TWI513071B - Magnetoresistance film structure and the magnetic field sensor using the magnetoresistance film structure - Google Patents

Magnetoresistance film structure and the magnetic field sensor using the magnetoresistance film structure Download PDF

Info

Publication number
TWI513071B
TWI513071B TW103111989A TW103111989A TWI513071B TW I513071 B TWI513071 B TW I513071B TW 103111989 A TW103111989 A TW 103111989A TW 103111989 A TW103111989 A TW 103111989A TW I513071 B TWI513071 B TW I513071B
Authority
TW
Taiwan
Prior art keywords
layer
sensing
magnetic field
sensing cell
angle
Prior art date
Application number
TW103111989A
Other languages
Chinese (zh)
Other versions
TW201440272A (en
Inventor
黃鑫泓
翁煥翔
賴志煌
黃國峰
Original Assignee
昇佳電子股份有限公司
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昇佳電子股份有限公司, 國立清華大學 filed Critical 昇佳電子股份有限公司
Priority to TW103111989A priority Critical patent/TWI513071B/en
Publication of TW201440272A publication Critical patent/TW201440272A/en
Application granted granted Critical
Publication of TWI513071B publication Critical patent/TWI513071B/en

Links

Description

磁阻膜層結構暨使用此磁阻膜層結構之磁場感測器應用Magnetoresistive film layer structure and magnetic field sensor application using the magnetoresistive film layer structure

本發明係有關於一種膜層結構。更特定言之,其係關於一種磁阻(magnetoresistive)膜層結構,可應用於磁場感測等技術領域。The present invention relates to a film layer structure. More specifically, it relates to a magnetoresistive film structure, which can be applied to technical fields such as magnetic field sensing.

已知,磁阻(magnetoresistance,MR)效應係材料的電阻隨著外加磁場的變化而改變的效應,其物理量的定義,是在有無磁場下的電阻差除上原先電阻,用以代表電阻變化率。It is known that the magnetoresistance (MR) effect is the effect of the resistance of a material changing with an applied magnetic field. The definition of the physical quantity is the difference in resistance between the presence or absence of a magnetic field, and the original resistance is used to represent the rate of change of resistance. .

巨磁阻(giant magnetoresistance,GMR)效應則存在於鐵磁性(如:Fe,Co,Ni)/非鐵磁性(如:Cr,Cu,Ag,Au)的多層膜系統,由於磁性層間的磁交換作用會改變其傳導電子行為,使得電子產生程度不同的磁散射而造成較大的電阻,其電阻變化較常磁阻大上許多,故被稱為「巨磁阻」。這種多層膜結構的電阻值與鐵磁性材料薄膜層的磁化方向有關,兩層磁性材料磁化方向相反情況下的電阻值,明顯大於磁化方向相同時的電阻值,而電阻在很弱的外加磁場下具有很大的變化量。穿隧磁阻(tunnel magnetoresistance,TMR)效應則是指在鐵磁/絕緣體薄膜(約1奈米)/鐵磁材料中,其穿隧電阻大小隨兩邊鐵磁材料相對方向變化的效應。The giant magnetoresistance (GMR) effect exists in a multilayer film system of ferromagnetic (eg, Fe, Co, Ni)/non-ferromagnetic (eg, Cr, Cu, Ag, Au) due to magnetic exchange between magnetic layers. The effect changes its conduction electron behavior, causing the magnetic scattering of different degrees of electron generation to cause a large resistance, and its resistance change is much larger than the ordinary magnetic resistance, so it is called "giant magnetoresistance". The resistance value of the multilayer film structure is related to the magnetization direction of the ferromagnetic material film layer, and the resistance value of the two layers of magnetic material in the opposite direction of magnetization is significantly larger than the resistance value when the magnetization direction is the same, and the resistance is in a weak applied magnetic field. There is a big amount of change underneath. The tunnel magnetoresistance (TMR) effect refers to the effect of the tunneling resistance on the relative orientation of the ferromagnetic materials in the ferromagnetic/insulator film (about 1 nm)/ferromagnetic material.

目前,磁阻效應已被成功地運用在硬碟生產上,具有重要的商業應用價值。此外,利用巨磁電阻物質在不同的磁化狀態下具有不同電阻值的特點,還可以製成磁性隨機存儲器(MRAM),其優點是在不通電的情況下可以繼續保留存儲的數據。At present, the magnetoresistance effect has been successfully applied to hard disk production and has important commercial application value. In addition, magnetic giant random access memory (MRAM) can also be fabricated by using giant magnetoresistance materials having different resistance values under different magnetization states, and the advantage is that the stored data can be retained without power supply.

上述磁阻效應還被應用在磁場感測(magnetic field sensor)領域,例 如,行動電話中搭配全球定位系統(global positioning system,GPS)的電子羅盤(electronic compass)零組件,用來提供使用者移動方位等資訊。目前,市場上已有各式的磁場感測技術,例如,異向性磁阻(anisotropic magnetoresistance,AMR)感測元件、巨磁阻(GMR)感測元件、磁穿隧接面(magnetic tunneling junction,MTJ)感測元件等等。The above magnetoresistance effect is also applied in the field of magnetic field sensors, for example For example, a mobile phone with a global positioning system (GPS) electronic compass component is used to provide information such as the user's mobile position. At present, various magnetic field sensing technologies have been available on the market, for example, anisotropic magnetoresistance (AMR) sensing elements, giant magnetoresistance (GMR) sensing elements, and magnetic tunneling junctions. , MTJ) sensing elements and the like.

然而,上述先前技藝的缺點通常包括:較佔晶片面積、製程較昂 貴、較耗電、靈敏度不足,以及易受溫度變化影響等等,而有必要進一步改進。However, the disadvantages of the prior art described above generally include: the area of the wafer is relatively large, and the process is relatively high. Expensive, more power-hungry, insufficient sensitivity, and susceptible to temperature changes, etc., and further improvements are necessary.

本發明於此提出一種可以應用於磁場感測器的創新磁阻膜層結 構,以解決前述先前技藝之不足與缺點。The present invention proposes an innovative magnetoresistive film junction that can be applied to a magnetic field sensor. To address the deficiencies and shortcomings of the prior art described above.

根據本發明一態樣,其提出了一種磁阻膜層結構,其包含一固定 層、一被固定層設在所述固定層上、一正交耦合層設在所述被固定層上、一參考層設在所述正交耦合層上、一間隔層設在所述參考層上、以及一自由層設在所述間隔層上。According to an aspect of the present invention, a magnetoresistive film layer structure including a fixed a layer, a fixed layer is disposed on the fixed layer, an orthogonal coupling layer is disposed on the fixed layer, a reference layer is disposed on the orthogonal coupling layer, and a spacer layer is disposed on the reference layer Upper and a free layer are disposed on the spacer layer.

根據本發明另一態樣,其提出了一種二軸磁場感測器,其中包含 一基板、至少一具有所述膜層結構的第一感測胞設置在基板平面上用以感測一第一軸向的磁場變化;以及至少一具有所述膜層結構的第二感測胞設置在該基板的一平面上用以感測一第二軸向的磁場變化,其中第一感測胞以及第二感測胞皆具有長軸與短軸,且第一感測胞的長軸方向與第二感測胞的長軸方向互相垂直。According to another aspect of the present invention, a biaxial magnetic field sensor is provided, which comprises a substrate, at least one first sensing cell having the film layer structure disposed on a substrate plane for sensing a first axial magnetic field change; and at least one second sensing cell having the film layer structure And being disposed on a plane of the substrate for sensing a second axial magnetic field change, wherein the first sensing cell and the second sensing cell have a long axis and a short axis, and the long axis of the first sensing cell The direction is perpendicular to the long axis direction of the second sensing cell.

根據本發明又一態樣,其提出了一種三軸磁場感測器,其中包含 一基板、至少一具有所述膜層結構的第一感測胞設置在基板平面上用以感測一第一軸向的磁場變化;至少一具有所述膜層結構的第二感測胞設置在基板平面上用以感測一第二軸向的磁場變化、以及至少一具有所述膜層結構的第 三感測胞設置在基板的一斜面上用以感測一第三軸向的磁場變化,其中第一感測胞、第二感測胞以及第三感測胞都包含有長軸與短軸,且第一感測胞的長軸方向、第二感測胞的長軸方向、以及第三感測胞的長軸方向互相垂直。According to still another aspect of the present invention, a three-axis magnetic field sensor is provided, which comprises a substrate, at least one first sensing cell having the film layer structure disposed on a substrate plane for sensing a first axial magnetic field change; at least one second sensing cell having the film layer structure Sensing a second axial magnetic field change on the substrate plane, and at least one having the film layer structure The three sensing cells are disposed on a slope of the substrate for sensing a third axial magnetic field change, wherein the first sensing cell, the second sensing cell, and the third sensing cell both have a long axis and a short axis And the long axis direction of the first sensing cell, the long axis direction of the second sensing cell, and the long axis direction of the third sensing cell are perpendicular to each other.

為讓本發明之上述目的、特徵及優點能更明顯易懂,下文特舉較佳實施方式,並配合所附圖式,作詳細說明如下。然而如下之較佳實施方式與圖式僅供參考與說明用,並非用來對本發明加以限制者。The above described objects, features and advantages of the present invention will become more apparent from the description of the appended claims. However, the following preferred embodiments and drawings are for illustrative purposes only and are not intended to limit the invention.

1/1a/1b/1c‧‧‧感測胞1/1a/1b/1c‧‧‧ sensory cells

10‧‧‧固定層10‧‧‧Fixed layer

12‧‧‧被固定層12‧‧‧ fixed layer

14‧‧‧正交耦合層14‧‧‧Orthogonal coupling layer

16‧‧‧參考層16‧‧‧ reference layer

18‧‧‧間隔層18‧‧‧ spacer

20‧‧‧自由層20‧‧‧Free layer

60‧‧‧場退火流程60‧‧‧ field annealing process

62~66‧‧‧步驟62~66‧‧‧Steps

80‧‧‧磁阻膜層胞80‧‧‧Magnetoresistive film layer cell

82‧‧‧自由層磁化方向82‧‧‧Free layer magnetization direction

90‧‧‧外部磁場方向90‧‧‧External magnetic field direction

91/91a/91b‧‧‧交換偏耦方向91/91a/91b‧‧‧Exchange bias coupling direction

92/92’/92”‧‧‧參考層的磁化方向92/92’/92”‧‧‧Magnetization direction of the reference layer

100‧‧‧基板100‧‧‧Substrate

102‧‧‧黏著層102‧‧‧Adhesive layer

104‧‧‧晶種層104‧‧‧ seed layer

110‧‧‧固定層110‧‧‧Fixed layer

112‧‧‧被固定層112‧‧‧ fixed layer

114‧‧‧正交耦合層114‧‧‧Orthogonal coupling layer

116‧‧‧參考層116‧‧‧ reference layer

118‧‧‧間隔層118‧‧‧ spacer

120‧‧‧自由層120‧‧‧Free layer

122‧‧‧上蓋保護層122‧‧‧Upper cover

160‧‧‧場退火流程160‧‧ ‧ field annealing process

162~164‧‧‧步驟162~164‧‧‧Steps

204‧‧‧晶種層204‧‧‧ seed layer

214‧‧‧正交耦合層214‧‧‧Orthogonal coupling layer

260‧‧‧場退火流程260‧‧ ‧ annealing process

262~265‧‧‧步驟262~265‧‧‧Steps

312‧‧‧被固定層312‧‧‧ fixed layer

313/315‧‧‧鈷金屬層313/315‧‧‧Cobalt metal layer

316‧‧‧參考層316‧‧‧ reference layer

360‧‧‧場退火流程360‧‧‧ field annealing process

362~365‧‧‧步驟362~365‧‧‧Steps

400‧‧‧基板400‧‧‧Substrate

402‧‧‧突起部402‧‧‧Protruding

402a‧‧‧斜面402a‧‧‧Bevel

410/420/430‧‧‧感測單元410/420/430‧‧‧Sensor unit

411~414‧‧‧感測胞411~414‧‧‧Sense cells

421~424‧‧‧感測胞421~424‧‧‧Sense cells

431~434‧‧‧感測胞431~434‧‧‧Sense cells

500‧‧‧基板500‧‧‧Substrate

510/520/530‧‧‧感測單元510/520/530‧‧‧Sensor unit

511~514‧‧‧感測胞511~514‧‧‧Sense cells

521~524‧‧‧感測胞521~524‧‧‧Sense cells

531~534‧‧‧感測胞531~534‧‧‧Sense cells

L‧‧‧長度L‧‧‧ length

W‧‧‧寬度W‧‧‧Width

H‧‧‧高度H‧‧‧ Height

x‧‧‧X軸分量x‧‧‧X-axis component

z‧‧‧Z軸分量z‧‧‧Z-axis component

第1圖為依據本發明實施例所繪示的磁場感測器元件中的X軸向感測胞的膜層結構側視示意圖。FIG. 1 is a side view showing a film structure of an X-axis sensing cell in a magnetic field sensor element according to an embodiment of the invention.

第2圖為第1圖中軸向感測胞的膜層結構分解圖及磁矩方向。Fig. 2 is an exploded view of the film structure of the axial sensing cell and the direction of the magnetic moment in Fig. 1.

第3圖為依據本發明另一實施例所繪示的感測胞的膜層結構側視圖。FIG. 3 is a side view of a film structure of a sensing cell according to another embodiment of the present invention.

第4圖為依據本發明又另一實施例所繪示的感測胞的膜層結構側視圖。4 is a side view of a film structure of a sensing cell according to still another embodiment of the present invention.

第5圖為依據本發明又另一實施例所繪示的感測胞的膜層結構側視圖。FIG. 5 is a side view of a film structure of a sensing cell according to still another embodiment of the present invention.

第6圖為一流程圖,例示一種場退火流程。Figure 6 is a flow chart illustrating a field annealing process.

第7圖例示出具有長、短軸的長方體磁阻膜層胞的上視圖,顯示出外部磁場及膜層磁化方向。Fig. 7 is a top view showing a cuboid magnetoresistive film layer having long and short axes, showing an external magnetic field and a magnetization direction of the film.

第8圖例示出另一種場退火流程。Figure 8 illustrates another field annealing process.

第9圖例示出另一種場退火流程。Figure 9 illustrates another field annealing process.

第10圖例示出又另一種場退火流程。Figure 10 illustrates yet another field annealing process.

第11A圖與第11B圖分別例示出根據本發明一實施例三軸磁場感測器元件的感測胞佈局的側視示意圖以及上視示意圖。11A and 11B respectively illustrate a side view and a top view of a sense cell layout of a triaxial magnetic field sensor element in accordance with an embodiment of the present invention.

第12A圖與第12B圖分別例示出根據本發明另一實施例三軸磁場感測器元件的感測胞佈局的側視示意圖以及上視示意圖。12A and 12B are respectively side elevational and top views, respectively, illustrating a sense cell layout of a triaxial magnetic field sensor element in accordance with another embodiment of the present invention.

第13圖為第11A圖與第11B圖的放大示意圖。Fig. 13 is an enlarged schematic view of Figs. 11A and 11B.

下文中將參照附圖說明本發明細節,該些附圖中之內容亦構成說 明書細節描述的一部份,並且以可實行所例舉實施例之特例描述方式來繪示。下文實施例已描述足夠的細節俾使該領域之一般技藝人士得以具以實施。當然本發明亦可採行其他的實施例來施作,或是在不悖離文中所述實施例的前提下作出任何結構性、邏輯性、及電性上的改變。因此,下文之細節描述不應被視為是一種限制,反之,其中所包含的實施例將由隨附的申請專利範圍來加以界定。此外,下文中所稱一材料層或結構的「磁化方向(magnetization direction)」或「磁化的方向(direction of magnetization)」係指該層或該結構的磁域(magnetic domain)中的主要支配(predominant)磁化方向。以下所稱「層」係指單一材料或組成所構成的單層結構,除非特別予以指明,否則其並不包含其他材料或他層材料。The details of the present invention will be described hereinafter with reference to the accompanying drawings, and the contents of the drawings also constitute The detailed description of the specification is part of the description and is described in the manner of the specific examples of the exemplary embodiments. The following examples have been described in sufficient detail to enable those of ordinary skill in the art to practice. It is a matter of course that the invention can be practiced with other embodiments, or any structural, logical, or electrical changes can be made without departing from the embodiments described herein. Therefore, the following detailed description is not to be considered as a limitation, and the embodiments included herein are defined by the scope of the accompanying claims. In addition, the "magnetization direction" or "direction of magnetization" of a material layer or structure referred to hereinafter refers to the main dominance of the layer or the magnetic domain of the structure ( Magnetization direction. The term "layer" as used herein refers to a single layer of a single material or composition that does not include other materials or other layers unless otherwise specified.

感測胞膜層結構Sense of cell membrane structure

請參閱第1圖及第2圖,其中第1圖為依據本發明實施例所繪示 的磁場感測器元件中的感測胞(sensor cell)的膜層結構側視示意圖,第2圖為第1圖中感測胞的膜層結構的分解圖及磁矩方向,其中感測胞可以是X軸向(X-axis)感測胞。如第1圖及第2圖所示,本發明感測胞1的膜層結構較佳為一具有長、短軸的三維立體膜層結構,如長方體。磁阻膜層結構1至少包含有一固定層(pinning layer)10、一被固定層(pinned layer)12、一正交耦合層(biquadratic coupling layer)14、一參考層(reference layer)16、一間隔層(spacer layer)18,以及一自由層(free layer)20依序堆疊而成。當然,圖中長方體態樣的磁阻膜層結構僅為例示。在其他實施例中,從上往下看時,磁阻膜層結構可以被圖案化成其它具有長、短軸的圖案,包括矩形、橢圓、菱形、卵形、橄欖形或眼形等等。因此,磁阻膜層結構可以是長方體形、橢圓柱體、菱形柱體、卵形柱體、橄欖形柱體或眼形柱體等。Please refer to FIG. 1 and FIG. 2 , wherein FIG. 1 is a diagram of an embodiment of the present invention. A side view of the film structure of the sensor cell in the magnetic field sensor element, and FIG. 2 is an exploded view of the film structure of the sensing cell in FIG. 1 and the direction of the magnetic moment, wherein the sensing cell It can be an X-axis sensing cell. As shown in FIGS. 1 and 2, the film structure of the sensing cell 1 of the present invention is preferably a three-dimensional film structure having long and short axes, such as a rectangular parallelepiped. The magnetoresistive film layer structure 1 includes at least one pinning layer 10, a pinned layer 12, a biquadratic coupling layer 14, a reference layer 16, and a spacer. A spacer layer 18 and a free layer 20 are sequentially stacked. Of course, the structure of the magneto-resistive film layer of the rectangular parallelepiped in the figure is merely an illustration. In other embodiments, the magnetoresistive film layer structure can be patterned into other patterns having long and short axes, including rectangular, elliptical, diamond, oval, olive or eye shapes, and the like, when viewed from above. Therefore, the magnetoresistive film layer structure may be a rectangular parallelepiped shape, an elliptical cylinder, a rhombic cylinder, an oval cylinder, an olive cylinder or an eye cylinder.

根據本發明實施例,被固定層12係直接形成在固定層10上,且與固定層10直接接觸。正交耦合層14係直接形成在被固定層12上,且與被 固定層12直接接觸。參考層16係直接形成在正交耦合層14上,且與正交耦合層14直接接觸。間隔層18係直接形成在參考層16上,且與參考層16直接接觸。自由層20係直接形成在間隔層18上,且與間隔層18直接接觸。為避免氧化,在自由層20上可以選擇另外提供一上蓋保護層(未示於圖中),如鉭(Ta)層,但不以此為限。此外,固定層10可以形成在一基板(圖未示)上,例如一矽氧化物基板或二氧化矽基板。According to an embodiment of the present invention, the fixed layer 12 is directly formed on the fixed layer 10 and is in direct contact with the fixed layer 10. The orthogonal coupling layer 14 is directly formed on the fixed layer 12, and is The fixed layer 12 is in direct contact. The reference layer 16 is formed directly on the orthogonal coupling layer 14 and is in direct contact with the orthogonal coupling layer 14. The spacer layer 18 is formed directly on the reference layer 16 and is in direct contact with the reference layer 16. The free layer 20 is formed directly on the spacer layer 18 and is in direct contact with the spacer layer 18. In order to avoid oxidation, an upper cover protective layer (not shown), such as a tantalum (Ta) layer, may be additionally provided on the free layer 20, but is not limited thereto. Further, the pinned layer 10 may be formed on a substrate (not shown) such as a tantalum oxide substrate or a hafnium oxide substrate.

根據本發明實施例,上述的固定層10可以是由反鐵磁性 (antiferromagnetic,AFM)材料所構成者,例如鐵錳(FeMn)、鉑錳(PtMn)、銥錳(IrMn)、氧化鎳(NiO)等,用以固定或限制鄰近層的磁矩方向。被固定層12可以是由鐵磁性(ferromagnetic,FM)材料所構成者,例如鐵、鈷、鎳或其合金,其磁化方向係受到固定層10所「固定」。正交耦合層14可以是一絕緣層,例如由氧化物所構成者,舉例來說,氧化鎳鐵(NiFeOx )、氧化鐵(FeOx )、氧化鎳(NiO)、氧化鈷鐵(CoFe2 O4 )、氧化鎂(MgO)等氧化物。根據本發明實施例,正交耦合層14可以是由以濺鍍方式形成鎳鐵層,再以氧氣電漿將鎳鐵層氧化成氧化鎳鐵層,形成奈米氧化層(nano oxide layer,NOL)。需注意的是,除了氧化物之外,正交耦合層14亦可以使用其他材料作成,例如氮化物、硼化物或氟化物等。According to an embodiment of the present invention, the above fixed layer 10 may be composed of an antiferromagnetic (AFM) material such as iron manganese (FeMn), platinum manganese (PtMn), lanthanum manganese (IrMn), and nickel oxide (NiO). And so on, to fix or limit the direction of the magnetic moment of the adjacent layer. The fixed layer 12 may be made of a ferromagnetic (FM) material such as iron, cobalt, nickel or an alloy thereof, and its magnetization direction is "fixed" by the fixed layer 10. The orthogonal coupling layer 14 may be an insulating layer, for example, composed of an oxide, for example, nickel iron oxide (NiFeO x ), iron oxide (FeO x ), nickel oxide (NiO), cobalt iron oxide (CoFe 2 ). O 4 ), an oxide such as magnesium oxide (MgO). According to an embodiment of the invention, the orthogonal coupling layer 14 may be formed by sputtering to form a nickel iron layer, and then oxidizing the nickel iron layer into a nickel oxide layer by oxygen plasma to form a nano oxide layer (NOL). ). It should be noted that in addition to the oxide, the orthogonal coupling layer 14 may be formed using other materials such as nitrides, borides or fluorides.

根據本發明實施例,參考層16可以是由鐵磁性材料所構成者,例 如鐵、鈷、鎳或其合金,其組成可以與被固定層12相同,但不限於此。間隔層18可以是由非鐵磁性材料所構成,例如銅,但不限於此。在其他實施例中,間隔層18可以選自金屬、氧化物或氮化物,其中,氧化物可以是氧化鋁或氧化鎂等,氮化物可以是氮化鋁等。自由層20可以是由鐵磁性材料所構成者,例如鐵、鈷、鎳或其合金,但不限於此。其中,自由層20的磁化方向會受外部磁場而「自由」改變。According to an embodiment of the present invention, the reference layer 16 may be composed of a ferromagnetic material, for example For example, iron, cobalt, nickel or an alloy thereof may have the same composition as the fixed layer 12, but is not limited thereto. The spacer layer 18 may be composed of a non-ferromagnetic material such as copper, but is not limited thereto. In other embodiments, the spacer layer 18 can be selected from the group consisting of a metal, an oxide, or a nitride, wherein the oxide can be aluminum oxide or magnesium oxide, etc., and the nitride can be aluminum nitride or the like. The free layer 20 may be composed of a ferromagnetic material such as iron, cobalt, nickel or an alloy thereof, but is not limited thereto. Among them, the magnetization direction of the free layer 20 is "freely" changed by the external magnetic field.

第1圖中所例示的長方體形的磁阻膜層結構1,其具有一長度L、 寬度W及高度H,其中高度H為各單層厚度的總和。上述各層10~20均具有 實質相同的長度L×寬度W之平面尺寸。上述各層10~20可以利用各種濺鍍法、蒸鍍法、分子束磊晶法或脈衝雷射沈積法等方式形成,經過外加磁場的退火及冷卻處理後,最後再以微影及蝕刻製程蝕刻出如第1圖中的長方體形的磁阻膜層結構。本發明的特徵之一在於僅需以單一光罩及單一蝕刻步驟,圖案化固定層10、被固定層12、正交耦合層14、參考層16、間隔層18及自由層20,即形成第1圖中的長方體形的膜層結構,亦即,第1圖中的膜層結構的各層10~20均具有實質相同的平面尺寸(L×W),僅有厚度上差異,如此使得製程上達到簡化之目的。a rectangular parallelepiped magnetoresistive film layer structure 1 illustrated in FIG. 1 having a length L, Width W and height H, where height H is the sum of the thicknesses of the individual layers. Each of the above layers 10 to 20 has Substantially the same length L × width W of the plane size. The above layers 10-20 can be formed by various sputtering methods, vapor deposition methods, molecular beam epitaxy methods or pulsed laser deposition methods, and after annealing and cooling treatment by an external magnetic field, finally etching by lithography and etching process. A rectangular parallelepiped magnetoresistive film layer structure as shown in Fig. 1 is obtained. One of the features of the present invention is that the fixed layer 10, the fixed layer 12, the orthogonal coupling layer 14, the reference layer 16, the spacer layer 18, and the free layer 20 are patterned by a single mask and a single etching step, that is, forming the first The rectangular parallelepiped film structure in Fig. 1, that is, the layers 10-20 of the film layer structure in Fig. 1 have substantially the same planar size (L × W), and only the difference in thickness, so that the process is For the purpose of simplification.

如第2圖所示,本發明感測胞1的膜層結構的長度L、寬度W及 高度H可以分別對應到參考座標Y軸、X軸及Z軸方向。根據本發明實施例,被固定層12的磁化方向(如箭頭所指)可以被設定成平行於Y軸方向(但亦可以是其它方向),而參考層16的磁化方向(如箭頭所指)係藉由正交耦合層14的耦合效應,被設定成平行於X軸方向。換言之,被固定層12的磁化方向與參考層16的磁化方向係彼此垂直。在此例中,自由層20的易磁化軸乃平行於其長度方向,故其磁化方向即平行於Y軸方向,而本發明感測胞1的膜層結構中的參考層16的磁化方向係被設定垂直於該層長度方向,亦即平行於寬度方向,此為本發明的主要特徵之一。As shown in FIG. 2, the length L and the width W of the film structure of the sensing cell 1 of the present invention are as shown in FIG. The height H may correspond to the reference coordinate Y-axis, X-axis, and Z-axis directions, respectively. According to an embodiment of the present invention, the magnetization direction of the pinned layer 12 (as indicated by the arrow) may be set parallel to the Y-axis direction (but may be other directions), and the magnetization direction of the reference layer 16 (as indicated by the arrow) The coupling effect by the orthogonal coupling layer 14 is set to be parallel to the X-axis direction. In other words, the magnetization direction of the pinned layer 12 and the magnetization direction of the reference layer 16 are perpendicular to each other. In this example, the easy magnetization axis of the free layer 20 is parallel to the length direction thereof, so that the magnetization direction thereof is parallel to the Y-axis direction, and the magnetization direction of the reference layer 16 in the film structure of the sensing cell 1 of the present invention is It is set perpendicular to the length direction of the layer, that is, parallel to the width direction, which is one of the main features of the present invention.

實例一Example one

請參閱第3圖,其為依據本發明另一實施例所繪示的感測胞的膜 層結構側視示意圖。如第3圖所示,感測胞1a可以是一長方體結構或具有長、短軸的三維立體膜層結構,由下至上包含有一基板100上、一黏著層102、一晶種層104、一固定層110、一被固定層112、一正交耦合層114、一參考層116、一間隔層118、一自由層120,以及一上蓋保護層122。其中,依據本發明實施例,基板100可以是二氧化矽基板,黏著層102可以是厚度約3.5nm的鉭金屬層,晶種層104可以是厚度約2nm的銅金屬層。Please refer to FIG. 3 , which is a film for sensing cells according to another embodiment of the invention. A side view of the layer structure. As shown in FIG. 3, the sensing cell 1a may be a rectangular parallelepiped structure or a three-dimensional film layer structure having long and short axes, and includes a substrate 100, an adhesive layer 102, a seed layer 104, and a bottom from top to bottom. The fixed layer 110, a fixed layer 112, an orthogonal coupling layer 114, a reference layer 116, a spacer layer 118, a free layer 120, and an upper cover protective layer 122. According to an embodiment of the invention, the substrate 100 may be a ceria substrate, the adhesive layer 102 may be a bismuth metal layer having a thickness of about 3.5 nm, and the seed layer 104 may be a copper metal layer having a thickness of about 2 nm.

第3圖中的層110~120類似於第1圖及第2圖中所描述者。依據 本發明實施例,固定層110可以是厚度約8nm的銥錳,被固定層112可以是厚度約1nm的Co90 Fe10 ,正交耦合層114可以是厚度約2nm的NiFeOx 。參考層116可以是厚度約2.5nm的Co90 Fe10 ,間隔層118可以是由厚度約3nm的銅金屬層,自由層120可以是厚度約5nm的Ni80 Fe20 ,上蓋保護層122可以是厚度約3.5nm的鉭金屬層。Layers 110-120 in Figure 3 are similar to those described in Figures 1 and 2. According to an embodiment of the invention, the pinned layer 110 may be germanium manganese having a thickness of about 8 nm, the pinned layer 112 may be Co 90 Fe 10 having a thickness of about 1 nm, and the orthogonal coupling layer 114 may be NiFeO x having a thickness of about 2 nm. The reference layer 116 may be Co 90 Fe 10 having a thickness of about 2.5 nm, the spacer layer 118 may be a copper metal layer having a thickness of about 3 nm, the free layer 120 may be Ni 80 Fe 20 having a thickness of about 5 nm, and the upper cap protective layer 122 may be a thickness. A layer of ruthenium metal of about 3.5 nm.

實例二Example two

請參閱第4圖,其為依據本發明又另一實施例所繪示的感測胞的 膜層結構側視示意圖。如第4圖所示,感測胞1b可以是一長方體結構或具有長、短軸的三維立體膜層結構,由下至上包含有一基板100上、一黏著層102、一晶種層204、一固定層110、一被固定層112、一正交耦合層214、一參考層116、一間隔層118、一自由層120,以及一上蓋保護層122。其中,依據本發明實施例,基板100同樣可以是二氧化矽基板,黏著層102可以是厚度約3.5nm的鉭金屬層,固定層110同樣可以是厚度約8nm的銥錳,被固定層112可以是厚度約1nm的Co90 Fe10 ,參考層116可以是厚度約2.5nm的Co90 Fe10 ,間隔層118可以是由厚度約3nm的銅金屬層,自由層120可以是厚度約5nm的Ni80 Fe20 ,上蓋保護層122可以是厚度約3.5nm的鉭金屬層。Please refer to FIG. 4 , which is a side view of a film structure of a sensing cell according to still another embodiment of the present invention. As shown in FIG. 4, the sensing cell 1b may be a rectangular parallelepiped structure or a three-dimensional film layer structure having long and short axes, and includes a substrate 100, an adhesive layer 102, a seed layer 204, and a bottom from top to bottom. The fixed layer 110, a fixed layer 112, an orthogonal coupling layer 214, a reference layer 116, a spacer layer 118, a free layer 120, and an upper cover protective layer 122. According to the embodiment of the present invention, the substrate 100 may also be a ceria substrate, the adhesive layer 102 may be a bismuth metal layer having a thickness of about 3.5 nm, and the pinned layer 110 may also be yttrium manganese having a thickness of about 8 nm, and the pinned layer 112 may be a thickness of about 1nm Co 90 Fe 10, the reference layer 116 may be a thickness of about 2.5nm of Co 90 Fe 10, the spacer layer 118 may be a copper metal layer of about 3nm thickness of the free layer 120 may be a thickness of about 5nm Ni 80 The Fe 20 and the upper cap protective layer 122 may be a base metal layer having a thickness of about 3.5 nm.

第4圖中的感測胞1b與第3圖中的感測胞1a的差別在於:第4 圖中的感測胞1b的正交耦合層214是厚度約2nm的氧化鐵(FeOx ),而晶種層204則是厚度約2nm的鉑金屬層。申請人發現使用FeOx 正交耦合層214搭配鉑晶種層204可以使感測胞1b有更好的耐溫特性。The difference between the sensing cell 1b in FIG. 4 and the sensing cell 1a in FIG. 3 is that the orthogonal coupling layer 214 of the sensing cell 1b in FIG. 4 is iron oxide (FeO x ) having a thickness of about 2 nm. The seed layer 204 is a platinum metal layer having a thickness of about 2 nm. Applicants have discovered that the use of the FeO x orthogonal coupling layer 214 in combination with the platinum seed layer 204 allows the sensing cell 1b to have better temperature resistance characteristics.

同樣地,第3圖及第4圖中長方體形的磁阻膜層結構僅為例示。 在其他實施例中,從上往下看時,磁阻膜層結構亦可以被圖案化成其它具有長、短軸的圖案,包括矩形、橢圓、菱形、卵形、橄欖形或眼形(eye shape)等等。Similarly, the structure of the rectangular parallelepiped magnetoresistive film layer in FIGS. 3 and 4 is merely an illustration. In other embodiments, the magnetoresistive film layer structure can also be patterned into other patterns having long and short axes, including rectangles, ellipses, diamonds, ovals, olives, or eye shapes when viewed from the top down. )and many more.

實例三Example three

請參閱第5圖,其為依據本發明又另一實施例所繪示的感測胞的 膜層結構側視示意圖。如第5圖所示,感測胞1c可以是一長方體結構或具有長、短軸的三維立體膜層結構,由下至上包含有一基板100上、一黏著層102、一晶種層204、一固定層110、一被固定層312、一鈷金屬層313、一正交耦合層214、一鈷金屬層315、一參考層316、一間隔層118、一自由層120,以及一上蓋保護層122。其中,依據本發明實施例,基板100同樣可以是二氧化矽基板,黏著層102可以是厚度約3.5nm的鉭金屬層,固定層110同樣可以是厚度約8nm的銥錳,被固定層312可以是厚度約1nm的Ni80 Fe20 ,參考層316可以是厚度約2.5nm的Ni80 Fe20 ,間隔層118可以是由厚度約3nm的銅金屬層,自由層120可以是厚度約5nm的Ni80 Fe20 ,上蓋保護層122可以是厚度約3.5nm的鉭金屬層。Please refer to FIG. 5 , which is a side view of a film structure of a sensing cell according to still another embodiment of the present invention. As shown in FIG. 5, the sensing cell 1c may be a rectangular parallelepiped structure or a three-dimensional film layer structure having long and short axes, and includes a substrate 100, an adhesive layer 102, a seed layer 204, and a bottom from top to bottom. The fixed layer 110, a fixed layer 312, a cobalt metal layer 313, an orthogonal coupling layer 214, a cobalt metal layer 315, a reference layer 316, a spacer layer 118, a free layer 120, and an upper capping layer 122 . According to the embodiment of the present invention, the substrate 100 may also be a ceria substrate, the adhesive layer 102 may be a bismuth metal layer having a thickness of about 3.5 nm, and the pinned layer 110 may also be yttrium manganese having a thickness of about 8 nm, and the pinned layer 312 may be a thickness of about 1nm Ni 80 Fe 20, the reference layer 316 may be approximately 2.5nm thickness of Ni 80 Fe 20, the spacer layer 118 may be a copper metal layer of a thickness of approximately 3nm, the free layer 120 may be of a thickness of about 5nm Ni 80 The Fe 20 and the upper cap protective layer 122 may be a base metal layer having a thickness of about 3.5 nm.

第5圖中的感測胞1c與第4圖中的感測胞1b的差別在於:在第 5圖中的感測胞1c,正交耦合層214與被固定層312之間以及正交耦合層214與參考層316之間係分別設有鈷金屬層313、315,其厚度可以是0.5nm,以進一步提升耐溫特性。The difference between the sensing cell 1c in FIG. 5 and the sensing cell 1b in FIG. 4 is: in the first 5, the sensing cell 1c, the orthogonal coupling layer 214 and the fixed layer 312, and the orthogonal coupling layer 214 and the reference layer 316 are respectively provided with cobalt metal layers 313, 315, the thickness of which may be 0.5 nm. To further enhance the temperature resistance.

在其他實施例中,鈷金屬層313與被固定層312之間或者鈷金屬 層315與參考層316之間還可額外分別設置一釕(Ruthenium)金屬層,其具有減少磁阻膜層結構之外露磁場的功效,使參考層316與被固定層312的外露磁場不影響自由層的磁化方向。再者,亦可在不設置鈷金屬層313、315的情況下直接以鐵磁材料層及釕金屬層來取代鈷金屬層313、315,亦或者在鈷金屬層上另外設置鐵磁材料層及釕金屬層,其目的亦為提供更佳的磁場感應效果。In other embodiments, the cobalt metal layer 313 is between the fixed layer 312 or the cobalt metal. A Ruthenium metal layer may be additionally disposed between the layer 315 and the reference layer 316, which has the effect of reducing the demagnetizing magnetic field outside the structure of the magnetoresistive film layer, so that the exposed magnetic field of the reference layer 316 and the fixed layer 312 does not affect the freedom. The magnetization direction of the layer. Furthermore, the cobalt metal layers 313 and 315 may be directly replaced by a ferromagnetic material layer and a bismuth metal layer without providing the cobalt metal layers 313 and 315, or a ferromagnetic material layer may be additionally provided on the cobalt metal layer. The base metal layer is also designed to provide better magnetic field induction.

同樣地,第5圖中長方體形的磁阻膜層結構僅為例示。在其他實 施例中,從上往下看時,磁阻膜層結構亦可以被圖案化成其它具有長、短軸的圖案,包括矩形、橢圓、菱形、卵形、橄欖形或眼形等等。Similarly, the structure of the rectangular parallelepiped magnetoresistive film layer in Fig. 5 is merely an illustration. In other real In the embodiment, when viewed from the top, the structure of the magnetoresistive film layer can also be patterned into other patterns having long and short axes, including rectangular, elliptical, diamond, oval, olive or eye shapes.

場退火方法Field annealing method

第6圖為一流程圖,其例示一種場退火流程60。首先,步驟62, 在室溫下,對第1圖中的長方體形的磁阻膜層結構1施加一外部磁場。接著,步驟63,升溫至阻卻溫度,使得反鐵磁層暫時無法固定鄰近鐵磁層磁化方向。 然後,步驟64,在外部磁場存在下,繼續進行高溫退火。步驟65,接著將溫度降至室溫。最後,步驟66,移除外部磁場。經由上述退火流程,可以使得交換偏耦(exchange bias)及正交耦合層14的正交耦合方向可以被隨意控制。Figure 6 is a flow chart illustrating a field annealing process 60. First, step 62, An external magnetic field is applied to the rectangular parallelepiped magnetoresistive film layer structure 1 in Fig. 1 at room temperature. Next, in step 63, the temperature is raised to the blocking temperature so that the antiferromagnetic layer is temporarily unable to fix the magnetization direction of the adjacent ferromagnetic layer. Then, in step 64, the high temperature annealing is continued in the presence of an external magnetic field. At step 65, the temperature is then lowered to room temperature. Finally, in step 66, the external magnetic field is removed. Through the above annealing process, the exchange bias and the orthogonal coupling direction of the orthogonal coupling layer 14 can be arbitrarily controlled.

如第7圖所示,圖中例示出具有長、短軸的長方體形磁阻膜層胞 80(膜層結構同第1圖所示)的上視圖,其參考層的磁化方向92垂直於退火時的外部磁場方向90,而與自由層的磁化方向82有一夾角θ。其中夾角θ可以是介於0至180度的任意角度,由場退火過程的外部磁場方向決定。較佳來說,夾角θ可以是45度的整數倍,如45度、90度、135度等。其中外部磁場方向與感測胞的膜層結構的長度方向不平行,故又可稱之為「偏軸(off-axis)設定」。As shown in Fig. 7, a rectangular parallelepiped magnetoresistive film layer having long and short axes is illustrated. A top view of 80 (the film structure is the same as that shown in Fig. 1), the magnetization direction 92 of the reference layer is perpendicular to the direction of the external magnetic field 90 during annealing, and has an angle θ with the magnetization direction 82 of the free layer. The angle θ may be any angle between 0 and 180 degrees, which is determined by the direction of the external magnetic field during the field annealing process. Preferably, the angle θ may be an integer multiple of 45 degrees, such as 45 degrees, 90 degrees, 135 degrees, and the like. The direction of the external magnetic field is not parallel to the longitudinal direction of the film structure of the sensing cell, so it can also be called "off-axis setting".

第8圖例示出另一種場退火流程160。首先,步驟162,升溫至阻 卻溫度。步驟163,進行高溫退火,並在高溫退火過程中施加短暫脈衝式外部磁場。步驟164,將溫度降至室溫。FIG. 8 illustrates another field annealing process 160. First, in step 162, the temperature rises to the resistance. But the temperature. In step 163, high temperature annealing is performed and a brief pulsed external magnetic field is applied during the high temperature annealing. At step 164, the temperature is lowered to room temperature.

第9圖例示出另一種場退火流程260。首先,步驟262,在室溫下, 對磁阻膜層結構施加一外部磁場。步驟263,升溫至阻卻溫度,使得反鐵磁層暫時無法固定鄰近鐵磁層磁化方向。步驟264,然後,移除外部磁場,再進行高溫退火。步驟265,將溫度降至室溫。FIG. 9 illustrates another field annealing process 260. First, step 262, at room temperature, An external magnetic field is applied to the magnetoresistive film layer structure. In step 263, the temperature is raised to the blocking temperature, so that the antiferromagnetic layer is temporarily unable to fix the magnetization direction of the adjacent ferromagnetic layer. In step 264, the external magnetic field is then removed and the high temperature anneal is performed. At step 265, the temperature is lowered to room temperature.

第10圖例示出又一種場退火流程360。首先,步驟362,在室溫 下,對磁阻膜層結構施加一外部磁場。步驟363,移除外部磁場,升溫至阻卻溫度,使得反鐵磁層暫時無法固定鄰近鐵磁層磁化方向。步驟364,再進行高溫退火。步驟365,將溫度降至室溫。FIG. 10 illustrates yet another field annealing process 360. First, step 362, at room temperature Next, an external magnetic field is applied to the structure of the magnetoresistive film layer. In step 363, the external magnetic field is removed and the temperature is raised to the blocking temperature, so that the antiferromagnetic layer is temporarily unable to fix the magnetization direction of the adjacent ferromagnetic layer. In step 364, high temperature annealing is performed. At step 365, the temperature is lowered to room temperature.

二軸與三軸磁場感測器Two-axis and three-axis magnetic field sensors

上述本發明之感測胞膜層結構係可用來製作磁場感測元件,以下 將列舉兩實施例來詳細說明本發明二軸與三軸磁場感測元件的兩種不同的感測胞設置方式以及其中參考層、自由層的磁化方向以及其與外部磁場與交換偏耦方向的相對關係:The sensing cell layer structure of the present invention described above can be used to fabricate magnetic field sensing elements, Two different embodiments will be enumerated to explain in detail two different sensing cell arrangements of the biaxial and triaxial magnetic field sensing elements of the present invention and the direction of magnetization of the reference layer, the free layer, and the direction of the external magnetic field and the exchange bias. Relative relationship:

實例一Example one

第11A圖與第11B圖分別例示出根據本發明一實施例中磁場感測器的側視示意圖以及其對應的上視示意圖。如第11A圖所示,本發明的磁場感測器元件至少包含有三種感測胞,分別是成對設置的感測胞411~414、感測胞421~424以及感測胞431~434,其中感測胞411~414係用以感測X軸向磁場,感測胞421~424用以感測Y軸向磁場,而感測胞431~434用以感測Z軸向磁場,三軸向係互相垂直,達成三度空間的磁場感測。在本實施例中,感測胞411~414與感測胞421~424皆設置在基板400平面上,係用以感測基板平面上的雙軸(如X軸與Y軸)磁場變化,圖中分別表示出感測胞411~414的短軸方向截面以及感測胞421~424的長軸方向截面,而感測胞431~434則設置在基板400上一突起部402的兩側斜面上,其係可感測到Z軸向的磁場分量,圖中表示出感測胞431~434的短軸方向截面。感測胞411~414、感測胞421~424以及感測胞431~434的膜層結構皆可設計成詳如第2圖所示結構,於此不再多加贅述其膜層組成與材質。對本發明而言,用以感測不同軸向的感測胞411~414、感測胞421~424以及感測胞431~434可具有相同的膜層結構,其差別僅在於,因為感測胞所欲感測的磁場軸向不同,而有不同的位向配置或是不同的參考層與自由層的磁化方向夾角。11A and 11B are respectively side views showing a magnetic field sensor according to an embodiment of the present invention and a corresponding top view thereof. As shown in FIG. 11A, the magnetic field sensor component of the present invention includes at least three sensing cells, which are respectively paired sensing cells 411 to 414, sensing cells 421 to 424, and sensing cells 431 to 434. The sensing cells 411~414 are used to sense the X-axis magnetic field, the sensing cells 421~424 are used to sense the Y-axis magnetic field, and the sensing cells 431-434 are used to sense the Z-axis magnetic field, three-axis. The directions are perpendicular to each other, achieving a three-dimensional magnetic field sensing. In this embodiment, the sensing cells 411-414 and the sensing cells 421-424 are all disposed on the plane of the substrate 400 for sensing the change of the magnetic field of the two axes (such as the X-axis and the Y-axis) on the plane of the substrate. The short-axis direction cross sections of the sensing cells 411 to 414 and the long-axis direction cross sections of the sensing cells 421 to 424 are respectively shown, and the sensing cells 431 to 434 are disposed on both sides of the inclined surface of the protrusion 402 on the substrate 400. It can sense the magnetic field component of the Z-axis, and the short-axis cross section of the sensing cells 431-434 is shown in the figure. The membrane structures of the sensing cells 411 to 414, the sensing cells 421 to 424, and the sensing cells 431 to 434 can all be designed as shown in FIG. 2, and the composition and material of the film layer will not be further described herein. For the present invention, the sensing cells 411 to 414, the sensing cells 421 to 424, and the sensing cells 431 to 434 for sensing different axial directions may have the same film structure, the difference being only because of the sensing cells. The magnetic field to be sensed is axially different, but has a different orientation configuration or an angle between different reference layers and the magnetization direction of the free layer.

接下來,請參照第11B圖,其描繪出上述磁場感測器的感測胞佈局的上視示意圖。為說明方便之故,圖中亦顯示出場退火時的外部磁場方向90以及交換偏耦方向91a、91b,須注意本實施例中的感測胞共具有兩個不同的交換偏耦方向91a、91b,其中的交換偏耦方向91a平行參考座標X軸,交換偏耦方向91b平行參考座標Y軸,場退火時的外部磁場方向90相對於參考座標X軸則呈45度方向。Next, please refer to FIG. 11B, which depicts a top view of the sensing cell layout of the above magnetic field sensor. For convenience of explanation, the external magnetic field direction 90 and the exchange bias coupling direction 91a, 91b during field annealing are also shown in the figure. It should be noted that the sensing cells in this embodiment have two different exchange bias coupling directions 91a, 91b. The exchange bias coupling direction 91a is parallel to the reference coordinate X axis, the exchange bias coupling direction 91b is parallel to the reference coordinate Y axis, and the external magnetic field direction 90 during field annealing is 45 degrees with respect to the reference coordinate X axis.

復如第11B圖所示,本發明的磁場感測器包含有至少一X軸向感 測單元410、至少一Y軸向感測單元420、以及至少一Z軸向感測單元430,其中X軸向感測單元410係由四個感測胞411~414所構成,且四個感測胞411~414彼此互連成一惠斯頓電橋(Wheatstone Bridge),Y軸向感測單元420由四個感測胞421~424所構成,且四個感測胞421~424彼此互連成一惠斯頓電橋,Z軸向感測單元430同樣由四個感測胞431~434所構成,且四個感測胞431~434彼此互連成一惠斯頓電橋。三個感測單元410、420以及430係分別感測不同軸向磁場變化。As shown in FIG. 11B, the magnetic field sensor of the present invention includes at least one X-axis sense The measuring unit 410, the at least one Y-axis sensing unit 420, and the at least one Z-axis sensing unit 430, wherein the X-axis sensing unit 410 is composed of four sensing cells 411-414, and four senses The cells 411 to 414 are interconnected to each other to form a Wheatstone Bridge. The Y-axis sensing unit 420 is composed of four sensing cells 421 to 424, and the four sensing cells 421 to 424 are interconnected with each other. As a Winston bridge, the Z-axis sensing unit 430 is also composed of four sensing cells 431-434, and the four sensing cells 431-434 are interconnected with each other to form a Wheatstone bridge. The three sensing units 410, 420, and 430 sense different axial magnetic field changes, respectively.

對X軸向感測單元410而言,感測胞411~414的長軸方向及自由 層磁化方向82相同,皆為平行參考座標Y軸。感測胞411及413的參考層磁化方向92"相同(朝向負X軸方向)。感測胞412及414的參考層磁化方向92'相同(朝向正的X軸方向)。就此實施例的佈局而言,感測胞411及413的參考層磁化方向92"以及感測胞412及414的參考層磁化方向92'均垂直於其長軸方向及自由層磁化方向82。For the X-axis sensing unit 410, the long-axis direction and freedom of the sensing cells 411-414 The layer magnetization directions 82 are the same, and all are parallel reference coordinates Y-axis. The reference layer magnetization directions 92" of the sensing cells 411 and 413 are the same (toward the negative X-axis direction). The reference layer magnetization directions 92' of the sensing cells 412 and 414 are the same (toward the positive X-axis direction). The layout of this embodiment In other words, the reference layer magnetization direction 92" of the sensing cells 411 and 413 and the reference layer magnetization direction 92' of the sensing cells 412 and 414 are both perpendicular to the long axis direction and the free layer magnetization direction 82.

對Y軸向感測單元420而言,感測胞421~424的長軸方向及自由 層磁化方向82相同,皆為平行參考座標X軸(朝向正X軸方向)。感測胞421及423的參考層磁化方向92'相同(朝向正Y軸方向)。感測胞422及424的參考層磁化方向92"相同(朝向負的Y軸方向)。感測胞421及423的參考層磁化方向92'以及感測胞422及424的參考層磁化方向92"均垂直於其長軸方向及自由層磁化方向82。For the Y-axis sensing unit 420, the long-axis direction and freedom of the sensing cells 421-424 The layer magnetization directions 82 are the same, and are all parallel reference coordinate X-axis (toward the positive X-axis direction). The reference layer magnetization directions 92' of the sensing cells 421 and 423 are the same (toward the positive Y-axis direction). The reference layer magnetization directions 92" of the sensing cells 422 and 424 are the same (toward the negative Y-axis direction). The reference layer magnetization direction 92' of the sensing cells 421 and 423 and the reference layer magnetization direction of the sensing cells 422 and 424 are 92" Both are perpendicular to the long axis direction and the free layer magnetization direction 82.

對Z軸向感測單元430而言,感測胞431~434的長軸方向及自由 層磁化方向82相同,可皆為平行參考座標Y軸(朝向正Y軸方向)。四個感測胞431~434的參考層磁化方向92'皆相同(朝向正X軸方向),均垂直於其長軸方向及自由層磁化方向82。此Z軸向感測胞431~434的長軸方向可為任意方向,較佳者為45度之整數倍。For the Z-axis sensing unit 430, the long-axis direction and freedom of the sensing cells 431-434 The layer magnetization directions 82 are the same, and may all be parallel reference coordinates Y-axis (toward the positive Y-axis direction). The reference layer magnetization directions 92' of the four sensing cells 431-434 are all the same (toward the positive X-axis direction), both perpendicular to the long axis direction and the free layer magnetization direction 82. The long axis direction of the Z-axis sensing cells 431 to 434 may be any direction, preferably an integer multiple of 45 degrees.

在此例中,退火方式可採用第8圖中的場退火流程160、第9圖 中的場退火流程260或第10圖中的場退火流程360,因此其交換偏耦方向可由外加磁場90在感測胞的長軸軸向上的分量方向決定,故有兩個不同的交換偏耦方向91a、91b。In this example, the annealing method can be performed by the field annealing process 160 and FIG. 9 in FIG. In the field annealing process 260 or the field annealing process 360 in FIG. 10, the exchange bias coupling direction can be determined by the component direction of the applied magnetic field 90 in the long axis axis of the sensing cell, so there are two different exchange bias couplings. Directions 91a, 91b.

須注意,上述實施例亦可以有不同的變化,例如,感測胞411、 413、431、433的自由層磁化方向可以與感測胞412、414、432、434的自由層磁化方向相反,即朝向負Y軸方向。而感測胞422、424的自由層磁化方向可以與感測胞421、423的自由層磁化方向相反,即朝向負X軸方向,端視發明的需求而定。另一方面,須注意儘管上述實施例中各感測單元中的四個感測胞是設計成彼此互連成一惠斯頓電橋,然該設計僅為本發明的一較佳例示態樣,在實際的應用中感測單元中的感測胞亦可僅為並列或串列的,且圖中的每單元四個感測胞數量亦僅為例示,在其它實施例中,其亦可以有不同數量的感測胞設置。It should be noted that the above embodiments may also have different changes, for example, the sensing cell 411, The free layer magnetization directions of 413, 431, 433 may be opposite to the free layer magnetization directions of the sensing cells 412, 414, 432, 434, ie, toward the negative Y-axis direction. The free layer magnetization directions of the sensing cells 422, 424 may be opposite to the free layer magnetization directions of the sensing cells 421, 423, that is, toward the negative X-axis direction, depending on the needs of the invention. On the other hand, it should be noted that although the four sensing cells in each sensing unit in the above embodiment are designed to be interconnected with each other to form a Wheatstone bridge, the design is only a preferred embodiment of the present invention. In actual applications, the sensing cells in the sensing unit may also be only juxtaposed or serialized, and the number of sensing cells per unit in the figure is also merely an example. In other embodiments, it may also have Different numbers of sensing cells are set.

實例二Example two

第12A圖與第12B圖分別例示出根據本發明另一實施例中三軸磁 場感測器元件的側視示意圖以及其對應的上視示意圖。本實施例與前述實施例的差別在於感測胞的佈局方式與交換偏耦方向以及外加磁場方向。如第12B圖所示,本實施例中的場退火時外部磁場方向90係朝向正Y軸方向,且X軸向感測單元510與Y軸向感測單元520的感測胞都設置成與X軸和Y軸呈45度角,而Z軸向感測單元530則設置成與前述實施例一樣,長軸方向平行於Y軸方向。在如此感測胞設置下,各個感測單元510、520以及530會具有相同的交換偏耦方向91(朝向正Y軸方向),與外部磁場方向90同向。12A and 12B respectively illustrate three-axis magnetics according to another embodiment of the present invention A side view of the field sensor element and its corresponding top view. The difference between this embodiment and the foregoing embodiment lies in the way in which the cells are sensed and the direction of the exchange bias and the direction of the applied magnetic field. As shown in FIG. 12B, in the field annealing in the embodiment, the external magnetic field direction 90 is oriented toward the positive Y-axis direction, and the sensing cells of the X-axis sensing unit 510 and the Y-axis sensing unit 520 are both set to The X-axis and the Y-axis are at an angle of 45 degrees, and the Z-axis sensing unit 530 is disposed in the same manner as the foregoing embodiment, and the long-axis direction is parallel to the Y-axis direction. With such a sensed cell arrangement, each of the sensing units 510, 520, and 530 will have the same exchange bias coupling direction 91 (toward the positive Y-axis direction), in the same direction as the external magnetic field direction 90.

復如第12B圖所示,本發明的三軸磁場感測器元件包含有至少一 X軸向感測單元510、至少一Y軸向感測單元520、以及至少一Z軸向感測單元530,其中X軸向感測單元510係由四個感測胞511~514所構成,且四個感測胞511~514彼此互連成一惠斯頓電橋,Y軸向感測單元520由四個感測胞521~524所構成,且四個感測胞521~524彼此互連成一惠斯頓電橋,Z 軸向感測單元530同樣由四個感測胞531~534所構成,且四個感測胞531~534彼此互連成一惠斯頓電橋。三個感測單元510、520以及530係分別感測不同軸向磁場變化。As shown in FIG. 12B, the triaxial magnetic field sensor component of the present invention includes at least one The X-axis sensing unit 510, the at least one Y-axis sensing unit 520, and the at least one Z-axis sensing unit 530, wherein the X-axis sensing unit 510 is composed of four sensing cells 511-514. The four sensing cells 511-514 are interconnected with each other to form a Wheatstone bridge. The Y-axis sensing unit 520 is composed of four sensing cells 521-524, and the four sensing cells 521-524 are interconnected with each other. Into a Wheatstone Bridge, Z The axial sensing unit 530 is also composed of four sensing cells 531-534, and the four sensing cells 531-534 are interconnected with each other to form a Wheatstone bridge. The three sensing units 510, 520, and 530 sense different axial magnetic field changes, respectively.

對X軸向感測單元510而言,感測胞511及513的長軸方向及自 由層磁化方向82相同,皆為與參考座標X軸呈45度角的方向,感測胞512及514的長軸方向及自由層磁化方向相同,皆為與參考座標X軸呈135度角的方向。如此,感測胞511及513的長軸方向會垂直於感測胞512及514的長軸方向。感測胞511~514的參考層磁化方向92’則垂直於場退火時的外部磁場方向90,其中感測胞511及513的參考層磁化方向92”朝向正X軸方向,感測胞512及514的參考層磁化方向92’朝向負Y軸方向。For the X-axis sensing unit 510, the long-axis directions of the sensing cells 511 and 513 and The direction of the layer magnetization 82 is the same, and both are at a 45-degree angle with respect to the reference coordinate X-axis. The long-axis directions of the sensing cells 512 and 514 and the magnetization direction of the free layer are the same, and are all at a 135-degree angle with respect to the reference coordinate X-axis. direction. As such, the long axis directions of the sensing cells 511 and 513 are perpendicular to the long axis directions of the sensing cells 512 and 514. The reference layer magnetization direction 92' of the sensing cells 511-514 is perpendicular to the external magnetic field direction 90 during field annealing, wherein the reference layer magnetization direction 92" of the sensing cells 511 and 513 faces the positive X-axis direction, sensing the cell 512 and The reference layer magnetization direction 92' of 514 is oriented toward the negative Y-axis direction.

對Y軸向感測單元520而言,感測胞521及523的長軸方向及自 由層磁化方向相同,皆為與參考座標X軸呈負45度角的方向,感測胞522及524的長軸方向及自由層磁化方向相同,皆為與參考座標X軸呈正45度角的方向,如此感測胞521及523的長軸方向會垂直於感測胞522及524的長軸方向。感測胞521~524的參考層磁化方向92’皆相同(朝向正X軸方向),垂直於場退火時的外部磁場方向90。在此例中,同樣利用第6圖中的退火方式60,全程施加外加磁場,所以交換偏耦方向91會與外部磁場方向90同向。For the Y-axis sensing unit 520, the long-axis directions of the sensing cells 521 and 523 and The direction of magnetization of the layers is the same, which is a direction at a negative angle of 45 degrees with respect to the X axis of the reference coordinate. The long axis directions of the sensing cells 522 and 524 and the magnetization direction of the free layer are the same, and both are at a positive 45 degree angle with the reference coordinate X axis. In the direction, the long axis directions of the sensing cells 521 and 523 are perpendicular to the long axis directions of the sensing cells 522 and 524. The reference layer magnetization directions 92' of the sensing cells 521 to 524 are all the same (toward the positive X-axis direction), perpendicular to the direction of the external magnetic field 90 during field annealing. In this example, the annealing mode 60 of Fig. 6 is also used to apply the applied magnetic field throughout, so that the exchange bias coupling direction 91 is in the same direction as the external magnetic field direction 90.

對Z軸向感測單元530而言,感測胞531~534的長軸方向及自由 層磁化方向82相同,皆為平行參考座標Y軸(朝向正Y軸方向)。四個感測胞531~534的參考層磁化方向92'皆相同(朝向正X軸方向),均垂直於其長軸方向及自由層磁化方向82。在此例中,同樣利用第6圖中的退火方式60,全程施加外加磁場,所以交換偏耦方向91會與外部磁場方向90同向。For the Z-axis sensing unit 530, the long-axis direction and freedom of the sensing cells 531~534 The layer magnetization directions 82 are the same, and are all parallel reference coordinate Y-axis (toward the positive Y-axis direction). The reference layer magnetization directions 92' of the four sensing cells 531-534 are all the same (toward the positive X-axis direction), both perpendicular to the long axis direction and the free layer magnetization direction 82. In this example, the annealing mode 60 of Fig. 6 is also used to apply the applied magnetic field throughout, so that the exchange bias coupling direction 91 is in the same direction as the external magnetic field direction 90.

須注意,上述實施例亦可以有不同的變化,例如,感測胞521~524 的自由層磁化方向可以轉為完全反向,或者是感測胞511~514的參考層磁化方向92'轉為完全反向,即朝向負X軸方向,端視發明的需求而定。另一方面,須注意儘管上述實施例中各感測單元中的四個感測胞是設計成彼此互連成一 惠斯頓電橋,然該設計僅為本發明的一較佳例示態樣,在實際的應用中感測單元中的感測胞亦可僅為並列或串列的,且圖中的每單元四個感測胞數量亦僅為例示,在其它實施例中,其亦可以有不同數量的感測胞設置。It should be noted that the above embodiments may also have different changes, for example, sensing cells 521~524 The free layer magnetization direction can be turned to be completely reversed, or the reference layer magnetization direction 92' of the sensing cells 511 to 514 is turned to be completely reversed, that is, toward the negative X-axis direction, depending on the requirements of the invention. On the other hand, it should be noted that although the four sensing cells in each sensing unit in the above embodiment are designed to be interconnected into one another Wheatstone bridge, however, the design is only a preferred embodiment of the present invention. In practical applications, the sensing cells in the sensing unit may also be only juxtaposed or serialized, and each unit in the figure The number of four sensing cells is also merely an illustration, and in other embodiments, it may have a different number of sensing cell settings.

對於上述本發明實例一與實例二而言,由於各感測胞的膜層結構 皆相同且具有同樣的長寬尺寸,故其皆僅需以單一光罩以及單一的蝕刻步驟即可同時將圖中所示各感測單元中各個感測胞的界定在一單一晶片上,因此本發明設計可達到簡化製程並降低成本之功效。For the first and second examples of the present invention, the film structure of each sensing cell All of the same and have the same length and width dimensions, so that only a single mask and a single etching step can be used to simultaneously define each sensing cell in each sensing unit shown in the figure on a single wafer, thus The design of the invention can achieve the effects of simplifying the process and reducing the cost.

接下來請參照第13圖,其為第11A圖與第11B圖的放大示意圖, 可更清楚地表示出基板突起部上感測胞的設置位向以及其參考層與自由層的磁化方向。如第13圖所示,感測胞431~434係成對設置在突起部402兩側的斜面402a上。感測胞431~434係被設置成其長軸方向與Y軸平行,而參考層磁化方向與斜面402a平行。更具體言之,其自由層磁化方向82朝向正Y軸方向,參考層磁化方向92’會產生一個X軸上的分量x與Z軸上的分量z。故此,位在斜面上的感測胞431~434可以受到Z軸向的外部磁場影響而導致自由層的磁化方向82有所改變,藉以量測出Z軸向的磁場變化。須注意在本發明中突起部402也可設計成一凹入部態樣,如此亦可提供斜面來供感測胞431~434設置。Next, please refer to FIG. 13, which is an enlarged schematic view of FIG. 11A and FIG. 11B. The orientation of the sensing cell on the substrate protrusion and the magnetization direction of its reference layer and free layer can be more clearly shown. As shown in Fig. 13, the sensing cells 431 to 434 are paired on the inclined faces 402a provided on both sides of the protruding portion 402. The sensing cells 431 to 434 are arranged such that their long axis directions are parallel to the Y axis, and the reference layer magnetization direction is parallel to the slope 402a. More specifically, the free layer magnetization direction 82 is oriented in the positive Y-axis direction, and the reference layer magnetization direction 92' produces a component x on the X-axis and a component z on the Z-axis. Therefore, the sensing cells 431 to 434 located on the inclined surface can be affected by the external magnetic field of the Z-axis, resulting in a change in the magnetization direction 82 of the free layer, thereby measuring the magnetic field change in the Z-axis. It should be noted that in the present invention, the protrusion 402 can also be designed in a recessed manner, so that a bevel can be provided for the sensing cells 431-434.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所 做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above description is only a preferred embodiment of the present invention, and the scope of the patent application according to the present invention is Equal variations and modifications are intended to be within the scope of the present invention.

1‧‧‧感測胞1‧‧‧sensory cell

10‧‧‧固定層10‧‧‧Fixed layer

12‧‧‧被固定層12‧‧‧ fixed layer

14‧‧‧正交耦合層14‧‧‧Orthogonal coupling layer

16‧‧‧參考層16‧‧‧ reference layer

18‧‧‧間隔層18‧‧‧ spacer

20‧‧‧自由層20‧‧‧Free layer

Claims (27)

一種磁阻膜層結構,包含:一固定層;一自由層;一被固定層,介於該固定層與該自由層之間,並與該固定層直接接觸;一正交耦合層,介於該被固定層與該自由層之間,並與該被固定層直接接觸;一參考層,介於該正交耦合層與該自由層之間,並與該正交耦合層直接接觸,其中該被固定層的磁化方向與該參考層的磁化方向彼此垂直;以及一間隙壁層,介於該參考層與該自由層之間,並與該參考層及該自由層直接接觸。 A magnetoresistive film layer structure comprising: a fixed layer; a free layer; a fixed layer interposed between the fixed layer and the free layer and in direct contact with the fixed layer; and an orthogonal coupling layer Between the fixed layer and the free layer, and in direct contact with the fixed layer; a reference layer between the orthogonal coupling layer and the free layer, and in direct contact with the orthogonal coupling layer, wherein The magnetization direction of the fixed layer and the magnetization direction of the reference layer are perpendicular to each other; and a spacer layer interposed between the reference layer and the free layer and in direct contact with the reference layer and the free layer. 根據申請專利範圍第1項所述之磁阻膜層結構,其中該正交耦合層與該被固定層之間以及該正交耦合層與該參考層之間更分別設有鈷金屬層。 The magnetoresistive film layer structure according to claim 1, wherein a cobalt metal layer is further disposed between the orthogonal coupling layer and the fixed layer and between the orthogonal coupling layer and the reference layer. 根據申請專利範圍第2項所述之磁阻膜層結構,其中該鈷金屬層與該被固定層之間或該鈷金屬層與該參考層之間設有釕金屬層。 The magnetoresistive film layer structure according to claim 2, wherein a base metal layer is provided between the cobalt metal layer and the fixed layer or between the cobalt metal layer and the reference layer. 根據申請專利範圍第3項所述之磁阻膜層結構,其中該鈷金屬層與該釕金屬層之間設有鐵磁性材料層。 The magnetoresistive film layer structure according to claim 3, wherein a ferromagnetic material layer is disposed between the cobalt metal layer and the base metal layer. 根據申請專利範圍第1項所述之磁阻膜層結構,其中該正交耦合層與該被固定層之間或該正交耦合層與該參考層之間設有鐵磁性材料層及釕金屬層。 The magnetoresistive film layer structure according to claim 1, wherein a ferromagnetic material layer and a base metal are provided between the orthogonal coupling layer and the fixed layer or between the orthogonal coupling layer and the reference layer. Floor. 根據申請專利範圍第1項所述之磁阻膜層結構,其中該固定層形成在一基板上。 The magnetoresistive film layer structure according to claim 1, wherein the pinned layer is formed on a substrate. 根據申請專利範圍第6項所述之磁阻膜層結構,其中該基板與該固定層之間另包含有一黏著層及一晶種層。 The magnetoresistive film layer structure according to claim 6, wherein the substrate and the fixing layer further comprise an adhesive layer and a seed layer. 根據申請專利範圍第1項所述之磁阻膜層結構,其中該磁阻膜層結構為一具有長、短軸的三維立體膜層結構,且所述磁阻膜層結構中的各層都具有相同的平面尺寸。 The magnetoresistive film layer structure according to claim 1, wherein the magnetoresistive film layer structure is a three-dimensional film layer structure having long and short axes, and each layer in the magnetoresistive film layer structure has The same plane size. 根據申請專利範圍第1項所述之磁阻膜層結構,其中該參考層的磁化方向與該自由層的磁化方向之間具有一夾角θ,所述夾角θ是介於0度至180度的任意角度。 The magnetoresistive film layer structure according to claim 1, wherein a magnetization direction of the reference layer has an angle θ with a magnetization direction of the free layer, and the angle θ is between 0 degrees and 180 degrees. Any angle. 根據申請專利範圍第9項所述之磁阻膜層結構,其中該夾角θ是45度的整數倍。 The magnetoresistive film layer structure according to claim 9, wherein the included angle θ is an integral multiple of 45 degrees. 根據申請專利範圍第1項所述之磁阻膜層結構,其中該正交耦合層包含有氧化鎳鐵、氧化鐵、氧化鎳、氧化鈷鐵或氧化鎂。 The magnetoresistive film layer structure according to claim 1, wherein the orthogonal coupling layer comprises nickel iron oxide, iron oxide, nickel oxide, cobalt iron oxide or magnesium oxide. 根據申請專利範圍第1項所述之磁阻膜層結構,其中該固定層是由反鐵磁性材料所構成。 The magnetoresistive film layer structure according to claim 1, wherein the pinned layer is composed of an antiferromagnetic material. 一種二軸磁場感測器,包含:一基板;至少一第一感測胞,其包含有根據申請專利範圍第1,2,3,4或5項 所述之磁阻膜層結構,其設置在該基板的一平面上用以感測一第一軸向的磁場變化;以及至少一第二感測胞,其包含有根據申請專利範圍第1,2,3,4或5項所述之磁阻膜層結構,其設置在該基板的一平面上用以感測一第二軸向的磁場變化,其中該第一感測胞以及該第二感測胞皆具有長軸與短軸,且該第一感測胞的長軸方向與該第二感測胞的長軸方向互相垂直。 A two-axis magnetic field sensor comprising: a substrate; at least one first sensing cell, comprising the first, second, third, fourth or fifth item according to the patent application scope The structure of the magnetoresistive film layer is disposed on a plane of the substrate for sensing a change of a magnetic field in a first axial direction; and at least one second sensing cell is included in the first claim according to the scope of the patent application. The magnetoresistive film layer structure of claim 2, 3, 4 or 5, which is disposed on a plane of the substrate for sensing a second axial magnetic field change, wherein the first sensing cell and the second The sensing cells have a long axis and a short axis, and the long axis direction of the first sensing cell and the long axis direction of the second sensing cell are perpendicular to each other. 根據申請專利範圍第13項所述之二軸磁場感測器,其中該第一感測胞的長軸方向與該第一感測胞的自由層磁化方向平行,該第二感測胞的長軸方向與該第二感測胞的自由層磁化方向平行。 The biaxial magnetic field sensor according to claim 13, wherein a long axis direction of the first sensing cell is parallel to a free layer magnetization direction of the first sensing cell, and a length of the second sensing cell is The axial direction is parallel to the free layer magnetization direction of the second sensing cell. 根據申請專利範圍第14項所述之二軸磁場感測器,其中該第一感測胞的參考層磁化方向與該第一感測胞的長軸方向具有一第一夾角,該第二感測胞的參考層磁化方向與該第二感測胞的長軸方向具有一第二夾角。 The biaxial magnetic field sensor according to claim 14, wherein the reference layer magnetization direction of the first sensing cell has a first angle with the long axis direction of the first sensing cell, the second sense The reference layer magnetization direction of the cell has a second angle with the long axis direction of the second sensor cell. 根據申請專利範圍第15項所述之二軸磁場感測器,其中該第一夾角與該第二夾角相同。 The two-axis magnetic field sensor of claim 15, wherein the first angle is the same as the second angle. 根據申請專利範圍第13項所述之二軸磁場感測器,其中複數個該第一感測胞構成一第一感測單元,用以感測該第一軸向的磁場變化,複數個該第二感測胞構成一第二感測單元,用以感測該第二軸向的磁場變化。 The two-axis magnetic field sensor according to claim 13 , wherein the plurality of first sensing cells form a first sensing unit for sensing the magnetic field change of the first axial direction, and the plurality of The second sensing cell forms a second sensing unit for sensing the change of the magnetic field in the second axial direction. 根據申請專利範圍第13項所述之二軸磁場感測器,其中複數個該第一感測胞互連成一第一惠斯頓電橋,複數個該第二感測胞互連成一第二惠斯頓電橋。 The two-axis magnetic field sensor of claim 13, wherein the plurality of first sensing cells are interconnected into a first Wheatstone bridge, and the plurality of second sensing cells are interconnected into a second Wheatstone Bridge. 一種三軸磁場感測器,包含有: 一基板;至少一第一感測胞,包含有根據申請專利範圍第1,2,3,4或5項所述之磁阻膜層結構,其設置在該基板的一平面上用以感測一第一軸向的磁場變化;至少一第二感測胞,包含有根據申請專利範圍第1,2,3,4或5項所述之磁阻膜層結構,其設置在該基板的該平面上用以感測一第二軸向的磁場變化;至少一第三感測胞,包含有根據申請專利範圍第1,2,3,4或5項所述之磁阻膜層結構,其設置在該基板的一斜面上用以感測一第三軸向的磁場變化;其中該第一感測胞、該第二感測胞以及該第三感測胞都包含有長軸與短軸,且該第一感測胞的長軸方向、該第二感測胞的長軸方向、以及該第三感測胞的長軸方向互相垂直。 A three-axis magnetic field sensor comprising: a substrate; at least one first sensing cell comprising a magnetoresistive film layer structure according to claim 1, 2, 3, 4 or 5, which is disposed on a plane of the substrate for sensing a first axial magnetic field change; at least one second sensing cell comprising a magnetoresistive film layer structure according to claim 1, 2, 3, 4 or 5, wherein the substrate is disposed on the substrate a magnetic field change for sensing a second axial direction; at least one third sensing cell comprising a magnetoresistive film layer structure according to claim 1, 2, 3, 4 or 5; And a slope of the substrate is configured to sense a third axial magnetic field change; wherein the first sensing cell, the second sensing cell, and the third sensing cell both have a long axis and a short axis And the long axis direction of the first sensing cell, the long axis direction of the second sensing cell, and the long axis direction of the third sensing cell are perpendicular to each other. 如申請專利範圍第19項所述之三軸磁場感測器元件,其中該第一感測胞的長軸方向與該第一感測胞的該自由層的磁化方向平行,該第二感測胞的長軸方向與該第二感測胞的該自由層的磁化方向平行,該第三感測胞的長軸方向與該第三感測胞的該自由層的磁化方向平行。 The three-axis magnetic field sensor component of claim 19, wherein a long axis direction of the first sensing cell is parallel to a magnetization direction of the free layer of the first sensing cell, the second sensing The long axis direction of the cell is parallel to the magnetization direction of the free layer of the second sensing cell, and the long axis direction of the third sensing cell is parallel to the magnetization direction of the free layer of the third sensing cell. 如申請專利範圍第20項所述之三軸磁場感測器元件,其中該第一感測胞的該參考層的磁化方向與該第一感測胞的長軸方向具有一第一夾角,該第二感測胞的該參考層的磁化方向與該第二感測胞的長軸方向具有一第二夾角,該第三感測胞的該參考層的磁化方向與該第三感測胞的長軸方向具有一第三夾角。 The three-axis magnetic field sensor component of claim 20, wherein a magnetization direction of the reference layer of the first sensing cell has a first angle with a long axis direction of the first sensing cell, The magnetization direction of the reference layer of the second sensing cell has a second angle with the long axis direction of the second sensing cell, and the magnetization direction of the reference layer of the third sensing cell and the third sensing cell The long axis direction has a third angle. 如申請專利範圍第21項所述之三軸磁場感測器元件,其中該第一夾角、 該第二夾角以及該第三夾角相同。 The three-axis magnetic field sensor component of claim 21, wherein the first angle, The second angle and the third angle are the same. 如申請專利範圍第22項所述之三軸磁場感測器元件,其中該第一夾角、該第二夾角以及該第三夾角為90度。 The three-axis magnetic field sensor component of claim 22, wherein the first angle, the second angle, and the third angle are 90 degrees. 如申請專利範圍第21項所述之三軸磁場感測器元件,其中該第三夾角不相同於該第一夾角以及該第二夾角。 The three-axis magnetic field sensor component of claim 21, wherein the third angle is different from the first angle and the second angle. 如申請專利範圍第24項所述之三軸磁場感測器元件,其中該第一夾角與該第二夾角為45度,該第三夾角為90度。 The three-axis magnetic field sensor component of claim 24, wherein the first angle and the second angle are 45 degrees, and the third angle is 90 degrees. 如申請專利範圍第19項所述之三軸磁場感測器元件,其中複數個該第一感測胞構成一第一感測單元,用以感測該第一軸向的磁場變化,複數個該第二感測胞構成一第二感測單元,用以感測該第二軸向的磁場變化,複數個該第三感測胞構成一第三感測單元,用以感測該第三軸向的磁場變化。 The three-axis magnetic field sensor component of claim 19, wherein the plurality of first sensing cells form a first sensing unit for sensing a change in the magnetic field of the first axial direction, the plurality of The second sensing unit is configured to sense a second magnetic field change, and the plurality of third sensing cells form a third sensing unit for sensing the third Axial magnetic field changes. 如申請專利範圍第19項所述之三軸磁場感測器元件,另包含複數個該第一感測胞互連成一第一惠斯頓電橋,複數個該第二感測胞互連成一第二惠斯頓電橋,複數個該第三感測胞互連成一第三惠斯頓電橋。The three-axis magnetic field sensor component of claim 19, further comprising a plurality of the first sensing cells interconnected into a first Wheatstone bridge, wherein the plurality of second sensing cells are interconnected into one The second Wheatstone bridge interconnects the plurality of third sensing cells into a third Wheatstone bridge.
TW103111989A 2013-04-09 2014-03-31 Magnetoresistance film structure and the magnetic field sensor using the magnetoresistance film structure TWI513071B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103111989A TWI513071B (en) 2013-04-09 2014-03-31 Magnetoresistance film structure and the magnetic field sensor using the magnetoresistance film structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW102112530 2013-04-09
TW102122220 2013-06-21
TW103111989A TWI513071B (en) 2013-04-09 2014-03-31 Magnetoresistance film structure and the magnetic field sensor using the magnetoresistance film structure

Publications (2)

Publication Number Publication Date
TW201440272A TW201440272A (en) 2014-10-16
TWI513071B true TWI513071B (en) 2015-12-11

Family

ID=52113936

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103111989A TWI513071B (en) 2013-04-09 2014-03-31 Magnetoresistance film structure and the magnetic field sensor using the magnetoresistance film structure

Country Status (1)

Country Link
TW (1) TWI513071B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108387852A (en) * 2018-04-23 2018-08-10 北京航空航天大学青岛研究院 Single, double axis magnetic field sensor and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120049843A1 (en) * 2010-08-30 2012-03-01 Everspin Technologies, Inc. Two-axis magnetic field sensor having reduced compensation angle for zero offset
WO2012082998A1 (en) * 2010-12-15 2012-06-21 Seagate Technology Llc Magnetic sensor seed layer with magnetic and nonmagnetic layers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120049843A1 (en) * 2010-08-30 2012-03-01 Everspin Technologies, Inc. Two-axis magnetic field sensor having reduced compensation angle for zero offset
WO2012082998A1 (en) * 2010-12-15 2012-06-21 Seagate Technology Llc Magnetic sensor seed layer with magnetic and nonmagnetic layers

Also Published As

Publication number Publication date
TW201440272A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
TWI468715B (en) Magnetic sensor for sensing an external magnetic field
JP5452006B2 (en) Manufacturing method of magnetic device and manufacturing method of magnetic field angle sensor
US7335961B2 (en) Magnetic random access memory array with coupled soft adjacent magnetic layer
US10571527B2 (en) Magnetic sensor device and magnetic sensing method
CN104103753B (en) Magnetic resistance film layer structure and the magnetic field sensor using this magnetic resistance film layer structure
JP6105817B2 (en) Nanomagnetic multilayer film for temperature sensor and its manufacturing method
TWI519805B (en) Planar three-axis magnetometer
CN107923956B (en) Magnetoresistive sensor
US9165625B2 (en) ST-RAM cells with perpendicular anisotropy
US8198660B2 (en) Multi-bit STRAM memory cells
JP2013093558A (en) Magnetic random access memory (mram) cell and method for writing and reading mram cell by using self reference read operation
JP5805500B2 (en) Manufacturing method of biomagnetic sensor
JP2004260149A5 (en)
JP2005094002A (en) Magnetic memory cell, magnetic memory array, and method of manufacturing the same
CN102810630A (en) Anisotropy-modulatable magnetic thin-film structure, magneto-dependent sensor and preparation method of magneto-dependent sensor
JP2008249556A (en) Magnetic sensor
CN105954692A (en) Magnetic sensor with improved sensitivity and linearity
US20210383953A1 (en) Tunnel magnetoresistance (tmr) element having cobalt iron and tantalum layers
JP2017103378A (en) Magnetoresistance effect element, magnetic sensor, manufacturing method of magnetoresistance effect element, and manufacturing method of magnetic sensor
JP2005109240A (en) Magnetoresistive effect element and magnetic head
JP6225748B2 (en) Magnetic sensor
US9679624B2 (en) Magnetic random access memory (MRAM) cell with low power consumption
TWI513071B (en) Magnetoresistance film structure and the magnetic field sensor using the magnetoresistance film structure
US10535456B2 (en) Permanent magnet comprising a stack of ferromagnetic and antiferromagnetic layers
WO2018185608A1 (en) Magnetic sensor cell for measuring one- and two-dimensional magnetic fields and method for measuring said magnetic fields using the magnetic sensor cell