TWI506590B - Method for image noise reduction - Google Patents

Method for image noise reduction Download PDF

Info

Publication number
TWI506590B
TWI506590B TW102120932A TW102120932A TWI506590B TW I506590 B TWI506590 B TW I506590B TW 102120932 A TW102120932 A TW 102120932A TW 102120932 A TW102120932 A TW 102120932A TW I506590 B TWI506590 B TW I506590B
Authority
TW
Taiwan
Prior art keywords
pixel
target pixel
core
weight value
pixels
Prior art date
Application number
TW102120932A
Other languages
Chinese (zh)
Other versions
TW201447815A (en
Inventor
Hong Long Chou
Shan Lung Chao
Huei Shan Lin
Original Assignee
Altek Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altek Semiconductor Corp filed Critical Altek Semiconductor Corp
Priority to TW102120932A priority Critical patent/TWI506590B/en
Publication of TW201447815A publication Critical patent/TW201447815A/en
Application granted granted Critical
Publication of TWI506590B publication Critical patent/TWI506590B/en

Links

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

去除影像雜訊的方法Method of removing image noise

本發明是有關於一種影像處理技術,且特別是有關於一種去除影像雜訊的方法。The present invention relates to an image processing technique, and more particularly to a method of removing image noise.

在影像處理當中,清楚呈現邊緣與增強邊緣,同時去除不必要的雜訊是最基本的工作。數位影像在拍攝的過程中往往會因為相機本身電子元件或是外在因素如溫度、光線等影響而產生雜訊,而為了因應這些雜訊問題,許多濾除雜訊的方法也陸續被提出。然而,雜訊濾除的最大問題是會降低影像的銳利度。換句話說,雜訊濾除亦可能導致模糊影像(blurred Image)情形。一般來說,這樣的情形會應用邊緣增強演算法來改進影像的銳利度。但做邊緣增強的影像處理也常常會將雜訊的訊號同時增強。In image processing, it is the most basic work to clearly present edges and enhance edges while removing unnecessary noise. In the process of shooting, digital images often generate noise due to the electronic components of the camera itself or external factors such as temperature and light. In order to cope with these noise problems, many methods for filtering noise have been proposed. However, the biggest problem with noise filtering is that it reduces the sharpness of the image. In other words, noise filtering can also result in a blurred image. In general, such situations apply edge-enhanced algorithms to improve image sharpness. However, edge-enhanced image processing often enhances the noise signal at the same time.

現有去除影像雜訊的方法中,有一部分的作法是使用中值濾波器(Median filter)、平均濾波器(Mean filter)或低通濾波器(Low Pass Filter,LPF)等方法來將影像雜訊去除。上述幾種方法是使用將整個影像中的像素進行平均運算以去除影像雜訊,並未考慮影像中的平滑區域及細節區域問題。現有另一種作法是 使用雙邊濾波器(Bilateral filter),可藉由調整權重值來調整去除雜訊的強度。然而,若權重值太高,則可能會導致模糊影像問題;若權重值太低,則可能會降低去除雜訊的能力,是以,如何在去除雜訊與保留影像細節資訊之間做取捨,實為一重要課題。此外,在高雜訊影像當中,單純使用雙邊濾波器來提升影像品質的效果有限。In the existing methods for removing image noise, some methods are used to use a median filter, a mean filter, or a low pass filter (LPF) to image noise. Remove. The above methods use an average operation of pixels in the entire image to remove image noise, without considering smooth areas and detail areas in the image. Another existing practice is Using a bilateral filter, the intensity of noise removal can be adjusted by adjusting the weight value. However, if the weight value is too high, it may cause blurred image problems; if the weight value is too low, it may reduce the ability to remove noise, so how to choose between removing noise and retaining image details. It is an important issue. In addition, in high-noise images, the effect of simply using bilateral filters to improve image quality is limited.

本發明提供一種去除影像雜訊的方法,可用以有效地濾除影像中的雜訊,並在去除影像雜訊的同時還能有效地保留影像細節與邊緣資訊。The invention provides a method for removing image noise, which can effectively filter out noise in an image and effectively preserve image details and edge information while removing image noise.

本發明的去除影像雜訊的方法,包括下列步驟。先接收待處理影像,其中待處理影像包括多數個待處理像素。選取待處理像素的其中之一作為目標像素,並對此目標像素進行紋理分析(texture analysis),以判斷此目標像素是否位於陰影區域(shading area)。當此目標像素並非位於陰影區域內,則對此目標像素執行三邊雜訊去除(trilateral noise reduction)處理,以產生處理後像素。The method for removing image noise of the present invention comprises the following steps. The image to be processed is received first, wherein the image to be processed includes a plurality of pixels to be processed. One of the pixels to be processed is selected as the target pixel, and texture analysis is performed on the target pixel to determine whether the target pixel is located in a shading area. When the target pixel is not located in the shaded area, a trilateral noise reduction process is performed on the target pixel to generate a processed pixel.

在本發明的一實施例中,上述的去除影像雜訊的方法更包括當此目標像素位於陰影區域內,則對此目標像素執行雙邊雜訊去除(Bilateral noise reduction)處理,以產生處理後像素。In an embodiment of the invention, the method for removing image noise further includes performing a bilateral noise reduction process on the target pixel to generate a processed pixel when the target pixel is located in the shadow region. .

在本發明的一實施例中,上述對此目標像素執行三邊降 低雜訊處理的步驟包括:先分別選定以此目標像素為中心的第一核心(Kernel),並選定以各個參考像素為中心的第二核心。接著,對第一核心中的每一像素與第二核心中的每一對應像素進行計算,以獲得各個參考像素對應於此目標像素的相似度值。各個參考像素再依據各個相似度值決定對應的像素權重值。最後,將屬於此目標像素的遮罩(mask)內的各個參考像素的像素值乘上對應的像素權重值,以獲得處理後像素。In an embodiment of the invention, the three-sided down is performed on the target pixel. The step of low noise processing includes first selecting a first core centered on the target pixel and selecting a second core centered on each reference pixel. Then, each pixel in the first core and each corresponding pixel in the second core are calculated to obtain a similarity value of each reference pixel corresponding to the target pixel. Each reference pixel further determines a corresponding pixel weight value according to each similarity value. Finally, the pixel values of the respective reference pixels in the mask belonging to the target pixel are multiplied by the corresponding pixel weight values to obtain the processed pixels.

在本發明的一實施例中,上述對第一核心中的各個像素與第二核心中的各個對應像素進行計算,以獲得各個參考像素對應於此目標像素的相似度值的公式為: l =s +t ×M 。其中,Sim j 為參考像素的相似度值,w c 為信心權重值,為距離權重值,為以目標像素為中心的第一核心,為以參考像素為中心的第二核心。In an embodiment of the invention, the formula for calculating the similarity value of each pixel in the first core and each corresponding pixel in the second core to obtain the similarity value of each reference pixel corresponding to the target pixel is: l = s + t × M. Where, Sim j is the similarity value of the reference pixel, and w c is the confidence weight value. For the distance weight value, For the first core centered on the target pixel, It is the second core centered on the reference pixel.

在本發明的一實施例中,上述的信心權重值w c 是由參考像素與目標像素之間的距離來決定。In an embodiment of the invention, the confidence weight value w c is determined by the distance between the reference pixel and the target pixel.

在本發明的一實施例中,上述對此目標像素執行雙邊雜訊去除處理的步驟包括:先選定以此目標像素為中心的遮罩。接著,計算屬於此遮罩中的每個參考像素對應於此目標像素的距離權重值以及接近強度(intensity closeness)權重值。並且,各個參考像素依據各個距離權重值以及各個接近強度權重值進行運算,以獲得處理後像素。In an embodiment of the invention, the step of performing bilateral noise removal processing on the target pixel includes first selecting a mask centered on the target pixel. Next, a distance weight value and an intensity closeness weight value corresponding to each of the reference pixels in the mask are calculated. And, each reference pixel is operated according to each distance weight value and each proximity intensity weight value to obtain a processed pixel.

在本發明的一實施例中,上述的各個參考像素依據各個距離權重值以及各個接近強度權重值進行運算的公式為:j =s +t ×N 。其中,P i 為目標像素,P j 為參考像素,為參考像素的距離權重值,為參考像素的接近強度權重值。In an embodiment of the invention, the formula for calculating the respective reference pixels according to the respective distance weight values and the respective proximity intensity weight values is: , j = s + t × N . Where P i is the target pixel and P j is the reference pixel. The distance weight value of the reference pixel, Is the proximity intensity weight value of the reference pixel.

在本發明的一實施例中,上述的第一與第二核心的區塊大小為M×M,該遮罩的區塊大小為N×N,其中M<N且M、N皆為大於0的正整數。In an embodiment of the present invention, the block sizes of the first and second cores are M×M, and the block size of the mask is N×N, where M<N and M and N are greater than 0. Positive integer.

基於上述,本發明提出一種整合型的流程架構來去除影像雜訊,以提升影像的品質。其中,藉由對影像進行紋理分析,適應性選擇使用雙邊雜訊去除或三邊雜訊去除演算法,在達到去除影像雜訊的同時也保留了影像細節資訊。Based on the above, the present invention proposes an integrated process architecture to remove image noise to improve image quality. Among them, by performing texture analysis on the image, the adaptive selection uses the bilateral noise removal or the three-sided noise removal algorithm to preserve the image details while removing the image noise.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

300、500‧‧‧遮罩300, 500‧‧‧ mask

Pi ‧‧‧目標像素P i ‧‧‧target pixel

Pj ‧‧‧參考像素P j ‧‧‧ reference pixels

K1 ‧‧‧第一核心K 1 ‧ ‧ first core

K2 ‧‧‧第二核心K 2 ‧‧‧Second core

S110~S150‧‧‧去除影像雜訊的方法的各步驟S110~S150‧‧‧Steps for removing image noise

S210~S230‧‧‧執行雙邊雜訊去除處理方法的各步驟S210~S230‧‧‧Steps for performing bilateral noise removal processing methods

S410~S440‧‧‧執行三邊降低雜訊處理方法的各步驟S410~S440‧‧‧Steps to perform three-sided noise reduction processing

圖1是依照本發明一實施例所繪示的一種去除影像雜訊的方法的流程圖。FIG. 1 is a flow chart of a method for removing image noise according to an embodiment of the invention.

圖2是依照本發明一實施例所繪示的對目標像素執行雙邊雜訊去除處理方法的流程圖。2 is a flow chart of a method for performing bilateral noise removal processing on a target pixel according to an embodiment of the invention.

圖3是依照本發明一實施例所繪示的遮罩示意圖。FIG. 3 is a schematic diagram of a mask according to an embodiment of the invention.

圖4是依照本發明一實施例所繪示的對目標像素執行三邊降低雜訊處理方法的流程圖。FIG. 4 is a flow chart of a method for performing three-sided noise reduction on a target pixel according to an embodiment of the invention.

圖5是依照本發明另一實施例所繪示的遮罩及其核心的簡單示意圖。FIG. 5 is a simplified schematic diagram of a mask and a core thereof according to another embodiment of the invention.

本發明提出一種整合型的流程架構來去除影像雜訊問題。其根據影像紋理資訊適應性地使用雙邊雜訊去除演算法或使用改良的非局部平均(Non-local mean)雜訊去除演算法,而可同時保留兩種演算法的優點,據以在去除影像雜訊的同時,達到保留影像細節資訊的功效。為了使本發明的內容更為明瞭,以下列舉實施例作為本發明確實能夠據以實施的範例。所提出的實施例僅作為解說用,並非用來限定本發明的權利範圍。The present invention proposes an integrated process architecture to remove image noise problems. It adaptively uses a bilateral noise removal algorithm based on image texture information or uses a modified non-local mean noise removal algorithm, while retaining the advantages of both algorithms, thereby removing images At the same time as the noise, it achieves the effect of retaining the details of the image. In order to clarify the content of the present invention, the following examples are given as examples in which the present invention can be implemented. The examples are presented for illustrative purposes only and are not intended to limit the scope of the invention.

圖1是依照本發明一實施例所繪示的一種去除影像雜訊的方法的流程圖。請參照圖1,本實施例的方法流程適於用在數位相機、數位單眼(Digital Single Lens Reflex,DSLR)相機、數位攝影機(Digital Video Camcorder,DVC)等影像獲取裝置,或是其他具有影像處理功能的智慧型手機、平板電腦等電子裝置,不限於上述。FIG. 1 is a flow chart of a method for removing image noise according to an embodiment of the invention. Referring to FIG. 1, the method flow of this embodiment is suitable for use in an image acquisition device such as a digital camera, a Digital Single Lens Reflex (DSLR) camera, a Digital Video Camcorder (DVC), or other image processing. Electronic devices such as smart phones and tablets are not limited to the above.

首先,於步驟S110中,先接收待處理影像,其中待處理影像包括多數個待處理像素。接著,於步驟S120,選取待處理像素中的其中一個像素作為目標像素,並對此目標像素進行紋理分 析(texture analysis)處理。其中,在此所述的紋理分析處理可由本領域具通常知識者選擇現有的紋理分析演算法加以應用,故在此不加以限制。First, in step S110, the image to be processed is first received, wherein the image to be processed includes a plurality of pixels to be processed. Next, in step S120, one of the pixels to be processed is selected as the target pixel, and the target pixel is subjected to texture segmentation. Texture analysis processing. The texture analysis processing described herein may be applied by an ordinary knowledge in the art to select an existing texture analysis algorithm, and thus is not limited herein.

接下來,於步驟S130,根據上述紋理分析的結果,判斷此目標像素是否位於陰影區域(shading area)。在此所述的陰影區域代表影像在此區域中具有較少的輪廓(contour)或邊緣存在,因此,又可稱之為平滑區域。換句話說,若目標像素位於陰影區域,亦可稱之為陰影像素(shading pixel)。Next, in step S130, based on the result of the texture analysis, it is determined whether the target pixel is located in a shading area. The shaded regions described herein represent that the image has fewer contours or edges in this region and, therefore, may also be referred to as smooth regions. In other words, if the target pixel is in the shaded area, it can also be called a shading pixel.

於步驟S140,當此目標像素位於陰影區域內,則可利用雙邊濾波器(Bilateral filter)對此目標像素執行雙邊雜訊去除處理,以產生處理後像素。相反地,於步驟S150,當此目標像素並非位於陰影區域內,則可利用改良的非局部平均濾波器(improved Non-Local means filter)對此目標像素執行三邊雜訊去除(trilateral noise reduction)處理,以產生處理後像素。In step S140, when the target pixel is located in the shaded area, a bilateral noise removal process may be performed on the target pixel by using a bilateral filter to generate the processed pixel. Conversely, in step S150, when the target pixel is not located in the shaded area, the improved non-local means filter may be used to perform trilateral noise reduction on the target pixel. Processed to produce processed pixels.

據此,本實施例所提供的方法基於紋理分析後的結果適應性地使用兩種不同的濾波器,而可在去除影像雜訊的同時,達到保留影像細節資訊的功效。Accordingly, the method provided by the embodiment adaptively uses two different filters based on the result of the texture analysis, and can remove the image noise while achieving the effect of retaining the image detail information.

以下則針對雙邊濾波器所執行的雙邊雜訊去除演算法以及改良的非局部平均濾波器所執行的(改良的)三邊雜訊去除驗算法進行詳細說明。The following is a detailed description of the (improved) three-sided noise removal algorithm performed by the bilateral noise removal algorithm performed by the bilateral filter and the improved non-local averaging filter.

需先說明的是,去除影像雜訊的濾波器大致可分為兩類,其一為局部平均濾波器,另一為非局部平均濾波器。其中, 雙邊濾波器所執行的雙邊雜訊去除演算法是一種常見且有效的局部平均濾波器。但無論是非局部平均濾波器或雙向濾波器皆是運用高斯濾波器(Gaussian filter)的特性來消除影像中的雜訊問題。It should be noted that the filters for removing image noise can be roughly classified into two types, one is a local average filter and the other is a non-local average filter. among them, The bilateral noise removal algorithm performed by the bilateral filter is a common and effective local average filter. However, whether it is a non-local averaging filter or a bidirectional filter, the characteristics of the Gaussian filter are used to eliminate the noise problem in the image.

圖2是依照本發明一實施例所繪示的對目標像素執行雙邊雜訊去除處理方法的流程圖。其中,圖2是圖1的步驟S140的一種詳細實施方式。2 is a flow chart of a method for performing bilateral noise removal processing on a target pixel according to an embodiment of the invention. 2 is a detailed embodiment of step S140 of FIG. 1.

請參照圖2,於步驟S210,先選定以此目標像素為中心的遮罩。在本實施例中,遮罩的區塊大小為N×N,N為大於0的正整數。也就是說,在此步驟中會以目標像素為中心圈選出二維正方形像素陣列來進行去除雜訊的運算。舉例來說,圖3是依照本發明一實施例所繪示的遮罩示意圖。請參照圖3,遮罩300例如為5×5(N=5)的陣列,其包括一個目標像素Pi 以及24個參考像素PjReferring to FIG. 2, in step S210, a mask centered on the target pixel is first selected. In this embodiment, the block size of the mask is N×N, and N is a positive integer greater than 0. That is to say, in this step, a two-dimensional square pixel array is selected with the target pixel as a center circle to perform the operation of removing noise. For example, FIG. 3 is a schematic diagram of a mask according to an embodiment of the invention. Referring to FIG. 3, the mask 300 is, for example, a 5×5 (N=5) array including one target pixel P i and 24 reference pixels P j .

接著,於步驟S220,計算屬於此遮罩中的每個參考像素對應於此目標像素的距離權重值以及接近強度(intensity closeness)權重值。詳細地說,各個參考像素依據各個距離權重值以及各個接近強度權重值進行運算的公式如下式(1)所示: 其中,P i 為目標像素,P j 為參考像素,為參考像素的距離權重值,為參考像素的接近強度權重值。指數j的數值是s+t×N的計算值。Next, in step S220, a distance weight value and an intensity closeness weight value corresponding to each of the reference pixels in the mask are calculated. In detail, the formula for calculating the respective reference pixels according to the respective distance weight values and the respective proximity intensity weight values is as shown in the following formula (1): Where P i is the target pixel and P j is the reference pixel. The distance weight value of the reference pixel, Is the proximity intensity weight value of the reference pixel. The value of the index j is the calculated value of s + t × N.

雙向濾波器使用與距離及接近強度(相似度)有關的兩 個權重值來重建待處理影像中的每一個像素。因此,距離權重值指的是距離目標像素Pi 越近的參考像素Pj 的參考價值越高,使得在依據各個參考像素重建目標像素Pi 時,越靠近目標像素Pi 的參考像素Pj 的距離權重值越高。與相似度有關的接近強度權重值指的是在目標像素Pi 周圍的各個參考像素Pj 中,與目標像素Pi 越相似的參考像素Pj 具有越高的參考價值,使得在依據各個參考像素Pj 重建目標像素Pi 時,與目標像素Pi 越相似的參考像素的Pj 的接近強度權重值越高。The bidirectional filter reconstructs each pixel in the image to be processed using two weight values related to distance and proximity strength (similarity). Thus, the distance weight value refers to a higher reference value from the target pixel P i closer to the reference pixel P j, such that upon the basis of each reference pixel reconstruction target pixel P i, closer to the reference target pixel P i to P j Distance weight value The higher. Right and approach the strength of the similarity values associated weight refers to the periphery of the target pixel P i P j in respective reference pixels, the more similar to the target pixel P i P j of the reference pixels having the higher reference value, so that in accordance with various reference when the target pixel P j reconstructed pixel P i, P j P i and the target pixel like the reference pixel is close to a weight value of the intensity weights The higher.

在各個參考像素的距離權重值與接近強度權重值都得到之後,便可接續步驟S230,各個參考像素依據各個距離權重值以及各個接近強度權重值進行運算,以獲得處理後像素(即經運算處理後的目標像素)。After the distance weight value and the proximity strength weight value of each reference pixel are obtained, step S230 may be continued, and each reference pixel is operated according to each distance weight value and each proximity intensity weight value to obtain a processed pixel (ie, processed by operation) After the target pixel).

圖4是依照本發明一實施例所繪示的對目標像素執行(改良的)三邊降低雜訊處理方法的流程圖。其中,圖4是圖1的步驟S150的一種詳細實施方式。4 is a flow chart of performing (improved) three-sided noise reduction processing on a target pixel according to an embodiment of the invention. 4 is a detailed embodiment of step S150 of FIG. 1.

請參照圖4,於步驟S410,先分別選定以目標像素為中心的第一核心(Kernel),並選定以各個參考像素為中心的第二核心。有別於雙向濾波器是要針對每一個參考像素分別決定其權重值,三邊降低雜訊處理方法是用以檢查以目標像素為中心,圍繞在目標像素周圍的一較小尺寸遮罩的相似度。在本實施例中將較小尺寸遮罩稱之為“核心”。在本實施例中,遮罩的區塊大小為N×N,第一與第二核心的區塊大小為N×N,其中M<N且M、N皆 為大於0的正整數。Referring to FIG. 4, in step S410, a first core centered on the target pixel is selected, and a second core centered on each reference pixel is selected. Different from the bidirectional filter, the weight value is determined for each reference pixel. The three-side noise reduction method is used to check the similarity of a smaller size mask around the target pixel centered on the target pixel. degree. The smaller size mask is referred to as the "core" in this embodiment. In this embodiment, the block size of the mask is N×N, and the block sizes of the first and second cores are N×N, where M<N and M and N are Is a positive integer greater than zero.

接著,於步驟S420,對第一核心中的每一像素與第二核心中的每一對應像素進行計算,以獲得各個參考像素對應於此目標像素的相似度值。舉例來說,圖5是依照本發明另一實施例所繪示的遮罩及其核心的簡單示意圖。請參照圖5,遮罩500是以目標像素Pi 為中心,目標像素Pi 周圍所圍繞的區塊例如為第一核心K1 ,參考像素Pj 周圍所圍繞的區塊例如為第二核心K2Next, in step S420, each pixel in the first core and each corresponding pixel in the second core are calculated to obtain a similarity value of each reference pixel corresponding to the target pixel. For example, FIG. 5 is a simplified schematic diagram of a mask and its core according to another embodiment of the invention. Referring to FIG. 5, the mask 500 is centered on the target pixel P i , and the block surrounded by the target pixel P i is, for example, the first core K 1 , and the block surrounded by the reference pixel P j is, for example, the second core. K 2 .

其中,對第一核心中的各個像素與第二核心中的各個對應像素進行計算,以獲得各個參考像素對應於此目標像素的相似度值的公式如下式(2)所示: 其中,Sim j 為參考像素Pj 的相似度值,w c 為信心權重值,為距離權重值,為以目標像素Pi 為中心的第一核心,為以參考像素Pj 為中心的第二核心。指數l 的數值是s+t×M的計算值。Wherein, the formula for calculating the similarity value of each pixel in the first core and each corresponding pixel in the second core to obtain the similarity value of each reference pixel corresponding to the target pixel is as shown in the following formula (2): Wherein, Sim j is a similarity value of the reference pixel P j , and w c is a confidence weight value, For the distance weight value, For the first core centered on the target pixel P i , It is a second core centered on the reference pixel P j . The value of the index l is the calculated value of s + t × M.

相似度值Sim j 是由兩個核心做相似度量測所得。若相似度值Sim j 愈高,代表相似度愈低。相反地,若相似度值Sim j 愈低,代表相似度愈高。需特別說明的是,本發明在計算相似度值的公式(2)當中,利用信心權重值w c 來調整去除雜訊的強度。其中,信心權重值w c 是由參考像素Pj 與目標像素Pi 之間的距離來決定。The similarity value Sim j is measured by similar measures by two cores. If the similarity value Sim j is higher, the lower the similarity is. Conversely, if the similarity value Sim j is lower, the higher the similarity is. It should be particularly noted that, in the formula (2) for calculating the similarity value, the present invention uses the confidence weight value w c to adjust the intensity of removing noise. The confidence weight value w c is determined by the distance between the reference pixel P j and the target pixel P i .

於步驟S430,各個參考像素再依據各個相似度值決定對應的像素權重值。最後,於步驟S440,將屬於此目標像素的遮罩 內的各個參考像素的像素值乘上對應的像素權重值,以獲得處理後像素。據此,本發明藉由改良計算相似度值的方法,以使三邊降低雜訊處理方法相較於現有的非局部平均演算法更能提升影像品質。In step S430, each reference pixel further determines a corresponding pixel weight value according to each similarity value. Finally, in step S440, the mask belonging to the target pixel is The pixel values of the respective reference pixels within are multiplied by the corresponding pixel weight values to obtain processed pixels. Accordingly, the present invention improves the image quality by improving the method of calculating the similarity value so that the three-side noise reduction processing method can improve the image quality compared with the existing non-local average algorithm.

綜上所述,本發明去除影像雜訊的方法,其根據影像紋理資訊適應性地使用雙邊雜訊去除演算法或使用三邊降低雜訊處理方法,而可同時保留兩種演算法的優點,據以在去除影像雜訊的同時,達到保留影像細節資訊的功效,而不會產生模糊影像的問題。此外,本發明藉由改良計算相似度值的方法,以使三邊降低雜訊處理方法相較於現有的非局部平均演算法更能提升影像品質。採用本發明去除影像雜訊方法的影像獲取裝置可有效提升在高感光度時的影像輸出品質。In summary, the method for removing image noise according to the present invention adaptively uses a bilateral noise removal algorithm or a three-side noise reduction method according to image texture information, while retaining the advantages of both algorithms. According to the purpose of removing image noise, it can achieve the effect of retaining the details of the image without causing the problem of blurred images. In addition, the present invention improves the image quality by improving the method of calculating the similarity value so that the three-side noise reduction processing method can improve the image quality compared with the existing non-local average algorithm. The image acquisition device using the method for removing image noise according to the present invention can effectively improve the image output quality at high sensitivity.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

S110~S150‧‧‧去除影像雜訊的方法的各步驟S110~S150‧‧‧Steps for removing image noise

Claims (8)

一種去除影像雜訊的方法,包括:接收一待處理影像,其中該待處理影像包括多數個待處理像素;選取該些待處理像素的其中之一作為一目標像素,並對該目標像素進行一紋理分析,以判斷該目標像素是否位於一陰影區域;以及當該目標像素並非位於該陰影區域內,對該目標像素執行一三邊(Trilateral)雜訊去除處理,以產生一處理後像素。 A method for removing image noise includes: receiving a to-be-processed image, wherein the image to be processed includes a plurality of pixels to be processed; selecting one of the pixels to be processed as a target pixel, and performing a target pixel A texture analysis is performed to determine whether the target pixel is located in a shaded area; and when the target pixel is not located in the shaded area, a Trilateral noise removal process is performed on the target pixel to generate a processed pixel. 如申請專利範圍第1項所述的去除影像雜訊的方法,更包括:當該目標像素位於該陰影區域內,則對該目標像素執行一雙邊(Bilateral)雜訊去除處理,以產生一處理後像素。 The method for removing image noise according to claim 1, further comprising: performing a bilateral noise removal process on the target pixel when the target pixel is located in the shadow region to generate a process. Rear pixel. 如申請專利範圍第1項所述的去除影像雜訊的方法,其中對該目標像素執行該三邊降低雜訊處理的步驟包括:分別選定以該目標像素為中心的一第一核心(Kernel),以及選定以各該參考像素為中心的一第二核心;對該第一核心中的每一像素與該第二核心中的每一對應像素進行計算,以獲得各該參考像素對應於該目標像素的一相似度值;各該參考像素依據各該相似度值決定對應的一像素權重值;以及將在該目標像素的一遮罩內的各該參考像素的像素值乘上對 應的該像素權重值,以獲得該處理後像素。 The method for removing image noise according to claim 1, wherein the step of performing the three-side noise reduction processing on the target pixel comprises: respectively selecting a first core (Kernel) centered on the target pixel And selecting a second core centered on each of the reference pixels; calculating each pixel in the first core and each corresponding pixel in the second core to obtain each of the reference pixels corresponding to the target a similarity value of the pixel; each of the reference pixels determines a corresponding one-pixel weight value according to each similarity value; and multiplies the pixel value of each of the reference pixels in a mask of the target pixel by a pair The pixel weight value should be taken to obtain the processed pixel. 如申請專利範圍第3項所述的去除影像雜訊的方法,其中對該第一核心中的各該像素與該第二核心中的各該對應像素進行計算,以獲得各該參考像素對應於該目標像素的該相似度值的公式如下式(1): 其中,Sim j 為參考像素j的該相似度值,w c 為信心權重值,為距離權重值,為以該目標像素i為中心的該第一核心,為以該參考像素j為中心的該第二核心。The method for removing image noise according to claim 3, wherein each of the pixels in the first core and the corresponding pixels in the second core are calculated to obtain that each of the reference pixels corresponds to The similarity value of the target pixel is expressed by the following formula (1): Where, Sim j is the similarity value of the reference pixel j, and w c is a confidence weight value. For the distance weight value, For the first core centered on the target pixel i, The second core centered on the reference pixel j. 如申請專利範圍第4項所述的去除影像雜訊的方法,其中信心權重值w c 是由該參考像素j與該目標像素i之間的距離來決定。The method for removing image noise according to claim 4, wherein the confidence weight value w c is determined by a distance between the reference pixel j and the target pixel i. 如申請專利範圍第2項所述的去除影像雜訊的方法,其中對該目標像素執行該雙邊雜訊去除處理的步驟包括:選定以該目標像素為中心的一遮罩;計算該遮罩中的每一參考像素對應於該目標像素的一距離權重值以及一接近強度權重值;以及各該參考像素依據各該距離權重值以及各該接近強度權重值進行運算,以獲得該處理後像素。 The method for removing image noise according to claim 2, wherein the step of performing the bilateral noise removal processing on the target pixel comprises: selecting a mask centered on the target pixel; calculating the mask Each of the reference pixels corresponds to a distance weight value of the target pixel and a proximity strength weight value; and each of the reference pixels operates according to each of the distance weight values and each of the proximity intensity weight values to obtain the processed pixel. 如申請專利範圍第6項所述的去除影像雜訊的方法,其中各該參考像素依據各該距離權重值以及各該接近強度權重值進行 運算的公式如下式(2): 其中,P i 為該目標像素i,P j 為該參考像素j,為該參考像素j的該距離權重值,為該參考像素j的該接近強度權重值。The method for removing image noise according to claim 6, wherein each of the reference pixels is calculated according to each of the distance weight values and each of the proximity strength weight values is as follows: (2): Wherein P i is the target pixel i, and P j is the reference pixel j, The distance weight value of the reference pixel j, The proximity strength weight value of the reference pixel j. 如申請專利範圍第3項所述的去除影像雜訊的方法,其中該第一與該第二核心的區塊大小為M×M,該遮罩的區塊大小為N×N,其中M<N且M、N皆為大於0的正整數。 The method for removing image noise according to claim 3, wherein the block size of the first core and the second core is M×M, and the block size of the mask is N×N, wherein M< N and M and N are both positive integers greater than zero.
TW102120932A 2013-06-13 2013-06-13 Method for image noise reduction TWI506590B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102120932A TWI506590B (en) 2013-06-13 2013-06-13 Method for image noise reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102120932A TWI506590B (en) 2013-06-13 2013-06-13 Method for image noise reduction

Publications (2)

Publication Number Publication Date
TW201447815A TW201447815A (en) 2014-12-16
TWI506590B true TWI506590B (en) 2015-11-01

Family

ID=52707551

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102120932A TWI506590B (en) 2013-06-13 2013-06-13 Method for image noise reduction

Country Status (1)

Country Link
TW (1) TWI506590B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706625B2 (en) * 2006-06-09 2010-04-27 Siemens Aktiengesellschaft Trilateral filter for medical diagnostic imaging
CN102447939A (en) * 2011-10-12 2012-05-09 绍兴南加大多媒体通信技术研发有限公司 Optimization method for converting 2D (two-dimensional) film and television works into 3D (three-dimensional)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706625B2 (en) * 2006-06-09 2010-04-27 Siemens Aktiengesellschaft Trilateral filter for medical diagnostic imaging
CN102447939A (en) * 2011-10-12 2012-05-09 绍兴南加大多媒体通信技术研发有限公司 Optimization method for converting 2D (two-dimensional) film and television works into 3D (three-dimensional)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ojeda-Magaña, B., Quintanilla-Dominguez, J., Ruelas, R. and Andina, D. "Images sub-segmentation with the PFCM clustering algorithm", 7th IEEE International Conference on Industrial Informatics, pp. 499–503 (2009) *

Also Published As

Publication number Publication date
TW201447815A (en) 2014-12-16

Similar Documents

Publication Publication Date Title
JP6169186B2 (en) Image processing method and apparatus, and photographing terminal
CN105976332B (en) Image deblurring method based on bright fringes information in image
KR101901602B1 (en) Apparatus and method for noise removal in a digital photograph
US9646364B1 (en) Dehazing photos and videos using visual artifact suppression
US8744206B2 (en) Image processing apparatus, image processing method, and program
US7522782B2 (en) Digital image denoising
CN109978774B (en) Denoising fusion method and device for multi-frame continuous equal exposure images
US9811882B2 (en) Method and apparatus for processing super resolution image using adaptive preprocessing filtering and/or postprocessing filtering
JP5767064B2 (en) Image edge enhancement method
CN109064504A (en) Image processing method, device and computer storage medium
Liu et al. Joint denoising and contrast enhancement of images using graph laplacian operator
WO2021013139A1 (en) Image processing method and device
TW201318418A (en) Method of noise reduction in image and device thereof
CN118096542A (en) Image processing method and device
Wu et al. An improved Richardson-Lucy algorithm for single image deblurring using local extrema filtering
CN111429368B (en) Multi-exposure image fusion method for self-adaptive detail enhancement and ghost elimination
CN110852947B (en) Infrared image super-resolution method based on edge sharpening
CN110136085B (en) Image noise reduction method and device
Kaur et al. An improved adaptive bilateral filter to remove gaussian noise from color images
TWI506590B (en) Method for image noise reduction
CN104243767A (en) Method for removing image noise
RU2405200C2 (en) Method and device for fast noise filtration in digital images
Sarbas et al. Deblurring of low light images using light-streak and dark channel
CN117729429A (en) Method and device for evaluating automatic focusing definition of infrared image and embedded computer equipment
Suhaila et al. HE_OWW Filter for Enhancement of Wildlife Observation Digital Images in Limited Light Condition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees