TWI506967B - Transmitter and methods for frequency partitioning and parameter determining of cognitive frequency-hopping system - Google Patents

Transmitter and methods for frequency partitioning and parameter determining of cognitive frequency-hopping system Download PDF

Info

Publication number
TWI506967B
TWI506967B TW102115898A TW102115898A TWI506967B TW I506967 B TWI506967 B TW I506967B TW 102115898 A TW102115898 A TW 102115898A TW 102115898 A TW102115898 A TW 102115898A TW I506967 B TWI506967 B TW I506967B
Authority
TW
Taiwan
Prior art keywords
frequency
sub
band
bands
occupied
Prior art date
Application number
TW102115898A
Other languages
Chinese (zh)
Other versions
TW201444302A (en
Inventor
David Shiung
Yayin Yang
Original Assignee
Univ Nat Changhua Education
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Changhua Education filed Critical Univ Nat Changhua Education
Priority to TW102115898A priority Critical patent/TWI506967B/en
Publication of TW201444302A publication Critical patent/TW201444302A/en
Application granted granted Critical
Publication of TWI506967B publication Critical patent/TWI506967B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

感知跳頻系統的頻譜劃分方法、參數決定方法及傳送器Spectrum division method, parameter determination method and transmitter for sensing frequency hopping system

本發明是有關於一種跳頻系統,且特別是有關於一種感知跳頻系統的頻譜劃分方法、參數決定方法及傳送器。The present invention relates to a frequency hopping system, and more particularly to a spectrum dividing method, a parameter determining method, and a transmitter for a perceptual frequency hopping system.

隨著近年來無線通訊技術的長足發展與應用,可用的通訊頻譜已不敷使用而成為越來越珍貴的資源。傳統上,取得許可執照的人可使用特定頻譜於特定目的,而沒有許可的人則即使在頻譜閒置的時候也無法使用這個特定頻譜,如此的頻譜配置會使得優化頻譜利用率的效果相當不佳,在某些地區的某些時間裡,頻譜的利用率甚至只有10%。With the rapid development and application of wireless communication technology in recent years, the available communication spectrum has become insufficient and has become an increasingly precious resource. Traditionally, a licensee can use a particular spectrum for a specific purpose, while a person without a license can't use that particular spectrum even when the spectrum is idle. Such a spectrum configuration would make the optimization of spectrum utilization quite poor. At some point in some regions, the spectrum utilization rate is only 10%.

於是現今已發展出感知技術,讓沒有許可執照的人也可以使用這些已發出許可執照的頻譜,但將要對有許可執照者的干擾降至最低,這方面的技術例如機會式頻譜使用機制(opportunistic spectrum access,OSA),其讓舊有 系統(legacy systems)與感知無線電(cognitive radios,CRs)共存(coexistence),其中舊有系統又稱為主要系統(primary system,PS),其中感知無線電(CR)只在偵測到頻譜未被使用時才使用這個頻譜。另一種技術如頻譜共享(spectrum sharing,SS),其則同時讓感知無線電(CR)與擁有許可執照的使用者共同使用頻譜,但將對擁有許可執照的使用者的干擾限制在一定限度內。意即在OSA的技術下,感知無線電(CR)所使用的頻譜是與擁有許可執照的使用者所使用的舊有系統頻譜交雜在一起的,而在SS的技術下,感知無線電(CR)所使用的頻譜則是與主要系統重疊(overlaid or underlaid),而由這兩種技術所建立的網路就分別稱為機會式頻譜使用感知無線電網路(OSA CRN)及頻譜共享感知無線電網路(SS CRN)。So nowadays, perceptual technology has been developed so that people without licenses can use these licensed licenses, but the interference to licensees will be minimized. Techniques such as opportunistic spectrum use (opportunistic) Spectrum access, OSA) Legacy systems coexist with cognitive radios (CRs), where the old system is also known as the primary system (PS), where the cognitive radio (CR) only detects that the spectrum is not used. This spectrum is only used. Another technique, such as spectrum sharing (SS), allows both the cognitive radio (CR) and the licensed licensee to use the spectrum, but limits the interference to users with licenses to a certain limit. That is to say, under the technology of OSA, the spectrum used by the cognitive radio (CR) is mixed with the spectrum of the old system used by the user who has the license, and under the technology of SS, the cognitive radio (CR) The spectrum used is overlapped or underlaid, and the networks established by these two technologies are called Opportunistic Spectrum Usage Aware Radio Network (OSA CRN) and Spectrum Sharing Perceptual Radio Network. (SS CRN).

請參照第1圖,其繪示傳統的感知頻譜分割分式,其跳頻訊號直接在整個頻帶上跳頻,更詳細地說,若頻譜從始頻率fstart 到終頻率fend 的全部頻寬為WT ,將頻譜的頻寬為WT 平均劃分為S個頻率槽,S個頻率槽各為W1 ~Wn ,每一頻率槽的頻寬都是均等的,所以每一頻率槽的頻寬都是WT /S,又各頻率槽與其它舊有訊號(圖示的網點部分)同時存在,所以如此的頻譜分割方式將會與其它舊有訊號造成彼此之間的干擾,並影響雙方的位元錯誤率(bit error rate,BER)。Please refer to FIG. 1 , which shows a conventional perceptual spectrum partitioning scheme, in which the frequency hopping signal directly hops over the entire frequency band, and more specifically, if the spectrum is from the starting frequency f start to the final frequency f end . is W T, of the spectrum bandwidth of W T S equally divided into frequency bins, each frequency bins S W 1 ~ W n, the frequency bandwidth of each groove are equal, so each frequency slot The bandwidth is W T /S, and each frequency slot and other old signals (the part of the screen shown) exist at the same time, so such spectrum division will cause interference with other old signals and affect The bit error rate (BER) of both parties.

又藍牙系統規格V3.0提出可適性跳頻的做法,其基本想法也是將整塊頻譜均等分割,當每個小頻譜帶有其 它使用者使用時,則不使用該頻帶以避免干擾的產生。但這種作法會浪費部分頻譜,使得頻譜的使用率不高。Moreover, the Bluetooth system specification V3.0 proposes an adaptive frequency hopping method. The basic idea is to equally divide the entire spectrum, when each small spectrum carries its When the user uses it, the frequency band is not used to avoid interference. However, this method wastes part of the spectrum, making the spectrum usage rate low.

因此,本發明之一目的在於提供一種感知跳頻系統的頻譜劃分方法,可完全保護主要系統(PS)並完全利用頻譜上其他零星的可用頻譜。Accordingly, it is an object of the present invention to provide a spectrum division method for a perceptual frequency hopping system that fully protects the primary system (PS) and fully utilizes the available spectrum of other sporadic spectrums.

依據本發明一實施方式,此感知跳頻系統的頻譜劃分方法包含以下步驟:偵測一頻帶中已被占用的至少一占用頻帶區,劃分頻帶中不屬於上述占用頻帶區的部分為複數子頻帶,並劃分各子頻帶為複數頻率槽,這些頻率槽用以跳頻。According to an embodiment of the present invention, the spectrum division method of the cognitive frequency hopping system includes the following steps: detecting at least one occupied frequency band area that has been occupied in a frequency band, and the part of the divided frequency band that does not belong to the occupied frequency band area is a complex sub-band And dividing each sub-band into a plurality of frequency slots, which are used for frequency hopping.

依據上述感知跳頻系統的頻譜劃分方法,其中各子頻帶的那些頻率槽可分別具有一頻移鍵訊號振幅而那些頻移鍵訊號振幅的大小相同,其中劃分各子頻帶為複數頻率槽可採用均等分配各子頻帶中各頻率槽的一中心頻率。依據上述感知跳頻系統的頻譜劃分方法,更可包含以下步驟:計算那些頻率槽的數量總和為一可用頻率槽總數,將下一個被占用的那些頻率槽之一的功率移到相鄰的那些子頻帶,並改變可用頻率槽總數。According to the spectrum division method of the above-mentioned perceptual frequency hopping system, those frequency slots of each sub-band may have a frequency shift key signal amplitude and the frequency shift key signal amplitudes have the same magnitude, wherein each sub-band is divided into multiple frequency slots. A center frequency of each frequency slot in each sub-band is equally distributed. According to the spectrum division method of the above-mentioned perceptual frequency hopping system, the method further includes the steps of: calculating the sum of the number of frequency slots as the total number of available frequency slots, and shifting the power of one of the next occupied frequency slots to the adjacent ones. Subband and change the total number of available frequency slots.

本發明之另一目的在於提供一種感知跳頻系統的參數決定方法,可產生各傳送參數,使得感知跳頻系統達到完全保護主要系統(PS)並完全利用頻譜上其他零星的可用頻譜。Another object of the present invention is to provide a method for determining a parameter of a frequency hopping system, which can generate each transmission parameter, so that the cognitive frequency hopping system can fully protect the primary system (PS) and fully utilize the available spectrum of other sporadic spectrums.

依據本發明另一實施方式,此感知跳頻系統的參數決定方法包含以下步驟:確認一頻帶之一始頻率及一終頻率,確認頻帶中已被占用的至少一占用頻帶區,並劃分頻帶中不屬於上述占用頻帶區的部分為複數子頻帶,其中各占用頻帶區具有一占用頻帶寬,計算各占用頻帶區的占用頻帶寬,計算各子頻帶的一子頻帶寬,根據頻帶之一同調時間及一同調頻寬,選擇一位元時間長度,根據各子頻帶寬及位元時間長度,決定各子頻帶之一頻率槽數量,根據各子頻帶寬、位元時間長度及各子頻帶之頻率槽數量,決定各子頻帶之一調變因子,均分各子頻帶為相應各子頻帶的頻率槽數量的複數頻率槽,根據占用頻帶寬、位元時間長度及頻率槽數量,決定各子頻帶之一子頻帶振幅。According to another embodiment of the present invention, a method for determining a parameter of the cognitive frequency hopping system includes the steps of: confirming a start frequency and a final frequency of a frequency band, confirming at least one occupied frequency band area occupied by the frequency band, and dividing the frequency band The portion that does not belong to the occupied frequency band region is a complex sub-band, wherein each occupied frequency band region has an occupied frequency bandwidth, calculates an occupied frequency bandwidth of each occupied frequency band region, calculates a sub-frequency bandwidth of each sub-band, and performs a coherent time according to one of the frequency bands. And adjusting the bandwidth width together, selecting one bit time length, determining the number of frequency slots of each sub-band according to each sub-band bandwidth and the bit time length, according to each sub-band bandwidth, the bit time length and the frequency slot of each sub-band The quantity determines one modulation factor of each sub-band, and divides each sub-band into a complex frequency slot of the number of frequency slots of the corresponding sub-bands, and determines each sub-band according to the occupied frequency bandwidth, the bit time length and the number of frequency slots. A sub-band amplitude.

其中感知跳頻系統係用以傳送複數位元流,依據上述感知跳頻系統的參數決定方法,更可包含以下步驟:預設一最大振幅,若各子頻帶之子頻帶振幅大於最大振幅,削減些子頻帶振幅至最大振幅。根據上述那些子頻帶之頻率槽數量之總和,決定複數個線性反饋位移暫存器之數量,上述線性反饋位移暫存器用以產生各異之一虛擬隨機序列對應至每一位元流。The sensing frequency hopping system is configured to transmit a complex bit stream. According to the parameter determining method of the sensing frequency hopping system, the method further includes the following steps: preset a maximum amplitude, and if the sub-band amplitude of each sub-band is greater than the maximum amplitude, the reduction is performed. Subband amplitude to maximum amplitude. The number of the plurality of linear feedback shift registers is determined according to the sum of the number of frequency slots of the sub-bands, and the linear feedback shift register is used to generate a virtual random sequence corresponding to each bit stream.

本發明之又一目的在於提供一種感知跳頻傳送器,可產生各傳送參數並傳送複數位元流,且可完全保護主要系統(PS)並完全利用頻譜上其他零星的可用頻譜。It is yet another object of the present invention to provide a perceptual frequency hopping transmitter that can generate various transmission parameters and transmit a complex bit stream, and can fully protect the primary system (PS) and fully utilize the available spectrum of other sporadic spectrums.

依據本發明又一實施方式,此感知跳頻傳送器用以傳送至少一位元流,包含一感知引擎、一參數產生器及至 少一位元流傳送模組,感知引擎用以偵測未被占用的至少一子頻帶,參數產生器接收感知引擎所偵測得之子頻帶,且參數產生器用以產生一位元時間長度、一調變因子、一子頻帶振幅、一線性反饋位移暫存器個數及複數中心頻率,位元流傳送模組與參數產生器電性連接。其中位元流傳送模組包含一頻移鍵調變器、一增益調整器、虛擬隨機序列產生器、一頻率合成器及一合成模組,頻移鍵調變器與參數產生器及上述位元流電性連接,用以接收位元時間長度及調變因子,並產生一頻移鍵訊號,增益調整器與頻移鍵調變器及參數產生器電性連接,用以接收頻移鍵訊號及子頻帶振幅,並調整頻移鍵訊號的振幅為子頻帶振幅而產生一增益頻移鍵訊號,虛擬隨機序列產生器與參數產生器電性連接,用以接收線性反饋位移暫存器個數,並產生適用之一虛擬隨機序列,頻率合成器與虛擬隨機序列產生器及參數產生器電性連接,用以接收虛擬隨機序列及些中心頻率,並產生一跳頻頻率,合成模組與增益調整器及頻率合成器電性連接,用以將增益頻移鍵訊號與跳頻頻率合成為一位元流傳送訊號。According to still another embodiment of the present invention, the perceptual frequency hopping transmitter is configured to transmit at least one bit stream, including a perceptual engine, a parameter generator, and One less stream transmission module, the perceptual engine is configured to detect at least one sub-band that is not occupied, the parameter generator receives the sub-band detected by the perceptual engine, and the parameter generator is configured to generate a one-bit time length, one The modulation factor, a sub-band amplitude, a linear feedback displacement register number and a complex center frequency, and the bit stream transmission module is electrically connected to the parameter generator. The bit stream transfer module comprises a frequency shift key modulator, a gain adjuster, a virtual random sequence generator, a frequency synthesizer and a synthesis module, a frequency shift key modulator and a parameter generator and the above bits a galvanic connection for receiving a bit time length and a modulation factor, and generating a frequency shift key signal, the gain adjuster being electrically connected to the frequency shift key modulator and the parameter generator for receiving the frequency shift key Signal and sub-band amplitude, and adjusting the amplitude of the frequency shift key signal to the sub-band amplitude to generate a gain frequency shift key signal, and the virtual random sequence generator is electrically connected to the parameter generator for receiving the linear feedback shift register And generating a virtual random sequence, the frequency synthesizer is electrically connected to the virtual random sequence generator and the parameter generator for receiving the virtual random sequence and the center frequencies, and generating a frequency hopping frequency, the synthesis module and The gain adjuster and the frequency synthesizer are electrically connected to synthesize the gain frequency shift key signal and the frequency hopping frequency into a one-bit stream transmission signal.

依據上述感知跳頻傳送器,其中頻移鍵調變器可為一位元頻移鍵調變器,而合成模組可為一相乘模組。其中上述感知跳頻傳送器更可包含複數使用者模組、複數使用者模組及一總括模組,各使用者模組與感知引擎電性連接,各使用者模組包含一參數產生器及複數個上述位元流傳送模組,預總括模組電性連接各使用者模組之一位元流 傳送模組,並將那些位元流傳送訊號整合為一預總括訊號,總括模組與上述預總括模組電性連接,並將那些預總括訊號整合為一傳送訊號。其中預總括模組及總括模組各可為一相加模組。According to the above-mentioned perceptual frequency hopping transmitter, wherein the frequency shift key modulator can be a one-bit frequency shift key modulator, and the synthesis module can be a multiplication module. The above-mentioned perceptual frequency hopping transmitter may further comprise a plurality of user modules, a plurality of user modules and a squaring module, wherein each user module is electrically connected to the perceptual engine, and each user module comprises a parameter generator and a plurality of the above-mentioned bit stream transfer modules, wherein the pre-summary module is electrically connected to one bit stream of each user module The transmission module integrates the bit stream transmission signals into a pre-summary signal, and the summary module is electrically connected to the pre-total module and integrates the pre-summary signals into a transmission signal. The pre-integrated module and the collective module can each be an add-on module.

S110、S120、S131、S132、S140、S141、S142、S143、S144、S145、S151、S152、S160‧‧‧步驟Steps S110, S120, S131, S132, S140, S141, S142, S143, S144, S145, S151, S152, S160‧‧

101‧‧‧感知引擎101‧‧‧Perception Engine

200‧‧‧參數產生器200‧‧‧ parameter generator

300‧‧‧位元流傳送模組300‧‧‧ bit stream transfer module

310‧‧‧頻移鍵調變器310‧‧‧Frequency shift key modulator

320‧‧‧增益調整器320‧‧‧Gain adjuster

330‧‧‧虛擬隨機序列產生器330‧‧‧Virtual Random Sequence Generator

340‧‧‧頻率合成器340‧‧‧ frequency synthesizer

350‧‧‧合成模組350‧‧‧Synthesis module

400‧‧‧使用者模組400‧‧‧User Module

500‧‧‧預總括模組500‧‧‧Pre-synthesis module

600‧‧‧總括模組600‧‧‧General modules

A1 、AC ‧‧‧子頻帶振幅A 1 , A C ‧‧‧ subband amplitude

B1 、B2 ‧‧‧占用頻帶寬B 1 , B 2 ‧‧‧ occupied frequency bandwidth

C1 、C2 、CC ‧‧‧子頻帶C 1 , C 2 , C C ‧ ‧ sub-band

f 1 f 2 f C ‧‧‧各子頻帶的頻率槽的中心頻率集合 f 1 , f 2 , f C ‧‧‧ center frequency set of frequency bins for each sub-band

f1 ’、f2 ’、fS ’‧‧‧習知技術的頻率槽的中心頻率f 1 ', f 2 ', f S '‧‧‧ the center frequency of the frequency bin of the prior art

f11 、f12 、f1N1 ‧‧‧子頻帶C1 的頻率槽的中心頻率f 11 , f 12 , f 1N1 ‧‧‧ center frequency of the frequency bin of the sub-band C 1

fhigh1 ‧‧‧占用頻帶區G1 的最高頻f high1 ‧‧‧The highest frequency of the occupied band area G 1

flow1 ‧‧‧占用頻帶區G1 的最低頻f low1 ‧‧‧The lowest frequency of the occupied band area G 1

fend ‧‧‧終頻率F end ‧‧‧ final frequency

fstart ‧‧‧始頻率f start ‧‧‧start frequency

G1 、G2 ‧‧‧占用頻帶區G 1 , G 2 ‧‧‧ occupied band

W1 、W2 、WC ‧‧‧子頻帶寬W 1 , W 2 , W C ‧‧‧ subband bandwidth

W1 ’、W2 ’、Wn ’‧‧‧習知技術的頻率槽寬Frequency slot width of conventional techniques of W 1 ', W 2 ', W n '‧‧

WT ‧‧‧頻帶頻寬W T ‧‧‧Band bandwidth

S‧‧‧習知技術的頻率槽數量Number of frequency slots for S‧‧‧ known technology

s11 、s12 、s1N1 ‧‧‧子頻帶C1 的頻率槽s 11 , s 12 , s 1N1 ‧‧ ‧ frequency bin of sub-band C 1

第1圖係繪示傳統的感知頻譜分割分式示意圖。The first figure shows a schematic diagram of a conventional perceptual spectrum division.

第2A圖係繪示依照本發明一實施方式的一種感知跳頻系統的頻譜劃分方法的示意圖。FIG. 2A is a schematic diagram showing a spectrum division method of a perceptual frequency hopping system according to an embodiment of the present invention.

第2B圖係繪示第2A圖的一子頻帶的各頻率槽的示意圖。Figure 2B is a schematic diagram showing the frequency bins of a sub-band of Figure 2A.

第3A圖係繪示依照本發明又一實施方式的一種感知跳頻系統的參數決定方法的流程圖。FIG. 3A is a flow chart showing a method for determining a parameter of a perceptual frequency hopping system according to still another embodiment of the present invention.

第3B圖係繪示第3A圖的步驟S640的流程圖。Fig. 3B is a flow chart showing the step S640 of Fig. 3A.

第4圖係繪示依照本發明另一實施方式的一種感知跳頻傳送器的方塊圖。4 is a block diagram of a perceptual frequency hopping transmitter in accordance with another embodiment of the present invention.

第5圖係繪示依照本發明一實施方式的感知跳頻系統於三種情境下,當其它系統的功率頻譜密度等於10-13(Watt/Hz)時,與傳統的跳頻碼分多址(FH-CDMA)的位元錯誤率(BER)比較圖。FIG. 5 is a diagram showing a method for detecting a frequency hopping system according to an embodiment of the present invention. In the three scenarios, when the power spectral density of other systems is equal to 10-13 (Watt/Hz), the conventional frequency hopping code division multiple access ( Bit error rate (BER) comparison chart for FH-CDMA).

請參照第2A圖及第2B圖,第2A圖繪示依照本發 明一實施方式的一種感知跳頻系統的頻譜劃分方法的示意圖,第2B圖繪示第2A圖的子頻帶C1 的各頻率槽的示意圖。上述頻譜劃分方法包含偵測一頻帶中已被占用的至占用頻帶區,如占用頻帶區G1 及占用頻帶區G2 等,其中占用頻帶區G1 的最高頻為fhigh1 ,占用頻帶區G1 的最低頻為flow1 ,G1 自最高頻fhigh1 至最低頻flow1 具有一占用頻帶寬B1 ,而類似地,占用頻帶區G2 具有一占用頻帶寬B2 ,其中頻帶從始頻率fstart 至終頻率fend 的頻寬為WTReferring to FIG. 2A and FIG. 2B , FIG. 2A is a schematic diagram showing a spectrum division method of a perceptual frequency hopping system according to an embodiment of the present invention, and FIG. 2B is a diagram showing each frequency of the sub-band C 1 of FIG. 2A . Schematic diagram of the trough. The method for dividing the spectrum includes detecting the occupied frequency band area in a frequency band, such as the occupied frequency band area G 1 and the occupied frequency band area G 2 , wherein the highest frequency of the occupied frequency band area G 1 is f high1 , and the occupied frequency band area G the most low-frequency 1 is f low1, G 1 from the highest frequency f high1 to the lowest frequency f low1 having an occupied bandwidth B 1, and similarly, the occupied band region G 2 having an occupied frequency band B 2, wherein the frequency band from a start frequency The bandwidth from f start to the final frequency f end is W T .

接著劃分頻帶中不屬於上述占用頻帶區G1及G2等的部分為複數子頻帶,如子頻帶C1 、子頻帶C2 至子頻帶CC ,而子頻帶C1 的頻寬為子頻帶寬W1 ,而子頻帶寬W1 係自頻帶頻寬WT 的始頻率fstart 至占用頻帶區G1 的最低頻flow1 ,子頻帶C2 的頻寬為子頻帶寬W2 ,子頻帶寬W2 係自占用頻帶區G1 的最高頻為fhigh1 至占用頻帶區G2 的最低頻,依此類推,子頻帶CC 的頻寬為子頻帶寬WC 。並劃分各子頻帶C1 、C2 至CC 各為複數頻率槽,如劃分子頻帶C1 為頻率槽s11 、頻率槽s12 至頻率槽s1N1 ,這些頻率槽用以跳頻。其中各子頻帶的頻率槽可分別具有一頻移鍵訊號振幅,且每一子頻帶中的頻率槽的頻移鍵訊號振幅皆相同,但不同子頻帶可有不同的頻移鍵訊號振幅,如子頻帶C1 的各頻率槽s11 、s12 至s1N1 都具有頻移鍵訊號振幅A1 ,子頻帶C2 的頻率槽都具有頻移鍵訊號振幅A2 ,子頻帶CC 的頻率槽都具有頻移鍵訊號振幅AC ,而頻移鍵訊號振幅A1 與頻移鍵訊號振幅A2 的可大小不同。Then, the portion of the divided frequency band that does not belong to the occupied frequency band regions G1 and G2 and the like is a complex sub-band, such as the sub-band C 1 , the sub-band C 2 to the sub-band C C , and the bandwidth of the sub-band C 1 is the sub-band bandwidth W 1 , and the sub-frequency bandwidth W 1 is from the start frequency f start of the band bandwidth W T to the lowest frequency f low1 of the occupied band region G 1 , and the bandwidth of the sub-band C 2 is the sub-band bandwidth W 2 , the sub-band bandwidth W 2 system from the highest frequency occupied band region G 1 G 2 is the lowest frequency to f high1 area occupied band, and so on, C C subband bandwidth is sub-bandwidth W C. The sub-bands C 1 and C 2 to C C are each divided into a plurality of frequency slots. For example, the divided sub-band C 1 is a frequency slot s 11 and a frequency slot s 12 to a frequency slot s 1N1 . These frequency slots are used for frequency hopping. The frequency slots of each sub-band may have a frequency shift key signal amplitude, and the frequency shift key signals of the frequency slots in each sub-band have the same amplitude, but different sub-bands may have different frequency shift key signal amplitudes, such as Each frequency slot s 11 , s 12 to s 1N1 of the sub-band C 1 has a frequency shift key amplitude A 1 , and the frequency slots of the sub-band C 2 both have a frequency shift key amplitude A 2 and a frequency slot of the sub-band C C . Both have a frequency shift key amplitude A C , and the frequency shift key amplitude A 1 and the frequency shift key amplitude A 2 can be different in size.

其中劃分各子頻帶為複數頻率槽可採用均等分配各子頻帶中各頻率槽的一中心頻率,例如在子頻帶C1 中,均等分配子頻帶C1 的子頻帶寬W1 至N1個頻率槽s11 、s12 至s1N1 ,則各頻率槽s11 、s12 至s1N1 的中心頻率各為f11 、f12 至f1N1 ,使得各中心頻率f11 、f12 至f1N1 均等劃分子頻帶寬W1 ,而以中心頻率f 1 代表子頻帶C1 的各中心頻率f11 、f12 至f1N1 的集合。依此類推,子頻帶C2 至CC 劃分頻率槽的方式類同上述子頻帶C1 的頻率槽劃分方式,在各子頻帶中皆均等分配各頻率槽的頻寬,因此中心頻率f 2 代表子頻帶C2 的各頻率槽的中心頻率的集合,f C 代表子頻帶CC 的各頻率槽的中心頻率的集合。又為了維持整個跳頻系統的功率固定,當有任一頻率槽被其它系統占據頻寬時,則將被其它系統占據的頻率槽的功率分配到鄰近的頻率槽,因此不同子頻帶的頻率槽訊號功率可以不同,而可供跳頻的頻率槽的數量總和也會改變,又感知跳頻系統用以傳送位元流,所以每一個欲傳送的位元流的跳頻序列以及週期也隨著有頻率槽被其它系統占據而改變。Wherein each sub-band is divided into a plurality of frequency bins can be uniformly allocated a center frequency of each frequency bins in each subband, subband e.g. C 1, the sub-sub-band equal distribution of bandwidth W is a C 1 to N1 frequency bins s 11 , s 12 to s 1N1 , the center frequencies of the respective frequency slots s 11 , s 12 to s 1N1 are f 11 , f 12 to f 1N1 , respectively, so that the center frequencies f 11 , f 12 to f 1N1 are equally divided. The frequency bandwidth W 1 represents a set of center frequencies f 11 , f 12 to f 1N1 of the sub-band C 1 at a center frequency f 1 . Similarly, the manner in which the sub-bands C 2 to C C divide the frequency slots is similar to the frequency slot division manner of the sub-band C 1 described above, and the bandwidth of each frequency slot is equally distributed in each sub-band, so the center frequency f 2 represents A set of center frequencies of the respective frequency bins of the sub-band C 2 , and f C represents a set of center frequencies of the respective frequency bins of the sub-band C C . In order to maintain the power of the entire frequency hopping system, when any frequency slot is occupied by other systems, the power of the frequency slots occupied by other systems is allocated to the adjacent frequency slots, so the frequency slots of different subbands The signal power can be different, and the sum of the number of frequency slots available for frequency hopping also changes, and the frequency hopping system is sensed to transmit the bit stream, so the hopping sequence and period of each bit stream to be transmitted also The frequency slots are changed by other systems.

請參考上述並參照第3A圖及第3B圖,第3A圖繪示依照本發明又一實施方式的一種感知跳頻系統的參數決定方法的流程圖,第3B圖繪示第3A圖中步驟S640的流程圖。上述感知跳頻系統係用以傳送位元流,而上述參數決定方法包含以下步驟。Please refer to FIG. 3A and FIG. 3B , FIG. 3A is a flowchart of a method for determining a parameter of a frequency hopping system according to another embodiment of the present invention, and FIG. 3B is a diagram of step S640 of FIG. 3A . Flow chart. The above-mentioned perceptual frequency hopping system is used to transmit a bit stream, and the above parameter determination method comprises the following steps.

步驟S110確認一頻寬為WT 之頻帶的一始頻率fstart 及一終頻率fendStep S110 confirms a start frequency f start and a final frequency f end of a frequency band having a bandwidth W T .

步驟S120確認頻帶頻寬WT 中已被占用的至少一占用頻帶區G ,並劃分頻帶中不屬於前述占用頻帶區G 的部分為複數子頻帶C ,其中各占用頻帶區G|G| ,具有一占用頻帶寬B|G|Step S120: confirm at least one occupied frequency band area G that has been occupied in the bandwidth of the frequency band W T , and the part of the divided frequency band that does not belong to the occupied frequency band area G is a plurality of sub-bands C , wherein each occupied frequency band area G |G| has An occupied frequency bandwidth B |G| .

步驟S131計算各占用頻帶區G|G| 的一占用頻帶寬B|G|Step S131 is calculated for each region occupied band G | G | of the frequency band occupied by a B | G |.

步驟S132計算各子頻帶Cc 的一子頻帶寬Wc ,其中c=1,...,C,C代表子頻帶的個數。Step S132 calculates a sub-frequency bandwidth W c of each sub-band C c , where c = 1, ..., C, C represents the number of sub-bands.

步驟S140對於每一子頻帶Cc ,計算位元時間長度T、調變因子hc 、子頻帶振幅Ac 及頻率槽數量Nc ,其中c=1,…,C,C代表子頻帶的個數。請參照第3B圖,步驟S640包含以下步驟S141至步驟S145。Step S140 calculates, for each sub-band C c , a bit time length T, a modulation factor h c , a sub-band amplitude A c , and a number of frequency slots N c , where c=1, . . . , C, C represents a sub-band number. Referring to FIG. 3B, step S640 includes the following steps S141 to S145.

步驟S141根據頻帶WT 之一同調時間△t、一同調頻寬△f及一調變因子h,選擇一位元時間長度T,位元時間長度T的條件式如下: 其中第一次計算位元時間長度T時,可預設調變因子h為1。其中不同位元流的位元時間長度皆相同。Step S141 selects a bit time length T according to one of the frequency band W T coherent time Δt, the same frequency modulation width Δf, and a modulation factor h, and the conditional expression of the bit time length T is as follows: When the length of the bit time T is calculated for the first time, the modulation factor h can be preset to be 1. The bit lengths of different bit streams are the same.

或是對於正交的連續相位頻移鍵控(CPFSK)而言,h=1,則 Or for orthogonal continuous phase frequency shift keying (CPFSK), h=1, then

步驟S142根據各子頻帶寬Wc 及位元時間長度T, 決定各子頻帶Cc 之一頻率槽數量Nc ,其中,c=1,...,C。Step S142 determines the number of frequency slots N c of each sub-band C c according to each sub-band bandwidth W c and the bit time length T, wherein , c=1,...,C.

其中對於一實數a,符號 a 代表不大於a的最大整數。因此取可使尚未被使用的子頻帶獲得最大利用率。Where for a real number a, the symbol a Represents the largest integer not greater than a. So take The sub-band that has not been used can be maximized.

步驟S143根據各子頻帶寬WC 、位元時間長度T及各子頻帶Cc 之頻率槽數量Nc ,決定各子頻帶Cc 之一調變因子hc ,其中,c=1,...,C。Step S143 The respective sub-bandwidth W C, and each bit time length T of the frequency sub-band number of slots C c N c, determines one of each sub-band modulation factor C c h c, where , c=1,...,C.

步驟S144均分各子頻帶Cc 為相應各子頻帶之頻率槽數量Nc 之複數頻率槽,並指定各頻率槽的中心頻率f c ,其中c=1,...,C。其中各頻率槽的中心頻率係均勻分配於各子頻帶,因此每一頻率槽的頻寬為Wc /Nc ,c=1,2,3,...,C,C代表子頻帶的個數,Wc 為子頻帶寬,Nc 為子頻帶的頻率槽數量,中心頻率f c 為子頻帶的頻率槽的中心頻率的集合。Step S144 divides each sub-band C c into a complex frequency slot of the number of frequency slots N c of the respective sub-bands, and specifies a center frequency f c of each frequency slot, where c=1, . . . , C. The center frequency of each frequency slot is evenly distributed in each sub-band, so the bandwidth of each frequency slot is W c /N c , c=1, 2, 3, ..., C, C represents the sub-band The number, W c is the sub-band bandwidth, N c is the number of frequency slots of the sub-band, and the center frequency f c is the set of the center frequencies of the frequency slots of the sub-band.

步驟S145根據占用頻帶寬B|G| 、位元時間長度T及頻率槽數量Nc ,決定各子頻帶Cc 之一子頻帶振幅Ac ,其中,c =2,...,C -1;,c =1,CThe step S145 occupied bandwidth B | G |, the length of the number of bits of time slot and frequency T N c, C c determined for each one of the sub-band subband amplitude A c, wherein , c = 2,..., C -1; , c =1, C .

其中子頻帶振幅Ac 可作為如第1圖的頻移鍵訊號振幅Ac ,其中c=1,...,C,,C代表子頻帶的個數。其中A’為一預設子頻帶振幅,即上述頻帶操作於一般非感知跳頻系統時的預設頻帶振幅,一般非感知跳頻系統可採用例如非感知的跳頻碼分多址(FH-CDMA)系統等。The sub-band amplitude A c can be used as the frequency shift key signal amplitude A c as shown in FIG. 1 , where c=1, . . . , C, and C represent the number of sub-bands. Wherein A' is a preset sub-band amplitude, that is, a preset frequency band amplitude when the above-mentioned frequency band operates in a general non-sense frequency hopping system, and a general non-sense frequency hopping system may employ, for example, non-perceptive frequency hopping code division multiple access (FH- CDMA) systems, etc.

其中在衰落通道(fading channels)中,傳送器亦可根據原始頻譜資源分配的通道狀態而採用傳送功率控制(transmit power control,TPC)以達到優化位元錯誤率(BER),本實施方式採用同一子頻帶中頻率槽的功率分配固定,使得整體系統更為簡單。也因此當有頻率槽被其它系統占據使用時,則將被占據的頻率槽的功率重新分配到其他子頻帶中,例如將被占據的頻率槽的功率平均分配到相鄰的可用的二子頻帶中,則可有如下關係式:,c =2,...C -1, 上式中FH-CDMA的頻率槽的頻寬為4/T,所以可得前述的,c =2,...,C -1。In the fading channels, the transmitter may also adopt a transmit power control (TPC) according to the channel state of the original spectrum resource allocation to achieve an optimized bit error rate (BER). This embodiment adopts the same The power allocation of the frequency slots in the sub-band is fixed, making the overall system simpler. Therefore, when a frequency slot is occupied by other systems, the power of the occupied frequency slot is reallocated into other sub-bands, for example, the power of the occupied frequency slot is evenly distributed to the adjacent available two sub-bands. , you can have the following relationship: , c = 2,... C -1, the frequency slot of the FH-CDMA frequency slot in the above formula is 4/T, so the aforementioned , c = 2,..., C -1.

又對於第1個頻率槽(c=1)及第C個頻率槽(c=C)而言,被重新分配的功率只能分配到一個相鄰的子頻帶,因此得上式的,c =1,CFor the first frequency slot (c=1) and the Cth frequency slot (c=C), the redistributed power can only be allocated to one adjacent sub-band, so , c =1, C .

步驟S151預設一最大振幅Amax ,若任一子頻帶Cc 之子頻帶振幅Ac 大於最大振幅Amax ,則削減其子頻帶振幅Ac 至最大振幅Amax ,其中c=1,...,C,,C代表子頻帶的個數。Step S151 presets a maximum amplitude A max . If the sub-band amplitude A c of any sub-band C c is greater than the maximum amplitude A max , the sub-band amplitude A c to the maximum amplitude A max is reduced, where c=1,... , C, and C represent the number of sub-bands.

步驟S152根據前述子頻帶C 之頻率槽數量Nc 之總和L,決定複數個線性反饋位移暫存器(linear feedback shift register,LFSR)之數量N,並隨機指定任一初始種子ψ1 至各位元流,其中l=1,...,L,而l可預設為與時間t相關(t>0),N的計算式如下: Step S152 determines the number N of a plurality of linear feedback shift registers (LFSRs) according to the total sum L of the number of frequency slots N c of the sub-band C , and randomly assigns any initial seed ψ 1 to each element. The stream, where l=1,...,L, and l can be preset to be related to time t (t>0), and the calculation formula of N is as follows:

其中由於要使得第k個使用者的Mk個位元流避免在同一時刻跳頻碰撞,因此需滿足 其中L代表所有頻率槽的數量總和,即可用頻率槽總數,跳頻序列m可以縮短至不小於可用頻率槽總數L即可,所以至多L個位元流可獲得適當配置,而此縮短後的跳頻序列可以一集合ψ 1 表示(ψ1 ,ψ2 ,...,ψL ),其中,l=1,2,...,L;其中對於一實數a, a 表示實數a的整數部分,T為位元時間長度,t為時間。In order to avoid the Mk bit stream of the kth user from hopping collision at the same time, it needs to be satisfied. Where L represents the sum of the number of all frequency slots, that is, the total number of frequency slots can be used, and the frequency hopping sequence m can be shortened to not less than the total number of available frequency slots L, so that at most L bit streams can be properly configured, and the shortened The hopping sequence can be represented by a set ψ 1 1 , ψ 2 ,...,ψ L ), where , l=1, 2,..., L; where for a real number a, a Represents the integer part of the real number a, T is the length of the bit time, and t is the time.

步驟S160回傳位元時間長度T、調變因子hc 、子頻帶振幅Ac 、線性反饋位移暫存器(LFSR)之數量N及頻率槽數量Nc ,其中c=1,...,C,C代表子頻帶的個數。Step S160 returns the bit length T, the modulation factor h c , the sub-band amplitude A c , the number N of the linear feedback shift register (LFSR), and the number of frequency slots N c , where c=1,..., C, C represents the number of subbands.

因此可知,對於每一位元流,位元時間長度T都是固定的,但子頻帶振幅Ac 、調變因子hc 及跳頻序列則是變動的。Therefore, it can be seen that for each bit stream, the bit time length T is fixed, but the sub-band amplitude A c , the modulation factor h c and the hopping sequence are varied.

請參照第4圖並參考上述,第4圖係繪示依照本發明另一實施方式的一種感知跳頻傳送器的方塊圖,本實施方式可應用於FH-CDMA的下鏈的傳送器,此感知跳頻傳送器用以產生各傳送參數並傳送複數位元流dk,1 [n]至dk,Mk [n],其中k表示第k個使用者,Mk表示第k個使用者欲傳送Mk個位元流,其中位元指標n為,其中t為時間,T為位元時間長度,且由前式可知位元指標n與時間t可互為表示。Please refer to FIG. 4 and refer to the above. FIG. 4 is a block diagram of a perceptual frequency hopping transmitter according to another embodiment of the present invention. The present embodiment can be applied to a transmitter of a FH-CDMA downlink. The perceptual frequency hopping transmitter is configured to generate each transmission parameter and transmit a complex bit stream d k,1 [n] to d k, Mk [n], where k represents the kth user, and Mk represents the kth user to transmit Mk bit stream, where the bit index n is Where t is time and T is the length of the bit time, and it can be seen from the former that the bit index n and the time t can be mutually represented.

此感知跳頻傳送器包含一感知引擎101、複數使用者模組400、一預總括模組500及一總括模組600。感知引擎101用以偵測未被占用的至少一子頻帶,各使用者模組400代表第k個使用者,各使用者模組400與感知引擎101電性連接。各使用者模組400包含一參數產生器200及複數個位元流傳送模組300,參數產生器200接收感知引擎101所偵測得之子頻帶,且參數產生器200用以產生一位元時間長度T、一調變因子hc 、一子頻帶振幅Ac 、一線性反饋位移暫存器(LFSR)個數N及複數中心頻率f c 。位元流 傳送模組300與參數產生器200電性連接,其中位元流傳送模組300包含一頻移鍵調變器310、一增益調整器320、虛擬隨機序列產生器330、一頻率合成器340及一合成模組350。The perceptual frequency hopping transmitter includes a perceptual engine 101, a plurality of user modules 400, a pre-collective module 500, and a collective module 600. The sensing engine 101 is configured to detect at least one sub-band that is not occupied. Each user module 400 represents a k-th user, and each user module 400 is electrically connected to the sensing engine 101. Each user module 400 includes a parameter generator 200 and a plurality of bit stream transfer modules 300. The parameter generator 200 receives the sub-band detected by the perceptual engine 101, and the parameter generator 200 generates a bit time. The length T, a modulation factor h c , a sub-band amplitude A c , a linear feedback shift register (LFSR) number N, and a complex center frequency f c . The bit stream transfer module 300 is electrically connected to the parameter generator 200. The bit stream transfer module 300 includes a frequency shift key modulator 310, a gain adjuster 320, a virtual random sequence generator 330, and a frequency synthesis. The device 340 and a synthesis module 350.

其中頻移鍵調變器310與參數產生器200及上述位元流dk,Mk [n]電性連接,用以接收位元時間長度T及調變因子hc ,並產生一頻移鍵訊號。增益調整器320與頻移鍵調變器310及參數產生器200電性連接,用以接收頻移鍵訊號及子頻帶振幅Ak,1 [n],並調整頻移鍵訊號的振幅為子頻帶振幅而產生一增益頻移鍵訊號。虛擬隨機序列產生器330與參數產生器200電性連接,用以接收線性反饋位移暫存器個數N,並產生適用之一虛擬隨機序列(PN sequence)。頻率合成器340與虛擬隨機序列產生器330及參數產生器2000電性連接,用以接收虛擬隨機序列(PN sequence)及那些中心頻率f c ,並產生一跳頻頻率fk,1 [n]。合成模組350與增益調整器320及頻率合成器340電性連接,用以將增益頻移鍵訊號與跳頻頻率fk,1 [n]合成為一位元流傳送訊號sk,1 (t)。其中頻移鍵調變器310可為一位元頻移鍵調變器(FSK modulator),而合成模組350可為一相乘模組。The frequency shift key modulator 310 is electrically connected to the parameter generator 200 and the bit stream d k, Mk [n] for receiving the bit time length T and the modulation factor h c and generating a frequency shift key. Signal. The gain adjuster 320 is electrically connected to the frequency shift key modulator 310 and the parameter generator 200 for receiving the frequency shift key signal and the sub-band amplitude A k,1 [n], and adjusting the amplitude of the frequency shift key signal. The band amplitude produces a gain frequency shift key signal. The virtual random sequence generator 330 is electrically connected to the parameter generator 200 for receiving the number N of linear feedback shift registers and generating a suitable PN sequence. The frequency synthesizer 340 is electrically connected to the virtual random sequence generator 330 and the parameter generator 2000 for receiving a virtual random sequence (PN sequence) and those center frequencies f c and generating a frequency hopping frequency f k,1 [n] . The synthesizing module 350 is electrically connected to the gain adjuster 320 and the frequency synthesizer 340 for synthesizing the gain frequency shift key signal and the frequency hopping frequency f k,1 [n] into a one-bit stream transmission signal s k,1 ( t). The frequency shift key modulator 310 can be a one-bit frequency shift key modulator (FSK modulator), and the synthesis module 350 can be a multiplication module.

預總括模組500電性連接各使用者模組400之一位元流傳送模組300,並將那些位元流傳送訊號sk,1 (t)整合為一預總括訊號。總括模組600與上述預總括模組500電性連接,並將那些預總括訊號整合為一傳送訊號s(t)。其中預總括模組及總括模組各可為一相加模組。The pre-assembly module 500 is electrically connected to one bit stream transfer module 300 of each user module 400, and integrates those bit stream transfer signals s k,1 (t) into a pre-summary signal. The collective module 600 is electrically connected to the pre-summary module 500, and integrates the pre-summary signals into a transmission signal s(t). The pre-integrated module and the collective module can each be an add-on module.

其中參數產生器200對於第m個位元流的第n個位元產生的調變因子可表示如下hk,m [n]=2△fk,m [n]T,其中△fk,m 表示第k個使用者的第m個位元流的頻率偏移(frequency deviation)。所以瞬時頻率finst [n]可表示為finst [n]=fk,m [n]+dk,m [n]△fk,m [n],其中二元資料dk,m [n]可為「+1」或「-1」,而為「+1」或「-1」的機率相同。The modulation factor generated by the parameter generator 200 for the nth bit of the mth bit stream may be expressed as follows: h k,m [n]=2Δf k,m [n]T, where Δf k, m represents the frequency deviation of the mth bit stream of the kth user. Therefore, the instantaneous frequency f inst [n] can be expressed as f inst [n]=f k,m [n]+d k,m [n]Δf k,m [n], where the binary data d k,m [ n] can be "+1" or "-1", and the probability of "+1" or "-1" is the same.

因此再結合n與t的關係式 可得: 其中表示載波振幅,即子頻帶振幅; 而ψk,m (t)定義如下: 因此,傳送訊號s(t)為 Therefore, the relationship between n and t is combined. Available: among them Indicates the carrier amplitude, ie the subband amplitude; and ψ k,m (t) is defined as follows: Therefore, the transmitted signal s(t) is

由上可知依照本發明之實施方式,對於每一子頻帶 的子頻帶振幅及調變因子都是一致的,而對於一在C個子頻帶間跳頻的位元流而言,在第c個子頻帶暫停的機率如下:,N c >0。It can be seen from the above that in accordance with an embodiment of the present invention, the sub-band amplitude and the modulation factor for each sub-band are consistent, and for a bit stream that hops between C sub-bands, the c-th sub-band The probability of suspension is as follows: , N c >0.

而這C個子頻帶的平均位元錯誤率(BER)如下: 其中P e,h 表示在調變因子h下的CPFSK信號的機率。The average bit error rate (BER) of these C subbands is as follows: Where P e,h represents the probability of the CPFSK signal at the modulation factor h.

請參第5圖,其繪示依照本發明一實施方式的感知跳頻系統與傳統的跳頻碼分多址(FH-CDMA)於三種情境下的位元錯誤率(BER)比較圖,假設其它現存的系統的功率頻譜密度(power spectral density,PSD)為10-13 (Watt/Hz)。透過在三個不同的例子(情境1、情境2及情境3)中,比較依照本發明的感知跳頻系統與傳統跳頻系統的位元錯誤率(BER),可看出依照本發明的感知跳頻系統有更好的位元錯誤率。Please refer to FIG. 5, which illustrates a bit error rate (BER) comparison diagram of a perceptual frequency hopping system and a conventional frequency hopping code division multiple access (FH-CDMA) in three scenarios according to an embodiment of the present invention. Other existing systems have a power spectral density (PSD) of 10 -13 (Watt/Hz). By comparing the bit error rate (BER) of a perceptual frequency hopping system and a conventional frequency hopping system in accordance with the present invention in three different examples (Scenario 1, Context 2, and Scenario 3), the perception in accordance with the present invention can be seen. The frequency hopping system has a better bit error rate.

其中情境1、情境2、情境3及其依據上述所計算出的各個參數表列如下: The situation 1, the situation 2, the situation 3 and the various parameters calculated according to the above are listed as follows:

當設定總共可用的頻帶頻寬為5MHz時,相關的數據如上表。情境1因為沒有其它的系統共存,所以我們的感知跳頻系統與傳統跳頻系統的位元錯誤率表現是一樣的。但當有其它的系統共存時(情境2、情境3),則依照本發明的感知跳頻系統都比傳統跳頻系統有更好的位元錯誤率。其中在情境2中,依照本發明的感知跳頻系統比在情境3中有更好的位元錯誤率。When the total available band width is set to 5 MHz, the relevant data is as shown in the above table. Since context 1 has no other systems coexisting, our perceptual frequency hopping system performs the same as the bit error rate of the traditional frequency hopping system. However, when other systems coexist (Scenario 2, Situation 3), the perceptual frequency hopping system according to the present invention has a better bit error rate than the conventional frequency hopping system. Where in scenario 2, the perceptual frequency hopping system in accordance with the present invention has a better bit error rate than in context 3.

由上述本發明實施方式可知,應用本發明具有下列優點。It will be apparent from the above-described embodiments of the present invention that the application of the present invention has the following advantages.

1.完全保護主要系統(PS),可同時與多個舊有系統訊號共存,但不與舊有系統訊號產生干擾。1. Full protection of the main system (PS), which can coexist with multiple legacy system signals at the same time, but does not interfere with the old system signals.

2.完全利用頻譜上其他零星的可用頻譜,達到優良的頻譜利用率。2. Fully utilize other sporadic available spectrum on the spectrum to achieve excellent spectrum utilization.

3.適應性佳,可不斷調整產生最佳的參數。尤其在舊有系統訊號增加時,仍可良好地保護舊有系統訊號。3. Adaptability, can be continuously adjusted to produce the best parameters. Especially when the old system signal is increased, the old system signal can still be well protected.

4.相較傳統的跳頻系統,應用本發明可有更好的位元錯誤率。4. Compared with the traditional frequency hopping system, the invention can have a better bit error rate.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

A1 、A2 、AC ‧‧‧子頻帶振幅A 1 , A 2 , A C ‧‧‧ subband amplitude

B1 、B2 ‧‧‧占用頻帶寬B 1 , B 2 ‧‧‧ occupied frequency bandwidth

C1 、C2 、CC ‧‧‧子頻帶C 1 , C 2 , C C ‧ ‧ sub-band

G1 、G2 ‧‧‧占用頻帶區G 1 , G 2 ‧‧‧ occupied band

W1 、W2 、WC ‧‧‧子頻帶寬W 1 , W 2 , W C ‧‧‧ subband bandwidth

WT ‧‧‧頻帶W T ‧‧‧ band

f 1 f 2 f C ‧‧‧各子頻帶的頻率槽的中心頻率集合 f 1 , f 2 , f C ‧‧‧ center frequency set of frequency bins for each sub-band

fstart ‧‧‧始頻率f start ‧‧‧start frequency

fend ‧‧‧終頻率F end ‧‧‧ final frequency

fhigh1 ‧‧‧第一占用頻帶區的最高頻f high1 ‧‧‧The highest frequency in the first occupied frequency band

flow1 ‧‧‧第一占用頻帶區的最低頻f low1 ‧‧‧the lowest frequency of the first occupied frequency band

Claims (17)

一種感知跳頻系統的頻譜劃分方法,其包含步驟:偵測一頻帶中已被占用的至少一占用頻帶區;劃分該頻帶中不屬於該占用頻帶區的部分為複數子頻帶;劃分各該子頻帶為複數頻率槽,其中該些頻率槽用以跳頻;計算該些頻率槽的數量總和為一可用頻率槽總數;以及將下一個被占用的該些頻率槽之一者的功率移到相鄰的該些子頻帶,並改變該可用頻率槽總數。 A spectrum division method for a frequency hopping system, comprising the steps of: detecting at least one occupied frequency band region occupied in a frequency band; dividing a portion of the frequency band that does not belong to the occupied frequency band region into a plurality of sub-bands; dividing each of the sub-bands The frequency band is a complex frequency slot, wherein the frequency slots are used for frequency hopping; calculating the sum of the number of frequency slots is a total number of available frequency slots; and shifting the power of one of the next occupied frequency slots to the phase The sub-bands of the neighbors and change the total number of available frequency slots. 如請求項1之感知跳頻系統的頻譜劃分方法,其中各該子頻帶中,該些頻率槽分別具有一頻移鍵訊號振幅而該些頻移鍵訊號振幅大小相同。 The frequency division method of the perceptual frequency hopping system of claim 1, wherein each of the frequency bins has a frequency shift key signal amplitude and the frequency shift key signals have the same amplitude. 如請求項1之感知跳頻系統的頻譜劃分方法,其中劃分各該子頻帶為該些頻率槽的步驟更包含:均等分配各該子頻帶中各該頻率槽的一中心頻率。 The frequency division method of the perceptual frequency hopping system of claim 1, wherein the step of dividing each of the sub-bands into the frequency slots further comprises equally allocating a center frequency of each of the frequency bins in each of the sub-bands. 一種感知跳頻系統的參數決定方法,其包含以下步驟:確認一頻帶之一始頻率及一終頻率;確認該頻帶中已被占用的至少一占用頻帶區,並劃分 該頻帶中不屬於該些占用頻帶區的部分為複數子頻帶,其中各該占用頻帶區具有一占用頻帶寬;計算各該占用頻帶區的該占用頻帶寬;計算各該子頻帶的一子頻帶寬;根據該頻帶之一同調時間及一同調頻寬,選擇一位元時間長度;根據各該子頻帶寬及該位元時間長度,決定各該子頻帶之一頻率槽數量;根據各該子頻帶寬、該位元時間長度及各該子頻帶之該頻率槽數量,決定各該子頻帶之一調變因子;均分各該子頻帶為相應各該子頻帶之該頻率槽數量之複數頻率槽;及根據該占用頻帶寬、該位元時間長度及該頻率槽數量,決定各該子頻帶之一子頻帶振幅。 A parameter determining method for a frequency hopping system, comprising the steps of: confirming a start frequency and a final frequency of a frequency band; confirming at least one occupied frequency band area occupied by the frequency band, and dividing The portion of the frequency band that does not belong to the occupied frequency band region is a plurality of sub-bands, wherein each of the occupied frequency band regions has an occupied frequency bandwidth; calculating the occupied frequency bandwidth of each of the occupied frequency band regions; and calculating a sub-frequency of each of the sub-bands Bandwidth; selecting one bit time length according to one of the frequency band coherence time and the same frequency modulation band; determining the number of frequency slots of each of the subbands according to each of the subband bandwidth and the bit time length; according to each of the subbands The bandwidth, the length of the bit time, and the number of the frequency slots of the sub-band determine a modulation factor of each of the sub-bands; and each of the sub-bands is a complex frequency slot of the number of the frequency slots of the corresponding sub-bands And determining a sub-band amplitude of each of the sub-bands according to the occupied frequency bandwidth, the length of the bit time, and the number of the frequency slots. 如請求項4之感知跳頻系統的參數決定方法,更包含:預設一最大振幅;以及若各該子頻帶之該子頻帶振幅大於該最大振幅,削減該些子頻帶振幅至該最大振幅。 The parameter determining method of the sensing frequency hopping system of claim 4, further comprising: presetting a maximum amplitude; and if the sub-band amplitude of each of the sub-bands is greater than the maximum amplitude, reducing the sub-band amplitudes to the maximum amplitude. 如請求項4之感知跳頻系統的參數決定方法,其中該感知跳頻系統用以傳送複數位元流,該參數決定方法更包含: 根據該些子頻帶之該頻率槽數量之總和,決定複數個線性反饋位移暫存器之數量,該些線性反饋位移暫存器用以產生各異之一虛擬隨機序列對應至每一位元流。 The parameter determining method of the sensing frequency hopping system of claim 4, wherein the sensing frequency hopping system is configured to transmit a complex bit stream, and the parameter determining method further comprises: The number of the plurality of linear feedback shift registers is determined according to the sum of the number of the frequency slots of the sub-bands, and the linear feedback shift registers are used to generate each of the virtual random sequences corresponding to each of the bit streams. 如請求項4之感知跳頻系統的參數決定方法,其中均分各該子頻帶為相應各該子頻帶之該頻率槽數量之複數頻率槽的步驟更包含:設定各該頻率槽之一中心頻率為: 其中c 表示該子頻帶為該些子頻帶之第c 個,f c 為該頻率槽之該中心頻率,W c 為相應該頻率槽之該子頻帶之該子頻帶寬,N c 為相應該頻率槽之該子頻帶之該頻率槽數量。The parameter determining method of the sensing frequency hopping system of claim 4, wherein the step of dividing the sub-bands into the plurality of frequency slots of the frequency slots of the respective sub-bands further comprises: setting a center frequency of each of the frequency slots for: Wherein c represents the sub-band for some of the c-th sub-band, f c the center frequency for the channel frequency, W c is the phase of the sub-grooves should frequency sub-band of the frequency band, N c relative frequency should The number of frequency slots of the subband of the slot. 如請求項4之感知跳頻系統的參數決定方法,其中各該子頻帶之該頻率槽數量為: 其中c 表示該子頻帶為該些子頻帶之第c 個,N c 為該子頻帶之該頻率槽數量,c 表示該子頻帶為該些子頻帶之第c 個,W c 為該子頻帶之該子頻帶寬,T 為該位元時間長度。The method for determining a parameter of the perceptual frequency hopping system of claim 4, wherein the number of the frequency slots of each subband is: Wherein c represents the sub-band for some of the c-th subband, N c the number of sub-bands for frequency bin, c denotes the sub-band for some of the c-th sub-band, W c of that sub-band The sub-band bandwidth, T is the bit length of the bit. 如請求項4之感知跳頻系統的參數決定方法,其中各該子頻帶之該調變因子為: 其中h c 為該子頻帶之該調變因子,c 表示該子頻帶為該些子頻帶之第c 個,N c 為該子頻帶之該頻率槽數量,W c 為該子頻帶之該子頻帶寬,T 為該位元時間長度。The parameter determining method of the perceptual frequency hopping system of claim 4, wherein the modulation factor of each subband is: Wherein H c for sub-band of the modulation factor, c denotes the sub-band for some of the c-th subband, N c the number of frequency bins for the subband, W c for the frequency sub-subbands of Bandwidth, T is the length of time of the bit. 如請求項4之感知跳頻系統的參數決定方法,其中該些子頻帶之該子頻帶振幅為: 其中A c 為一該子頻帶之該子頻帶振幅,c 表示該子頻帶為該些子頻帶之第c 個,C 為該些子頻帶的總數,A’ 為一預設子頻帶振幅,N c 為該子頻帶之該頻率槽數量,B c 為該占用頻帶寬,T 為該位元時間長度。The parameter determining method of the sensing frequency hopping system of claim 4, wherein the sub-band amplitudes of the sub-bands are: and C wherein A is the amplitude of a sub-band of the sub-band, c denotes the sub-band for some of the c-th sub-band, C-band for some of the sub-total, A 'is a predetermined sub-band amplitude, N c for sub-band of the frequency bin number, B c for the occupied bandwidth, T for the bit time length. 如請求項6之感知跳頻系統的參數決定方法,其中該線性反饋位移暫存器個數N 使得 其中C 為該些子頻帶的總數,c 表示該子頻帶為該些子頻帶之第c 個,N c 為該些子頻帶中第c 個子頻帶的該頻率槽數量。The parameter determining method of the sensing frequency hopping system of claim 6, wherein the linear feedback shift register number N makes Wherein the total number of C for some sub-bands, c denotes the sub-band for some of the c-th subband, N c the number of frequency bins for these subbands the c subbands. 一種感知跳頻傳送器,用以傳送至少一位元流,該感知跳頻傳送器包含:一感知引擎,其用以偵測未被占用的至少一子頻帶;一參數產生器,其接收該感知引擎所偵測得之該子頻帶,且該參數產生器用以產生一位元時間長度、一調變因子、一子頻帶振幅、一線性反饋位移暫存器個數及複數中心頻率;及至少一位元流傳送模組,該位元流傳送模組與該參數產生器電性連接,該位元流傳送模組包含:一頻移鍵調變器,其與該參數產生器及該位元流電性連接,用以接收該位元時間長度及該調變因子,並產生一頻移鍵訊號;一增益調整器,其與該頻移鍵調變器及該參數產生器電性連接,用以接收該頻移鍵訊號及該子頻帶振幅,並調整該頻移鍵訊號的振幅為該子頻帶振幅而產生一增益頻移鍵訊號;一虛擬隨機序列產生器,其與該參數產生器電性連接,用以接收該線性反饋位移暫存器個數,並產生適用之一虛擬隨機序列;一頻率合成器,其與該虛擬隨機序列產生器及該參數產生器電性連接,用以接收該虛擬隨機序列及該些中心頻率,並產生一跳頻頻率;及一合成模組,其與該增益調整器及該頻率合成器電性連接,用以將該增益頻移鍵訊號與該跳頻頻 率合成為一位元流傳送訊號。 A perceptual frequency hopping transmitter for transmitting at least one meta-stream, the perceptual hopping transmitter comprising: a perceptual engine for detecting at least one sub-band that is not occupied; and a parameter generator that receives the The sub-band detected by the perceptual engine, and the parameter generator is configured to generate a bit time length, a modulation factor, a sub-band amplitude, a linear feedback shift register number, and a complex center frequency; and at least a bit stream transfer module, the bit stream transfer module is electrically connected to the parameter generator, the bit stream transfer module comprises: a frequency shift key modulator, the parameter generator and the bit a galvanic connection for receiving the bit length and the modulation factor, and generating a frequency shift key signal; a gain adjuster electrically connected to the frequency shift key modulator and the parameter generator Receiving the frequency shift key signal and the amplitude of the sub-band, and adjusting the amplitude of the frequency shift key signal to the amplitude of the sub-band to generate a gain frequency shift key signal; a virtual random sequence generator, which is generated by the parameter Electrical connection for connection The linear feedback shifts the number of registers and generates a virtual random sequence; a frequency synthesizer electrically coupled to the virtual random sequence generator and the parameter generator for receiving the virtual random sequence and the a center frequency and a frequency hopping frequency; and a synthesis module electrically coupled to the gain adjuster and the frequency synthesizer for using the gain frequency shift key signal and the frequency hopping frequency The rate is synthesized into a single stream to transmit signals. 如請求項12之感知跳頻傳送器,其中該頻移鍵調變器為一位元頻移鍵調變器。 The perceptual frequency hopping transmitter of claim 12, wherein the frequency shift key modulator is a one-bit frequency shift key modulator. 如請求項12之感知跳頻傳送器,其中該合成模組為一相乘模組。 The perceptual frequency hopping transmitter of claim 12, wherein the synthesizing module is a multiplying module. 如請求項12之感知跳頻傳送器,若包含複數位元流傳送模組,則感知跳頻傳送器更包含:一總括模組,其與該些位元流傳送模組電性連接,並將該些位元流傳送訊號整合為一傳送訊號。 The perceptual frequency hopping transmitter of the request item 12, if the multi-bit stream transmission module is included, the perceptual frequency hopping transmitter further includes: an omnibus module electrically connected to the bit stream transmission modules, and The bit stream transmission signals are integrated into a transmission signal. 如請求項12之感知跳頻傳送器,更包含:複數使用者模組,各該使用者模組與該感知引擎電性連接,各該使用者模組包含一參數產生器及複數該位元流傳送模組;複數預總括模組,其電性連接各該使用者模組之一該位元流傳送模組,並將該些位元流傳送訊號整合為一預總括訊號;以及一總括模組,其與該些預總括模組電性連接,並將該些預總括訊號整合為一傳送訊號。 The perceptual frequency hopping transmitter of claim 12, further comprising: a plurality of user modules, each of the user modules being electrically connected to the perceptual engine, each user module comprising a parameter generator and a plurality of the bit elements a streaming module; a plurality of pre-integration modules electrically connected to one of the user module and the bit stream transmission module, and integrating the bit stream transmission signals into a pre-summary signal; The module is electrically connected to the pre-summary modules and integrates the pre-summary signals into a transmission signal. 如請求項16之感知跳頻傳送器,其中各該預總括 模組及該總括模組各為一相加模組。 Such as the perceptual frequency hopping transmitter of claim 16, wherein each of the pre-summary The module and the collective module are each an add-on module.
TW102115898A 2013-05-03 2013-05-03 Transmitter and methods for frequency partitioning and parameter determining of cognitive frequency-hopping system TWI506967B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102115898A TWI506967B (en) 2013-05-03 2013-05-03 Transmitter and methods for frequency partitioning and parameter determining of cognitive frequency-hopping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102115898A TWI506967B (en) 2013-05-03 2013-05-03 Transmitter and methods for frequency partitioning and parameter determining of cognitive frequency-hopping system

Publications (2)

Publication Number Publication Date
TW201444302A TW201444302A (en) 2014-11-16
TWI506967B true TWI506967B (en) 2015-11-01

Family

ID=52423469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102115898A TWI506967B (en) 2013-05-03 2013-05-03 Transmitter and methods for frequency partitioning and parameter determining of cognitive frequency-hopping system

Country Status (1)

Country Link
TW (1) TWI506967B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8031618B2 (en) * 2006-10-16 2011-10-04 Stmicroelectronics, Inc. Methods of RF sensing control and dynamic frequency selection control for cognitive radio based dynamic spectrum access network systems-cognitive dynamic frequency hopping
US20110243192A1 (en) * 2010-04-05 2011-10-06 U.S. Government As Represented By The Secretary Of The Army Method and apparatus for tracking a frequency-hopped signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8031618B2 (en) * 2006-10-16 2011-10-04 Stmicroelectronics, Inc. Methods of RF sensing control and dynamic frequency selection control for cognitive radio based dynamic spectrum access network systems-cognitive dynamic frequency hopping
US20110243192A1 (en) * 2010-04-05 2011-10-06 U.S. Government As Represented By The Secretary Of The Army Method and apparatus for tracking a frequency-hopped signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. Zhang, L.-L. Yang, and Y. Zhang,"Fast frequency-hopping dynamic multiple-access for cognitive radios: Noncoherent interference cancellation", 2010 7th International Symposium on Wireless Communication Systems, pp. 238-243, 2010 *
W. Hu, D. Willkomm, M. Abusubaih, J. Gross, G. Vlantis, M. Gerla, and A. Wolisz, "Dynamic frequency hopping communities for efficient IEEE 802.22 operation", IEEE Communications Magazine, pp. 80-87, May, 2007.^&rn^ *

Also Published As

Publication number Publication date
TW201444302A (en) 2014-11-16

Similar Documents

Publication Publication Date Title
JP5204479B2 (en) Method and apparatus for efficiently using spectrum resources
JP4309878B2 (en) Wireless terminal
US8060104B2 (en) Coexistence and incumbent protection in a cognitive radio network
US7502341B2 (en) Multiband mobile communication system and transmitter used therein
US20040114606A1 (en) Bandwidth allocation
US7697624B2 (en) Communication apparatus and communication method utilizing multiple carrier waves for overcoming interference
US20050058153A1 (en) Common signaling method
US20100215077A1 (en) Multi-Band OFDM Communications System
US20020021745A1 (en) Multi-channel-bandwidth frequency-hopping system
JP2002518872A (en) Frequency hopping in bandwidth-on-demand systems
JP2000515698A (en) Short-range wireless communication system and method of use
JPH10513317A (en) Apparatus and method for generating pseudo-random quantities based on radio channel characteristics
EP3481093B1 (en) Super-frame realignment mechanism to enable inter-wireless sensor network communications
US20170257138A1 (en) System and method for generating optimal frequency hopping sequence
TWI506967B (en) Transmitter and methods for frequency partitioning and parameter determining of cognitive frequency-hopping system
US20090060002A1 (en) Adaptive bandwidth, multi-channel digital modulation
Pandi et al. A review on cognitive radio for next generation cellular network and its challenges
Olama et al. Analysis, optimization, and implementation of a hybrid DS/FFH spread-spectrum technique for smart grid communications
CN114244397A (en) Frequency hopping communication device, method, chip, transmitter and storage medium
WO2001052436A1 (en) Dynamic frequency-hopping system
CN107635237B (en) Control channel establishment method in cognitive radio network based on jump stay strategy
Lee et al. Spectral signatures and interference of 802.11 Wi-Fi signals with Barker code spreading
Sughasiny et al. Interference Avoidance Mechanisms in Bluetooth-A Comparative Study
Singh et al. Analysis of energy detection and cyclostationary spectrum sensing techniques in cognitive radio
Kushwah et al. A review on cooperative spectrum sensing using cyclostationary feature detection for cognitive radio networks

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees