TWI513005B - Thin film transistor and fabricating method thereof - Google Patents
Thin film transistor and fabricating method thereof Download PDFInfo
- Publication number
- TWI513005B TWI513005B TW102133278A TW102133278A TWI513005B TW I513005 B TWI513005 B TW I513005B TW 102133278 A TW102133278 A TW 102133278A TW 102133278 A TW102133278 A TW 102133278A TW I513005 B TWI513005 B TW I513005B
- Authority
- TW
- Taiwan
- Prior art keywords
- metal oxide
- conductive layer
- drain
- source
- thin film
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims description 59
- 238000000034 method Methods 0.000 title claims description 28
- 229910044991 metal oxide Inorganic materials 0.000 claims description 128
- 150000004706 metal oxides Chemical class 0.000 claims description 128
- 239000004065 semiconductor Substances 0.000 claims description 48
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 239000007769 metal material Substances 0.000 claims description 14
- 238000005245 sintering Methods 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 5
- 125000002524 organometallic group Chemical group 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 153
- 239000004020 conductor Substances 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 8
- -1 aluminum tin oxide Chemical compound 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- WHXAGNPBEKUGSK-UHFFFAOYSA-N zinc antimony(3+) indium(3+) oxygen(2-) Chemical compound [Sb+3].[Zn+2].[O-2].[In+3].[O-2].[O-2].[O-2] WHXAGNPBEKUGSK-UHFFFAOYSA-N 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- 229920001744 Polyaldehyde Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41733—Source or drain electrodes for field effect devices for thin film transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66969—Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Thin Film Transistor (AREA)
Description
本發明是有關於一種薄膜電晶體及其製造方法,且特別是有關於一種可以避免溶液態金屬氧化物於燒結後產生在源極(source)與汲極(drain)金屬電極表面的氧化現象並降低電阻的薄膜電晶體及其製造方法。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a thin film transistor and a method of fabricating the same, and more particularly to an oxidation phenomenon in which a solution metal oxide is generated on a surface of a source and a drain metal electrode after sintering. A thin film transistor that reduces electrical resistance and a method of manufacturing the same.
隨著平面顯示技術的發展,具有高畫質、空間利用效率佳、低消耗功率、無輻射等優越特性之薄膜電晶體液晶顯示器(thin film transistor liquid crystal display,TFT-LCD)已逐漸成為市場之主流。習知的薄膜電晶體的製造方法是先於基板上形成閘極(gate),接著於基板上依序沈積絕緣層(insulating layer)與作為通道層(channel)的半導體層以覆蓋住閘極,然後於半導體層的兩側分別形成源極(source)以及汲極(drain),如此以製得薄膜電晶體。With the development of flat display technology, thin film transistor liquid crystal display (TFT-LCD) with high image quality, good space utilization efficiency, low power consumption, and no radiation has gradually become a market. Mainstream. A conventional thin film transistor is formed by forming a gate on a substrate, and then sequentially depositing an insulating layer and a semiconductor layer as a channel on the substrate to cover the gate. Then, a source and a drain are formed on both sides of the semiconductor layer, respectively, to thereby produce a thin film transistor.
關於通道層的製程,除了上述利用化學氣相沈積法形成半導體層之外,還可以透過將溶液態金屬氧化物(solution metal oxide layer)高溫燒結的方式形成金屬氧化物半導體層(metal oxide semiconductor layer)。依照結構可以將薄膜電晶體分成兩型,分別是共面型氧化物薄膜電晶體(coplanar oxide TFT)以及背通道蝕刻型氧化物薄膜電晶體(BCE oxide TFT)。Regarding the process of the channel layer, in addition to the above-described formation of the semiconductor layer by chemical vapor deposition, it is also possible to pass through a solution metal. Oxide layer A method of forming a metal oxide semiconductor layer by high temperature sintering. According to the structure, the thin film transistor can be divided into two types, a coplanar oxide TFT and a BCE oxide TFT.
然而,對於共面型氧化物薄膜電晶體而言,在使用習知金屬材料作為源極以及汲極的情況下,由於溶液態金屬氧化物在高溫燒結時,會發生自身氧化還原反應而於半導體層與源極以及汲極金屬層表面形成金屬氧化物,進而導致接觸電阻過大的問題。However, in the case of a coplanar oxide thin film transistor, in the case of using a conventional metal material as a source and a drain, since the solution metal oxide is sintered at a high temperature, an auto-oxidation-reduction reaction occurs in the semiconductor. The layer forms a metal oxide with the source and the surface of the drain metal layer, which causes a problem of excessive contact resistance.
為了改善上述表面氧化的問題,已研究出以金屬氧化物(例如氧化銦錫(indium tin oxide,ITO))作為源極以及汲極,然而,由於ITO的電阻過大,可能產生嚴重的電阻電容延遲(RC delay),進而導致顯示面板具有畫面均勻度較差的問題,例如畫面下局部區域略呈現灰白色的現象。因此,如何開發出避免金屬氧化物溶液層於燒結後的表面氧化現象並同時降低電阻的薄膜電晶體,實為研發者所欲達成的目標之一。In order to improve the above surface oxidation problem, a metal oxide such as indium tin oxide (ITO) has been studied as a source and a drain. However, due to excessive resistance of ITO, a severe resistance-capacitance delay may occur. (RC delay), which in turn causes the display panel to have a problem of poor picture uniformity, such as a phenomenon in which a partial area under the screen is slightly grayish white. Therefore, how to develop a thin film transistor that avoids the surface oxidation phenomenon of the metal oxide solution layer after sintering and simultaneously reduces the electric resistance is one of the goals that the developer desires to achieve.
本發明提供一種薄膜電晶體及其製造方法,可以避免以溶液態金屬氧化物方式製作薄膜電晶體而產生在源極(source)與汲極(drain)金屬電極表面氧化現象並降低電阻。The invention provides a thin film transistor and a manufacturing method thereof, which can avoid the formation of a thin film transistor by a solution metal oxide method to generate an oxidation phenomenon on a surface of a source and a drain metal electrode and reduce the electric resistance.
本發明提供一種薄膜電晶體,其包括閘極、閘極絕緣層、源極以及汲極、金屬氧化物半導體層、第一金屬氧化物導電層以 及第二金屬氧化物導電層。閘極絕緣層覆蓋閘極。源極以及汲極位於閘極絕緣層上。金屬氧化物半導體層覆蓋源極、汲極以及閘極上方之閘極絕緣層,以作為通道層。第一金屬氧化物導電層位於源極與金屬氧化物半導體層之間,以使源極與金屬氧化物半導體層隔離開來。第二金屬氧化物導電層位於汲極與金屬氧化物半導體層之間,以使汲極與金屬氧化物半導體層隔離開來。The present invention provides a thin film transistor comprising a gate, a gate insulating layer, a source and a drain, a metal oxide semiconductor layer, and a first metal oxide conductive layer. And a second metal oxide conductive layer. The gate insulating layer covers the gate. The source and drain are on the gate insulating layer. The metal oxide semiconductor layer covers the source, the drain, and the gate insulating layer above the gate to serve as a channel layer. The first metal oxide conductive layer is located between the source and the metal oxide semiconductor layer to isolate the source from the metal oxide semiconductor layer. The second metal oxide conductive layer is between the drain and the metal oxide semiconductor layer to isolate the drain from the metal oxide semiconductor layer.
本發明另提供一種薄膜電晶體的製造方法,此製造方法包括以下步驟。形成閘極;在閘極上方形成閘極絕緣層;於閘極絕緣層上形成源極以及汲極;於源極上形成第一金屬氧化物導電層且於汲極上形成第二金屬氧化物導電層;於第一金屬氧化物導電層、第二金屬氧化物導電層以及閘極上方之閘極絕緣層上形成金屬氧化物半導體層,以作為通道層,其中第一金屬氧化物導電層隔離源極與金屬氧化物半導體層,且第二金屬氧化物導電層隔離汲極與金屬氧化物半導體層。The present invention further provides a method of manufacturing a thin film transistor, the method comprising the following steps. Forming a gate; forming a gate insulating layer over the gate; forming a source and a drain on the gate insulating layer; forming a first metal oxide conductive layer on the source and forming a second metal oxide conductive layer on the drain Forming a metal oxide semiconductor layer on the first metal oxide conductive layer, the second metal oxide conductive layer, and the gate insulating layer above the gate to serve as a channel layer, wherein the first metal oxide conductive layer is isolated from the source And a metal oxide semiconductor layer, and the second metal oxide conductive layer separates the drain and the metal oxide semiconductor layer.
基於上述,本發明之薄膜電晶體的源極以及汲極同時具有金屬層以及覆蓋於金屬層上的金屬氧化物導電層,如此可以避免金屬氧化物半導體層於高溫燒結製程中與金屬層之間的表面氧化物生成,並且可以降低金屬氧化物半導體層與源極以及汲極之間的接觸電阻。Based on the above, the source and the drain of the thin film transistor of the present invention have both a metal layer and a metal oxide conductive layer covering the metal layer, so that the metal oxide semiconductor layer can be prevented from being between the high temperature sintering process and the metal layer. The surface oxide is formed and the contact resistance between the metal oxide semiconductor layer and the source and the drain can be lowered.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
100‧‧‧基板100‧‧‧Substrate
104‧‧‧閘極絕緣層104‧‧‧ gate insulation
106、106’‧‧‧第一金屬氧化物導電層106, 106'‧‧‧First metal oxide conductive layer
108、108’‧‧‧第二金屬氧化物導電層108, 108'‧‧‧Second metal oxide conductive layer
110‧‧‧金屬氧化物半導體層110‧‧‧Metal oxide semiconductor layer
112‧‧‧平坦層112‧‧‧flat layer
D‧‧‧汲極D‧‧‧汲
d、d’‧‧‧距離d, d’‧‧‧ distance
G‧‧‧閘極G‧‧‧ gate
S‧‧‧源極S‧‧‧ source
圖1A至圖1F為本發明第一實施例之薄膜電晶體的製程剖面圖。1A to 1F are cross-sectional views showing a process of a thin film transistor according to a first embodiment of the present invention.
圖2為本發明一實施例之薄膜電晶體的剖面圖。2 is a cross-sectional view showing a thin film transistor according to an embodiment of the present invention.
圖3為本發明另一實施例之薄膜電晶體的剖面圖。Figure 3 is a cross-sectional view showing a thin film transistor of another embodiment of the present invention.
圖4A至圖4C為本發明第二實施例之薄膜電晶體的部分製程剖面圖。4A to 4C are partial process sectional views of a thin film transistor according to a second embodiment of the present invention.
圖5為本發明一實施例之薄膜電晶體的剖面圖。Figure 5 is a cross-sectional view showing a thin film transistor of an embodiment of the present invention.
圖6為本發明另一實施例之薄膜電晶體的剖面圖。Figure 6 is a cross-sectional view showing a thin film transistor of another embodiment of the present invention.
以下將配合圖式詳細地說明本發明第一實施例的薄膜電晶體的製造方法。圖1A至圖1F為本發明第一實施例之薄膜電晶體的製程剖面圖。為了清楚起見,圖1A至圖1F僅繪示薄膜電晶體的部分構件。Hereinafter, a method of manufacturing the thin film transistor of the first embodiment of the present invention will be described in detail with reference to the drawings. 1A to 1F are cross-sectional views showing a process of a thin film transistor according to a first embodiment of the present invention. For the sake of clarity, FIGS. 1A through 1F only show some of the components of the thin film transistor.
首先,請參照圖1A,在基板100上形成閘極G。此基板100的材質可以是玻璃、石英、有機聚合物或是不透光/反射材料(例如導電材料、金屬、晶圓、陶瓷、或其它適用的材料)等。閘極G的形成方法例如是先形成第一導體層(未繪示),再圖案化第一導體層而形成之。第一導體層一般是使用金屬材料,例如鉬、鈦、鋁、鉻、銅、錫、鉭、鎢、金或銀等金屬材料,然本發明不限於此。 第一導體層也可以使用其他導電材料,例如合金、金屬材料的氮化物、金屬材料的氧化物、金屬材料的氮氧化物或是金屬材料與其他導電材料的堆疊層。第一導體層的形成方法例如是物理氣相沈積法,例如濺鍍法,然本發明不限於此。First, referring to FIG. 1A, a gate G is formed on a substrate 100. The material of the substrate 100 may be glass, quartz, organic polymer or an opaque/reflective material (such as a conductive material, metal, wafer, ceramic, or other suitable material). For example, the gate electrode G is formed by first forming a first conductor layer (not shown) and then patterning the first conductor layer. The first conductor layer is generally a metal material such as a metal material such as molybdenum, titanium, aluminum, chromium, copper, tin, tantalum, tungsten, gold or silver, but the invention is not limited thereto. Other conductive materials such as alloys, nitrides of metal materials, oxides of metal materials, oxynitrides of metal materials, or stacked layers of metal materials and other conductive materials may also be used for the first conductor layer. The method of forming the first conductor layer is, for example, a physical vapor deposition method such as a sputtering method, but the present invention is not limited thereto.
然後,請參照圖1B,在閘極G上方形成閘極絕緣層104,且閘極絕緣層104覆蓋閘極G。閘極絕緣層104的材料例如是氧化矽、氮化矽、氮氧化矽等介電材料或上述至少二種材料的堆疊層。閘極絕緣層104的形成方法例如是化學氣相沈積法,然本發明不限於此。Then, referring to FIG. 1B, a gate insulating layer 104 is formed over the gate G, and the gate insulating layer 104 covers the gate G. The material of the gate insulating layer 104 is, for example, a dielectric material such as hafnium oxide, tantalum nitride or hafnium oxynitride or a stacked layer of at least two of the above materials. The method of forming the gate insulating layer 104 is, for example, a chemical vapor deposition method, but the present invention is not limited thereto.
接著,請參照圖1C,於閘極絕緣層104上形成源極S以及汲極D,其中源極S與汲極D互不接觸。源極S以及汲極D的形成方法例如是先形成覆蓋閘極絕緣層104的第二導體層(未繪示),再圖案化第二導體層而形成之。第二導體層一般是使用金屬材料形成單層或多層結構,金屬材料例如鉬、鈦、鋁、鉻、銅、錫、鉭、鎢、金或銀等,然本發明不限於此。第二導體層也可以使用其他導電材料,例如合金、金屬材料的氮化物、金屬材料的氧化物、金屬材料的氮氧化物或是金屬材料與其他導電材料的堆疊層。第二導體層的形成方法例如是物理氣相沈積法,例如濺鍍法,然本發明不限於此。圖案化第二導體層的方法例如是以傳統的微影以及蝕刻程序完成。Next, referring to FIG. 1C, a source S and a drain D are formed on the gate insulating layer 104, wherein the source S and the drain D do not contact each other. The source S and the drain D are formed by, for example, forming a second conductor layer (not shown) covering the gate insulating layer 104 and then patterning the second conductor layer. The second conductor layer is generally formed of a single layer or a multilayer structure using a metal material such as molybdenum, titanium, aluminum, chromium, copper, tin, antimony, tungsten, gold or silver, but the invention is not limited thereto. Other conductive materials such as alloys, nitrides of metal materials, oxides of metal materials, oxynitrides of metal materials, or stacked layers of metal materials and other conductive materials may also be used for the second conductor layer. The method of forming the second conductor layer is, for example, a physical vapor deposition method such as a sputtering method, but the present invention is not limited thereto. The method of patterning the second conductor layer is performed, for example, by conventional lithography and etching procedures.
再來,請參照圖1D,在源極S上形成第一金屬氧化物導電層106且於汲極D上形成第二金屬氧化物導電層108。具體地 說,第一金屬氧化物導電層106覆蓋源極S之一側表面以及部分上表面,且第二金屬氧化物導電層108覆蓋汲極D之一側表面以及部分上表面。Referring to FIG. 1D, a first metal oxide conductive layer 106 is formed on the source S and a second metal oxide conductive layer 108 is formed on the drain D. specifically It is said that the first metal oxide conductive layer 106 covers one side surface of the source S and a part of the upper surface, and the second metal oxide conductive layer 108 covers one side surface of the drain D and a part of the upper surface.
第一金屬氧化物導電層106以及第二金屬氧化物導電層108的材料例如是銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、銦鍺鋅氧化物等或是上述至少二者之堆疊層。第一金屬氧化物導電層106以及第二金屬氧化物導電層108的厚度例如是500埃至1300埃。The material of the first metal oxide conductive layer 106 and the second metal oxide conductive layer 108 is, for example, indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium antimony zinc oxide, or the like. At least two stacked layers. The thickness of the first metal oxide conductive layer 106 and the second metal oxide conductive layer 108 is, for example, 500 Å to 1300 Å.
接者,請參照圖1E,於第一金屬氧化物導電層106、第二金屬氧化物導電層108以及閘極G上方之閘極絕緣層104上形成金屬氧化物半導體層110,以作為通道層(channel)。值得注意的是,在本實施例中,第一金屬氧化物導電層106僅需覆蓋源極S至可使源極S與金屬氧化物半導體層110隔離開來即可;同樣地,第二金屬氧化物導電層108僅需覆蓋汲極D至使汲極D與金屬氧化物半導體層110隔離開來即可,然本發明不限於此。Referring to FIG. 1E, a metal oxide semiconductor layer 110 is formed on the first metal oxide conductive layer 106, the second metal oxide conductive layer 108, and the gate insulating layer 104 over the gate G to serve as a channel layer. (channel). It should be noted that, in this embodiment, the first metal oxide conductive layer 106 only needs to cover the source S to isolate the source S from the metal oxide semiconductor layer 110; likewise, the second metal The oxide conductive layer 108 only needs to cover the drain D to isolate the drain D from the metal oxide semiconductor layer 110, but the invention is not limited thereto.
金屬氧化物半導體層110包括銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、銦鍺鋅氧化物等或是上述至少二者之堆疊層。在此,上述第一金屬氧化物導電層106以及第二金屬氧化物導電層108中的金屬氧化物的氧含量相對較低以作為導電層。另外,金屬氧化物半導體層110中的金屬氧化物的氧含量相對較高以作為半導體層。The metal oxide semiconductor layer 110 includes indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium antimony zinc oxide, or the like or a stacked layer of at least two of the above. Here, the oxygen content of the metal oxide in the first metal oxide conductive layer 106 and the second metal oxide conductive layer 108 is relatively low as a conductive layer. In addition, the metal oxide in the metal oxide semiconductor layer 110 has a relatively high oxygen content as a semiconductor layer.
在本實施例中,金屬氧化物半導體層110的形成方法包 括以下步驟:首先,在第一金屬氧化物導電層106、第二金屬氧化物導電層108以及閘極G上方之閘極絕緣層104上塗佈溶液態金屬氧化物;再來,進行燒結程序,以使溶液態金屬氧化物形成金屬氧化物半導體層110。可使用習知的方法塗佈金屬氧化物溶液層,例如旋轉塗佈、輥軸塗佈、簾式塗佈、流動式塗佈、印刷式塗佈、精細凹型塗佈、凹型塗佈、環棒式塗佈等。可使用習知的方法進行燒結,燒結溫度例如是300℃至400℃,燒結時間例如是1小時。然本發明不限於此。視需要,可重複多次燒結循環。In the present embodiment, the method of forming the metal oxide semiconductor layer 110 is packaged The method includes the following steps: first, coating a solution metal oxide on the first metal oxide conductive layer 106, the second metal oxide conductive layer 108, and the gate insulating layer 104 over the gate G; and then performing a sintering process To form a metal oxide semiconductor layer 110 in a solution state metal oxide. The metal oxide solution layer can be applied by a conventional method such as spin coating, roll coating, curtain coating, flow coating, printing coating, fine concave coating, concave coating, ring rod Coating and the like. Sintering can be carried out by a conventional method, for example, 300 ° C to 400 ° C, and the sintering time is, for example, 1 hour. However, the invention is not limited thereto. The sintering cycle can be repeated as many times as needed.
溶液態金屬氧化物包括溶劑以及溶解在溶劑中的有機金屬前驅物(precursor)。所使用的溶劑並未限定,只要可溶解有機金屬前驅物即適用,例如2-甲氧基乙醇(2-methoxyl ethanol)。有機金屬前驅物例如金屬鹵化物(metal halide),然本發明不限於此。The solution metal oxide includes a solvent and an organometallic precursor dissolved in a solvent. The solvent to be used is not limited as long as it can dissolve the organometallic precursor, for example, 2-methoxyl ethanol. The organometallic precursor is, for example, a metal halide, but the invention is not limited thereto.
最後,請參照圖1F,於基板100上形成平坦層112,以覆蓋上述形成的金屬氧化物半導體層110、第一金屬氧化物導電層106、第二金屬氧化物導電層108、閘極G、源極S以及汲極D,從而完成本發明一實施例的薄膜電晶體。平坦層112為未圖案化的膜層,但本發明不限於此。其中,平坦層112的材料包括無機材料,例如是氧化矽、氮化矽、氮氧化矽等或上述至少二種材料的堆疊層;有機材料,例如是聚酯類(PET)、聚烯類、聚丙醯類、聚碳酸酯類、聚環氧烷類、聚苯烯類、聚醚類、聚酮類、聚醇類、聚醛類等或上述之組合;或上述組合。Finally, referring to FIG. 1F, a planarization layer 112 is formed on the substrate 100 to cover the metal oxide semiconductor layer 110, the first metal oxide conductive layer 106, the second metal oxide conductive layer 108, the gate G, and the gate metal layer 110. The source S and the drain D are completed to complete the thin film transistor of one embodiment of the present invention. The flat layer 112 is an unpatterned film layer, but the invention is not limited thereto. Wherein, the material of the flat layer 112 comprises an inorganic material, such as yttrium oxide, tantalum nitride, ytterbium oxynitride or the like or a stacked layer of at least two materials; the organic material is, for example, a polyester (PET), a polyolefin, Polypropylene, polycarbonate, polyalkylene oxide, polyphenylene, polyether, polyketone, polyalcohol, polyaldehyde or the like or a combination thereof; or a combination thereof.
在將本發明實施例的薄膜電晶體作為薄膜電晶體液晶顯 示器(TFT-LCD)之驅動元件的情況下,於上述形成平坦層112之後,可進一步於平坦層112上形成畫素電極(未繪示)。本發明實施例提供的薄膜電晶體還可應用於主動式有機發光顯示器(active matrix organic light emitting display,AMOLED),然本發明不限於此。The thin film transistor of the embodiment of the invention is used as a thin film transistor liquid crystal display In the case of a driving element of a TFT-LCD, a pixel electrode (not shown) may be further formed on the flat layer 112 after the planarization layer 112 is formed as described above. The thin film transistor provided by the embodiment of the present invention can also be applied to an active matrix organic light emitting display (AMOLED), but the invention is not limited thereto.
圖2為本發明一實施例之薄膜電晶體的剖面圖。圖3為本發明另一實施例之薄膜電晶體的剖面圖。在這些實施例中之薄膜電晶體的製造方法與上述圖1之實施例的步驟相似,請參照圖1F、圖2與圖3,唯一的差異在於,圖2之實施例的第一金屬氧化物導電層106與第二金屬氧化物導電層108分別朝源極S與汲極D未被覆蓋之側表面上延伸。而在圖3的實施例中,第一金屬氧化物導電層106完全覆蓋源極S,且第二金屬氧化物導電層108完全覆蓋汲極D。2 is a cross-sectional view showing a thin film transistor according to an embodiment of the present invention. Figure 3 is a cross-sectional view showing a thin film transistor of another embodiment of the present invention. The manufacturing method of the thin film transistor in these embodiments is similar to the steps of the above embodiment of FIG. 1, please refer to FIG. 1F, FIG. 2 and FIG. 3, the only difference being that the first metal oxide of the embodiment of FIG. The conductive layer 106 and the second metal oxide conductive layer 108 extend toward the uncovered side surfaces of the source S and the drain D, respectively. In the embodiment of FIG. 3, the first metal oxide conductive layer 106 completely covers the source S, and the second metal oxide conductive layer 108 completely covers the drain D.
以下將配合圖式詳細地說明本發明第二實施例的薄膜電晶體的製造方法。圖4A至圖4C為本發明第二實施例之薄膜電晶體的部分製程剖面圖。為了清楚起見,圖4A至圖4C僅繪示薄膜電晶體的部分構件。Hereinafter, a method of manufacturing a thin film transistor of a second embodiment of the present invention will be described in detail with reference to the drawings. 4A to 4C are partial process sectional views of a thin film transistor according to a second embodiment of the present invention. For the sake of clarity, FIGS. 4A through 4C only show some of the components of the thin film transistor.
在本實施例中,薄膜電晶體的製造方法與上述實施例的步驟相似,因此相同或相似的元件以相同或相似的符號表示,且相同步驟不再重複說明。請參照圖4A,唯一的差異在於,在閘極絕緣層104上形成源極S以及汲極D之後,第一金屬氧化物導電層106’與第二金屬氧化物導電層108’除了分別覆蓋源極S與汲極 D之上表面以及側表面之外,更朝源極S與汲極D之間的空隙延伸。第一金屬氧化物導電層106’位於源極S與汲極D之間的邊緣至源極S的第一距離為d,第二金屬氧化物導電層108’位於源極S與汲極D之間的邊緣至汲極D的第二距離d’,且第一距離d與第二距離d’可以介於1微米至5微米之間,較佳介於1微米至2微米之間;在其它實施例中第一距離d與第二距離d’可以相同或是不同。In the present embodiment, the manufacturing method of the thin film transistor is similar to that of the above-described embodiment, and therefore the same or similar elements are denoted by the same or similar symbols, and the same steps will not be repeated. Referring to FIG. 4A, the only difference is that after the source S and the drain D are formed on the gate insulating layer 104, the first metal oxide conductive layer 106' and the second metal oxide conductive layer 108' respectively cover the source. Extreme S and bungee The upper surface of D and the side surface extend beyond the gap between the source S and the drain D. The first metal oxide conductive layer 106' is located at a first distance from the edge of the source S and the drain D to the source S, and the second metal oxide conductive layer 108' is located at the source S and the drain D. a second distance d' between the edge to the drain D, and the first distance d and the second distance d' may be between 1 micrometer and 5 micrometers, preferably between 1 micrometer and 2 micrometers; in other implementations In the example, the first distance d and the second distance d' may be the same or different.
接著,如圖4B所示,於第一金屬氧化物導電層106’、第二金屬氧化物導電層108’以及閘極G上方之閘極絕緣層104上形成金屬氧化物半導體層110,以作為通道層。如圖4C所示,於基板100上形成平坦層112,以覆蓋上述形成的金屬氧化物半導體層110、第一金屬氧化物導電層106’、第二金屬氧化物導電層108’、閘極G、源極S以及汲極D,從而完成本發明第二實施例的薄膜電晶體。上述圖4B與圖4C中的步驟分別與圖1E與圖1F中的步驟相同或相似。Next, as shown in FIG. 4B, a metal oxide semiconductor layer 110 is formed on the first metal oxide conductive layer 106', the second metal oxide conductive layer 108', and the gate insulating layer 104 over the gate G, as Channel layer. As shown in FIG. 4C, a planarization layer 112 is formed on the substrate 100 to cover the metal oxide semiconductor layer 110, the first metal oxide conductive layer 106', the second metal oxide conductive layer 108', and the gate G formed as described above. The source S and the drain D, thereby completing the thin film transistor of the second embodiment of the present invention. The steps in FIGS. 4B and 4C described above are the same as or similar to the steps in FIGS. 1E and 1F, respectively.
類似地,圖5為本發明一實施例之薄膜電晶體的剖面圖。圖6為本發明另一實施例之薄膜電晶體的剖面圖。在這些實施例中之薄膜電晶體的製造方法與上述圖4之實施例的步驟相似,請參照圖4C、圖5與圖6,唯一的差異在於,圖5之實施例的第一金屬氧化物導電層106’與第二金屬氧化物導電層108’分別朝源極S與汲極D未被覆蓋之側表面上延伸。而在圖6的實施例中,第一金屬氧化物導電層106’完全覆蓋源極S,且第二金屬氧化物導 電層108’完全覆蓋汲極D。Similarly, FIG. 5 is a cross-sectional view of a thin film transistor according to an embodiment of the present invention. Figure 6 is a cross-sectional view showing a thin film transistor of another embodiment of the present invention. The manufacturing method of the thin film transistor in these embodiments is similar to the steps of the above embodiment of FIG. 4, please refer to FIG. 4C, FIG. 5 and FIG. 6, the only difference being that the first metal oxide of the embodiment of FIG. The conductive layer 106' and the second metal oxide conductive layer 108' extend toward the uncovered side surfaces of the source S and the drain D, respectively. In the embodiment of FIG. 6, the first metal oxide conductive layer 106' completely covers the source S, and the second metal oxide is guided. The electrical layer 108' completely covers the drain D.
為了證明本發明之同時具有金屬層以及覆蓋於金屬層上的金屬氧化物導電層(例如ITO)作為源極S以及汲極D導線的薄膜電晶體確實可有效地降低源極以及汲極導線的電阻且於高溫燒結後仍不會影響導線的電阻值,特以下面的實驗例1至實驗例4作驗證。其實驗條件與結果示於表1。In order to prove that the present invention has a metal layer and a metal oxide conductive layer (for example, ITO) covering the metal layer as a source S and a drain D wire, the thin film transistor can effectively reduce the source and the drain wire. The resistance and the resistance of the wire were not affected after sintering at a high temperature, and the following Experimental Example 1 to Experimental Example 4 were used for verification. The experimental conditions and results are shown in Table 1.
根據上述實施例中的步驟製作薄膜電晶體,並以ITO作為源極S以及汲極D之金屬氧化物導電層。ITO的厚度為500埃,且源極S以及汲極D之金屬層的厚度為2000埃。在塗佈溶液態金屬半導體材料前,先測量S/D導線的電阻,此即為表1中的燒結前之S/D導線電阻。接著,在塗佈溶液態金屬半導體材料後進行370℃下燒結1次之後,再次測量S/D導線的電阻,此即為表1中的燒結後之S/D導線電阻。A thin film transistor was fabricated according to the procedure in the above examples, and ITO was used as the metal oxide conductive layer of the source S and the drain D. The thickness of the ITO was 500 angstroms, and the thickness of the metal layer of the source S and the drain D was 2000 angstroms. Before applying the solution metal semiconductor material, the resistance of the S/D wire was measured, which is the S/D wire resistance before sintering in Table 1. Next, after the solution-state metal semiconductor material was applied and sintered at 370 ° C for one time, the electric resistance of the S/D wire was measured again, which is the sintered S/D wire resistance in Table 1.
與實驗例1相似,源極S以及汲極D之金屬層的厚度為2000埃,其差異在於ITO的厚度為750埃。同樣地,於塗佈溶液態金屬半導體材料前先測量S/D導線的電阻。接著,在塗佈溶液態金屬半導體材料後進行370℃下燒結2次之後,再次測量S/D導線的電阻,其結果示於表1。Similar to Experimental Example 1, the thickness of the metal layer of the source S and the drain D was 2000 angstroms, with the difference that the thickness of the ITO was 750 angstroms. Similarly, the resistance of the S/D wire was measured before coating the solution metal semiconductor material. Next, after the solution-state metal semiconductor material was applied and sintered at 370 ° C for 2 times, the electric resistance of the S/D wire was measured again, and the results are shown in Table 1.
與實驗例1相似,源極S以及汲極D之金屬層的厚度為2000埃,其差異在於ITO的厚度為1300埃。同樣地,於塗佈溶液態金屬半導體材料前先測量S/D導線的電阻。接著,在塗佈溶液態金屬半導體材料後進行370℃下燒結1次之後,再次測量S/D導線的電阻,其結果示於表1。Similar to Experimental Example 1, the thickness of the metal layer of the source S and the drain D was 2000 angstroms, the difference being that the thickness of the ITO was 1,300 angstroms. Similarly, the resistance of the S/D wire was measured before coating the solution metal semiconductor material. Next, after the solution-state metal semiconductor material was applied and sintered at 370 ° C for one time, the electric resistance of the S/D wire was measured again, and the results are shown in Table 1.
根據上述的步驟製作薄膜電晶體,唯一不同之處在於,在比較例1中,不以金屬層來形成源極S以及汲極D,而直接以厚度為1300埃的ITO來形成源極S以及汲極D。同樣地,於塗佈溶液態金屬半導體材料後並於燒結前先測量S/D導線的電阻。接著,在370℃下燒結2次之後,再次測量S/D導線的電阻,其結果示於表1。A thin film transistor was produced according to the above procedure, except that in Comparative Example 1, the source S and the drain D were not formed by a metal layer, and the source S was directly formed by ITO having a thickness of 1300 Å and Bungee D. Similarly, the resistance of the S/D wire was measured after coating the solution metal semiconductor material and before sintering. Next, after sintering at 370 ° C for 2 times, the electric resistance of the S/D wire was measured again, and the results are shown in Table 1.
根據表1的結果,可知在源極S以及汲極D導線具有金屬層以及覆蓋於金屬層上的金屬氧化物導電層(例如ITO)的情況下,確實可明顯地降低源極以及汲極導線的電阻,且於高溫燒結後仍然不會影響導線的電阻值。According to the results of Table 1, it can be seen that in the case where the source S and the drain D wire have a metal layer and a metal oxide conductive layer (for example, ITO) overlying the metal layer, the source and the drain wire can be significantly reduced. The resistance, and after sintering at high temperature, still does not affect the resistance of the wire.
綜上所述,在本發明的薄膜電晶體中,源極以及汲極同時具有金屬層與覆蓋於金屬層上的金屬氧化物導電層,如此可以避免溶液態金屬氧化物半導體層於高溫燒結中與金屬層之間的表面氧化物生成,並且可以降低金屬氧化物半導體層與源極以及汲極之間的接觸電阻,進而改善電阻電容延遲並提升由薄膜電晶體驅動的顯示面板之畫面均勻度。In summary, in the thin film transistor of the present invention, the source and the drain have both a metal layer and a metal oxide conductive layer covering the metal layer, so that the solution metal oxide semiconductor layer can be prevented from being sintered at a high temperature. Surface oxide formation with the metal layer, and can reduce the contact resistance between the metal oxide semiconductor layer and the source and the drain, thereby improving the resistance-capacitance delay and improving the picture uniformity of the display panel driven by the thin film transistor. .
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧基板100‧‧‧Substrate
104‧‧‧閘極絕緣層104‧‧‧ gate insulation
106‧‧‧第一金屬氧化物導電層106‧‧‧First metal oxide conductive layer
108‧‧‧第二金屬氧化物導電層108‧‧‧Second metal oxide conductive layer
110‧‧‧金屬氧化物半導體層110‧‧‧Metal oxide semiconductor layer
112‧‧‧平坦層112‧‧‧flat layer
D‧‧‧汲極D‧‧‧汲
G‧‧‧閘極G‧‧‧ gate
S‧‧‧源極S‧‧‧ source
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102133278A TWI513005B (en) | 2013-09-13 | 2013-09-13 | Thin film transistor and fabricating method thereof |
CN201310524437.0A CN103633147A (en) | 2013-09-13 | 2013-10-29 | Thin film transistor and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102133278A TWI513005B (en) | 2013-09-13 | 2013-09-13 | Thin film transistor and fabricating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201511289A TW201511289A (en) | 2015-03-16 |
TWI513005B true TWI513005B (en) | 2015-12-11 |
Family
ID=50213972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102133278A TWI513005B (en) | 2013-09-13 | 2013-09-13 | Thin film transistor and fabricating method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103633147A (en) |
TW (1) | TWI513005B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201608642A (en) * | 2014-08-29 | 2016-03-01 | 中華映管股份有限公司 | Oxide semiconductor thin film transistor and method of manufacturing the same |
TWI678739B (en) * | 2015-03-25 | 2019-12-01 | 日商富士軟片股份有限公司 | Transistor and method for manufacturing transistor |
CN106298876A (en) * | 2015-05-25 | 2017-01-04 | 鸿富锦精密工业(深圳)有限公司 | Thin film transistor (TFT) and manufacture method thereof |
TWI607572B (en) * | 2015-06-23 | 2017-12-01 | 群創光電股份有限公司 | Display panel |
CN106328693B (en) * | 2015-06-23 | 2019-07-05 | 群创光电股份有限公司 | Display panel |
CN110890428B (en) | 2018-09-07 | 2023-03-24 | 联华电子股份有限公司 | Oxide semiconductor field effect transistor and forming method thereof |
CN110993698B (en) * | 2019-12-18 | 2022-11-29 | 京东方科技集团股份有限公司 | Thin film transistor, preparation method thereof, array substrate and display device |
CN111171551B (en) * | 2020-01-20 | 2022-05-10 | 深圳市德诚旺科技有限公司 | POK composite material of oil-free compressor leather cup and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200919730A (en) * | 2007-10-22 | 2009-05-01 | Au Optronics Corp | A thin film transistor and a method for manufacturing thereof |
US20090256203A1 (en) * | 2008-04-14 | 2009-10-15 | Hidayat Kisdarjono | Top Gate Thin Film Transistor with Independent Field Control for Off-Current Suppression |
US20100044701A1 (en) * | 2007-02-20 | 2010-02-25 | Canon Kabushiki Kaisha | Thin-film transistor fabrication process and display device |
US20100200843A1 (en) * | 2009-02-09 | 2010-08-12 | Sony Corporation | Thin film transistor and display unit |
TW201142952A (en) * | 2010-05-17 | 2011-12-01 | Au Optronics Corp | Thin film transistor and method for fabricating the same |
TW201334082A (en) * | 2012-02-14 | 2013-08-16 | Innocom Tech Shenzhen Co Ltd | Thin film transistor and manufacturing method thereof and display |
TW201334083A (en) * | 2012-02-14 | 2013-08-16 | Innocom Tech Shenzhen Co Ltd | Thin film transistor and manufacturing method thereof and display |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101240656B1 (en) * | 2005-08-01 | 2013-03-08 | 삼성디스플레이 주식회사 | Flat panel display and manufacturing method of flat panel display |
US7576394B2 (en) * | 2006-02-02 | 2009-08-18 | Kochi Industrial Promotion Center | Thin film transistor including low resistance conductive thin films and manufacturing method thereof |
JP5007171B2 (en) * | 2007-02-13 | 2012-08-22 | 三菱電機株式会社 | Thin film transistor array substrate, manufacturing method thereof, and display device |
JP5480554B2 (en) * | 2008-08-08 | 2014-04-23 | 株式会社半導体エネルギー研究所 | Semiconductor device |
KR20110107130A (en) * | 2010-03-24 | 2011-09-30 | 삼성전자주식회사 | Thin film transistor array panel and method of fabricating the same |
-
2013
- 2013-09-13 TW TW102133278A patent/TWI513005B/en active
- 2013-10-29 CN CN201310524437.0A patent/CN103633147A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100044701A1 (en) * | 2007-02-20 | 2010-02-25 | Canon Kabushiki Kaisha | Thin-film transistor fabrication process and display device |
TW200919730A (en) * | 2007-10-22 | 2009-05-01 | Au Optronics Corp | A thin film transistor and a method for manufacturing thereof |
US20090256203A1 (en) * | 2008-04-14 | 2009-10-15 | Hidayat Kisdarjono | Top Gate Thin Film Transistor with Independent Field Control for Off-Current Suppression |
US20100200843A1 (en) * | 2009-02-09 | 2010-08-12 | Sony Corporation | Thin film transistor and display unit |
TW201142952A (en) * | 2010-05-17 | 2011-12-01 | Au Optronics Corp | Thin film transistor and method for fabricating the same |
TW201334082A (en) * | 2012-02-14 | 2013-08-16 | Innocom Tech Shenzhen Co Ltd | Thin film transistor and manufacturing method thereof and display |
TW201334083A (en) * | 2012-02-14 | 2013-08-16 | Innocom Tech Shenzhen Co Ltd | Thin film transistor and manufacturing method thereof and display |
Also Published As
Publication number | Publication date |
---|---|
TW201511289A (en) | 2015-03-16 |
CN103633147A (en) | 2014-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI513005B (en) | Thin film transistor and fabricating method thereof | |
TWI570493B (en) | Display device and method for manufacturing the same | |
JP6129312B2 (en) | Array substrate manufacturing method, array substrate, and display device | |
CN107068770B (en) | thin film transistor, preparation method thereof, array substrate and display panel | |
WO2018149171A1 (en) | Array substrate and manufacturing method thereof, and display device | |
US8877534B2 (en) | Display device and method for manufacturing the same | |
US10147644B2 (en) | Array substrate, method for manufacturing the same and display device | |
WO2016065852A1 (en) | Coa substrate and manufacturing method thereof and display device | |
WO2016041304A1 (en) | Thin film transistor and manufacturing method therefor, array substrate and manufacturing method therefor, and display device | |
TWI455322B (en) | Thin film transistor and fabrication method thereof | |
WO2016029612A1 (en) | Thin film transistor, manufacturing method therefor, display substrate and display device | |
US20150102337A1 (en) | Tft array substrate, manufacturing method thereof and display panel | |
TWI458100B (en) | Thin film transistor structure and manufacturing method thereof | |
JP2019537282A (en) | Array substrate, method of manufacturing the same, and display device | |
TWI555190B (en) | Organic light emitting display apparatus and method of manufacturing the organic light emitting display apparatus | |
WO2016115824A1 (en) | Thin film transistor and array substrate, and manufacturing method therefor | |
US10615282B2 (en) | Thin-film transistor and manufacturing method thereof, array substrate, and display apparatus | |
WO2016165517A1 (en) | Array substrate and manufacturing method therefor, and display panel | |
WO2019179137A1 (en) | Array substrate and manufacturing method therefor, display panel, and electronic device | |
WO2020253652A1 (en) | Display substrate and manufacturing method therefor, and display panel and display apparatus | |
US9508762B2 (en) | Array substrate, method of manufacturing array substrate and display device | |
JP7331319B2 (en) | Display backboard and its manufacturing method, display panel and display device | |
WO2017012292A1 (en) | Array substrate, preparation method thereof, display panel and display device | |
CN108886042B (en) | Array substrate, manufacturing method thereof, display panel and display device | |
KR20160137129A (en) | Thin film transistor, display with the same, and method of fabricating the same |