TWI506798B - High voltage resistance semiconductor device and method of manufacturing a high voltage resistance semiconductor device - Google Patents

High voltage resistance semiconductor device and method of manufacturing a high voltage resistance semiconductor device Download PDF

Info

Publication number
TWI506798B
TWI506798B TW100121113A TW100121113A TWI506798B TW I506798 B TWI506798 B TW I506798B TW 100121113 A TW100121113 A TW 100121113A TW 100121113 A TW100121113 A TW 100121113A TW I506798 B TWI506798 B TW I506798B
Authority
TW
Taiwan
Prior art keywords
cathode electrode
polysilicon resistor
electrode
forming
semiconductor device
Prior art date
Application number
TW100121113A
Other languages
Chinese (zh)
Other versions
TW201301525A (en
Inventor
Chen Yuan Lin
Cheng Chi Lin
Shih Chin Lien
Chin Pen Yeh
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW100121113A priority Critical patent/TWI506798B/en
Publication of TW201301525A publication Critical patent/TW201301525A/en
Application granted granted Critical
Publication of TWI506798B publication Critical patent/TWI506798B/en

Links

Description

高壓電阻半導體裝置與製造高壓電阻半導體裝置的方法High voltage resistance semiconductor device and method of manufacturing high voltage resistance semiconductor device

本發明係有關於半導體技術,特別係有關於適合用以提供高壓電阻的半導體裝置。This invention relates to semiconductor technology, and more particularly to semiconductor devices suitable for providing high voltage resistance.

半導體高壓(HV)二極體例如第1圖中所示的HV二極體100係已知的,舉例而言,係用於半導體裝置中的驅動器或類似的元件中。二極體100包含陰極102與陽極104。一般的方法係排列陰極與多晶矽電阻110並聯以達隔離目的。第1B圖顯示第1A圖中二極體100與電阻110的等效電路圖。高壓輸入112係典型地提供至陰極102與電阻110之間的二極體100的陰極102。A semiconductor high voltage (HV) diode such as the HV diode 100 shown in FIG. 1 is known, for example, for use in a driver or the like in a semiconductor device. The diode 100 includes a cathode 102 and an anode 104. The general method is to arrange the cathode in parallel with the polysilicon resistor 110 for isolation purposes. Fig. 1B shows an equivalent circuit diagram of the diode 100 and the resistor 110 in Fig. 1A. The high voltage input 112 is typically provided to the cathode 102 of the diode 100 between the cathode 102 and the resistor 110.

如第1A圖中所示,多晶矽電阻110係典型地形成包含伸長的條紋的圖案。伸長的條紋係連接在一起以形成多晶矽結構。多晶矽結構具有根據期望的電阻而選擇出的長度。結果,第1A圖中顯示的一般的電阻110佔據半導體裝置之佈局面積的一些部分114,額外於二極體100的佈局面積。因此期望減少電阻110佔據的佈局面積114,以縮減包含HV二極體的半導體佈局的尺寸。As shown in FIG. 1A, the polysilicon resistor 110 typically forms a pattern comprising elongated stripes. The elongated stripes are joined together to form a polycrystalline structure. The polysilicon structure has a length selected according to a desired resistance. As a result, the general resistance 110 shown in FIG. 1A occupies portions 114 of the layout area of the semiconductor device, in addition to the layout area of the diode 100. It is therefore desirable to reduce the layout area 114 occupied by the resistor 110 to reduce the size of the semiconductor layout including the HV diode.

一種半導體裝置與半導體裝置相關的方法。根據本揭露之一方面,半導體裝置可包括半導體基底與橫向半導體二極體,橫向半導體二極體形成在半導體基底的表面區域中。二極體可具有陰極電極與陽極電極。場絕緣結構可設置在陰極電極與陽極電極之間。多晶矽電阻可形成在場絕緣結構上或在陰極電極與陽極電極之間。多晶矽電阻可電性連接至陰極電極並電性絕緣於陽極電極。A method related to a semiconductor device and a semiconductor device. According to an aspect of the present disclosure, a semiconductor device may include a semiconductor substrate and a lateral semiconductor diode formed in a surface region of the semiconductor substrate. The diode may have a cathode electrode and an anode electrode. A field insulating structure may be disposed between the cathode electrode and the anode electrode. The polysilicon resistor can be formed on the field insulating structure or between the cathode electrode and the anode electrode. The polysilicon resistor can be electrically connected to the cathode electrode and electrically insulated from the anode electrode.

於一些實施例中,多晶矽電阻可形成在場絕緣結構的上表面上以至少部分圍繞陰極電極。多晶矽電阻可包括多數個半環區塊,同心排列在陰極電極與陽極電極之間。區塊可包含至少一最內區塊,電性連接至陰極電極。鄰近的區塊係電性連接以從陰極電極至半導體二極體外部的末端形成連續的多晶矽電阻結構。In some embodiments, a polysilicon resistor can be formed on the upper surface of the field insulating structure to at least partially surround the cathode electrode. The polysilicon resistor can include a plurality of half-ring blocks concentrically arranged between the cathode electrode and the anode electrode. The block may include at least one innermost block electrically connected to the cathode electrode. Adjacent blocks are electrically connected to form a continuous polysilicon resistor structure from the cathode electrode to the outside of the semiconductor diode.

於一些實施例中,陽極電極包含環狀結構,圍繞陰極電極。In some embodiments, the anode electrode comprises a ring structure surrounding the cathode electrode.

於一些實施例中,多晶矽電阻包含多數個半環區塊排列成一同心圖案,陽極電極圍繞半環區塊。In some embodiments, the polysilicon resistor comprises a plurality of half-ring blocks arranged in a concentric pattern with the anode electrode surrounding the half-ring block.

根據本揭露之另一方面,製造半導體裝置的方法可包括提供半導體基底,與形成橫向半導體二極體於半導體基底之表面區域中。橫向半導體二極體的形成可包含形成陰極電極與形成陽極電極。方法也可包含形成場絕緣結構於陰極電極與陽極電極之間,與形成多晶矽電阻於場絕緣結構上,與陰極電極與陽極電極之間。多晶矽電阻的形成可包含形成多晶矽電阻電性連接至陰極電極並電性絕緣於陽極電極。In accordance with another aspect of the present disclosure, a method of fabricating a semiconductor device can include providing a semiconductor substrate and forming a lateral semiconductor diode in a surface region of the semiconductor substrate. The formation of the lateral semiconductor diode can include forming a cathode electrode and forming an anode electrode. The method can also include forming a field insulating structure between the cathode electrode and the anode electrode, forming a polysilicon resistor on the field insulating structure, and between the cathode electrode and the anode electrode. The formation of the polysilicon resistor may include forming a polysilicon resistor electrically connected to the cathode electrode and electrically insulating the anode electrode.

於一些實施例中,多晶矽電阻的形成可包含形成多晶矽電阻於場絕緣結構之上表面上以至少部分圍繞陰極電極。多晶矽電阻的形成可包含形成多晶矽電阻以包含多數個半環區塊,半環區塊同心排列在陰極電極與陽極電極之間。多晶矽電阻的形成可包含形成區塊以包含至少一最內區塊,最內區塊電性連接至陰極電極。多晶矽電阻的形成可包含形成鄰近的區塊以電性連接,以從陰極電極至半導體二極體外部的末端形成連續的多晶矽電阻結構。In some embodiments, the formation of the polysilicon resistor can include forming a polysilicon resistor on the upper surface of the field insulating structure to at least partially surround the cathode electrode. The formation of the polysilicon resistor may comprise forming a polysilicon resistor to include a plurality of half-ring blocks concentrically arranged between the cathode electrode and the anode electrode. The formation of the polysilicon resistor may include forming a block to include at least one innermost block, the innermost block being electrically connected to the cathode electrode. The formation of the polysilicon resistor may include forming adjacent blocks to be electrically connected to form a continuous polysilicon resistor structure from the cathode electrode to the outside of the semiconductor diode.

於一些實施例中,陽極電極的形成包含形成環狀結構,如陽極電極圍繞陰極電極。In some embodiments, the forming of the anode electrode includes forming a ring structure, such as an anode electrode surrounding the cathode electrode.

於一些實施例中,多晶矽電阻的形成可包含形成多晶矽電阻以包含多數個半環區塊排列成一同心圖案。陽極電極可圍繞半環區塊。In some embodiments, the formation of the polysilicon resistor can include forming a polysilicon resistor to include a plurality of half-ring blocks arranged in a concentric pattern. The anode electrode can surround the half ring block.

下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the preferred embodiment will be described in detail with reference to the accompanying drawings.

本申請的實施例係參照第2圖至第6L圖作詳細說明。The embodiments of the present application are described in detail with reference to Figs. 2 to 6L.

第2圖顯示半導體裝置200的平面圖。半導體裝置200包含HV二極體202與多晶矽電阻204。第3A-3B圖顯示半導體裝置200的等效電路圖。第4A圖顯示半導體裝置200沿著第2圖中剖面線A-A所繪製的剖面圖。第4B圖顯示半導體裝置200沿著第2圖中剖面線B-B所繪製的剖面圖。FIG. 2 shows a plan view of the semiconductor device 200. The semiconductor device 200 includes an HV diode 202 and a polysilicon resistor 204. 3A-3B shows an equivalent circuit diagram of the semiconductor device 200. Fig. 4A is a cross-sectional view showing the semiconductor device 200 taken along the line A-A in Fig. 2. Fig. 4B is a cross-sectional view showing the semiconductor device 200 taken along the line B-B in Fig. 2.

請參照第2圖,二極體202係橫向半導體裝置,形成在半導體基底206(顯示在第4A與4B圖中)的表面區域中。二極體202包含中心的陰極電極208。陽極電極210圍繞陰極電極208。陰極電極208可為環狀的盤形電極,且陽極電極210可為環狀電極其同心地圍繞陰極電極208。陰極電極208與陽極電極210係藉由漂移區域212(顯示在第4A與4B圖中)分開,漂移區域212以一般符合二極體的方法控制陰極電極208與陽極電極210之間的電流流動。Referring to FIG. 2, the diode 202 is a lateral semiconductor device formed in a surface region of the semiconductor substrate 206 (shown in FIGS. 4A and 4B). The diode 202 includes a central cathode electrode 208. The anode electrode 210 surrounds the cathode electrode 208. The cathode electrode 208 can be an annular disk electrode, and the anode electrode 210 can be a ring electrode that concentrically surrounds the cathode electrode 208. Cathode electrode 208 and anode electrode 210 are separated by a drift region 212 (shown in Figures 4A and 4B) that controls the flow of current between cathode electrode 208 and anode electrode 210 in a manner generally compliant with a diode.

電阻204配置在陰極電極208與陽極電極210之間的空間中的漂移區域212上。更明確地來說,如顯示第4A與4B圖所示,電阻204可以一組配置在場氧化(FOX)結構214上的多晶矽結構204a形成,FOX結構214係配置在漂移區域212上。注意雖然圖顯示電阻204係直接形成在FOX結構214的上表面上,然也能使用其他的排列方式,舉例來說,一或更多額外的薄膜係配置在FOX結構214與電阻204之間。電阻204電性連接至在接觸216的陰極電極208。電阻204電性絕緣於陽極電極210,然而延伸至陽極電極210上至末端218以連接其他裝置。The resistor 204 is disposed on the drift region 212 in the space between the cathode electrode 208 and the anode electrode 210. More specifically, as shown in Figures 4A and 4B, resistor 204 may be formed from a set of polysilicon structures 204a disposed on field oxide (FOX) structure 214, which is disposed on drift region 212. Note that although the figure shows that the resistor 204 is formed directly on the upper surface of the FOX structure 214, other arrangements can be used, for example, one or more additional thin film systems are disposed between the FOX structure 214 and the resistor 204. Resistor 204 is electrically coupled to cathode electrode 208 at contact 216. Resistor 204 is electrically insulated from anode electrode 210, but extends over anode electrode 210 to end 218 to connect other devices.

電阻204可因此形成在FOX結構214的上表面上。電阻204至少部分圍繞陰極電極208,且陽極電極210也至少部分圍繞電阻204。此排列有利地允許提供裝置200電阻204,而不佔據二極體202外部的額外佈局區域,這與第1A圖所示的佔據額外佈局面積114的電阻110不同。Resistor 204 can thus be formed on the upper surface of FOX structure 214. Resistor 204 at least partially surrounds cathode electrode 208, and anode electrode 210 also at least partially surrounds resistor 204. This arrangement advantageously allows the device 200 to be provided with a resistor 204 without occupying an additional layout area outside of the diode 202, which is different from the resistor 110 occupying the additional layout area 114 shown in FIG. 1A.

第3A圖顯示半導體裝置200的等效電路圖。二極體202係與電阻204並聯,如此電阻204係提供於陰極電極208與外部的末端218之間。陰極電極208也電性連接至高壓(HV)末端220。FIG. 3A shows an equivalent circuit diagram of the semiconductor device 200. The diode 202 is connected in parallel with the resistor 204 such that the resistor 204 is provided between the cathode electrode 208 and the outer end 218. Cathode electrode 208 is also electrically coupled to high voltage (HV) terminal 220.

在第2圖顯示的佈局中,電阻204係由一對多晶矽電阻結構204a構成,多晶矽電阻結構204a在陰極電極208與外部的末端218之間平行地互相連接。每個多晶矽電阻結構204a係由一組同心的環狀電阻區塊204b構成,每個區塊204b在第3A圖中係繪示成個別的電阻。在第2圖顯示的實施例中,最內的電阻區塊204b可連接至陰極電極208,而最外的電阻區塊204b可連接至外部的末端218。最內的與最外的區塊204b之間的鄰近的電阻區塊204b係連接在一起以在陰極電極208與外部的末端218之間形成兩組平行的電阻。In the layout shown in FIG. 2, the resistor 204 is formed by a pair of polysilicon resistor structures 204a that are connected in parallel between the cathode electrode 208 and the outer end 218. Each polysilicon resistor structure 204a is comprised of a set of concentric annular resistor blocks 204b, each block 204b being depicted as an individual resistor in Figure 3A. In the embodiment shown in FIG. 2, the innermost resistive block 204b can be connected to the cathode electrode 208 and the outermost resistive block 204b can be connected to the outer end 218. The adjacent resistive blocks 204b between the innermost and outermost blocks 204b are joined together to form two sets of parallel electrical resistance between the cathode electrode 208 and the outer end 218.

第3B圖中所示,一或更多區塊204b可藉由改變佈局設計任選地進一步分成一組兩或更多平行的電阻次結構204c,電阻次結構204c各由一些電阻次區塊204d構成。技藝之人士將瞭解此改變將允許微調電阻204的總電阻。應注意電阻結構204a、區塊204b、次結構204c與次區塊204d的確實數目可從圖示所繪示之實施例提供的數目改變。As shown in FIG. 3B, one or more of the blocks 204b can be further further divided into a set of two or more parallel resistive substructures 204c by changing the layout design, and the resistive substructures 204c are each made up of some resistive subblocks 204d. Composition. Those skilled in the art will appreciate that this change will allow the total resistance of the resistor 204 to be trimmed. It should be noted that the exact number of resistor structures 204a, 204b, sub-structure 204c, and sub-block 204d may vary from the number provided by the illustrated embodiment.

第5圖顯示部分電阻204的平面圖。更明確地來說,第5圖顯示一對電阻結構204a(在第5圖中分開表示成204a_1與204a_2)各個的一對區塊204b。第5圖更清楚繪示區塊204b能怎樣排列成一組同心的環狀多晶矽結構。各結構可具有預定的寬度a1或a2。根據電阻204期望的總電阻值與其他考量例如佈局限制,寬度a1可等於寬度a2,或寬度a1可異於寬度a2。同心鄰近的區塊204b之間的空間可根據設計限制,例如為了避免在製造過程中短路來做選擇。區塊204b係藉由金屬接觸區域204e互相連接。Figure 5 shows a plan view of a portion of the resistor 204. More specifically, Fig. 5 shows a pair of blocks 204b of a pair of resistor structures 204a (shown separately as 204a_1 and 204a_2 in Fig. 5). Figure 5 more clearly illustrates how blocks 204b can be arranged into a set of concentric annular polycrystalline structures. Each structure may have a predetermined width a1 or a2. Depending on the desired total resistance value of resistor 204 and other considerations such as layout constraints, width a1 may be equal to width a2, or width a1 may be different from width a2. The space between concentrically adjacent blocks 204b may be limited by design, for example to avoid shorting during manufacturing. The blocks 204b are connected to each other by a metal contact region 204e.

尺寸c1與c2表示形成部分接觸區域204e的金屬結構的各別長度。尺寸d1表示電阻區塊204b的鄰近末端之間的距離。尺寸e1表示電阻區塊204b之鄰近的接觸結構204e之間的距離。電阻結構204a_1與204a_2係等距離自陰極電極208,因此構成相對的對應電阻結構204a。較佳的,每個此相對的對應電阻結構204a對應係對稱的,如此相對的對應電阻結構204a對的各個的尺寸係相同。The dimensions c1 and c2 represent the respective lengths of the metal structures forming the partial contact regions 204e. The dimension d1 represents the distance between the adjacent ends of the resistive block 204b. The dimension e1 represents the distance between the adjacent contact structures 204e of the resistive block 204b. The resistive structures 204a_1 and 204a_2 are equidistant from the cathode electrode 208 and thus form opposing corresponding resistive structures 204a. Preferably, each of the corresponding corresponding resistive structures 204a is symmetrical, and each of the opposing pairs of corresponding resistive structures 204a has the same size.

請參照第4A與4B圖,之後將說明可用來製造半導體裝置200的製程(顯示在第6A-6O圖中)的實施例。Referring to FIGS. 4A and 4B, an embodiment of a process (shown in FIGS. 6A-6O) which can be used to fabricate the semiconductor device 200 will be described later.

第4A圖顯示半導體裝置200沿第2圖中剖面線A-A繪製的剖面圖。第4B圖顯示半導體裝置200沿第2圖中剖面線B-B繪製的剖面圖。Fig. 4A is a cross-sectional view showing the semiconductor device 200 taken along the line A-A in Fig. 2. Fig. 4B is a cross-sectional view showing the semiconductor device 200 taken along the line B-B in Fig. 2.

半導體裝置200可形成在半導體基底206上。半導體基底206典型地為矽,具有第一導電型,典型地為P導電型。漂移通道212具有第二導電型,典型地為N導電型。漂移通道212係形成在基底206的高壓n型井(HVNW)區域230中。漂移通道212可包含n型表面區域212a,藉由p型襯層212b自HVNW區域230分開。The semiconductor device 200 may be formed on the semiconductor substrate 206. The semiconductor substrate 206 is typically germanium and has a first conductivity type, typically a P conductivity type. The drift channel 212 has a second conductivity type, typically an N conductivity type. The drift channel 212 is formed in a high voltage n-well (HVNW) region 230 of the substrate 206. The drift channel 212 can include an n-type surface region 212a that is separated from the HVNW region 230 by a p-type liner 212b.

陽極區域210包含第一P型井232與第二P型井234。第一P型井232形成在基底206中,且第二P型井234形成在HVNW區域230中。P+埋藏擴散區域236形成在第一P型井232中。N+埋藏擴散區域238形成在第二P型井234中。此外,P+刺激(pickup)區域240形成在鄰近於N+埋藏擴散區域238的第二P型井234中。陰極區域208包含N+埋藏擴散區域242,形成在HVNW區域230中。The anode region 210 includes a first P-well 232 and a second P-well 234. A first P-well 232 is formed in the substrate 206 and a second P-well 234 is formed in the HVNW region 230. A P+ buried diffusion region 236 is formed in the first P-well 232. An N+ buried diffusion region 238 is formed in the second P-well 234. Additionally, a P+ pickup region 240 is formed in the second P-well 234 adjacent to the N+ buried diffusion region 238. The cathode region 208 includes an N+ buried diffusion region 242 formed in the HVNW region 230.

多層閘極結構244包含閘氧化層246與一或更多額外的閘極層,其可包含,舉例來說,多晶矽層247位於閘氧化層246上,與矽化鎢(WSi)層249於多晶矽層247上。部分閘極結構244稱為場板,延伸於FOX結構214上。FOX結構214係相當厚的絕緣區域延伸在陰極208與陽極210之間。舉例來說,也在裝置200的角落與第一P井232及第二P井234之間形成額外的FOX區域214以作為隔離結構。The multilayer gate structure 244 includes a gate oxide layer 246 and one or more additional gate layers, which may include, for example, a polysilicon layer 247 on the gate oxide layer 246 and a tungsten germanium (WSi) layer 249 in the polysilicon layer. On 247. A portion of the gate structure 244 is referred to as a field plate and extends over the FOX structure 214. The FOX structure 214 is a relatively thick insulating region extending between the cathode 208 and the anode 210. For example, an additional FOX region 214 is also formed between the corners of device 200 and first P well 232 and second P well 234 as an isolation structure.

第4A與4B圖也顯示電阻區塊204b,形成在陰極208與陽極210之間的FOX結構214的上表面上。電阻區塊204b可為單或多層多晶矽結構。電阻區塊204在第4A圖中藉由層間介電(ILD)結構248互相電性絕緣。第4B圖顯示金屬結構用作接觸區域204e,電性連接至鄰近的電阻區塊204b。Figures 4A and 4B also show resistive block 204b formed on the upper surface of FOX structure 214 between cathode 208 and anode 210. The resistive block 204b can be a single or multi-layer polysilicon structure. Resistive block 204 is electrically insulated from each other by an interlayer dielectric (ILD) structure 248 in FIG. 4A. Figure 4B shows the metal structure used as the contact area 204e electrically connected to the adjacent resistive block 204b.

第4A圖顯示陽極接觸區域250與陰極接觸區域252。陽極接觸區域250係導電材料,典型地為金屬,提供電性連接至埋藏擴散區域236、238與240,與閘極結構244。陰極接觸區域252也為導電材料,典型地為金屬,提供電性連接至埋藏擴散區域242。Figure 4A shows anode contact region 250 and cathode contact region 252. The anode contact region 250 is a conductive material, typically a metal, that provides electrical connection to buried diffusion regions 236, 238 and 240, and gate structure 244. Cathode contact region 252 is also a conductive material, typically a metal, that provides electrical connection to buried diffusion region 242.

第4B圖顯示陰極接觸區域252如何也藉由連接埋藏擴散區域242至最內電阻區塊204b而在陰極208與電阻204之間提供電性連接。第4B圖也顯示電阻接觸區域254,在最外的電阻區塊204b與外部的末端218(顯示在第2圖中)之間提供電性連接。Figure 4B shows how the cathode contact region 252 also provides an electrical connection between the cathode 208 and the resistor 204 by connecting the buried diffusion region 242 to the innermost resistive block 204b. Figure 4B also shows a resistive contact region 254 that provides an electrical connection between the outermost resistive block 204b and the outer end 218 (shown in Figure 2).

請參照第6A-6O圖,其繪示一實施例中適合用以製造半導體裝置200的製程。第6A-6K圖顯示的圖示與沿著第2圖中剖面線A-A與剖面線B-B繪製的剖面圖相同。第6L與6M圖顯示沿剖面線A-A的金屬化過程,而第6N與6O圖顯示沿剖面線B-B的金屬化過程。Please refer to FIGS. 6A-6O, which illustrate a process suitable for fabricating the semiconductor device 200 in an embodiment. The diagrams shown in Figs. 6A-6K are the same as the cross-sectional views taken along section line A-A and section line B-B in Fig. 2. Figures 6L and 6M show the metallization process along section line A-A, while the 6N and 6O diagrams show the metallization process along section line B-B.

從第6A圖之P型矽基底206開始,舉例來說,係首先使用已知的微影與HVNW佈植製程形成HVNW區域230。然後,在第6B圖,再次藉由已知的微影與離子佈植製程形成第一P型井232與第二P型井234。在第6C圖,根據已知的微影與離子佈植製程形成n型表面區域212a與p型襯層212b。然後,第6D圖顯示可用以形成FOX區域214的微影、氧化與蝕刻製程的結果。Starting from the P-type germanium substrate 206 of Figure 6A, for example, the HVNW region 230 is first formed using known lithography and HVNW implantation processes. Then, in FIG. 6B, the first P-well 232 and the second P-well 234 are formed again by a known lithography and ion implantation process. In Figure 6C, an n-type surface region 212a and a p-type liner 212b are formed in accordance with known lithography and ion implantation processes. Then, FIG. 6D shows the results of the lithography, oxidation, and etching processes that can be used to form the FOX region 214.

然後,藉由如第6E與6F圖所示的製程形成閘極結構244。第6E圖顯示將變成閘氧化層246的氧化層246a。氧化層246a可利用犧牲氧化(sacrificial oxidation;SAC)製程形成。然後),使用沉積製程在氧化層246a上沉積多晶矽層247,然後在多晶矽層247上沉積WSi層249。然後在WSi層249上選擇性地沉積光罩層260,且隨後進行的蝕刻結果顯示在第6F圖所示的結構中。Then, the gate structure 244 is formed by a process as shown in FIGS. 6E and 6F. Figure 6E shows an oxide layer 246a that will become the gate oxide layer 246. The oxide layer 246a can be formed using a sacrificial oxidation (SAC) process. Then, a polysilicon layer 247 is deposited on the oxide layer 246a using a deposition process, and then a WSi layer 249 is deposited on the polysilicon layer 247. The mask layer 260 is then selectively deposited on the WSi layer 249, and the subsequent etching results are shown in the structure shown in Fig. 6F.

在第6G圖,接著開始形成電阻204的製程。電阻區塊204b可為多層結構結構包含,舉例來說,下氧化層與上多晶矽層。為形成這樣的結構,可使用例如典型地用以形成PIP電容結構的高溫氧化(HTO)製程來形成下氧化層262,然後後續的PIP多晶矽沉積製程可用來在氧化層262上沉積多晶矽層264。如第6G圖中所繪示,多晶矽層264的導電性可藉由用以摻雜多晶矽層264的離子佈植製程調變。然後利用微影製程蝕刻最終結構以形成如第6H圖中所示的電阻區塊204b。第6H圖也顯示光罩材料266。第6I圖中顯示的間隙壁268也可使用四氧烷基矽(tetra-ethyl-ortho silicate;TEOS)沉積然後進行微影與蝕刻製程來形成在電阻區塊204b的側壁上與閘極結構244的側壁上。At the 6Gth diagram, the process of forming the resistor 204 is then started. The resistive block 204b can comprise a multilayer structure including, for example, a lower oxide layer and an upper polysilicon layer. To form such a structure, a lower oxide layer 262 can be formed using, for example, a high temperature oxidation (HTO) process typically used to form a PIP capacitor structure, and then a subsequent PIP polysilicon deposition process can be used to deposit a polysilicon layer 264 on the oxide layer 262. As illustrated in FIG. 6G, the conductivity of the polysilicon layer 264 can be modulated by the ion implantation process used to dope the polysilicon layer 264. The final structure is then etched using a lithography process to form a resistive block 204b as shown in Figure 6H. The reticle material 266 is also shown in Figure 6H. The spacers 268 shown in FIG. 6I can also be deposited on the sidewalls of the resistive block 204b and the gate structure 244 using tetra-ethyl-ortho silicate (TEOS) deposition followed by photolithography and etching processes. On the side wall.

然後,第6J與6K圖顯示用以形成埋藏擴散區域236、238、240與242的製程。第6J圖顯示使用微影法選擇性地形成的罩幕層270。然後,使用離子佈植法擴散露出的區域以形成N+埋藏擴散區域238與242。類似地,第6K圖顯示首先使用微影法選擇性地形成的罩幕層272,然後進行離子佈植以擴散露出的區域以形成P+埋藏擴散區域236與240。Then, FIGS. 6J and 6K show processes for forming buried diffusion regions 236, 238, 240, and 242. Figure 6J shows a mask layer 270 that is selectively formed using lithography. The exposed regions are then diffused using ion implantation to form N+ buried diffusion regions 238 and 242. Similarly, Figure 6K shows a mask layer 272 that is first selectively formed using lithography and then ion implanted to diffuse the exposed regions to form P+ buried diffusion regions 236 and 240.

第6L與6M圖顯示沿剖面線A-A的金屬化製程,而第6N與6O圖顯示沿剖面線B-B的金屬化製程。金屬化製程可包含沉積ILD、微影與蝕刻以製得第6L與6N圖中顯示的結構。然後進行金屬沉積、微影與蝕刻以製得第6M與6O圖中所示的結構。Figures 6L and 6M show the metallization process along section line A-A, while panels 6N and 6O show the metallization process along section line B-B. The metallization process can include depositing ILD, lithography, and etching to produce the structures shown in Figures 6L and 6N. Metal deposition, lithography, and etching are then performed to produce the structures shown in Figures 6M and 60.

雖然本發明已以各種實施例揭露如上,然其並非用以限定本發明。任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in various embodiments, it is not intended to limit the invention. The scope of the present invention is defined by the scope of the appended claims, unless otherwise claimed.

先前技術:Prior art:

102...陰極102. . . cathode

104...陽極104. . . anode

100...二極體100. . . Dipole

110...多晶矽電阻110. . . Polysilicon resistor

112...高壓輸入112. . . High voltage input

114...部分114. . . section

實施方式:Implementation method:

200...半導體裝置200. . . Semiconductor device

202...二極體202. . . Dipole

204...多晶矽電阻204. . . Polysilicon resistor

204a...電阻結構204a. . . Resistance structure

204a_1、204a_2...電阻結構204a_1, 204a_2. . . Resistance structure

204b...區塊204b. . . Block

204c...電阻次結構204c. . . Resistance substructure

204d...電阻次區塊204d. . . Resistance sub-block

204e...接觸區域204e. . . Contact area

206...半導體基底206. . . Semiconductor substrate

208...陰極電極208. . . Cathode electrode

210...陽極電極210. . . Anode electrode

212...漂移通道212. . . Drift channel

212a...表面區域212a. . . Surface area

212b...襯層212b. . . lining

214...場氧化結構214. . . Field oxidation structure

216...接觸216. . . contact

218、220...末端218, 220. . . End

230...高壓n型井區域230. . . High pressure n-well area

232...第一P型井232. . . First P-well

234...第二P型井234. . . Second P-well

236...P+埋藏擴散區域236. . . P+ buried diffusion area

238...N+埋藏擴散區域238. . . N+ buried diffusion area

240...P+刺激區域240. . . P+ stimulation area

242...N+埋藏擴散區域242. . . N+ buried diffusion area

244...閘極結構244. . . Gate structure

246...閘氧化層246. . . Gate oxide layer

246a...氧化層246a. . . Oxide layer

247...多晶矽層247. . . Polycrystalline layer

248...層間介電結構248. . . Interlayer dielectric structure

249...矽化鎢層249. . . Tungsten carbide layer

250...陽極接觸區域250. . . Anode contact area

252...陰極接觸區域252. . . Cathodic contact area

254...電阻接觸區域254. . . Resistance contact area

260...光罩層260. . . Mask layer

262...氧化層262. . . Oxide layer

264...多晶矽層264. . . Polycrystalline layer

266...光罩材料266. . . Photomask material

268...間隙壁268. . . Clearance wall

270、272...罩幕層270, 272. . . Mask layer

a1、a2...寬度A1, a2. . . width

c1、c2、d1、e1...尺寸C1, c2, d1, e1. . . size

第1A圖顯示一般HV二極體與多晶矽電阻裝置的平面圖。Figure 1A shows a plan view of a typical HV diode and polysilicon resistor device.

第1B圖顯示對應第1A圖中顯示之裝置的電路圖。Fig. 1B shows a circuit diagram corresponding to the device shown in Fig. 1A.

第2圖顯示根據本揭露之HV二極體與多晶矽電阻裝置的平面圖。Figure 2 shows a plan view of an HV diode and polysilicon resistor device in accordance with the present disclosure.

第3A與3B圖顯示對應於第2圖中所示之裝置的電路圖。Figures 3A and 3B show circuit diagrams corresponding to the device shown in Figure 2.

第4A圖顯示沿第2圖中剖面線A-A繪製的剖面圖。Fig. 4A shows a cross-sectional view taken along section line A-A in Fig. 2.

第4B圖顯示沿第2圖中剖面線B-B繪製的剖面圖。Fig. 4B shows a cross-sectional view taken along line B-B in Fig. 2.

第5圖顯示一實施例之多晶矽電阻的部分平面圖。Fig. 5 is a partial plan view showing the polysilicon resistor of an embodiment.

第6A-6O圖顯示半導體裝置的製程。Figures 6A-6O show the process of a semiconductor device.

200...半導體裝置200. . . Semiconductor device

202...二極體202. . . Dipole

204...多晶矽電阻204. . . Polysilicon resistor

208...陰極電極208. . . Cathode electrode

210...陽極電極210. . . Anode electrode

216...接觸216. . . contact

218...末端218. . . End

Claims (12)

一種半導體裝置,包括:一半導體基底;一橫向半導體二極體,形成在該半導體基底之一表面區域中,該二極體具有一陰極電極與一陽極電極;一場絕緣結構,配置在該陰極電極與該陽極電極之間;以及一多晶矽電阻,形成在該場絕緣結構上,並介於該陰極電極與該陽極電極之間,該多晶矽電阻係電性連接至該陰極電極,並電性絕緣於該陽極電極,其中該多晶矽電阻包括多數個半環區塊排列成一同心圖案,該陽極電極圍繞該半環區塊。 A semiconductor device comprising: a semiconductor substrate; a lateral semiconductor diode formed in a surface region of the semiconductor substrate, the diode having a cathode electrode and an anode electrode; and a field insulating structure disposed on the cathode electrode And the anode electrode; and a polysilicon resistor formed on the field insulation structure between the cathode electrode and the anode electrode, the polysilicon resistor is electrically connected to the cathode electrode, and electrically insulated The anode electrode, wherein the polysilicon resistor comprises a plurality of half-ring blocks arranged in a concentric pattern, the anode electrode surrounding the half-ring block. 如申請專利範圍第1項所述之半導體結構,其中該多晶矽電阻係形成在該場絕緣結構之一上表面上以至少部分圍繞該陰極電極。 The semiconductor structure of claim 1, wherein the polysilicon resistor is formed on an upper surface of the field insulating structure to at least partially surround the cathode electrode. 如申請專利範圍第2項所述之半導體結構,其中該多晶矽電阻包含多數個半環區塊,同心排列在該陰極電極與該陽極電極之間。 The semiconductor structure of claim 2, wherein the polysilicon resistor comprises a plurality of half-ring blocks concentrically arranged between the cathode electrode and the anode electrode. 如申請專利範圍第3項所述之半導體結構,其中該些區塊包含至少一最內區塊,電性連接至該陰極電極。 The semiconductor structure of claim 3, wherein the blocks comprise at least one innermost block electrically connected to the cathode electrode. 如申請專利範圍第4項所述之半導體結構,其中鄰近的該些區塊係電性連接以從該陰極電極至該半導體二極體外部的一末端形成一連續的多晶矽電阻結構。 The semiconductor structure of claim 4, wherein the adjacent blocks are electrically connected to form a continuous polysilicon resistor structure from an end of the cathode electrode to the outside of the semiconductor diode. 如申請專利範圍第1項所述之半導體結構,其中該陽極電極包含一環狀結構,圍繞該陰極電極。 The semiconductor structure of claim 1, wherein the anode electrode comprises a ring structure surrounding the cathode electrode. 一種製造半導體裝置的方法,該方法包括:提供一半導體基底;形成一橫向半導體二極體於該半導體基底之一表面區域中,該橫向半導體二極體的形成包含形成一陰極電極與形成一陽極電極;形成一場絕緣結構於該陰極電極與該陽極電極之間;以及形成一多晶矽電阻於該場絕緣結構上,與該陰極電極與該陽極電極之間,該多晶矽電阻的形成包含形成該多晶矽電阻電性連接至該陰極電極並電性絕緣於該陽極電極;其中,該多晶矽電阻以包含多數個半環區塊排列成一同心圖案,該陽極電極圍繞該半環區塊。 A method of fabricating a semiconductor device, the method comprising: providing a semiconductor substrate; forming a lateral semiconductor diode in a surface region of the semiconductor substrate, the lateral semiconductor diode forming comprising forming a cathode electrode and forming an anode An electrode is formed between the cathode electrode and the anode electrode; and a polysilicon resistor is formed on the field insulation structure, and between the cathode electrode and the anode electrode, the formation of the polysilicon resistor comprises forming the polysilicon resistor Electrically connected to the cathode electrode and electrically insulated from the anode electrode; wherein the polysilicon resistor comprises a plurality of half-ring blocks arranged in a concentric pattern, the anode electrode surrounding the half-ring block. 如申請專利範圍第7項所述之製造半導體裝置的方法,其中該多晶矽電阻的形成包含形成該多晶矽電阻於該場絕緣結構之一上表面上以至少部分圍繞該陰極電極。 The method of fabricating a semiconductor device according to claim 7, wherein the forming of the polysilicon resistor comprises forming the polysilicon resistor on an upper surface of the field insulating structure to at least partially surround the cathode electrode. 如申請專利範圍第8項所述之製造半導體裝置的方法,其中該多晶矽電阻的形成包含形成該多晶矽電阻以包含多數個半環區塊,該些半環區塊同心排列在該陰極電極與該陽極電極之間。 The method of fabricating a semiconductor device according to claim 8, wherein the forming of the polysilicon resistor comprises forming the polysilicon resistor to include a plurality of half ring blocks, the half ring blocks being concentrically arranged at the cathode electrode and Between the anode electrodes. 如申請專利範圍第9項所述之製造半導體裝置的方法,其中該多晶矽電阻的形成包含形成該些區塊以包含至少一最內區塊,該最內區塊電性連接至該陰極電極。 The method of fabricating a semiconductor device according to claim 9, wherein the forming of the polysilicon resistor comprises forming the plurality of blocks to include at least one innermost block electrically connected to the cathode electrode. 如申請專利範圍第10項所述之製造半導體裝置的方法,其中該多晶矽電阻的形成包含形成鄰近的區塊以 電性連接,以從該陰極電極至該半導體二極體外部的一末端形成一連續的多晶矽電阻結構。 The method of fabricating a semiconductor device according to claim 10, wherein the forming of the polysilicon resistor comprises forming adjacent blocks to Electrically connected to form a continuous polysilicon resistor structure from an end of the cathode electrode to the outside of the semiconductor diode. 如申請專利範圍第7項所述之製造半導體裝置的方法,其中該陽極電極的形成包含形成一環狀結構,如該陽極電極圍繞該陰極電極。The method of fabricating a semiconductor device according to claim 7, wherein the forming of the anode electrode comprises forming an annular structure, such as the anode electrode surrounding the cathode electrode.
TW100121113A 2011-06-16 2011-06-16 High voltage resistance semiconductor device and method of manufacturing a high voltage resistance semiconductor device TWI506798B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100121113A TWI506798B (en) 2011-06-16 2011-06-16 High voltage resistance semiconductor device and method of manufacturing a high voltage resistance semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100121113A TWI506798B (en) 2011-06-16 2011-06-16 High voltage resistance semiconductor device and method of manufacturing a high voltage resistance semiconductor device

Publications (2)

Publication Number Publication Date
TW201301525A TW201301525A (en) 2013-01-01
TWI506798B true TWI506798B (en) 2015-11-01

Family

ID=48137623

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121113A TWI506798B (en) 2011-06-16 2011-06-16 High voltage resistance semiconductor device and method of manufacturing a high voltage resistance semiconductor device

Country Status (1)

Country Link
TW (1) TWI506798B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097801B (en) * 2014-05-19 2018-03-23 旺宏电子股份有限公司 Semiconductor element, its manufacture method and its operating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477078A (en) * 1994-02-18 1995-12-19 Analog Devices, Incorporated Integrated circuit (IC) with a two-terminal diode device to protect metal-oxide-metal capacitors from ESD damage
US6088208A (en) * 1997-03-31 2000-07-11 Matsushita Electronics Corporation Electronic device, electronic switching apparatus including the same, and production method thereof
US20040251499A1 (en) * 2003-06-11 2004-12-16 Kabushiki Kaisha Toshiba High withstand voltage semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477078A (en) * 1994-02-18 1995-12-19 Analog Devices, Incorporated Integrated circuit (IC) with a two-terminal diode device to protect metal-oxide-metal capacitors from ESD damage
US6088208A (en) * 1997-03-31 2000-07-11 Matsushita Electronics Corporation Electronic device, electronic switching apparatus including the same, and production method thereof
US20040251499A1 (en) * 2003-06-11 2004-12-16 Kabushiki Kaisha Toshiba High withstand voltage semiconductor device

Also Published As

Publication number Publication date
TW201301525A (en) 2013-01-01

Similar Documents

Publication Publication Date Title
US9076765B2 (en) Semiconductor device comprising trench gate and buried source electrodes
JP2019522890A (en) 3D capacitor structure
US9287209B2 (en) Metal finger capacitor for high-K metal gate processes
TWI774831B (en) Method of manufacturing semiconductor device and semiconductor device
CN106549052B (en) Lateral diffusion metal oxide semiconductor transistor and manufacturing method thereof
TW201607028A (en) Semiconductor device and manufacturing method for the same
WO2014109310A1 (en) Semiconductor device and method for manufacturing same
CN103094070A (en) Semiconductor device comprising pair of matched capacitors, method for form capacitors, and method for forming resistor
US20120292740A1 (en) High voltage resistance semiconductor device and method of manufacturing a high voltage resistance semiconductor device
TW201515222A (en) Semiconductor device
TW201631706A (en) Memory device and method of fabricating the same
EP2421044B1 (en) Edge Termination Region for Semiconductor Device
TWI506798B (en) High voltage resistance semiconductor device and method of manufacturing a high voltage resistance semiconductor device
JP2010080892A (en) Semiconductor device and method of manufacturing the same
JP2019165182A (en) Semiconductor device
US9379233B2 (en) Semiconductor device
CN102842577A (en) High voltage resistance semiconductor device and method for producing same
US10529707B2 (en) Intra-metal capacitor and method of forming the same
US11830923B2 (en) RF switch device
JP2016086002A (en) Semiconductor device and manufacturing method of the same
CN104916693A (en) Semiconductor device
JPH11163265A (en) Semiconductor device and manufacture thereof
CN108511341B (en) Shielded gate trench power device and method of making same
TW201935568A (en) Semiconductor device
TWI793691B (en) Capacitance structure and manufacturing method thereof