TWI511328B - Light-emitting diode chip and manufacturing method thereof - Google Patents

Light-emitting diode chip and manufacturing method thereof Download PDF

Info

Publication number
TWI511328B
TWI511328B TW101150808A TW101150808A TWI511328B TW I511328 B TWI511328 B TW I511328B TW 101150808 A TW101150808 A TW 101150808A TW 101150808 A TW101150808 A TW 101150808A TW I511328 B TWI511328 B TW I511328B
Authority
TW
Taiwan
Prior art keywords
nitride film
light
type semiconductor
emitting diode
semiconductor layer
Prior art date
Application number
TW101150808A
Other languages
Chinese (zh)
Other versions
TW201401554A (en
Inventor
Jinn Kong Sheu
Wei Chih Lai
Shih Chang Shei
Original Assignee
Just Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Just Innovation Corp filed Critical Just Innovation Corp
Priority to TW101150808A priority Critical patent/TWI511328B/en
Publication of TW201401554A publication Critical patent/TW201401554A/en
Application granted granted Critical
Publication of TWI511328B publication Critical patent/TWI511328B/en

Links

Landscapes

  • Led Devices (AREA)

Description

發光二極體晶片及其製作方法Light-emitting diode chip and manufacturing method thereof

本發明是有關於一種發光二極體晶片及其製作方法,且特別是關於一種氮化物發光二極體晶片及其製作方法。The present invention relates to a light emitting diode wafer and a method of fabricating the same, and more particularly to a nitride light emitting diode wafer and a method of fabricating the same.

隨著半導體科技的進步,現今的發光二極體已具備了高亮度的輸出,加上發光二極體具有省電、體積小、低電壓驅動以及不含汞等優點,因此發光二極體已廣泛地應用在顯示器與照明方面的領域。With the advancement of semiconductor technology, today's light-emitting diodes have high-intensity output, and the light-emitting diodes have the advantages of power saving, small size, low voltage driving, and no mercury, so the light-emitting diode has Widely used in the field of display and lighting.

發光二極體結構包括發光二極體晶片及周邊走線佈局,其中發光二極體晶片包括成長基板以及半導體元件層。一般而言,發光二極體晶片的出光效率與半導體元件層的磊晶品質以及光取出效率相關。The light emitting diode structure includes a light emitting diode chip and a peripheral trace layout, wherein the light emitting diode chip includes a growth substrate and a semiconductor element layer. In general, the light extraction efficiency of a light-emitting diode wafer is related to the epitaxial quality of the semiconductor element layer and the light extraction efficiency.

目前,為了提升出光效率,已有技術分別針對半導體元件層的磊晶品質以及光取出效率進行改良。舉例而言,已有習知技術藉由成長成核層與緩衝層來改善後續成長之磊晶品質,但成核層與緩衝層的成長須耗費時間以及成本。此外,成核層與緩衝層亦會增加發光二極體晶片的整體厚度。另外,為了增進光取出效率,已有習知技術於成長基板上形成凹陷結構以增加光線被散射的機率(如美國專利第7053702號所示之習知技術)。很明顯地,如何改善磊晶品質以及提升光取出效率實為當前研發人員亟欲解決的議題之一。At present, in order to improve light extraction efficiency, the prior art has improved the epitaxial quality and light extraction efficiency of the semiconductor element layer. For example, conventional techniques have been used to improve the epitaxial quality of subsequent growth by growing a nucleation layer and a buffer layer, but the growth of the nucleation layer and the buffer layer takes time and cost. In addition, the nucleation layer and the buffer layer also increase the overall thickness of the light-emitting diode wafer. In addition, in order to improve light extraction efficiency, conventional techniques have been used to form a recessed structure on a growth substrate to increase the probability of light being scattered (as in the prior art shown in U.S. Patent No. 7,037,702). Obviously, how to improve the quality of epitaxial and improve the efficiency of light extraction is one of the topics that current R&D personnel are trying to solve.

本發明提供一種發光二極體晶片,其具有良好的磊晶品質以及光取出效率。The present invention provides a light emitting diode wafer having good epitaxial quality and light extraction efficiency.

本發明亦提供一種發光二極體晶片的製作方法,其可改善發光二極體的磊晶品質以及光取出效率。The invention also provides a method for fabricating a light-emitting diode wafer, which can improve the epitaxial quality and light extraction efficiency of the light-emitting diode.

本發明提出一種發光二極體晶片,其包括混成基板以及半導體元件層。混成基板包括成長基板以及金屬氮化物薄膜。金屬氮化物薄膜配置於成長基板上。在金屬氮化物薄膜中,金屬的含量大於氮的含量,其中金屬氮化物薄膜具有成長表面,而混成基板具有多個從成長表面延伸至混成基板內部之摻雜區。半導體元件層包括第一型半導體層、主動層以及第二型半導體層。第一型半導體層配置於金屬氮化物薄膜的成長表面上。主動層配置於第一型半導體層上。第二型半導體層配置於主動層上。The present invention provides a light emitting diode wafer including a mixed substrate and a semiconductor element layer. The mixed substrate includes a growth substrate and a metal nitride film. The metal nitride film is disposed on the growth substrate. In the metal nitride film, the content of the metal is larger than the content of nitrogen, wherein the metal nitride film has a grown surface, and the mixed substrate has a plurality of doped regions extending from the growth surface to the inside of the mixed substrate. The semiconductor element layer includes a first type semiconductor layer, an active layer, and a second type semiconductor layer. The first type semiconductor layer is disposed on the grown surface of the metal nitride film. The active layer is disposed on the first type semiconductor layer. The second type semiconductor layer is disposed on the active layer.

本發明亦提供一種發光二極體晶片的製作方法包括提供成長基板。於成長基板上,以熱蒸鍍或濺鍍方法令金屬氮化物材料附著於成長基板,以形成金屬氮化物薄膜。在金屬氮化物薄膜中形成多個摻雜區,且摻雜區從金屬氮化物薄膜之成長表面延伸至混成基板內部。在金屬氮化物薄膜上,依序形成第一型半導體層、主動層以及第二型半導體層。The invention also provides a method for fabricating a light emitting diode wafer comprising providing a grown substrate. On the grown substrate, the metal nitride material is attached to the growth substrate by thermal evaporation or sputtering to form a metal nitride film. A plurality of doped regions are formed in the metal nitride film, and the doped regions extend from the grown surface of the metal nitride film to the inside of the mixed substrate. On the metal nitride film, a first type semiconductor layer, an active layer, and a second type semiconductor layer are sequentially formed.

在本發明之一實施例中,前述之金屬氮化物薄膜之材料包括氮化鋁、氮化鎵、氮化銦、氮化鋁銦、氮化鋁鎵、氮化銦鎵或氮化鋁鎵銦。In an embodiment of the invention, the material of the metal nitride film comprises aluminum nitride, gallium nitride, indium nitride, aluminum indium nitride, aluminum gallium nitride, indium gallium nitride or aluminum gallium nitride. .

在本發明之一實施例中,前述之金屬氮化物薄膜中的 金屬與氮含量比值大於1。In an embodiment of the invention, in the foregoing metal nitride film The metal to nitrogen content ratio is greater than one.

在本發明之一實施例中,前述之金屬氮化物薄膜的厚度由1奈米(nm)至4000nm。In an embodiment of the invention, the metal nitride film has a thickness of from 1 nanometer (nm) to 4000 nm.

在本發明之一實施例中,前述之摻雜區的厚度大於金屬氮化物薄膜的厚度。In an embodiment of the invention, the thickness of the doped region is greater than the thickness of the metal nitride film.

在本發明之一實施例中,前述之摻雜區的厚度小於或等於金屬氮化物薄膜的厚度。In an embodiment of the invention, the thickness of the doped region is less than or equal to the thickness of the metal nitride film.

在本發明之一實施例中,前述之摻雜區具有金屬或非金屬摻質(dopant)。In one embodiment of the invention, the doped regions described above have a metallic or non-metallic dopant.

在本發明之一實施例中,前述之非金屬摻質包括氬、氧、矽,氫、氮、碳、磷、砷、鎂、鋅、鈹、鍺、金、鋁。In an embodiment of the invention, the aforementioned non-metal dopants include argon, oxygen, helium, hydrogen, nitrogen, carbon, phosphorus, arsenic, magnesium, zinc, antimony, bismuth, gold, aluminum.

在本發明之一實施例中,前述之摻雜區之形成方式可以由離子佈植(ion implantation)或熱擴散(thermal diffusion)方法達成。In an embodiment of the invention, the manner in which the doped regions are formed may be achieved by ion implantation or thermal diffusion.

在本發明之一實施例中,前述之金屬氮化物薄膜的折射率為n1 ,成長基板的折射率為n2 ,金屬氮化物薄膜中之摻雜區的折射率為n3 ,而成長基板中之摻雜區的折射率為n4 ,且n1 ≠n2 ≠n3 ≠n4In an embodiment of the invention, the metal nitride film has a refractive index n 1 , the growth substrate has a refractive index of n 2 , and the doped region of the metal nitride film has a refractive index of n 3 , and the growth substrate The doped region has a refractive index of n 4 and n 1 ≠n 2 ≠n 3 ≠n 4 .

在本發明之一實施例中,前述之金屬氮化物薄膜的折射率為n1 ,成長基板的折射率為n2 ,而金屬氮化物薄膜中之摻雜區的折射率為n3 ,且n1 ≠n2 ≠n3In an embodiment of the invention, the metal nitride film has a refractive index n 1 , the growth substrate has a refractive index n 2 , and the doped region in the metal nitride film has a refractive index n 3 , and n 1 ≠n 2 ≠n 3 .

在本發明之一實施例中,前述之半導體元件層與混成基板之間存在有多個孔洞(void),且各孔洞分別位於其中一摻雜區上方。In an embodiment of the invention, a plurality of voids exist between the semiconductor element layer and the mixed substrate, and each of the holes is located above one of the doped regions.

在本發明之一實施例中,前述之半導體元件層與混成基板之間存在有多個孔洞,且各孔洞分別位於其中一未摻雜區之上方。In an embodiment of the invention, a plurality of holes exist between the semiconductor element layer and the mixed substrate, and the holes are respectively located above one of the undoped regions.

在本發明之一實施例中,前述之第一型半導體層與第二型半導體層之一為P型半導體層,且第一型半導體層與第二型半導體層之另一為N型半導體層。In an embodiment of the invention, one of the first semiconductor layer and the second semiconductor layer is a P-type semiconductor layer, and the other of the first semiconductor layer and the second semiconductor layer is an N-type semiconductor layer. .

在本發明之一實施例中,前述之主動層具有單一或多重量子井(multiple quantum well)結構。In one embodiment of the invention, the aforementioned active layer has a single or multiple quantum well structure.

在本發明之一實施例中,前述之發光二極體晶片更包括第一電極與第一型半導體層電性連接以及第二電極與第二型半導體層電性連接。In an embodiment of the invention, the light emitting diode chip further includes a first electrode electrically connected to the first type semiconductor layer and a second electrode electrically connected to the second type semiconductor layer.

在本發明之一實施例中,前述之發光二極體晶片更包括歐姆接觸層配置於第二電極與第二型半導體層之間。In an embodiment of the invention, the light emitting diode chip further includes an ohmic contact layer disposed between the second electrode and the second type semiconductor layer.

在本發明之一實施例中,前述之熱蒸鍍方法包括電子束蒸鍍(E-Gun Evaporation)。In an embodiment of the invention, the aforementioned thermal evaporation method includes electron beam evaporation (E-Gun Evaporation).

在本發明之一實施例中,前述之發光二極體晶片的製作方法更包括在第一型半導體層上形成第一電極以及在第二型半導體層上形成第二電極。In an embodiment of the invention, the method for fabricating the LED array further includes forming a first electrode on the first type semiconductor layer and forming a second electrode on the second type semiconductor layer.

在本發明之一實施例中,前述之發光二極體晶片的製作方法更包括在第二型半導體層上形成第二電極之前,形成歐姆接觸層,其中歐姆接觸層配置於第二電極與第二型半導體層之間。In an embodiment of the invention, the method for fabricating a light emitting diode wafer further includes forming an ohmic contact layer before forming the second electrode on the second type semiconductor layer, wherein the ohmic contact layer is disposed on the second electrode and Between the two types of semiconductor layers.

在本發明之一實施例中,前述之發光二極體晶片的製作方法更包括在第一型半導體層上形成第一電極前,圖案 化歐姆接觸層、第二型半導體層、主動層與第一型半導體層,以暴露出部分第一型半導體層。In an embodiment of the invention, the method for fabricating the LED body further includes: forming a first electrode on the first type semiconductor layer, the pattern The ohmic contact layer, the second type semiconductor layer, the active layer and the first type semiconductor layer are exposed to expose a portion of the first type semiconductor layer.

基於上述,本發明之發光二極體晶片可藉由在成長基板上形成金屬氮化物薄膜,以提升後續之磊晶品質,進而提升發光二極體晶片的發光效率。此外,本發明在混成基板中形成摻雜區,以使發光二極體晶片內部具備更為多元的折射率。再者,本發明可選擇性地在半導體元件層與混成基板之間形成孔洞,進而提升光線被散射的機率,故可提升發光二極體晶片之光取出效率。Based on the above, the light-emitting diode wafer of the present invention can improve the subsequent epitaxial quality by forming a metal nitride film on the grown substrate, thereby improving the light-emitting efficiency of the light-emitting diode wafer. Further, the present invention forms a doped region in the mixed substrate so that the inside of the light-emitting diode wafer has a more diverse refractive index. Furthermore, the present invention selectively forms a hole between the semiconductor element layer and the mixed substrate, thereby increasing the probability of light being scattered, so that the light extraction efficiency of the light emitting diode chip can be improved.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

【第一實施例】[First Embodiment]

圖1A~圖1E為本發明第一實施例之發光二極體晶片之製作流程的剖面示意圖,而圖1C’與圖1C”分別為摻雜區在混成基板中的不同分佈情況。1A to 1E are schematic cross-sectional views showing a process of fabricating a light-emitting diode wafer according to a first embodiment of the present invention, and FIGS. 1C' and 1C" are respectively different distributions of doped regions in a mixed substrate.

請參照圖1A,首先,提供成長基板112,此成長基板112可以是藍寶石基板(氧化鋁,Al2 O3 )、碳化矽(SiC)基板、矽(Si)基板、砷化鎵(GaAa)基板、磷化鎵(GaP)基板、氮化鎵(GaN)基板、鋁酸鋰(LiAlO2 )基板、鎵酸鋰(LiGaO2 )基板或是其他適合用以磊晶的基板。接著,於成長基板112上,形成金屬氮化物薄膜114。Referring to FIG. 1A, first, a growth substrate 112 is provided. The growth substrate 112 may be a sapphire substrate (alumina, Al 2 O 3 ), a bismuth carbide (SiC) substrate, a bismuth (Si) substrate, or a gallium arsenide (GaAa) substrate. A gallium phosphide (GaP) substrate, a gallium nitride (GaN) substrate, a lithium aluminate (LiAlO 2 ) substrate, a lithium gallium hydride (LiGaO 2 ) substrate, or other substrate suitable for epitaxy. Next, a metal nitride film 114 is formed on the growth substrate 112.

在本實施例中,形成金屬氮化物薄膜114的方法例如 是以熱蒸鍍方法加熱金屬氮化物材料。具體而言,熱蒸鍍方法包括熱電阻、輻射、電子束與電弧等方法。在本實施例中,金屬氮化物材料(例如是氮化鉻、氮化鋁、氮化鎵、氮化鉿、氮化銦、氮化鋁銦、氮化鋁鎵、氮化銦鎵或氮化鋁鎵銦)例如是藉由電子束蒸鍍的方式直接從固態昇華為氣態。氣態的金屬氮化物材料會直接附著於成長基板112上,以形成金屬氮化物薄膜114。此金屬氮化物薄膜114的厚度例如係介於1nm至4000nm之間。在本實施例中,金屬氮化物薄膜114的厚度例如係介於5nm至1000nm之間。此外,金屬氮化物薄膜114中的金屬含量與氮含量之比值大於1。In the present embodiment, a method of forming the metal nitride film 114 is, for example, The metal nitride material is heated by a thermal evaporation method. Specifically, the thermal evaporation method includes methods such as thermal resistance, radiation, electron beam, and arc. In this embodiment, the metal nitride material (for example, chromium nitride, aluminum nitride, gallium nitride, tantalum nitride, indium nitride, aluminum indium nitride, aluminum gallium nitride, indium gallium nitride or nitride) Aluminum gallium indium) is directly sublimed from a solid state to a gaseous state by, for example, electron beam evaporation. The gaseous metal nitride material is directly attached to the growth substrate 112 to form the metal nitride film 114. The thickness of the metal nitride film 114 is, for example, between 1 nm and 4000 nm. In the present embodiment, the thickness of the metal nitride film 114 is, for example, between 5 nm and 1000 nm. Further, the ratio of the metal content to the nitrogen content in the metal nitride film 114 is greater than 1.

由於金屬氮化物薄膜114有助於提升後續磊晶的品質,故於混成基板110上無需額外置備習知技術中的緩衝層,進而降低發光二極體晶片之厚度並降低製程成本以及時間。Since the metal nitride film 114 helps to improve the quality of the subsequent epitaxy, it is not necessary to additionally provide a buffer layer in the prior art on the hybrid substrate 110, thereby reducing the thickness of the LED chip and reducing the process cost and time.

為了進一步提升光取出效率,在後續製程中,本實施例藉由在混成基板110中形成摻雜區,以使發光二極體晶片內部具備更為多元的折射率。詳細的摻雜區製作方法將搭配圖1B與圖1C至圖1C”於後進行描述。In order to further improve the light extraction efficiency, in the subsequent process, the present embodiment forms a doped region in the mixed substrate 110 so that the inside of the light emitting diode wafer has a more diverse refractive index. A detailed method of fabricating a doping region will be described later with reference to FIG. 1B and FIGS. 1C to 1C".

請參照圖1B,摻雜區例如是以離子佈植或熱擴散的方式形成。在本實施例中,摻雜區以熱擴散的方式形成作為舉例說明。首先,於混成基板110之成長表面S形成圖案化薄膜120,此圖案化薄膜120可以是由多個條狀圖案或是由多個點狀圖案所構成,而前述之圖案可以是週期性 或非週期性排列。在本實施例中,圖案化薄膜120的材質例如是金屬、非金屬摻質或任何合適的材料,其中非金屬摻質包括氬、氧、矽,氫、氮、碳、磷、砷、鎂、鋅、鈹、鍺、金、鋁。Referring to FIG. 1B, the doped regions are formed, for example, by ion implantation or thermal diffusion. In the present embodiment, the doped regions are formed by thermal diffusion as an example. First, the patterned film 120 is formed on the growth surface S of the mixed substrate 110. The patterned film 120 may be composed of a plurality of strip patterns or a plurality of dot patterns, and the foregoing pattern may be periodic. Or non-periodically arranged. In this embodiment, the material of the patterned film 120 is, for example, a metal, a non-metal dopant or any suitable material, wherein the non-metal dopant includes argon, oxygen, helium, hydrogen, nitrogen, carbon, phosphorus, arsenic, magnesium, Zinc, bismuth, antimony, gold, aluminum.

接下來,請參照圖1C,經由熱回火製程的過程,使圖案化薄膜120中的摻質(dopant)從金屬氮化物薄膜114之成長表面S擴散至混成基板110內部。之後,再移除混成基板110’上未擴散至混成基板110內部的圖案化薄膜120,以形成具有摻雜區120’之混成基板110’。值得注意的是,上述之熱回火製程不但可使摻雜區120’內的摻質分佈的更為均勻,更可進一步修復混成基板110’內的晶格缺陷。Next, referring to FIG. 1C, a dopant in the patterned film 120 is diffused from the growth surface S of the metal nitride film 114 to the inside of the mixed substrate 110 via a thermal tempering process. Thereafter, the patterned thin film 120 which is not diffused into the inside of the mixed substrate 110 on the mixed substrate 110' is removed to form a mixed substrate 110' having the doped region 120'. It should be noted that the above thermal tempering process not only makes the dopant distribution in the doped region 120' more uniform, but also further repairs the lattice defects in the mixed substrate 110'.

混成基板110內部的金屬氮化物薄膜114以及成長基板112因為上述圖案化薄膜120中的摻質擴散至混成基板110內部,而達到“改質”的目的。具體而言,由於摻質擴散至混成基板110內部,改變了原本金屬氮化物薄膜114以及成長基板112之表面的折射率或晶格常數。詳言之,藉由改變摻質擴散之深度(亦即摻雜區120’的厚度DD(a) ),可改變混成基板110’內的折射率數量。The metal nitride film 114 and the growth substrate 112 in the mixed substrate 110 are "modified" because the dopant in the patterned film 120 is diffused into the inside of the mixed substrate 110. Specifically, since the dopant diffuses into the inside of the mixed substrate 110, the refractive index or lattice constant of the surface of the original metal nitride film 114 and the growth substrate 112 is changed. In detail, the amount of refractive index in the hybrid substrate 110' can be changed by changing the depth of the dopant diffusion (i.e., the thickness D D(a) of the doped region 120' ) .

請參照圖1C,在本實施例中,摻雜區120’所佔的面積約為金屬氮化物薄膜114’的面積之30%至80%之間,摻雜區120’的厚度DD(a) 例如是大於金屬氮化物薄膜114’的厚度DM(a) 。此時,混成基板110’內的折射率至少有4種。具體而言,金屬氮化物薄膜114’的折射率為n1 ,成長基板 112’的折射率為n2 ,金屬氮化物薄膜114’中之摻雜區120’的折射率為n3 ,而成長基板112’中之摻雜區120’的折射率為n4 ,且n1 ≠n2 ≠n3 ≠n4 。進一步而言,藉由在混成基板110’中形成摻雜區120’,以使發光二極體晶片內部具備更為多元的折射率(由原本的n1 、n2 增加為n1 、n2 、n3 、n4 ),進而提升光線被散射的機率,並提升發光二極體晶片之光取出效率。Referring to FIG. 1C, in the embodiment, the doping region 120' occupies an area of about 30% to 80% of the area of the metal nitride film 114', and the thickness D D of the doped region 120' (a) ), for example, a metal nitride thin film 114 is greater than the 'thickness D M (a). At this time, there are at least four kinds of refractive indices in the mixed substrate 110'. Specifically, the refractive index of the metal nitride film 114' is n 1 , the refractive index of the grown substrate 112' is n 2 , and the refractive index of the doped region 120' in the metal nitride film 114' is n 3 , and is grown. The doped region 120' in the substrate 112' has a refractive index n 4 and n 1 ≠n 2 ≠n 3 ≠n 4 . Further, by forming the doped region 120' in the mixed substrate 110', the inside of the light-emitting diode wafer has a more diverse refractive index (increased from the original n 1 , n 2 to n 1 , n 2 , n 3 , n 4 ), thereby increasing the probability of light being scattered, and improving the light extraction efficiency of the LED chip.

另一方面,摻雜區120’的厚度DD(a) 除了大於金屬氮化物薄膜114’的厚度DM(a) 外,亦可以小於或等於金屬氮化物薄膜114’的厚度DM(a) 。請參考圖1C’與圖1C”,此時,混成基板110’內的折射率至少有3種(金屬氮化物薄膜的折射率為n1 ,成長基板的折射率為n2 ,而金屬氮化物薄膜中之摻雜區的折射率為n3 ,且n1 ≠n2 ≠n3 )。On the other hand, 120 'thickness D D (a) except that a metal nitride thin film 114 is greater than the' thickness of the doped region D M (a), but also less than or equal metal nitride thin film 114 'thickness D M (a ) . Please refer to FIG. 1C′ and FIG. 1C”. At this time, there are at least three kinds of refractive indexes in the mixed substrate 110′ (the refractive index of the metal nitride film is n 1 , the refractive index of the grown substrate is n 2 , and the metal nitride The doped region in the film has a refractive index of n 3 and n 1 ≠n 2 ≠n 3 ).

在本實施例中,由於混成基板110’的金屬氮化物薄膜114’在摻雜區120’之晶格常數異於未摻雜區,因此磊晶過程中會產生選擇性成長現象,因而使後續形成之磊晶膜層與混成基板110’之間會存在多個孔洞130,且各孔洞130分別位於其中一摻雜區120’上方。值得注意的是,此處孔洞130與摻雜區120’具有增加光線被散射的功用,因此可降低光線在發光二極體晶片內部發生全反射造成光取出效率被抑制的機會。換言之,光線有較高的比例可穿透出發光二極體晶片,而出光效率因此可被提升。In this embodiment, since the lattice constant of the metal nitride film 114' of the mixed substrate 110' is different from the undoped region in the doped region 120', a selective growth phenomenon occurs in the epitaxial process, thereby enabling subsequent A plurality of holes 130 may be formed between the formed epitaxial film layer and the mixed substrate 110', and each of the holes 130 is located above one of the doped regions 120'. It is to be noted that the hole 130 and the doped region 120' have the function of increasing the scattering of the light, thereby reducing the chance that the light extraction efficiency is suppressed by total reflection of the light inside the light-emitting diode wafer. In other words, a higher proportion of light can penetrate the light-emitting diode wafer, and the light extraction efficiency can be improved.

接著,請參照圖1D,於金屬氮化物薄膜114’的成長表面S上依序形成半導體元件層140(包括第一型半導體層 142、主動層144以及第二型半導體層146)以及歐姆接觸層150。在本實施例中,上述各膜層例如是藉由金屬有機化學氣相沉積法(Metal Organic Chemical Vapor Deposition,MOCVD)所形成,但本實施例不以此為限。Next, referring to FIG. 1D, a semiconductor device layer 140 (including a first type semiconductor layer) is sequentially formed on the growth surface S of the metal nitride film 114'. 142, active layer 144 and second type semiconductor layer 146) and ohmic contact layer 150. In the present embodiment, each of the above-mentioned film layers is formed by, for example, Metal Organic Chemical Vapor Deposition (MOCVD), but the embodiment is not limited thereto.

此外,第一型半導體層142與第二型半導體層146之一為P型半導體層,且第一型半導體層142與第二型半導體層146之另一為N型半導體層。在本實施例中,第一型半導體層142例如是摻雜矽、鍺、銻或上述組合之N型氮化鎵層。而第二型半導體層146例如是摻雜鎂之P型氮化鎵層。Further, one of the first type semiconductor layer 142 and the second type semiconductor layer 146 is a P type semiconductor layer, and the other of the first type semiconductor layer 142 and the second type semiconductor layer 146 is an N type semiconductor layer. In the present embodiment, the first type semiconductor layer 142 is, for example, an N-type gallium nitride layer doped with ytterbium, lanthanum, cerium or a combination thereof. The second type semiconductor layer 146 is, for example, a magnesium-doped P-type gallium nitride layer.

在本實施例中,主動層144可包括第一阻障層(cladding,未繪示)、發光層(未繪示)以及第二阻障層(未繪示)。第一阻障層例如是摻雜矽、鍺、銻或上述組合之N型氮化鋁鎵層。而發光層例如是由氮化鋁銦鎵所構成之單一或多重量子井結構。另外,第二阻障層例如是摻雜鎂之P型氮化鋁鎵層。In this embodiment, the active layer 144 may include a first barrier layer (not shown), a light emitting layer (not shown), and a second barrier layer (not shown). The first barrier layer is, for example, an N-type aluminum gallium nitride layer doped with yttrium, lanthanum, cerium or a combination thereof. The luminescent layer is, for example, a single or multiple quantum well structure composed of aluminum indium gallium nitride. Further, the second barrier layer is, for example, a P-type aluminum gallium nitride layer doped with magnesium.

在本實施例中,歐姆接觸層150是用來作為導通之用,故相較於第二型半導體層140,歐姆接觸層150藉由摻雜更高濃度之P型摻質來達到“改質”之目的,使導電性較第二型半導體層140好。In the present embodiment, the ohmic contact layer 150 is used for conduction, so that the ohmic contact layer 150 is "modified" by doping a higher concentration of P-type dopant than the second-type semiconductor layer 140. The purpose is to make the conductivity better than that of the second type semiconductor layer 140.

請參照圖1E,在形成上述第一型半導體層142、主動層144、第二型半導體層146以及歐姆接觸層150後,依序地圖案化歐姆接觸層150、第二型半導體層146、主動層144以及部份之第一型半導體層142以同時形成圖案化歐 姆接觸層150’、第二型半導體層146’、主動層144’以及暴露出部分第一型半導體層142’。在本實施例中,上述圖案化的方式例如是採用微影蝕刻。然而,本實施例不限定圖案化的方式必須是微影蝕刻,其他能夠圖案化第一型半導體層142’的方式以可以被採用。Referring to FIG. 1E, after the first semiconductor layer 142, the active layer 144, the second semiconductor layer 146, and the ohmic contact layer 150 are formed, the ohmic contact layer 150, the second semiconductor layer 146, and the active layer are sequentially patterned. Layer 144 and a portion of first type semiconductor layer 142 to simultaneously form a patterned Europe The contact layer 150', the second type semiconductor layer 146', the active layer 144', and a portion of the first type semiconductor layer 142' are exposed. In the present embodiment, the above-described patterning method is, for example, lithography etching. However, the manner in which this embodiment does not limit the patterning must be lithography, and other ways in which the first type semiconductor layer 142' can be patterned can be employed.

接著,於未被主動層144’所覆蓋之第一型半導體層142’上形成第一電極160,同時在第二型半導體層146’上形成第二電極170,使得第二電極170透過歐姆接觸層150’與第二型半導體層146’電性連接而第一電極160與第一型半導體層142’電性連接。Next, the first electrode 160 is formed on the first type semiconductor layer 142' not covered by the active layer 144', while the second electrode 170 is formed on the second type semiconductor layer 146', so that the second electrode 170 is transmitted through the ohmic contact. The layer 150 ′ is electrically connected to the second type semiconductor layer 146 ′ and the first electrode 160 is electrically connected to the first type semiconductor layer 142 ′.

【第二實施例】[Second embodiment]

在本實施例中,藉由磊晶成長之參數的調整,前述之半導體元件層140與混成基板110’之間存在之孔洞亦可分別位於未摻雜區之上方。圖2A及圖2B繪示本發明第二實施例之發光二極體晶片之製作流程的剖面示意圖。In this embodiment, by the adjustment of the parameters of the epitaxial growth, the holes existing between the semiconductor element layer 140 and the mixed substrate 110' may be located above the undoped regions, respectively. 2A and 2B are schematic cross-sectional views showing a manufacturing process of a light-emitting diode wafer according to a second embodiment of the present invention.

請參照圖2A及圖2B,本實施例之發光二極體晶片100’與前述實施例之發光二極體晶片100具有相似的製作流程。兩者差異處主要在於本實施例之發光二極體晶片100’透過磊晶成長之參數的調整,使孔洞130’分別位於未摻雜區之上方。此處,孔洞130’與摻雜區120’具有增加光線被散射的功用,因此可降低光線在發光二極體晶片內部發生全反射造成光取出效率被抑制的機會。換言之,光線有較高的比例可穿透出發光二極體晶片100’,而出光效率 因此可被提升。Referring to FIG. 2A and FIG. 2B, the LED array 100' of the present embodiment has a similar manufacturing process as the LED array 100 of the foregoing embodiment. The difference between the two is mainly due to the adjustment of the parameters of the epitaxial growth of the LED array 100' of the present embodiment such that the holes 130' are respectively located above the undoped regions. Here, the hole 130' and the doped region 120' have an effect of increasing the scattering of light, thereby reducing the chance that the light extraction efficiency is suppressed by total reflection of light inside the light-emitting diode wafer. In other words, a higher proportion of light can penetrate the LED array 100', and the light extraction efficiency Therefore it can be upgraded.

值得一提的是,藉由形成摻雜區120’來增加光散射比率的方法,除了前述以熱擴散方式形成摻雜區120’之外,亦可使用離子植入製程(ion implantation process),此處,摻雜區120’所佔的面積約為金屬氮化物薄膜114’的面積之30%至80%之間。It is worth mentioning that, by forming the doping region 120' to increase the light scattering ratio, in addition to the aforementioned forming the doping region 120' by thermal diffusion, an ion implantation process may also be used. Here, the area occupied by the doped region 120' is between about 30% and 80% of the area of the metal nitride film 114'.

圖2C為本實施例之發光二極體晶片100’被應用於覆晶封裝結構中的示意圖。請參照圖2C,本實施例之覆晶封裝結構包括發光二極體晶片100’、多個導電凸塊BP以及一承載基板SUB,其中該發光二極體晶片100’係透過導電凸塊BP而與承載基板SUB電性連接。在本實施例中,導電凸塊BP例如是錫鉛凸塊(solder bump)或是金凸塊(bump)或其他導電材料製作的凸塊。2C is a schematic view showing the light emitting diode wafer 100' of the present embodiment applied to a flip chip package structure. Referring to FIG. 2C, the flip chip package structure of the embodiment includes a light emitting diode chip 100', a plurality of conductive bumps BP, and a carrier substrate SUB, wherein the light emitting diode chip 100' is transmitted through the conductive bumps BP. It is electrically connected to the carrier substrate SUB. In this embodiment, the conductive bumps BP are, for example, solder bumps or gold bumps or bumps made of other conductive materials.

【第三實施例】[Third embodiment]

圖3為本發明第三實施例之摻雜區形成的示意圖。請參照圖3,首先,於金屬氮化物薄膜114之成長表面S上形成圖案化遮罩210。在本實施例中,圖案化遮罩210的材質可以為光阻(Photo-Resist,PR)、金屬,或是氧化矽、氮化矽等介電材料。接著,以圖案化遮罩210為罩幕對混成基板110進行離子植入。在進行完離子植入之後,將圖案化遮罩210移除,並對混成基板110進行熱回火製程以形成具有摻雜區220’之泥成基板110’,其中摻雜區220’從金屬氮化物薄膜114’之成長表面S延伸至混成基板110’ 內部。Figure 3 is a schematic illustration of the formation of a doped region in accordance with a third embodiment of the present invention. Referring to FIG. 3, first, a patterned mask 210 is formed on the growth surface S of the metal nitride film 114. In this embodiment, the material of the patterned mask 210 may be a photoresist (Photo-Resist, PR), a metal, or a dielectric material such as tantalum oxide or tantalum nitride. Next, the mixed substrate 110 is ion-implanted with the patterned mask 210 as a mask. After the ion implantation is completed, the patterned mask 210 is removed, and the hybrid substrate 110 is subjected to a thermal tempering process to form a muddged substrate 110' having a doped region 220', wherein the doped region 220' is from the metal The grown surface S of the nitride film 114' extends to the mixed substrate 110' internal.

再者,本實施例亦可選擇性地在半導體元件層與混成基板之間形成孔洞,進而提升光線被散射的機率,並進而提升發光二極體晶片之光取出效率。具體而言,孔洞的形成方法可以是利用局部區域的表面結構破壞來達成。在一實施例中,孔洞的形成方法例如是以高功率之雷射照射(laser irradiation),在具有平整表面的混成基板上進行局部區域改質,以達到局部區域的成長速率不同,進而產生多個孔洞。Furthermore, in this embodiment, holes can be selectively formed between the semiconductor element layer and the mixed substrate, thereby increasing the probability of light being scattered, and thereby improving the light extraction efficiency of the light emitting diode chip. Specifically, the method of forming the holes may be achieved by utilizing surface structure damage of the local regions. In one embodiment, the method for forming the holes is, for example, high-power laser irradiation, and local area modification is performed on the mixed substrate having a flat surface to achieve different growth rates of the local regions, thereby generating more Holes.

詳言之,於半導體層磊晶成長過程中,孔洞的形成主要是由於遭受局部區域改質之金屬氮化物薄膜的成長表面幾乎無法成長半導體元件層(或半導體元件層之成長速率遠低於鄰近未受改質的表面)。隨著半導體磊晶層厚度的增加,在未受改質區域上方的磊晶層之成長速度會遠高於受改質區域上方之成長速度,因此磊晶層會有橫向成長之趨勢,而磊晶層最後會在受改質區域之上方接合。因此,遭受改質之金屬氮化物薄膜之成長表面上方會形成孔洞。In detail, during the epitaxial growth of the semiconductor layer, the formation of the holes is mainly due to the fact that the growth surface of the metal nitride film subjected to localized modification is hard to grow the semiconductor device layer (or the growth rate of the semiconductor device layer is much lower than that of the adjacent layer). Unmodified surface). As the thickness of the epitaxial layer of the semiconductor increases, the growth rate of the epitaxial layer above the unmodified region is much higher than the growth rate above the modified region, so the epitaxial layer tends to grow laterally. The layer will eventually bond above the modified area. Therefore, a hole is formed above the grown surface of the modified metal nitride film.

值得注意的是,經過局部區域改質之金屬氮化物薄膜會有區域性的晶格常數變化或適應力變化,因此藉由磊晶成長條件改變,可以調整孔洞130、130’(請參照圖1D及圖2A)形成的位置。換言之,可以使前述之半導體元件層140與混成基板110’之間存在的孔洞分別位於摻雜區120’或未摻雜區之上方。而這些孔洞,具有前述之功用,因此不再此贅述。It is worth noting that the metal nitride film modified by local region has a regional lattice constant change or adaptability change, so the holes 130, 130' can be adjusted by changing the epitaxial growth conditions (please refer to FIG. 1D). And the position formed in Figure 2A). In other words, the holes existing between the aforementioned semiconductor element layer 140 and the mixed substrate 110' may be located above the doped region 120' or the undoped region, respectively. These holes have the aforementioned functions, and therefore will not be described again.

【第四實施例】Fourth Embodiment

圖4A與圖4B為本發明第四實施例之發光二極體晶片之製作流程的剖面示意圖。請同時參照圖4A與圖1D,首先提供一導電基板300,此導電基板300之其中一表面上已形成有一第一電極310,而導電基板300之另一表面上已形成有一金屬電極層311。接著,於圖1D所繪示的歐姆接觸層150上形成一接合層320,並使接合層320與金屬電極層311接合。在本實施例中,此接合層320例如是具備光線反射的能力,且接合層320可以是由多層不同金屬所構成並與歐姆接觸層150形成良好的歐姆接觸。4A and FIG. 4B are schematic cross-sectional views showing a manufacturing process of a light-emitting diode wafer according to a fourth embodiment of the present invention. Referring to FIG. 4A and FIG. 1D simultaneously, a conductive substrate 300 is first provided. A first electrode 310 is formed on one surface of the conductive substrate 300, and a metal electrode layer 311 is formed on the other surface of the conductive substrate 300. Next, a bonding layer 320 is formed on the ohmic contact layer 150 illustrated in FIG. 1D, and the bonding layer 320 is bonded to the metal electrode layer 311. In the present embodiment, the bonding layer 320 is, for example, capable of reflecting light, and the bonding layer 320 may be composed of a plurality of layers of different metals and form a good ohmic contact with the ohmic contact layer 150.

接著請參照圖4B,移除具有摻雜區120’之混成基板110’,以使混成基板110’與半導體元件層140分離。在混成基板110’與半導體元件層140分離之後,孔洞130會被暴露。接著,於半導體元件層140的第一型半導體層142上形成一第二電極330,此第二電極330會覆蓋至少部分的孔洞130。在第二電極330完成之後,便初步完成本實施例之發光二極體晶片100”的製作。Next, referring to Fig. 4B, the mixed substrate 110' having the doped region 120' is removed to separate the hybrid substrate 110' from the semiconductor device layer 140. After the mixed substrate 110' is separated from the semiconductor element layer 140, the holes 130 are exposed. Next, a second electrode 330 is formed on the first type semiconductor layer 142 of the semiconductor device layer 140, and the second electrode 330 covers at least a portion of the hole 130. After the completion of the second electrode 330, the fabrication of the light-emitting diode wafer 100" of the present embodiment is initially completed.

【第五實施例】[Fifth Embodiment]

圖5A與圖5B為本發明第五實施例之發光二極體晶片之製作流程的剖面示意圖。請同時參照圖5A與圖2A,首先提供一導電基板300,此導電基板300之其中一表面上形成有一第一電極310以及於另一表面形成一金屬電極層311。接著,於圖2A所繪示的歐姆接觸層150上形成一接合層320, 並使接合層320與金屬電極層311接合。在本實施例中,此接合層320例如是具備光線反射的能力,且接合層320是由多層不同金屬所構成,並與歐姆接觸層150形成良好的歐姆接觸。5A and FIG. 5B are schematic cross-sectional views showing a manufacturing process of a light-emitting diode wafer according to a fifth embodiment of the present invention. Referring to FIG. 5A and FIG. 2A , a conductive substrate 300 is first provided. One surface of the conductive substrate 300 is formed with a first electrode 310 and a metal electrode layer 311 is formed on the other surface. Next, a bonding layer 320 is formed on the ohmic contact layer 150 illustrated in FIG. 2A. The bonding layer 320 is bonded to the metal electrode layer 311. In the present embodiment, the bonding layer 320 is, for example, capable of reflecting light, and the bonding layer 320 is composed of a plurality of layers of different metals and forms a good ohmic contact with the ohmic contact layer 150.

接著請參照圖5B,移除具有摻雜區120’之混成基板110’,以使混成基板110’與半導體元件層140分離。在混成基板110’與半導體元件層140分離之後,孔洞130’會被暴露。接著,於半導體元件層140的第一型半導體層142上形成一第二電極330,此第二電極330會覆蓋至少部分的孔洞130’。在第二電極330完成之後,便初步完成本實施例之發光二極體晶片100'''的製作。Next, referring to Fig. 5B, the mixed substrate 110' having the doped region 120' is removed to separate the hybrid substrate 110' from the semiconductor device layer 140. After the mixed substrate 110' is separated from the semiconductor element layer 140, the holes 130' are exposed. Next, a second electrode 330 is formed on the first type semiconductor layer 142 of the semiconductor device layer 140, and the second electrode 330 covers at least a portion of the hole 130'. After the completion of the second electrode 330, the fabrication of the LED array 100'" of the present embodiment is initially completed.

在上述第四實施例與第五實施例中,混成基板110’與半導體元件層140分離之後,毋須進一步對半導體元件層140之表面進行粗化處理,因此可以降低整體製程的複雜度,且孔洞130、130’有助於提升發光二極體晶片100”、100'''的光取出效率。In the fourth embodiment and the fifth embodiment described above, after the mixed substrate 110' is separated from the semiconductor element layer 140, it is not necessary to further roughen the surface of the semiconductor element layer 140, thereby reducing the complexity of the overall process and the holes. 130, 130' helps to improve the light extraction efficiency of the LED chips 100", 100"".

本發明所提出的發光二極體晶片無需製作厚度總合較厚之成核層與緩衝層,而是藉由熱蒸鍍方式製作厚度較薄之氮化鋁薄膜於成長基板上以提升磊晶品質,故可縮減發光二極體晶片之厚度以及製程成本及時間。此外,相較於濺鍍的方式,由於熱蒸鍍的製作門檻較低,故機台的選擇性較多。另外,由於氮化鋁薄膜有助於提升磊晶品質,故本發明所提出的發光二極體晶片可具有較佳之光電特性與發光效率。除此之外,藉由在半導體元件層中提供孔洞與摻雜區,增加光線散射的機率,進而提升光取出效率。 因此,本發明所提出的發光二極體晶片可具有較高之出光效率。The light-emitting diode wafer proposed by the invention does not need to make a thicker nucleation layer and a buffer layer, but forms a thin aluminum nitride film on a growth substrate by thermal evaporation to enhance the epitaxial crystal. Quality, so the thickness of the LED chip and the cost and time of the process can be reduced. In addition, compared to the sputtering method, since the production threshold of the thermal evaporation is low, the selectivity of the machine is large. In addition, since the aluminum nitride film contributes to the improvement of the epitaxial quality, the light-emitting diode chip proposed by the present invention can have better photoelectric characteristics and luminous efficiency. In addition, by providing holes and doped regions in the semiconductor device layer, the probability of light scattering is increased, thereby improving light extraction efficiency. Therefore, the light-emitting diode chip proposed by the present invention can have a higher light-emitting efficiency.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100、100’、100”、100'''‧‧‧發光二極體晶片100, 100', 100", 100'''‧‧‧ luminescent diode chips

110、110’‧‧‧混成基板110, 110'‧‧‧ mixed substrate

112、112’‧‧‧成長基板112, 112'‧‧‧ growth substrate

114、114’‧‧‧金屬氮化物薄膜114, 114'‧‧‧Metal Nitride Film

120‧‧‧圖案化薄膜120‧‧‧ patterned film

120’、220’‧‧‧摻雜區120', 220'‧‧‧ doped area

130、130’‧‧‧孔洞130, 130’‧‧‧ Hole

140、140’‧‧‧半導體元件層140, 140'‧‧‧ semiconductor component layer

142、142’‧‧‧第一型半導體層142, 142'‧‧‧ first type semiconductor layer

144、144’‧‧‧主動層144, 144’‧‧‧ active layer

146、146’‧‧‧第二型半導體層146, 146'‧‧‧ second type semiconductor layer

150、150’‧‧‧歐姆接觸層150, 150' ‧ ‧ ohmic contact layer

160‧‧‧第一電極160‧‧‧First electrode

170‧‧‧第二電極170‧‧‧second electrode

210‧‧‧圖案化遮罩210‧‧‧ patterned mask

S‧‧‧成長表面S‧‧‧ growth surface

DD(a) 、DM(a) ‧‧‧厚度D D(a) , D M(a) ‧‧‧ thickness

n1 、n2 、n3 、n4 ‧‧‧折射率n 1 , n 2 , n 3 , n 4 ‧‧ ‧ refractive index

300‧‧‧導電基板300‧‧‧Electrical substrate

310‧‧‧第一電極310‧‧‧First electrode

320‧‧‧接合層320‧‧‧ joint layer

330‧‧‧第二電極330‧‧‧second electrode

BP‧‧‧導電凸塊BP‧‧‧conductive bumps

SUB‧‧‧承載基板SUB‧‧‧ carrier substrate

圖1A~圖1E為本發明第一實施例之發光二極體晶片之製作流程的剖面示意圖。1A to 1E are schematic cross-sectional views showing a manufacturing process of a light-emitting diode wafer according to a first embodiment of the present invention.

圖1C’與圖1C”分別為摻雜區在混成基板中的不同分佈情況。Fig. 1C' and Fig. 1C" show the different distributions of the doped regions in the mixed substrate, respectively.

圖2A及圖2B為本發明第二實施例之發光二極體晶片之製作流程的剖面示意圖。2A and 2B are schematic cross-sectional views showing a manufacturing process of a light emitting diode chip according to a second embodiment of the present invention.

圖2C為第二實施例之發光二極體晶片100’被應用於覆晶封裝結構中的示意圖。2C is a schematic view showing the light emitting diode wafer 100' of the second embodiment applied to a flip chip package structure.

圖3為本發明第三實施例之摻雜區形成的示意圖。Figure 3 is a schematic illustration of the formation of a doped region in accordance with a third embodiment of the present invention.

圖4A與圖4B為本發明第四實施例之發光二極體晶片之製作流程的剖面示意圖。4A and FIG. 4B are schematic cross-sectional views showing a manufacturing process of a light-emitting diode wafer according to a fourth embodiment of the present invention.

圖5A與圖5B為本發明第五實施例之發光二極體晶片之製作流程的剖面示意圖。5A and FIG. 5B are schematic cross-sectional views showing a manufacturing process of a light-emitting diode wafer according to a fifth embodiment of the present invention.

100‧‧‧發光二極體晶片100‧‧‧Light Diode Wafer

110’‧‧‧混成基板110'‧‧‧Mixed substrate

112’‧‧‧成長基板112'‧‧‧ Growth substrate

114’‧‧‧金屬氮化物薄膜114'‧‧‧Metal Nitride Film

120’‧‧‧摻雜區120'‧‧‧Doped area

130‧‧‧孔洞130‧‧‧ holes

140’‧‧‧半導體元件層140'‧‧‧ Semiconductor component layer

142’‧‧‧第一型半導體層142'‧‧‧First type semiconductor layer

144’‧‧‧主動層144’‧‧‧ active layer

146’‧‧‧第二型半導體層146'‧‧‧Second type semiconductor layer

150’‧‧‧歐姆接觸層150' ‧ ‧ ohmic contact layer

160‧‧‧第一電極160‧‧‧First electrode

170‧‧‧第二電極170‧‧‧second electrode

Claims (46)

一種發光二極體晶片,包括:一混成基板,包括:一成長基板;以及一金屬氮化物薄膜,配置於該成長基板上,在該金屬氮化物薄膜中,金屬的含量大於氮的含量,其中該金屬氮化物薄膜具有一成長表面,其中該混成基板具有多個從該成長表面延伸至該混成基板內部之摻雜區;以及一半導體元件層,包括:一第一型半導體層,配置於該金屬氮化物薄膜的該成長表面上;一主動層,配置於該第一型半導體層上;以及一第二型半導體層,配置於該主動層上。A light-emitting diode wafer comprising: a mixed substrate comprising: a growth substrate; and a metal nitride film disposed on the growth substrate, wherein the metal nitride film has a metal content greater than a nitrogen content, wherein The metal nitride film has a growth surface, wherein the hybrid substrate has a plurality of doped regions extending from the growth surface to the inside of the hybrid substrate; and a semiconductor device layer comprising: a first type semiconductor layer disposed thereon On the grown surface of the metal nitride film; an active layer disposed on the first type semiconductor layer; and a second type semiconductor layer disposed on the active layer. 如申請專利範圍第1項所述之發光二極體晶片,其中該金屬氮化物薄膜之材料包括氮化鉻、氮化鉿、氮化鋁、氮化鎵、氮化銦、氮化鋁銦、氮化鋁鎵、氮化銦鎵或氮化鋁鎵銦。The light-emitting diode chip according to claim 1, wherein the material of the metal nitride film comprises chromium nitride, tantalum nitride, aluminum nitride, gallium nitride, indium nitride, aluminum indium nitride, Aluminum gallium nitride, indium gallium nitride or aluminum gallium indium nitride. 如申請專利範圍第1項所述之發光二極體晶片,其中該金屬氮化物薄膜中的金屬與氮含量比值大於1。The light-emitting diode wafer according to claim 1, wherein the ratio of metal to nitrogen in the metal nitride film is greater than 1. 如申請專利範圍第1項所述之發光二極體晶片,其中該金屬氮化物薄膜的厚度由1nm至4000nm。The light-emitting diode wafer according to claim 1, wherein the metal nitride film has a thickness of from 1 nm to 4000 nm. 如申請專利範圍第1項所述之發光二極體晶片,其中該些摻雜區的厚度大於該金屬氮化物薄膜的厚度。The illuminating diode chip of claim 1, wherein the doped regions have a thickness greater than a thickness of the metal nitride film. 如申請專利範圍第5項所述之發光二極體晶片,其中該些摻雜區的厚度小於或等於該金屬氮化物薄膜的厚度。The illuminating diode chip of claim 5, wherein the doped regions have a thickness less than or equal to a thickness of the metal nitride film. 如申請專利範圍第1項所述之發光二極體晶片,其中該些摻雜區具有金屬或非金屬摻質。The luminescent diode wafer of claim 1, wherein the doped regions have a metal or non-metal dopant. 如申請專利範圍第7項所述之發光二極體晶片,其中該非金屬摻質包括氬、氧、矽,氫、氮、碳、磷、砷、鎂、鋅、鈹、鍺、金、鋁。The light-emitting diode chip according to claim 7, wherein the non-metal dopant comprises argon, oxygen, helium, hydrogen, nitrogen, carbon, phosphorus, arsenic, magnesium, zinc, lanthanum, cerium, gold, aluminum. 如申請專利範圍第1項所述之發光二極體晶片其中該些摻雜區之形成方式包括離子佈植或熱擴散法。The light-emitting diode chip according to claim 1, wherein the doping regions are formed by ion implantation or thermal diffusion. 如申請專利範圍第1項所述之發光二極體晶片,其中該金屬氮化物薄膜的折射率為n1 ,該成長基板的折射率為n2 ,該金屬氮化物薄膜中之該些摻雜區的折射率為n3 ,而該成長基板中之該些摻雜區的折射率為n4 ,且n1 ≠n2 ≠n3 ≠n4The light-emitting diode chip according to claim 1, wherein the metal nitride film has a refractive index n 1 , and the grown substrate has a refractive index n 2 , and the doping in the metal nitride film The refractive index of the region is n 3 , and the refractive indices of the doped regions in the grown substrate are n 4 and n 1 ≠n 2 ≠n 3 ≠n 4 . 如申請專利範圍第1項所述之發光二極體晶片,其中該金屬氮化物薄膜的折射率為n1 ,該成長基板的折射率為n2 ,而該金屬氮化物薄膜中之該些摻雜區的折射率為n3 ,且n1 ≠n2 ≠n3The light-emitting diode chip according to claim 1, wherein the metal nitride film has a refractive index n 1 , the growth substrate has a refractive index n 2 , and the metal nitride film has the same The impurity region has a refractive index of n 3 and n 1 ≠n 2 ≠n 3 . 如申請專利範圍第1項所述之發光二極體晶片,其中該半導體元件層與該混成基板之間存在有多個孔洞,且各該孔洞分別位於其中一個摻雜區上方。The light-emitting diode chip of claim 1, wherein a plurality of holes exist between the semiconductor element layer and the mixed substrate, and each of the holes is located above one of the doped regions. 如申請專利範圍第1項所述之發光二極體晶片,其中該半導體元件層與該混基板之間存在有多個孔洞,且 各該孔洞分別位於其中一未摻雜區上方。The light-emitting diode chip according to claim 1, wherein a plurality of holes exist between the semiconductor element layer and the mixed substrate, and Each of the holes is located above one of the undoped regions. 如申請專利範圍第1項所述之發光二極體晶片,其中該第一型半導體層與該第二型半導體層之一為P型半導體層,且該第一型半導體層與該第二型半導體層之另一為N型半導體層。The illuminating diode chip according to claim 1, wherein one of the first type semiconductor layer and the second type semiconductor layer is a P type semiconductor layer, and the first type semiconductor layer and the second type The other of the semiconductor layers is an N-type semiconductor layer. 如申請專利範圍第1項所述之發光二極體晶片,其中該主動層具有單一或多重量子井結構。The luminescent diode wafer of claim 1, wherein the active layer has a single or multiple quantum well structure. 如申請專利範圍第1項所述之發光二極體晶片,更包括:一第一電極,與第一型半導體層電性連接;以及一第二電極,與第二型半導體層電性連接。The illuminating diode chip of claim 1, further comprising: a first electrode electrically connected to the first type semiconductor layer; and a second electrode electrically connected to the second type semiconductor layer. 如申請專利範圍第1項所述之發光二極體晶片,更包括:一歐姆接觸層,配置於該第二電極與該第二型半導體層之間。The illuminating diode chip of claim 1, further comprising: an ohmic contact layer disposed between the second electrode and the second type semiconductor layer. 如申請專利範圍第1項所述之發光二極體晶片,其中該些摻雜區所佔的面積為該金屬氮化物薄膜的面積之30%至80%之間。The light-emitting diode chip according to claim 1, wherein the doped regions occupy an area of between 30% and 80% of the area of the metal nitride film. 一種發光二極體晶片的製作方法,包括:提供一成長基板;在該成長基板上,以熱蒸鍍方法令一金屬氮化物材料昇華而附著於該成長基板,以形成一金屬氮化物薄膜;在該金屬氮化物薄膜中形成多個摻雜區,且該些摻雜區從該金屬氮化物薄膜之該成長表面延伸至該混成基板內 部;以及在該金屬氮化物薄膜上,依序形成一第一型半導體層、一主動層以及一第二型半導體層。A method for fabricating a light-emitting diode wafer, comprising: providing a growth substrate; wherein the metal nitride material is sublimated by the thermal evaporation method to adhere to the growth substrate to form a metal nitride film; Forming a plurality of doped regions in the metal nitride film, and the doped regions extend from the grown surface of the metal nitride film into the mixed substrate And forming a first type semiconductor layer, an active layer and a second type semiconductor layer on the metal nitride film. 如申請專利範圍第19項所述之發光二極體晶片的製作方法,其中該金屬氮化物薄膜之材料包括氮化鉻、氮化鉿、氮化鋁、氮化鎵、氮化銦、氮化鋁銦、氮化鋁鎵、氮化銦鎵或氮化鋁鎵銦。The method for fabricating a light-emitting diode wafer according to claim 19, wherein the material of the metal nitride film comprises chromium nitride, tantalum nitride, aluminum nitride, gallium nitride, indium nitride, and nitride. Aluminum indium, aluminum gallium nitride, indium gallium nitride or aluminum gallium indium nitride. 如申請專利範圍第19項所述之發光二極體晶片的製作方法,其中該熱蒸鍍方法包括電子束蒸鍍。The method for fabricating a light-emitting diode wafer according to claim 19, wherein the thermal evaporation method comprises electron beam evaporation. 如申請專利範圍第19項所述之發光二極體晶片的製作方法,其中該金屬氮化物薄膜的厚度由1nm至4000nm。The method for fabricating a light-emitting diode wafer according to claim 19, wherein the metal nitride film has a thickness of from 1 nm to 4000 nm. 如申請專利範圍第19項所述之發光二極體晶片的製作方法,其中該些摻雜區的厚度大於該金屬氮化物薄膜的厚度。The method for fabricating a light-emitting diode wafer according to claim 19, wherein the doped regions have a thickness greater than a thickness of the metal nitride film. 如申請專利範圍第19項所述之發光二極體晶片的製作方法,其中該些摻雜區的厚度小於或等於該金屬氮化物薄膜的厚度。The method for fabricating a light-emitting diode wafer according to claim 19, wherein the doped regions have a thickness less than or equal to a thickness of the metal nitride film. 如申請專利範圍第19項所述之發光二極體晶片的製作方法,其中該些摻雜區具有金屬或非金屬摻質。The method of fabricating a light-emitting diode wafer according to claim 19, wherein the doped regions have a metal or non-metal dopant. 如申請專利範圍第19項所述之發光二極體晶片的製作方法,更包括:在該第一型半導體層上形成一第一電極;以及在該第二型半導體層上形成一第二電極。The method for fabricating a light-emitting diode wafer according to claim 19, further comprising: forming a first electrode on the first type semiconductor layer; and forming a second electrode on the second type semiconductor layer . 如申請專利範圍第26項所述之發光二極體晶片的製作方法,更包括:在該第二型半導體層上形成該第二電極之前,形成一歐姆接觸層,其中該歐姆接觸層配置於該第二電極與該第二型半導體層之間。The method for fabricating a light-emitting diode wafer according to claim 26, further comprising: forming an ohmic contact layer before forming the second electrode on the second type semiconductor layer, wherein the ohmic contact layer is disposed on The second electrode is between the second type semiconductor layer. 如申請專利範圍第27項所述之發光二極體晶片的製作方法,更包括:在該第一型半導體層上形成該第一電極前,圖案化該歐姆接觸層、該第二型半導體層與該主動層,以暴露出部分該第一型半導體層。The method for fabricating a light-emitting diode wafer according to claim 27, further comprising: patterning the ohmic contact layer and the second type semiconductor layer before forming the first electrode on the first type semiconductor layer And the active layer to expose a portion of the first type semiconductor layer. 如申請專利範圍第27項所述之發光二極體晶片的製作方法,其中該些摻雜區所佔的面積為該金屬氮化物薄膜的面積之30%至80%之間。The method for fabricating a light-emitting diode wafer according to claim 27, wherein the doped regions occupy an area of between 30% and 80% of the area of the metal nitride film. 一種覆晶封裝結構,包括:一如申請專利範圍第1項所述之發光二極體晶片;多個導電凸塊;以及一承載基板,其中該發光二極體晶片透過該些導電凸塊而與該承載基板電性連接。A flip chip package structure, comprising: the light emitting diode chip according to claim 1; a plurality of conductive bumps; and a carrier substrate, wherein the light emitting diode chip passes through the conductive bumps Electrically connected to the carrier substrate. 如申請專利範圍第30項所述之覆晶封裝結構,其中該金屬氮化物薄膜之材料包括氮化鉻、氮化鉿、氮化鋁、氮化鎵、氮化銦、氮化鋁銦、氮化鋁鎵、氮化銦鎵或氮化鋁鎵銦。The flip chip package structure according to claim 30, wherein the material of the metal nitride film comprises chromium nitride, tantalum nitride, aluminum nitride, gallium nitride, indium nitride, aluminum indium nitride, and nitrogen. Aluminum gallium, indium gallium nitride or aluminum gallium indium nitride. 如申請專利範圍第30項所述之覆晶封裝結構,其中該金屬氮化物薄膜中的金屬與氮含量比值大於1。The flip chip package structure of claim 30, wherein the ratio of metal to nitrogen in the metal nitride film is greater than 1. 如申請專利範圍第30項所述之覆晶封裝結構,其中該金屬氮化物薄膜的厚度由1nm至4000nm。The flip chip package structure of claim 30, wherein the metal nitride film has a thickness of from 1 nm to 4000 nm. 如申請專利範圍第30項所述之覆晶封裝結構,其中該些摻雜區的厚度大於該金屬氮化物薄膜的厚度。The flip chip package structure of claim 30, wherein the doped regions have a thickness greater than a thickness of the metal nitride film. 如申請專利範圍第34項所述之覆晶封裝結構,其中該些摻雜區的厚度小於或等於該金屬氮化物薄膜的厚度。The flip chip package structure of claim 34, wherein the doped regions have a thickness less than or equal to a thickness of the metal nitride film. 如申請專利範圍第30項所述之覆晶封裝結構,其中該些摻雜區具有金屬或非金屬摻質。The flip chip package structure of claim 30, wherein the doped regions have a metal or non-metal dopant. 如申請專利範圍第36項所述之覆晶封裝結構,其中該非金屬摻質包括氬、氧、矽,氫、氮、碳、磷、砷、鎂、鋅、鈹、鍺、金、鋁。The flip chip package structure of claim 36, wherein the non-metal dopant comprises argon, oxygen, helium, hydrogen, nitrogen, carbon, phosphorus, arsenic, magnesium, zinc, lanthanum, cerium, gold, aluminum. 如申請專利範圍第30項所述之覆晶封裝結構,其中該些摻雜區之形成方式包括離子佈植或熱擴散法。The flip chip package structure of claim 30, wherein the doped regions are formed by ion implantation or thermal diffusion. 如申請專利範圍第30項所述之覆晶封裝結構,其中該金屬氮化物薄膜的折射率為n1 ,該成長基板的折射率為n2 ,該金屬氮化物薄膜中之該些摻雜區的折射率為n3 ,而該成長基板中之該些摻雜區的折射率為n4 ,且n1 ≠n2 ≠n3 ≠n4The flip chip package structure of claim 30, wherein the metal nitride film has a refractive index n 1 and the growth substrate has a refractive index n 2 , and the doped regions in the metal nitride film The refractive index is n 3 , and the doped regions in the grown substrate have a refractive index of n 4 and n 1 ≠n 2 ≠n 3 ≠n 4 . 如申請專利範圍第30項所述之覆晶封裝結構,其中該金屬氮化物薄膜的折射率為n1 ,該成長基板的折射率為n2 ,而該金屬氮化物薄膜中之該些摻雜區的折射率為n3 ,且n1 ≠n2 ≠n3The flip chip package structure of claim 30, wherein the metal nitride film has a refractive index n 1 , the growth substrate has a refractive index n 2 , and the doping in the metal nitride film The refractive index of the region is n 3 and n 1 ≠n 2 ≠n 3 . 如申請專利範圍第30項所述之覆晶封裝結構,其 中該半導體元件層與該混成基板之間存在有多個孔洞,且各該孔洞分別位於其中一個摻雜區上方。A flip chip package structure as described in claim 30, There are a plurality of holes between the semiconductor device layer and the mixed substrate, and each of the holes is located above one of the doped regions. 如申請專利範圍第30項所述之覆晶封裝結構,其中該半導體元件層與該混基板之間存在有多個孔洞,且各該孔洞分別位於其中一未摻雜區上方。The flip chip package structure of claim 30, wherein a plurality of holes exist between the semiconductor element layer and the mixed substrate, and each of the holes is located above one of the undoped regions. 如申請專利範圍第30項所述之覆晶封裝結構,其中該第一型半導體層與該第二型半導體層之一為P型半導體層,且該第一型半導體層與該第二型半導體層之另一為N型半導體層。The flip chip package structure of claim 30, wherein one of the first type semiconductor layer and the second type semiconductor layer is a P type semiconductor layer, and the first type semiconductor layer and the second type semiconductor The other layer is an N-type semiconductor layer. 如申請專利範圍第30項所述之覆晶封裝結構,其中該主動層具有單一或多重量子井結構。The flip chip package structure of claim 30, wherein the active layer has a single or multiple quantum well structure. 如申請專利範圍第30項所述之覆晶封裝結構,其中該發光二極體晶片更包括:一第一電極,與第一型半導體層電性連接;以及一第二電極,與第二型半導體層電性連接。The flip chip package structure of claim 30, wherein the light emitting diode chip further comprises: a first electrode electrically connected to the first type semiconductor layer; and a second electrode and the second type The semiconductor layer is electrically connected. 如申請專利範圍第30項所述之覆晶封裝結構,其中該發光二極體晶片更包括:一歐姆接觸層,配置於該第二電極與該第二型半導體層之間。The flip chip package structure of claim 30, wherein the light emitting diode chip further comprises: an ohmic contact layer disposed between the second electrode and the second type semiconductor layer.
TW101150808A 2012-06-20 2012-12-28 Light-emitting diode chip and manufacturing method thereof TWI511328B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101150808A TWI511328B (en) 2012-06-20 2012-12-28 Light-emitting diode chip and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW101121991 2012-06-20
TW101150808A TWI511328B (en) 2012-06-20 2012-12-28 Light-emitting diode chip and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201401554A TW201401554A (en) 2014-01-01
TWI511328B true TWI511328B (en) 2015-12-01

Family

ID=50345175

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101150808A TWI511328B (en) 2012-06-20 2012-12-28 Light-emitting diode chip and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI511328B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI545236B (en) 2014-10-02 2016-08-11 錼創科技股份有限公司 Epitaxy base, semiconductor light emitting device and manufacturing methods thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037738B2 (en) * 2002-01-18 2006-05-02 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor light-emitting element
TW200739971A (en) * 2006-03-20 2007-10-16 Samsung Electro Mech Group III nitride semiconductor thin film and group III semiconductor light emitting device
TW201013987A (en) * 2008-06-20 2010-04-01 Showa Denko Kk Group III nitride semiconductor light emitting device, process for producing the same, and lamp
TW201119083A (en) * 2009-06-24 2011-06-01 Nichia Corp A nitride semiconductor laser diode
TW201121101A (en) * 2009-07-10 2011-06-16 Showa Denko Kk Manufacturing method of semiconductor light emitting element, lamp, electronic equipment and mechanical equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037738B2 (en) * 2002-01-18 2006-05-02 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor light-emitting element
TW200739971A (en) * 2006-03-20 2007-10-16 Samsung Electro Mech Group III nitride semiconductor thin film and group III semiconductor light emitting device
TW201013987A (en) * 2008-06-20 2010-04-01 Showa Denko Kk Group III nitride semiconductor light emitting device, process for producing the same, and lamp
TW201119083A (en) * 2009-06-24 2011-06-01 Nichia Corp A nitride semiconductor laser diode
TW201121101A (en) * 2009-07-10 2011-06-16 Showa Denko Kk Manufacturing method of semiconductor light emitting element, lamp, electronic equipment and mechanical equipment

Also Published As

Publication number Publication date
TW201401554A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
US8735185B2 (en) Light emitting device and fabrication method thereof
US7687811B2 (en) Vertical light emitting device having a photonic crystal structure
JP5255745B2 (en) Nitride semiconductor light emitting device
KR101646664B1 (en) Light emitting device, method for fabricating the light emitting device and light emitting device package
TW200423421A (en) Improved LED efficiency using photonic crystal structure
JP2007103951A (en) Nitride semiconductor light-emitting element and method for manufacture it
JP2007227939A (en) Light emitting element, and its manufacturing method
TW201015751A (en) Polychromatic wavelengths LED and manufacturing method thereof
TWI437737B (en) Light emitting diode structure and method for manufacturing the same
US20130112943A1 (en) Semiconductor light emitting device
TW201034252A (en) Light emitting device
KR20090076163A (en) Menufacturing method of nitride semiconductor light emitting device and nitride semiconductor light emitting device by the same
US8618572B2 (en) Light-emitting device and method for manufacturing the same
JP4620340B2 (en) Light emitting device and manufacturing method thereof
TWI511328B (en) Light-emitting diode chip and manufacturing method thereof
JP5440640B2 (en) Nitride semiconductor light emitting device
KR20050035325A (en) Nitride semiconductor light emitting device and method of manufacturing the same
KR101202731B1 (en) Method for manufacturing vertical light emitting diode
KR100619415B1 (en) Light emitting diode
US20230080272A1 (en) Light emitting device and method for producing the same
KR100918830B1 (en) VERTICALLY STRUCTURED GaN TYPE LED DEVICEE AND METHOD OF MANUFACTURING THE SAME
KR101198760B1 (en) LED having vertical structure and method of making the same
KR101309258B1 (en) Light emitting diode and method for manufacturing the same
TWI485880B (en) Light-emitting diode chip and manufacturing method thereof
JP3147670U (en) Nitride semiconductor light emitting device