‧‧Component pattern

204‧‧‧虛擬擴散圖案204‧‧‧Virtual diffusion pattern

206‧‧‧初始應力層圖案206‧‧‧Initial stress layer pattern

208、208a‧‧‧輔助應力層圖案208, 208a‧‧‧Auxiliary stress layer pattern

210、210a‧‧‧應力層圖案210, 210a‧‧‧ stress layer pattern

D11、D12、D21、D22、D31、D32‧‧‧第一距離D11, D12, D21, D22, D31, D32‧‧‧ first distance

D4、D5、D6‧‧‧第二距離D4, D5, D6‧‧‧ second distance

Ds‧‧‧安全距離Ds‧‧‧Safe distance

圖1所繪示為習知之一種CMOS的剖面圖。FIG. 1 is a cross-sectional view of a conventional CMOS.

圖2A至圖2B所繪示為本發明之一實施例的應力層圖案設計流程的示意圖。FIG. 2A to FIG. 2B are schematic diagrams showing a design flow of a stress layer pattern according to an embodiment of the present invention.

圖3所繪示為圖2B的實施例應用於40nm之半導體製程的示意圖。FIG. 3 is a schematic diagram of the embodiment of FIG. 2B applied to a 40 nm semiconductor process.

圖4A至圖4D所繪示為本發明之另一實施例的應力層圖案設計流程的示意圖。4A to 4D are schematic views showing a design flow of a stress layer pattern according to another embodiment of the present invention.

100‧‧‧半導體元件圖案100‧‧‧Semiconductor component pattern

102‧‧‧第一主動區圖案102‧‧‧First active area pattern

104‧‧‧第二主動區圖案104‧‧‧Second active area pattern

106a‧‧‧應力層圖案106a‧‧‧stress layer pattern

D11、D12、D21、D22、D31、D32‧‧‧第一距離D11, D12, D21, D22, D31, D32‧‧‧ first distance

D4、D5、D6‧‧‧第二距離D4, D5, D6‧‧‧ second distance

Ds‧‧‧安全距離Ds‧‧‧Safe distance

Claims (10)

一種應力層圖案的設計方法,其中該應力層圖案用以形成一第二型金氧半電晶體的一源極/汲極區,該方法包括:計算出該應力層圖案的邊界與一第一型金氧半電晶體的一第一主動區圖案之間的一第一距離;以及當該第一距離小於一安全距離時,縮小該應力層圖案,而使得該第一距離至少等於該安全距離。A method for designing a stress layer pattern, wherein the stress layer pattern is used to form a source/drain region of a second type of MOS transistor, the method comprising: calculating a boundary of the stress layer pattern and a first a first distance between a first active region pattern of the MOS transistor; and when the first distance is less than a safe distance, reducing the stress layer pattern such that the first distance is at least equal to the safe distance . 如申請專利範圍第1項所述之應力層圖案的設計方法,其中該應力層圖案與該第一主動區圖案相互分離。The method for designing a stress layer pattern according to claim 1, wherein the stress layer pattern and the first active region pattern are separated from each other. 如申請專利範圍第1項所述之應力層圖案的設計方法,其中該安全距離是由所應用的製程世代的製程能力所決定。The method for designing a stress layer pattern as described in claim 1, wherein the safety distance is determined by the process capability of the applied process generation. 如申請專利範圍第1項所述之應力層圖案的設計方法,其中該方法的設計規則包括:所額外增加的製程裕度使該應力層圖案的邊界與該第二型金氧半電晶體的一第二主動區圖案之間的一第二距離至少等於該安全距離。The design method of the stress layer pattern according to claim 1, wherein the design rule of the method comprises: an additional process margin added to the boundary of the stress layer pattern and the second type MOS transistor A second distance between the second active area patterns is at least equal to the safe distance. 如申請專利範圍第4項所述之應力層圖案的設計方法,其中該第二主動區圖案位於該應力層圖案內部。The method for designing a stress layer pattern according to claim 4, wherein the second active region pattern is located inside the stress layer pattern. 如申請專利範圍第1項所述之應力層圖案的設計方法,其中該方法的設計規則包括:使該應力層圖案的寬度至少等於所應用的製程世代所能定義的最小應力層寬度。The design method of the stress layer pattern according to claim 1, wherein the design rule of the method comprises: making the width of the stress layer pattern at least equal to a minimum stress layer width that can be defined by the applied process generation. 如申請專利範圍第1項所述之應力層圖案的設計方法,更包括當該第一距離等於該安全距離時,縮小該應力層圖案,而使得該第一距離大於該安全距離。The design method of the stress layer pattern according to claim 1, further comprising reducing the stress layer pattern when the first distance is equal to the safety distance, such that the first distance is greater than the safety distance. 一種應力層圖案的設計方法,其中該應力層圖案用以形成一金氧半電晶體的一源極/汲極區,該方法包括:找出與一初始應力層圖案部分重疊的一虛擬擴散圖案;計算出覆蓋該虛擬擴散圖案的一輔助應力層圖案;以及合併該初始應力層圖案與該輔助應力層圖案,而獲得該應力層圖案。A method for designing a stress layer pattern, wherein the stress layer pattern is used to form a source/drain region of a MOS transistor, the method comprising: finding a dummy diffusion pattern partially overlapping an initial stress layer pattern Calculating an auxiliary stress layer pattern covering the dummy diffusion pattern; and combining the initial stress layer pattern and the auxiliary stress layer pattern to obtain the stress layer pattern. 如申請專利範圍第8項所述之應力層圖案的設計方法,其中當該初始應力層圖案與多個虛擬擴散圖案部分重疊,而計算出完全覆蓋住該些虛擬擴散圖案的多個輔助應力層圖案時,該方法更包括合併相鄰的該些輔助應力層圖案。The method for designing a stress layer pattern according to claim 8, wherein when the initial stress layer pattern partially overlaps the plurality of dummy diffusion patterns, a plurality of auxiliary stress layers completely covering the dummy diffusion patterns are calculated. In the case of a pattern, the method further includes merging the adjacent auxiliary stress layer patterns. 如申請專利範圍第9項所述之應力層圖案的設計方法,其中合併相鄰的該些輔助應力層圖案的步驟是在合併該初始應力層圖案與該些輔助應力層圖案的步驟之後進行。The method for designing a stress layer pattern according to claim 9, wherein the step of merging the adjacent auxiliary stress layer patterns is performed after the step of combining the initial stress layer pattern and the auxiliary stress layer patterns.
TW101116573A 2012-05-09 2012-05-09 Method for designing stressor pattern TWI514481B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101116573A TWI514481B (en) 2012-05-09 2012-05-09 Method for designing stressor pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101116573A TWI514481B (en) 2012-05-09 2012-05-09 Method for designing stressor pattern

Publications (2)

Publication Number Publication Date
TW201347045A TW201347045A (en) 2013-11-16
TWI514481B true TWI514481B (en) 2015-12-21

Family

ID=49990765

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101116573A TWI514481B (en) 2012-05-09 2012-05-09 Method for designing stressor pattern

Country Status (1)

Country Link
TW (1) TWI514481B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090282374A1 (en) * 2008-05-08 2009-11-12 Lee-Chung Lu Dummy Pattern Design for Reducing Device Performance Drift
TW201021160A (en) * 2008-11-21 2010-06-01 Taiwan Semiconductor Mfg Integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090282374A1 (en) * 2008-05-08 2009-11-12 Lee-Chung Lu Dummy Pattern Design for Reducing Device Performance Drift
TW201021160A (en) * 2008-11-21 2010-06-01 Taiwan Semiconductor Mfg Integrated circuit

Also Published As

Publication number Publication date
TW201347045A (en) 2013-11-16

Similar Documents

Publication Publication Date Title
US9252021B2 (en) Method for patterning a plurality of features for Fin-like field-effect transistor (FinFET) devices
JP5351740B2 (en) A method to solve the problem of line end shortening of polycrystalline silicon by two cutting processes
US9455194B1 (en) Method for fabricating semiconductor device
JP2011109105A (en) Method of forming active region pattern of uneven semiconductor device
TWI642110B (en) Semiconductor device and method for fabricating the same
US9665675B2 (en) Method to improve transistor matching
TWI653687B (en) Semiconductor device and method for fabricating the same
JP2009164267A (en) Semiconductor device and its manufacturing and designing methods
US10483395B2 (en) Method for fabricating semiconductor device
TWI608529B (en) Methods of forming fins for finfet semiconductor devices and the resulting semiconductor devices
TWI514481B (en) Method for designing stressor pattern
US20100234973A1 (en) Pattern verifying method, method of manufacturing a semiconductor device and pattern verifying program
JP2017034066A (en) Semiconductor device
TW201430903A (en) Method for forming semiconductor device
US8304317B2 (en) Gate line edge roughness reduction by using 2P/2E process together with high temperature bake
US9837282B1 (en) Semiconductor structure
TWI484634B (en) Isolated device and manufacturing method thereof
US7833848B2 (en) Method for removing hard masks on gates in semiconductor manufacturing process
US8470655B1 (en) Method for designing stressor pattern
JP4713188B2 (en) Mask data generation method
KR100901648B1 (en) Method for fabricating of semiconductor device
TWI569334B (en) Fabricating method of semiconductor element
TWI750316B (en) 1-1 forced fin stack inverter and method of forming fin forced stack inverter
CN109545746B (en) Method for manufacturing PMOS (P-channel metal oxide semiconductor) tube with germanium-silicon source drain
US9553026B1 (en) Semiconductor device and method for fabricating the same