TWI505654B - Optical network system - Google Patents

Optical network system Download PDF

Info

Publication number
TWI505654B
TWI505654B TW102121410A TW102121410A TWI505654B TW I505654 B TWI505654 B TW I505654B TW 102121410 A TW102121410 A TW 102121410A TW 102121410 A TW102121410 A TW 102121410A TW I505654 B TWI505654 B TW I505654B
Authority
TW
Taiwan
Prior art keywords
optical
optical path
path switching
network system
optical network
Prior art date
Application number
TW102121410A
Other languages
Chinese (zh)
Other versions
TW201501481A (en
Inventor
Peng Chun Peng
Yi Chun Chen
Han Wen Gu
Shun Shing Yang
Jhih Jiang Jhang
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW102121410A priority Critical patent/TWI505654B/en
Publication of TW201501481A publication Critical patent/TW201501481A/en
Application granted granted Critical
Publication of TWI505654B publication Critical patent/TWI505654B/en

Links

Description

光學網路系統Optical network system

本發明是有關於一種網路系統,且特別是有關於一種光學網路系統。This invention relates to a network system and, more particularly, to an optical network system.

近年來,隨著光纖通訊的蓬勃發展,利用光纖光柵感測器及光纖元件來進行分布式感測,已逐漸受到重視。具體而言,由於光纖感測具有不受電磁干擾、體積小、寬頻、信號易於傳輸等優點,因此利用光纖光柵感測器及光纖元件來感測應變、溫度、壓力、電流、氣體等變化的應用亦是相關領域所戮力發展的課題。In recent years, with the rapid development of optical fiber communication, the use of fiber grating sensors and fiber optic components for distributed sensing has gradually gained attention. Specifically, since the fiber sensing has the advantages of being free from electromagnetic interference, small in size, wide frequency, and easy to transmit signals, the fiber grating sensor and the optical fiber component are used to sense changes in strain, temperature, pressure, current, gas, and the like. Application is also a topic of development in related fields.

以光纖感測在土木工程等領域的應用為例,透過光纖感測系統的設置,可將光纖光柵感測器及光纖元件埋入或黏貼在結構物中,以使結構物中的內建感測系統具有監測結構體應變的能力,並因此可實現智慧型土木結構。Taking the application of fiber sensing in civil engineering and other fields as an example, the fiber grating sensor and the fiber component can be embedded or adhered to the structure through the arrangement of the fiber sensing system to make the structure feel in the structure. The measurement system has the ability to monitor the strain of the structure and thus enable intelligent civil structures.

然而,一般而言,在土木工程施工過程中,導致光纖元件斷裂或損毀的情況十分常見,而這將會使得光纖感測系統有失效的風險。因此,如何使光纖網路具有偵錯、容錯,並具有自動切換路由的功能,是發展光纖感測系統的重要課題之一。However, in general, it is very common to cause fiber component breakage or damage during civil engineering construction, and this will cause the fiber sensing system to fail. Therefore, how to make the fiber network have debugging, fault tolerance, and automatic switching routing functions is one of the important topics for the development of fiber sensing systems.

本發明提供一種光學網路系統,其具有良好的重建功能與擴充功能。The invention provides an optical network system with good reconstruction and expansion functions.

本發明的光學網路系統包括一光收發單元以及至少一光學網路單元。光收發單元用以提供一偵測光束。至少一光學網路單元包括一外環狀光路、一內環狀光路、至少一第一光路切換單元以及至少一感測器。內環狀光路被外環狀光路所環繞,其中來自光收發單元的偵測光束經由外環狀光路進入內環狀光路。至少一第一光路切換單元配置於外環狀光路與內環狀光路上,且用以在一交錯模式與一非交錯模式間切換。當第一光路切換單元切換至交錯模式時,外環狀光路與內環狀光路透過第一光路切換單元相通。當第一光路切換單元切換至非交錯模式時,外環狀光路與內環狀光路無法透過第一光路切換單元相通。至少一感測器配置於內環狀光路上,且用以將至少部分偵測光束轉換成一轉換光束,其中光收發單元用以感測轉換光束,且轉換光束的參數隨著感測器接收到外界的物理量的不同而有所不同。The optical network system of the present invention includes an optical transceiver unit and at least one optical network unit. The optical transceiver unit is configured to provide a detection beam. The at least one optical network unit includes an outer annular optical path, an inner annular optical path, at least one first optical path switching unit, and at least one sensor. The inner annular optical path is surrounded by the outer annular optical path, wherein the detecting light beam from the optical transceiver unit enters the inner annular optical path via the outer annular optical path. The at least one first optical path switching unit is disposed on the outer annular optical path and the inner annular optical path, and is configured to switch between an interlaced mode and a non-interlaced mode. When the first optical path switching unit switches to the interlaced mode, the outer annular optical path and the inner annular optical path communicate with each other through the first optical path switching unit. When the first optical path switching unit switches to the non-interlaced mode, the outer annular optical path and the inner annular optical path cannot communicate with each other through the first optical path switching unit. The at least one sensor is disposed on the inner annular optical path, and configured to convert at least a portion of the detected light beam into a converted light beam, wherein the optical transceiver unit is configured to sense the converted light beam, and the parameters of the converted light beam are received by the sensor. The physical quantity of the outside varies.

在本發明的一實施例中,上述的至少一光學網路單元為多個光學網路單元,且光學網路系統更包括至少一遠端節點。遠端節點連接相鄰的這些光學網路單元。至少一遠端節點、光收發單元分別位於多個共用光路徑的一端上。相鄰的這些光學網路單元的部分這些外環狀光路彼此共用其中一共用光路徑,且偵測光束經由部分至少一遠端節點以及部份共用光路徑傳遞至各光學網 路單元的每一感測器中。In an embodiment of the invention, the at least one optical network unit is a plurality of optical network units, and the optical network system further includes at least one remote node. The remote node connects the adjacent optical network units. The at least one remote node and the optical transceiver unit are respectively located on one end of the plurality of shared optical paths. Portions of the adjacent optical network units share a common optical path with each other, and the detection beam is transmitted to each optical network via a portion of at least one remote node and a portion of the shared optical path. In each sensor of the road unit.

在本發明的一實施例中,上述的每一遠端節點包括多個第二光路切換單元。這些第二光路切換單元彼此連接,並形成每一遠端節點的多個光埠,且各第二光路切換單元用以在一交錯模式與一非交錯模式間切換。當這些第二光路切換單元切換至這些交錯模式、這些非交錯模式及其組合之一時,偵測光束自其中一光埠傳遞至遠端節點中,並從其餘光埠的其中一者傳遞出遠端節點。In an embodiment of the invention, each of the remote nodes includes a plurality of second optical path switching units. The second optical path switching units are connected to each other and form a plurality of apertures of each remote node, and each of the second optical path switching units is configured to switch between an interlaced mode and a non-interlaced mode. When the second optical path switching units switch to one of the interlaced modes, the non-interlaced modes, and a combination thereof, the detecting beam is transmitted from one of the apertures to the remote node and transmitted from one of the remaining apertures End node.

在本發明的一實施例中,上述的每一遠端節點包括四個第二光路切換單元,四第二光路切換單元形成每一遠端節點的六個光埠,且偵測光束自其中一光埠傳遞至每一遠端節點中,並從另五個光埠的其中任一者傳遞出遠端節點。In an embodiment of the invention, each of the remote nodes includes four second optical path switching units, and the four second optical path switching units form six apertures of each remote node, and the detection beam is from one of the The aperture is passed to each remote node and the remote node is passed from any of the other five apertures.

在本發明的一實施例中,上述的每一遠端節點包括三個第二光路切換單元,三第二光路切換單元形成每一遠端節點的六個光埠,且偵測光束自其中一光埠傳遞至每一遠端節點中,並從另五個光埠的其中一者傳遞出遠端節點。In an embodiment of the invention, each of the remote nodes includes three second optical path switching units, and the three second optical path switching units form six apertures of each remote node, and the detection beam is from one of the The aperture is passed to each remote node and the remote node is passed from one of the other five apertures.

在本發明的一實施例中,上述的外環狀光路由多條第一光纖、這些第一光路切換單元以及至少一遠端節點、光收發單元及其組合之一連接形成,且位於每一共用光路徑上的這些第一光纖被相鄰二光學網路單元所共用。In an embodiment of the present invention, the outer annular optical line is formed by connecting a plurality of first optical fibers, the first optical path switching units, and at least one remote node, an optical transceiver unit, and a combination thereof, and is located at each These first fibers on the shared optical path are shared by adjacent two optical network elements.

在本發明的一實施例中,上述的內環狀光路由多條第二光纖、這些第一光路切換單元與這些感測器連結形成。In an embodiment of the invention, the inner annular light is routed to the plurality of second optical fibers, and the first optical path switching units are coupled to the sensors.

在本發明的一實施例中,上述的每一第一光路切換單元與二第一光纖以及二第二光纖連接。In an embodiment of the invention, each of the first optical path switching units is connected to two first optical fibers and two second optical fibers.

在本發明的一實施例中,當各第一光路切換單元切換至非交錯模式時,上述的各第一光路切換單元使偵測光束的傳遞路徑為自其中一第一光纖傳遞至另一第一光纖或自其中一第二光纖傳遞至另一第二光纖,以使偵測光束在經過各第一光路切換單元後繼續在外環狀光路或內環狀光路傳遞。In an embodiment of the invention, when each of the first optical path switching units is switched to the non-interlaced mode, each of the first optical path switching units causes the transmission path of the detection beam to be transmitted from one of the first optical fibers to another An optical fiber is transmitted from one of the second optical fibers to the other of the second optical fibers, so that the detected light beam continues to be transmitted in the outer annular optical path or the inner annular optical path after passing through the respective first optical path switching units.

在本發明的一實施例中,當各第一光路切換單元切換至交錯模式時,上述的各第一光路切換單元使偵測光束的傳遞路徑為自一側的第一光纖與第二光纖之一傳遞至另一側的第一光纖與第二光纖之另一,以使在外環狀光路與內環狀光路之一傳遞的偵測光束經由第一光路切換單元傳遞至外環狀光路與內環狀光路之另一。In an embodiment of the invention, when each of the first optical path switching units is switched to the interlace mode, each of the first optical path switching units causes the transmission path of the detection beam to be the first optical fiber and the second optical fiber from one side. Passing the other of the first optical fiber and the second optical fiber to the other side, so that the detecting light beam transmitted through one of the outer annular optical path and the inner annular optical path is transmitted to the outer annular optical path and the inner optical path through the first optical path switching unit The other of the ring light paths.

在本發明的一實施例中,上述的各感測器將至少部分偵測光束轉換成轉換光束的方法為對具有一特定參數的部分偵測光束進行反射,特定參數隨著感測器接收到外界的物理量的不同而有所不同,且特定參數為轉換光束的參數。In an embodiment of the invention, each of the sensors converts at least a portion of the detected beam into a converted beam by reflecting a portion of the detected beam having a specific parameter, and the specific parameter is received by the sensor. The physical quantities of the outside vary, and the specific parameters are the parameters of the converted beam.

在本發明的一實施例中,上述的至少一感測器為多個感測器,且這些感測器所形成的這些轉換光束的參數彼此不相同。In an embodiment of the invention, the at least one sensor is a plurality of sensors, and the parameters of the converted beams formed by the sensors are different from each other.

在本發明的一實施例中,上述的轉換光束的參數為轉換光束的波長。In an embodiment of the invention, the parameter of the converted beam is the wavelength of the converted beam.

在本發明的一實施例中,上述的各感測器為光纖布拉格 光柵。In an embodiment of the invention, each of the sensors is a fiber Bragg Grating.

在本發明的一實施例中,上述的各感測器接收到外界的物理量為應力或溫度。In an embodiment of the invention, each of the sensors receives a physical quantity of stress or temperature.

基於上述,本發明的實施例的光學網路系統可透過第一光路切換單元的模式切換的技術來控制偵測光束行進的適當路徑。如此,即便光學網路系統發生光纖元件損毀的情形,仍可依據所要偵測的區域與斷點的位置,重建網路系統,而仍可保有其監測功能。此外,在本發明的實施例的光學網路系統中,可透過擴充光學網路系統的光學網路單元以使偵測範圍增加。如此,光學網路系統的感測容量將可有效提升,且因此亦可具有更加完善的重建功能與擴充功能。Based on the above, the optical network system of the embodiment of the present invention can control the appropriate path of detecting the traveling of the light beam through the technique of mode switching of the first optical path switching unit. In this way, even if the optical network system is damaged, the network system can be reconstructed according to the location of the area to be detected and the location of the breakpoint, and the monitoring function can still be maintained. In addition, in the optical network system of the embodiment of the present invention, the optical network unit of the optical network system can be expanded to increase the detection range. In this way, the sensing capacity of the optical network system can be effectively improved, and thus it is also possible to have more complete reconstruction functions and expansion functions.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

70‧‧‧偵測光束70‧‧‧Detecting beam

80、80λ1、80λ2、80λ3、80λ4、80λ5、80λ6‧‧‧轉換光束80, 80λ1, 80λ2, 80λ3, 80λ4, 80λ5, 80λ6‧‧‧ converted beam

100、300、500、900、1000‧‧‧光學網路系統100, 300, 500, 900, 1000‧‧‧ optical network system

110‧‧‧光收發單元110‧‧‧Optical transceiver unit

111‧‧‧開關111‧‧‧ switch

120、120R1、120R2、120R3、120R4、120R5、120R6、120RN‧‧‧光學網路單元120, 120R1, 120R2, 120R3, 120R4, 120R5, 120R6, 120RN‧‧‧ optical network unit

121‧‧‧外環狀光路121‧‧‧Outer ring light path

121a、121a1、121a2、121ac‧‧‧第一光纖121a, 121a1, 121a2, 121ac‧‧‧ first fiber

123‧‧‧內環狀光路123‧‧‧ Inner ring light path

123a、123a1、123a2‧‧‧第二光纖123a, 123a1, 123a2‧‧‧ second fiber

124、124λ1、124λ2、124λ3、124λ4、124λ5、124λ6‧‧‧感測器124, 124λ1, 124λ2, 124λ3, 124λ4, 124λ5, 124λ6‧‧‧ sensors

130、130N1、130N2、130N3、130N4、130N5、130N6、730、1130‧‧‧遠端節點130, 130N1, 130N2, 130N3, 130N4, 130N5, 130N6, 730, 1130‧‧‧ remote node

SU、SUR1a、SUR1b、SUR1c、SUR2a、SUR2b、SUR2c、SUN1a、SUN1b、SUN1c、SUN1d‧‧‧光路切換單元SU, SUR1a, SUR1b, SUR1c, SUR2a, SUR2b, SUR2c, SUN1a, SUN1b, SUN1c, SUN1d‧‧‧ optical path switching unit

a1、a2、a3、a4、、A1、B1、C1、D1、A3、B3、C3、D3、A2、B2、C2、D2、A4、B4、C4、D4‧‧‧接點A1, a2, a3, a4, A1, B1, C1, D1, A3, B3, C3, D3, A2, B2, C2, D2, A4, B4, C4, D4‧‧

E1、E2、E3、E4、E5、E6‧‧‧光埠E1, E2, E3, E4, E5, E6‧‧‧

CT‧‧‧共用光路徑CT‧‧‧Shared light path

圖1A是本發明一實施例的一種光學網路系統的架構示意圖。FIG. 1A is a schematic structural diagram of an optical network system according to an embodiment of the present invention.

圖1B是圖1A實施例的一種光收發單元的內部結構示意圖。FIG. 1B is a schematic diagram showing the internal structure of an optical transceiver unit of the embodiment of FIG. 1A.

圖2A是圖1A實施例的一種第一光路切換單元的正視示意圖。2A is a front elevational view showing a first optical path switching unit of the embodiment of FIG. 1A.

圖2B與圖2C是圖2A實施例的第一光路切換單元於不同切換模式下的光路示意圖。2B and FIG. 2C are schematic diagrams of optical paths of the first optical path switching unit of the embodiment of FIG. 2A in different switching modes.

圖3是本發明另一實施例的光學網路系統的架構示意圖。FIG. 3 is a schematic structural diagram of an optical network system according to another embodiment of the present invention.

圖4A與圖4B分別是圖1A實施例與圖3實施例的光學網路系統具有光纖元件損毀情形時的光路示意圖。4A and FIG. 4B are schematic diagrams of optical paths when the optical network system of the embodiment of FIG. 1A and the embodiment of FIG. 3 have a fiber component damage.

圖5A與圖5B是本發明又一實施例的一種光學網路系統的架構示意圖。5A and 5B are schematic diagrams showing the architecture of an optical network system according to still another embodiment of the present invention.

圖6A是圖5A實施例的一種遠端節點的外觀示意圖。FIG. 6A is a schematic diagram of the appearance of a remote node in the embodiment of FIG. 5A.

圖6B是圖6A實施例的遠端節點的內部結構示意圖。FIG. 6B is a schematic diagram showing the internal structure of the remote node of the embodiment of FIG. 6A.

圖6C與圖6D是圖6A實施例的遠端節點的不同通路模式示意圖。6C and 6D are schematic diagrams of different path patterns of the remote node of the embodiment of FIG. 6A.

圖7A是圖5實施例的另一種遠端節點的外觀示意圖。FIG. 7A is a schematic diagram of the appearance of another remote node in the embodiment of FIG. 5. FIG.

圖7B是圖7A實施例的遠端節點的內部結構示意圖。FIG. 7B is a schematic diagram showing the internal structure of the remote node of the embodiment of FIG. 7A.

圖7C與圖7D是圖7A實施例的遠端節點的不同通路模式示意圖。7C and 7D are schematic diagrams of different path patterns of the remote node of the embodiment of FIG. 7A.

圖8A與圖8B是圖5A實施例的光學網路系統具有光纖元件損毀情形時的光路示意圖。8A and FIG. 8B are schematic diagrams showing the optical path of the optical network system of the embodiment of FIG. 5A in the case where the optical fiber component is damaged.

圖9是本發明再一實施例的一種光學網路系統的架構示意圖。FIG. 9 is a schematic structural diagram of an optical network system according to still another embodiment of the present invention.

圖10是本發明又一實施例的一種光學網路系統的架構示意圖。FIG. 10 is a schematic structural diagram of an optical network system according to still another embodiment of the present invention.

圖11A是本發明又一實施例的一種遠端節點的外觀示意圖。FIG. 11A is a schematic diagram of the appearance of a remote node according to still another embodiment of the present invention.

圖11B是圖11A實施例的遠端節點的內部結構示意圖。FIG. 11B is a schematic diagram showing the internal structure of the remote node of the embodiment of FIG. 11A.

圖11C是圖11A實施例的遠端節點的一種通路模式示意圖。Figure 11C is a schematic diagram of a path pattern of the remote node of the embodiment of Figure 11A.

圖1A是本發明一實施例的一種光學網路系統的架構示意圖。圖1B是圖1A實施例的一種光收發單元的內部結構示意圖。請參照圖1A,本實施例的光學網路系統100包括一光收發單元110以及至少一光學網路單元120。具體而言,在本實施例中,光收發單元110可用以提供一偵測光束70,其中偵測光束70可同時具有各種不同波長的光線。舉例而言,偵測光束70可具有連續的寬頻譜。在本實施例中,如圖1B所示,光收發單元110可透過開關111的不同切換模式而控制收發偵測光束70的傳遞路徑。此外,在本實施例中,光學網路系統100例如為光纖感測系統,而光收發單元110例如可為光纖感測系統的中央控制室(Central Office,CO)。FIG. 1A is a schematic structural diagram of an optical network system according to an embodiment of the present invention. FIG. 1B is a schematic diagram showing the internal structure of an optical transceiver unit of the embodiment of FIG. 1A. Referring to FIG. 1A, the optical network system 100 of the present embodiment includes an optical transceiver unit 110 and at least one optical network unit 120. Specifically, in the embodiment, the optical transceiver unit 110 can be used to provide a detection beam 70, wherein the detection beam 70 can simultaneously have various wavelengths of light. For example, the detection beam 70 can have a continuous wide spectrum. In this embodiment, as shown in FIG. 1B, the optical transceiver unit 110 can control the transmission path of the transmission and reception detection beam 70 through different switching modes of the switch 111. In addition, in the embodiment, the optical network system 100 is, for example, a fiber optic sensing system, and the optical transceiver unit 110 can be, for example, a central control room (CO) of the fiber optic sensing system.

另一方面,在本實施例中,光學網路單元120包括一外環狀光路121、一內環狀光路123、至少一第一光路切換單元SU以及至少一感測器124。具體而言,在本實施例中,內環狀光路123被外環狀光路121所環繞。更詳細而言,內環狀光路123由多條第二光纖123a、第一光路切換單元SU與這些感測器124連結形成,而外環狀光路121由多條第一光纖121a、第一光路切換單元SU以及光收發單元110連接形成。換言之,如圖1A所示,第一光路切換單元SU配置於外環狀光路121與內環狀光路123上,而感測器124配置於內環狀光路123上。On the other hand, in the embodiment, the optical network unit 120 includes an outer annular optical path 121, an inner annular optical path 123, at least one first optical path switching unit SU, and at least one sensor 124. Specifically, in the present embodiment, the inner annular optical path 123 is surrounded by the outer annular optical path 121. More specifically, the inner annular optical path 123 is formed by a plurality of second optical fibers 123a and a first optical path switching unit SU connected to the sensors 124, and the outer annular optical path 121 is composed of a plurality of first optical fibers 121a and a first optical path. The switching unit SU and the optical transceiver unit 110 are connected and formed. In other words, as shown in FIG. 1A, the first optical path switching unit SU is disposed on the outer annular optical path 121 and the inner annular optical path 123, and the sensor 124 is disposed on the inner annular optical path 123.

進一步而言,在本實施例中,第一光路切換單元SU可用以在一交錯模式與一非交錯模式間切換,並可藉由切換其模式而 改變偵測光束70的傳遞路徑,以使來自光收發單元110的偵測光束70經由外環狀光路121進入內環狀光路123,而可被感測器124所偵測。以下將搭配圖2A與圖2B,針對第一光路切換單元SU的切換模式進行進一步的說明。Further, in this embodiment, the first optical path switching unit SU can be used to switch between an interlaced mode and a non-interlaced mode, and can be switched by switching its mode. The transmission path of the detecting beam 70 is changed so that the detecting beam 70 from the optical transceiver unit 110 enters the inner annular optical path 123 via the outer annular optical path 121 and can be detected by the sensor 124. The switching mode of the first optical path switching unit SU will be further described below with reference to FIGS. 2A and 2B.

圖2A是圖1A實施例的一種第一光路切換單元的正視示意圖。圖2B與圖2C是圖2實施例的第一光路切換單元於不同切換模式下的光路示意圖。請參照圖2A,在本實施例中,第一光路切換單元SU包括四個接點a1、a2、a3、a4,且接點a3、a4分別與二第一光纖121a以及接點a1、a2分別與二第二光纖123a連接。具體而言,如圖2B所示,當第一光路切換單元SU切換至非交錯模式時,第一光路切換單元SU可使偵測光束70的傳遞路徑為自其中一第一光纖121a經接點a3、a4傳遞至另一第一光纖121a或自其中一第二光纖123a經接點a1、a2傳遞至另一第二光纖123a。如此,請同時參照圖1A,光學網路單元120此時將可使偵測光束70在經過第一光路切換單元SU後繼續在外環狀光路121或內環狀光路123傳遞。換言之,此時若偵測光束70在外環狀光路121傳遞,則將在經過第一光路切換單元SU後繼續在外環狀光路121傳遞。而若偵測光束70在內環狀光路123傳遞,則會在經過第一光路切換單元SU後繼續在內環狀光路123傳遞。2A is a front elevational view showing a first optical path switching unit of the embodiment of FIG. 1A. 2B and FIG. 2C are schematic diagrams of optical paths of the first optical path switching unit of the embodiment of FIG. 2 in different switching modes. Referring to FIG. 2A, in the embodiment, the first optical path switching unit SU includes four contacts a1, a2, a3, and a4, and the contacts a3 and a4 are respectively connected to the two first optical fibers 121a and the contacts a1 and a2, respectively. Connected to the second second optical fiber 123a. Specifically, as shown in FIG. 2B, when the first optical path switching unit SU switches to the non-interlaced mode, the first optical path switching unit SU can make the transmission path of the detecting beam 70 from one of the first optical fibers 121a. A3, a4 is transferred to or from one of the second optical fibers 121a to the other second optical fiber 123a via the contacts a1, a2. Thus, referring to FIG. 1A at the same time, the optical network unit 120 can cause the detection beam 70 to continue to be transmitted through the outer annular optical path 121 or the inner annular optical path 123 after passing through the first optical path switching unit SU. In other words, if the detection beam 70 is transmitted through the outer annular optical path 121 at this time, it will continue to be transmitted to the outer annular optical path 121 after passing through the first optical path switching unit SU. On the other hand, if the detection beam 70 is transmitted through the inner annular path 123, it will continue to be transmitted to the inner annular path 123 after passing through the first optical path switching unit SU.

另一方面,請參照圖1A與圖2C,當第一光路切換單元SU切換至交錯模式時,第一光路切換單元SU使偵測光束70的傳遞路徑為自一側的第一光纖121a與第二光纖123a之一傳遞至另 一側的第一光纖121a與第二光纖123a之另一。更詳細而言,如圖2C所示,若偵測光束70此時自一側的第一光纖121a進入第一光路切換單元SU,則會經由接點a2、a4傳遞至另一側的第二光纖123a。反之,若偵測光束70此時自一側的第二光纖123a進入第一光路切換單元SU,則會經由接點a1、a3傳遞至另一側的第一光纖121a。如此,如圖1A所示,光學網路單元120此時將可使在外環狀光路121與內環狀光路123之一傳遞的偵測光束70經由第一光路切換單元SU傳遞至外環狀光路121與內環狀光路123之另一。換言之,此時若偵測光束70在外環狀光路121傳遞,則將在經過第一光路切換單元SU後傳遞至內環狀光路123中。而若偵測光束70在內環狀光路123傳遞,則會在經過第一光路切換單元SU後傳遞至外環狀光路121。On the other hand, referring to FIG. 1A and FIG. 2C, when the first optical path switching unit SU is switched to the interlaced mode, the first optical path switching unit SU causes the transmission path of the detecting beam 70 to be the first optical fiber 121a and the first side. One of the two fibers 123a is passed to another The other one of the first optical fiber 121a and the second optical fiber 123a on one side. In more detail, as shown in FIG. 2C, if the detecting beam 70 enters the first optical path switching unit SU from the first optical fiber 121a on one side, it is transmitted to the second side via the contacts a2 and a4. Optical fiber 123a. On the other hand, if the detecting beam 70 enters the first optical path switching unit SU from the second optical fiber 123a at one time, it is transmitted to the first optical fiber 121a on the other side via the contacts a1 and a3. Thus, as shown in FIG. 1A, the optical network unit 120 can transmit the detection beam 70 transmitted by one of the outer annular optical path 121 and the inner annular optical path 123 to the outer annular optical path via the first optical path switching unit SU. 121 and the other of the inner annular optical path 123. In other words, if the detection beam 70 is transmitted through the outer annular optical path 121 at this time, it will be transmitted to the inner annular optical path 123 after passing through the first optical path switching unit SU. On the other hand, if the detection beam 70 is transmitted through the annular optical path 123, it is transmitted to the outer annular optical path 121 after passing through the first optical path switching unit SU.

承上述,因此,當第一光路切換單元SU切換至非交錯模式時,外環狀光路121與內環狀光路123無法透過第一光路切換單元SU相通,而當第一光路切換單元SU切換至交錯模式時,外環狀光路121與內環狀光路123透過第一光路切換單元SU相通。如此一來,偵測光束70將可被傳遞至感測器124,並被感測器124所偵測。According to the above, when the first optical path switching unit SU is switched to the non-interlaced mode, the outer annular optical path 121 and the inner annular optical path 123 cannot communicate with the first optical path switching unit SU, and when the first optical path switching unit SU is switched to In the interlaced mode, the outer annular optical path 121 and the inner annular optical path 123 communicate with each other through the first optical path switching unit SU. As such, the detection beam 70 will be transmitted to the sensor 124 and detected by the sensor 124.

進一步而言,如圖1A所示,在本實施例中,感測器124可用以將至少部分偵測光束70轉換成一轉換光束80。具體而言,感測器124將至少部分偵測光束70轉換成轉換光束80的方法為對具有一特定參數的部分偵測光束70進行反射,且此特定參數為 轉換光束80的參數。舉例而言,在本實施例中,感測器124例如可為光纖布拉格光柵(Fiber Bragg Grating,FBG),因而感測器124可對具有一特定波長的部分偵測光束70進行反射而形成轉換光束80。Further, as shown in FIG. 1A, in the present embodiment, the sensor 124 can be used to convert at least a portion of the detected beam 70 into a converted beam 80. Specifically, the method for the sensor 124 to convert at least a portion of the detected light beam 70 into the converted light beam 80 is to reflect a partial detected light beam 70 having a specific parameter, and the specific parameter is The parameters of the converted beam 80 are converted. For example, in this embodiment, the sensor 124 can be, for example, a Fiber Bragg Grating (FBG), so that the sensor 124 can reflect a partial detection beam 70 having a specific wavelength to form a conversion. Beam 80.

更詳細而言,在本實施例中,此特定參數(即轉換光束80的參數)將會隨著感測器124接收到外界的物理量的不同而有所不同。舉例而言,感測器124接收到外界的物理量例如可為應力或溫度,而此特定參數即為一特定波長。換言之,當感測器124所在的區域的應力或溫度出現變化時,感測器124所能反射的偵測光束70的波長將發生變化,而由原本的路徑被傳遞回光收發單元110的轉換光束80的波長亦會發生變化。如此一來,光收發單元110則可根據轉換光束80的波長變化,來監測感測器124所在區域的應力或溫度變化。In more detail, in the present embodiment, this particular parameter (i.e., the parameters of the converted beam 80) will vary depending on the physical quantity that the sensor 124 receives from the outside. For example, the physical quantity that the sensor 124 receives from the outside can be, for example, stress or temperature, and the specific parameter is a specific wavelength. In other words, when the stress or temperature of the region where the sensor 124 is located changes, the wavelength of the detecting beam 70 that the sensor 124 can reflect changes, and the original path is transmitted back to the optical transceiver unit 110 for conversion. The wavelength of the beam 80 also changes. In this way, the optical transceiver unit 110 can monitor the stress or temperature change of the region where the sensor 124 is located according to the wavelength change of the converted light beam 80.

圖3是本發明另一實施例的光學網路系統的架構示意圖。請參照圖3,圖3的光學網路系統300與圖1A的光學網路系統100類似,而差異如下所述。在本實施例中,光學網路系統包括多個分布在不同區域中的感測器124λ1、124λ2,且感測器124λ1、124λ2所形成的轉換光束80λ1、80λ2的參數彼此不相同。換言之,不同感測器124λ1、124λ2將可分別對具有不同特定參數的偵測光束70進行轉換。舉例而言,在本實施例中,感測器124λ1、124λ2在外界的物理量不同時,所能反射光線的特定波長可集合為一第一波長範圍。而感測器124λ1、124λ2在外界的物理 量不同時,所能反射光線的特定波長可集合為一第二波長範圍,且第一波長範圍與第二波長範圍彼此並不重疊。FIG. 3 is a schematic structural diagram of an optical network system according to another embodiment of the present invention. Referring to Figure 3, the optical network system 300 of Figure 3 is similar to the optical network system 100 of Figure 1A, with the differences described below. In the present embodiment, the optical network system includes a plurality of sensors 124λ1, 124λ2 distributed in different regions, and the parameters of the converted beams 80λ1, 80λ2 formed by the sensors 124λ1, 124λ2 are different from each other. In other words, the different sensors 124λ1, 124λ2 will be able to convert the detection beams 70 having different specific parameters, respectively. For example, in the embodiment, when the physical quantities of the outside are different, the specific wavelengths of the reflected light 124λ1, 124λ2 may be combined into a first wavelength range. And the sensors 124λ1, 124λ2 are in the external physics When the amounts are different, the specific wavelengths of the reflected light may be combined into a second wavelength range, and the first wavelength range and the second wavelength range do not overlap each other.

如此,由於偵測光束70包括了各種不同波長的光線,因此若具有第一波長範圍內的某特定波長的光線將會被感測器124λ1所反射而形成轉換光束80λ1,其餘的光線則將會穿透感測器124λ1,而繼續傳遞至下一個感測器124λ2。接著,感測器124λ2則會將再反射具有第二波長範圍內的另一特定波長的光線而形成轉換光束80λ2。而當外界的物理量發生變化時,轉換光束80λ1、80λ2的波長也會發生變化。如此一來,光學網路系統300將分別對轉換光束80λ1、80λ2的波長變化進行分析,而可對感測不同區域的情況進行監測。Thus, since the detecting beam 70 includes light of various wavelengths, if light having a certain wavelength in the first wavelength range is reflected by the sensor 124λ1 to form the converted beam 80λ1, the remaining light will be The sensor 124λ1 is penetrated and continues to pass to the next sensor 124λ2. Next, the sensor 124λ2 will re-reflect light having another specific wavelength in the second wavelength range to form the converted beam 80λ2. When the physical quantity of the outside changes, the wavelengths of the converted beams 80λ1, 80λ2 also change. In this way, the optical network system 300 will separately analyze the wavelength changes of the converted beams 80λ1, 80λ2, and can monitor the situation of sensing different regions.

此外,值得注意的是,在本實施例中,感測器124λ1、124λ2的數量雖以2個為例示,但本發明不限定感測器的數量。在其他實施例中,此技術領域中具有通常知識者當可依據實際需求來決定感測器的數量及其所能反射光線的特定波長範圍,此處便不再贅述。Further, it is to be noted that, in the present embodiment, although the number of the sensors 124λ1, 124λ2 is exemplified by two, the present invention does not limit the number of sensors. In other embodiments, those skilled in the art can determine the number of sensors and the specific wavelength range of the light that can be reflected according to actual needs, and will not be described here.

另一方面,在前述實施例中,若發生光纖元件損毀情形而產生光學網路系統100、300的斷點時,光學網路系統100、300將可透過第一光路切換單元SU的模式切換來控制偵測光束70行進的適當路徑,以重建網路系統。以下將搭配圖4A與圖4B,針對光學網路系統100、300重建網路的可能方式進行進一步的說明。On the other hand, in the foregoing embodiment, when the breakpoint of the optical network system 100, 300 occurs due to the destruction of the optical fiber component, the optical network system 100, 300 will switch the mode through the first optical path switching unit SU. The appropriate path for detecting the travel of the beam 70 is controlled to reconstruct the network system. The possible ways in which the optical network systems 100, 300 rebuild the network are further described below in conjunction with FIGS. 4A and 4B.

圖4A與圖4B分別是圖1A實施例與圖3實施例的光學 網路系統100、300具有光纖元件損毀情形時的光路示意圖。在圖4A的實施例中,若第二光纖123a發生光纖元件損毀的情形時,偵測光束70可經由第一光纖121a1、處於交錯模式下的第一光路切換單元SU的接點a4、a2以及第二光纖123a1而傳遞至感測器124,進而形成轉換光束80。接著,轉換光束80再經由原本的路徑被傳遞回光收發單元110,並進行後續的監測與分析。4A and 4B are opticals of the embodiment of FIG. 1A and the embodiment of FIG. 3, respectively. The network system 100, 300 has a schematic diagram of the optical path when the optical fiber component is damaged. In the embodiment of FIG. 4A, if the second optical fiber 123a is damaged by the optical fiber component, the detecting beam 70 can pass through the first optical fiber 121a1, the contacts a4, a2 of the first optical path switching unit SU in the interlaced mode, and The second optical fiber 123a1 is transmitted to the sensor 124 to form a converted beam 80. Then, the converted beam 80 is transmitted back to the optical transceiver unit 110 via the original path, and subsequent monitoring and analysis is performed.

而若如圖4B所示,在第二光纖123a同樣發生光纖元件損毀的情形時,光學網路系統中的斷點可能使偵測光束70無法在一次的偵測內到達欲監測區域中的所有感測器124λ1、124λ2。此時,則可透過分時多工的技術,控制在不同時間點發出的偵測光束70沿著不同路徑傳遞,而可分次地進行監測。舉例而言,在圖4B的實施例中,光收發單元110可先發出偵測光束70,並使偵測光束70經由第一光纖121a1、處於交錯模式下的第一光路切換單元SU的接點a4、a2、以及第二光纖123a1而傳遞至感測器124λ1而形成轉換光束80λ1。接著,光收發單元110可再發出偵測光束70,並使其經由第一光纖121a2、處於交錯模式下的第一光路切換單元SU的接點a3、a1、以及第二光纖123a2而傳遞至感測器124λ2而形成轉換光束80λ2。由於轉換光束80λ1、80λ2皆可沿其原本的傳遞路徑被傳遞回光收發單元110,因此光收發單元110仍可透過感測器124λ1、124λ2來進行後續的監測與分析。As shown in FIG. 4B, when the second optical fiber 123a is also damaged in the optical fiber component, the breakpoint in the optical network system may prevent the detecting beam 70 from reaching all of the areas to be monitored within one detection. Sensors 124λ1, 124λ2. At this time, the detection beam 70 emitted at different time points can be controlled to be transmitted along different paths through the technique of time division multiplexing, and can be monitored in stages. For example, in the embodiment of FIG. 4B, the optical transceiver unit 110 may first emit the detection beam 70 and cause the detection beam 70 to pass through the first optical fiber 121a1, the contact of the first optical path switching unit SU in the interlaced mode. The a4, a2, and second fibers 123a1 are passed to the sensor 124λ1 to form a converted beam 80λ1. Then, the optical transceiver unit 110 can retransmit the detection beam 70 and transmit it to the sensation via the first optical fiber 121a2, the contacts a3, a1 and the second optical fiber 123a2 of the first optical path switching unit SU in the interlaced mode. The transducer 124λ2 forms a converted beam 80λ2. Since the converted beams 80λ1, 80λ2 can be transmitted back to the optical transceiver unit 110 along the original transmission path, the optical transceiver unit 110 can still perform subsequent monitoring and analysis through the sensors 124λ1, 124λ2.

如此一來,圖1A實施例與圖3實施例的光學網路系統在發生光纖元件損毀情形時,仍可依據所要偵測的區域與斷點的位 置,透過第一光路切換單元SU的模式切換與分時多工的技術來控制偵測光束70傳遞的適當路徑,以重建網路系統。如此,即便光學網路系統發生光纖元件損毀的情形,仍可保有其監測功能。In this way, the optical network system of the embodiment of FIG. 1A and the embodiment of FIG. 3 can still be based on the area to be detected and the position of the breakpoint when the optical fiber component is damaged. The mode switching and time division multiplexing techniques of the first optical path switching unit SU are used to control the appropriate path of the detection beam 70 to reestablish the network system. In this way, even if the optical network system is damaged by the optical fiber component, its monitoring function can be retained.

圖5A與圖5B是本發明又一實施例的一種光學網路系統的架構示意圖。請參照圖5A與圖5B,本實施例的光學網路系統500,包括前述的光收發單元110、多個光學網路單元120R1、120R2以及至少一遠端節點130。具體而言,在本實施例中,遠端節點130連接相鄰的光學網路單元120R1、120R2,且如圖5A及圖5B所示,本實施例的光學網路單元120R1、120R2與圖1A實施例的光學網路單元120類似,而差異如下所述。在本實施例中,光學網路單元120R1(120R2)包括多個感測器124λ1、124λ2、124λ3、124λ4、124λ5、124λ6以及多個第一光路切換單元SUR1a、SUR1b、SUR1c(SUR2a、SUR2b、SUR2c)。此外,相鄰的這些光學網路單元120R1、120R2的部分這些外環狀光路121R1、121R2彼此共用一共用光路徑CT,位於共用光路徑CT上的這些第一光纖121ac被相鄰二光學網路單元120R1、120R2所共用。另一方面,光學網路單元120R1(120R2)的外環狀光路121R1(121R2)則由多條第一光纖121ac、121aR1(121aR2)這些第一光路切換單元SUR1a、SUR1b、SUR1c(SUR2a、SUR2b、SUR2c)、光收發單元110以及遠端節點130連接形成,且遠端節點130以及光收發單元110分別位於共用光路徑CT的一端上。5A and 5B are schematic diagrams showing the architecture of an optical network system according to still another embodiment of the present invention. Referring to FIG. 5A and FIG. 5B, the optical network system 500 of the present embodiment includes the foregoing optical transceiver unit 110, a plurality of optical network units 120R1, 120R2, and at least one remote node 130. Specifically, in this embodiment, the remote node 130 is connected to the adjacent optical network units 120R1, 120R2, and as shown in FIG. 5A and FIG. 5B, the optical network units 120R1, 120R2 of the present embodiment are connected to FIG. 1A. The optical network unit 120 of the embodiment is similar, with the differences being as follows. In the present embodiment, the optical network unit 120R1 (120R2) includes a plurality of sensors 124λ1, 124λ2, 124λ3, 124λ4, 124λ5, 124λ6 and a plurality of first optical path switching units SUR1a, SUR1b, SUR1c (SUR2a, SUR2b, SUR2c) ). In addition, portions of the adjacent optical network units 120R1, 120R2, which share the outer annular optical paths 121R1, 121R2, share a common optical path CT, and the first optical fibers 121ac located on the shared optical path CT are adjacent to the two optical networks. Units 120R1, 120R2 are shared. On the other hand, the outer annular optical path 121R1 (121R2) of the optical network unit 120R1 (120R2) is composed of a plurality of first optical fibers 121ac, 121aR1 (121aR2), the first optical path switching units SUR1a, SUR1b, SUR1c (SUR2a, SUR2b, The SUR 2c), the optical transceiver unit 110, and the remote node 130 are connected, and the remote node 130 and the optical transceiver unit 110 are respectively located on one end of the shared optical path CT.

進一步而言,光學網路系統更可藉由切換其遠端節點130 的通路模式而改變偵測光束70的傳遞路徑,以控制偵測光束70可經由遠端節點130以及部份共用光路徑CT進入不同的光學網路單元120R1、120R2,並傳遞至不同光學網路單元120R1、120R2的每一感測器124λ1、124λ2、124λ3、124λ4、124λ5、124λ6中。舉例而言,在本實施例中,如圖5A所示,當光學網路系統欲對光學網路單元120R1的所在區域進行監測時,則偵測光束70可經由部份共用光路徑CT、第一切換單元SUR1a、SUR1b、SUR1c以及遠端節點130的接點E1、E2傳遞至光學網路單元120R1的每一感測器124λ1、124λ2、124λ3、124λ4、124λ5、124λ6中。另一方面,如圖5B所示,當光學網路系統欲對光學網路單元120R2的所在區域進行監測時,則偵測光束70可經由部份共用光路徑CT、第一切換單元SUR2a、SUR2b、SUR2c以及遠端節點130的接點E1、E4傳遞至光學網路單元120R2的每一感測器124λ1、124λ2、124λ3、124λ4、124λ5、124λ6中。Further, the optical network system can further switch its remote node 130 by The path mode changes the transmission path of the detecting beam 70 to control the detecting beam 70 to enter different optical network units 120R1, 120R2 via the remote node 130 and part of the shared optical path CT, and transmit to different optical networks. Each of the sensors 120R1, 120R2 is in the sense of 124λ1, 124λ2, 124λ3, 124λ4, 124λ5, 124λ6. For example, in this embodiment, as shown in FIG. 5A, when the optical network system is to monitor the area where the optical network unit 120R1 is located, the detecting beam 70 can pass through the partial shared optical path CT, The contacts E1, E2 of a switching unit SUR1a, SUR1b, SUR1c and the remote node 130 are passed to each of the sensors 124λ1, 124λ2, 124λ3, 124λ4, 124λ5, 124λ6 of the optical network unit 120R1. On the other hand, as shown in FIG. 5B, when the optical network system wants to monitor the area where the optical network unit 120R2 is located, the detecting beam 70 can pass through the partial shared optical path CT, the first switching unit SUR2a, SUR2b. The contacts E1, E4 of the SUR 2c and the remote node 130 are passed to each of the sensors 124λ1, 124λ2, 124λ3, 124λ4, 124λ5, 124λ6 of the optical network unit 120R2.

以下將搭配圖6A至圖7C,針對遠端節點130的內部結構及通路模式進行進一步的說明。The internal structure and path mode of the remote node 130 will be further described below with reference to FIGS. 6A-7C.

圖6A是圖5A實施例的一種遠端節點130的外觀示意圖。圖6B是圖6A實施例的遠端節點130的內部結構示意圖。圖6C與圖6D是圖6A實施例的遠端節點130的不同通路模式示意圖。請參照圖6A與圖6B,在本實施例中,遠端節點130包括多個第二光路切換單元SUN1a、SUN1b、SUN1c、SUN1d,這些第二光路切換單元SUN1a、SUN1b、SUN1c、SUN1d彼此連接,並 形成遠端節點130的多個光埠E1、E2、E3、E4、E5、E6。在本實施例中,第二光路切換單元SU的數量例如為4個,而此4個第二光路切換單元SU將可形成遠端節點130的6個光埠E1、E2、E3、E4、E5、E6。更詳細而言,在本實施例中,遠端節點130的光埠E1、E2、E3、E4、E5、E6分別與接點A4、C1、C4、B1、D2、D3相連,但本發明不以此為限。FIG. 6A is a schematic diagram of the appearance of a remote node 130 in the embodiment of FIG. 5A. FIG. 6B is a schematic diagram showing the internal structure of the remote node 130 of the embodiment of FIG. 6A. 6C and 6D are schematic diagrams of different path patterns of the remote node 130 of the embodiment of FIG. 6A. Referring to FIG. 6A and FIG. 6B, in the embodiment, the remote node 130 includes a plurality of second optical path switching units SUN1a, SUN1b, SUN1c, and SUN1d, and the second optical path switching units SUN1a, SUN1b, SUN1c, and SUN1d are connected to each other. and A plurality of apertures E1, E2, E3, E4, E5, E6 of the distal node 130 are formed. In this embodiment, the number of the second optical path switching units SU is, for example, four, and the four second optical path switching units SU will form six apertures E1, E2, E3, E4, and E5 of the remote node 130. , E6. In more detail, in this embodiment, the apertures E1, E2, E3, E4, E5, and E6 of the remote node 130 are connected to the contacts A4, C1, C4, B1, D2, and D3, respectively, but the present invention does not. This is limited to this.

另一方面,具體而言,這些第二光路切換單元SUN1a、SUN1b、SUN1c、SUN1d與第一光路切換單元SU類似,而亦可用以在一交錯模式與一非交錯模式間切換。詳細而言,當第二光路切換單元SUN1a(SUN1b、SUN1c或SUN1d)處於交錯模式時,第二光路切換單元SUN1a(SUN1b、SUN1c或SUN1d)的接點A1(B1、C1或D1)將會與A3(B3、C3或D3)相通,而A2(B2、C2或D2)亦會與A4(B4、C4或D4)相通。而當第二光路切換單元SU處於非交錯模式時,第二光路切換單元SUN1a(SUN1b、SUN1c或SUN1d)的接點A1(B1、C1或D1)將會與A2(B2、C2或D2)相通,而A3(B3、C3或D3)亦會與A4(B4、C4或D4)相通。On the other hand, specifically, the second optical path switching units SUN1a, SUN1b, SUN1c, SUN1d are similar to the first optical path switching unit SU, and can also be used to switch between an interlaced mode and a non-interlaced mode. In detail, when the second optical path switching unit SUN1a (SUN1b, SUN1c or SUN1d) is in the interlaced mode, the contact A1 (B1, C1 or D1) of the second optical path switching unit SUN1a (SUN1b, SUN1c or SUN1d) will be A3 (B3, C3 or D3) is connected, and A2 (B2, C2 or D2) is also connected to A4 (B4, C4 or D4). When the second optical path switching unit SU is in the non-interlaced mode, the contact A1 (B1, C1 or D1) of the second optical path switching unit SUN1a (SUN1b, SUN1c or SUN1d) will communicate with A2 (B2, C2 or D2). And A3 (B3, C3 or D3) will also communicate with A4 (B4, C4 or D4).

進一步而言,當這些第二光路切換單元SUN1a、SUN1b、SUN1c、SUN1d切換至這些交錯模式、這些非交錯模式及其組合之一時,偵測光束70將可自其中一光埠傳遞至遠端節點130中,並從其餘光埠的其中一者傳遞出遠端節點130。舉例而言,當偵測光束70欲從光埠E1傳遞至遠端節點130,並從光埠E2傳遞出遠端節點130,以形成如圖5A所示的光學網路系統工作情形時,遠 端節點130內部的第二光路切換單元SUN1a、SUN1c將會處於交錯模式,並且此時的偵測光束70將會先後通過接點A4、A2、C3、C1,而形成遠端節點130的通路模式之一(如圖6C所示)。Further, when the second optical path switching units SUN1a, SUN1b, SUN1c, SUN1d switch to one of the interlaced modes, the non-interlaced modes, and a combination thereof, the detecting beam 70 can be transmitted from one of the apertures to the remote node. 130, and the remote node 130 is delivered from one of the remaining apertures. For example, when the detection beam 70 is to be transmitted from the aperture E1 to the remote node 130 and the remote node 130 is transmitted from the aperture E2 to form an optical network system operation as shown in FIG. 5A, The second optical path switching units SUN1a, SUN1c inside the end node 130 will be in the interlaced mode, and the detection beam 70 at this time will pass through the contacts A4, A2, C3, C1, respectively, to form the path mode of the remote node 130. One (as shown in Figure 6C).

另一方面,當偵測光束70欲從光埠E1傳遞至遠端節點130,並從光埠E4傳遞出遠端節點130,以形成如圖5B所示的光學網路系統工作情形時,遠端節點130內部的第二光路切換單元SUN1a、SUN1b將會分別處於非交錯模式,並且此時的偵測光束70將會先後通過接點A4、A3、B2、B1,而形成遠端節點130的通路模式之一(如圖6D所示)。更進一步而言,在本實施例中,當這些第二光路切換單元SUN1a、SUN1b、SUN1c、SUN1d切換至這些交錯模式、這些非交錯模式及其組合之一時,偵測光束70將可自其中一光埠傳遞至遠端節點130中,並從另五個光埠的其中任一者傳遞出遠端節點130。On the other hand, when the detecting beam 70 is to be transmitted from the aperture E1 to the remote node 130 and the remote node 130 is transmitted from the aperture E4 to form an optical network system operation as shown in FIG. 5B, The second optical path switching units SUN1a, SUN1b inside the end node 130 will be in a non-interlaced mode, respectively, and the detecting beam 70 at this time will pass through the contacts A4, A3, B2, and B1, respectively, to form the remote node 130. One of the path modes (as shown in Figure 6D). Further, in this embodiment, when the second optical path switching units SUN1a, SUN1b, SUN1c, SUN1d are switched to one of the interlaced modes, the non-interlaced modes, and a combination thereof, the detecting beam 70 will be available from one of them. The aperture is passed to the remote node 130 and the remote node 130 is passed from any of the other five apertures.

如此,光學網路系統即可藉著第二光路切換單元SUN1a、SUN1b、SUN1c、SUN1d的各種切換模式組合來形成遠端節點130的各種通路模式。並且,光學網路系統更可藉此改變偵測光束70的傳遞路徑,以控制偵測光束70經由遠端節點130進入不同的光學網路單元120R1、120R2。In this way, the optical network system can form various path modes of the remote node 130 by combining various switching modes of the second optical path switching units SUN1a, SUN1b, SUN1c, and SUN1d. Moreover, the optical network system can further change the transmission path of the detection beam 70 to control the detection beam 70 to enter the different optical network units 120R1, 120R2 via the remote node 130.

此外,值得注意的是,在本實施例中,遠端節點130雖以具有4個第二光路切換單元SUN1a、SUN1b、SUN1c、SUN1d為例示,但本發明不以此為限。在其他實施例中,遠端節點亦可由不同數量的第二光路切換單元形成,以下將搭配圖7A至圖7D 進行進一步的說明。In addition, it should be noted that, in this embodiment, the remote node 130 has four second optical path switching units SUN1a, SUN1b, SUN1c, and SUN1d as an example, but the present invention is not limited thereto. In other embodiments, the remote node may also be formed by a different number of second optical path switching units, which will be combined with FIG. 7A to FIG. 7D. Further explanation is given.

圖7A是圖5A實施例的另一種遠端節點的外觀示意圖。圖7B是圖7A實施例的遠端節點的內部結構示意圖。圖7C與圖7D是圖7A實施例的遠端節點的一種通路模式示意圖。請參照圖7A及圖7B,本實施例的遠端節點730與圖6A實施例的遠端節點130類似,而差異如下所述。在本實施例中,第二光路切換單元SUN1a、SUN1b、SUN1c的數量為3個,且遠端節點730的光埠E1、E2、E3、E4、E5、E6分別與第二光路切換單元SU的接點A1、B1、B2、A4、C4、C3相連。FIG. 7A is a schematic diagram of the appearance of another remote node in the embodiment of FIG. 5A. FIG. 7B is a schematic diagram showing the internal structure of the remote node of the embodiment of FIG. 7A. 7C and 7D are schematic diagrams of a path pattern of the remote node of the embodiment of FIG. 7A. Referring to Figures 7A and 7B, the remote node 730 of the present embodiment is similar to the remote node 130 of the embodiment of Figure 6A, with the differences described below. In this embodiment, the number of the second optical path switching units SUN1a, SUN1b, and SUN1c is three, and the apertures E1, E2, E3, E4, E5, and E6 of the remote node 730 are respectively associated with the second optical path switching unit SU. The contacts A1, B1, B2, A4, C4, and C3 are connected.

如此,若當偵測光束70欲從光埠E1傳遞至遠端節點730,並從光埠E2傳遞出遠端節點730,以形成如圖5A所示的光學網路系統工作情形時,遠端節點730內部的第二光路切換單元SUN1a、SUN1b、SUN1c將會分別處於交錯模式、交錯模式、非交錯模式。並且,此時的偵測光束70將會先後通過接點A1、A3、C1、C2、B3、B1,而形成遠端節點730的通路模式之一(如圖7C所示)。另一方面,當偵測光束70欲從光埠E1傳遞至遠端節點730,並從光埠E4傳遞出遠端節點730,以形成如圖5B所示的光學網路系統工作情形時,遠端節點730內部的第二光路切換單元SUN1a、SUN1b、SUN1c將會處於非交錯模式。並且,此時的偵測光束70將會先後通過接點A1、A2、B4、B3、C2、C1、A3、A4,而形成遠端節點730的通路模式之一(如圖7D所示)。Thus, if the detection beam 70 is to be transmitted from the aperture E1 to the remote node 730 and the remote node 730 is transmitted from the aperture E2 to form an optical network system operation as shown in FIG. 5A, the remote end The second optical path switching units SUN1a, SUN1b, and SUN1c inside the node 730 will be in an interleave mode, an interleave mode, and a non-interleaved mode, respectively. Moreover, the detection beam 70 at this time will pass through the contacts A1, A3, C1, C2, B3, B1, respectively, to form one of the path modes of the remote node 730 (as shown in FIG. 7C). On the other hand, when the detecting beam 70 is to be transmitted from the aperture E1 to the remote node 730 and the remote node 730 is transmitted from the aperture E4 to form an optical network system operation as shown in FIG. 5B, The second optical path switching units SUN1a, SUN1b, SUN1c inside the end node 730 will be in the non-interlaced mode. Moreover, the detection beam 70 at this time will pass through the contacts A1, A2, B4, B3, C2, C1, A3, A4, respectively, to form one of the path modes of the remote node 730 (as shown in FIG. 7D).

換言之,在本實施例中,偵測光束70亦可自其中一光埠 傳遞至遠端節點730中,並從另五個光埠的其中一者傳遞出遠端節點730,而具有與遠端節點130類似的功能。此技術領域中具有通常知識者當可依據實際需求來設計遠端節點130的內部結構及其所具有的通路模式,此處便不再贅述。In other words, in this embodiment, the detecting beam 70 can also be from one of the apertures. The remote node 730 is passed to the remote node 730 and passed from one of the other five apertures, with similar functionality to the remote node 130. Those skilled in the art can design the internal structure of the remote node 130 and the path mode it has according to actual needs, and will not be described here.

如此一來,在搭配上述的遠端節點130或730的通路模式組合與各第一光路切換單元SUR1a、SUR1b、SUR1c、SUR2a、SUR2b、SUR2c的切換模式組合,光學網路系統500將可提供更多的偵測路徑選擇,並可利用分時多工的技術,使光學網路系統500在具有光纖元件損毀情形時可重建網路。以下將搭配圖8A與圖8B,針對光學網路系統500重建網路的可能方式進行進一步的說明。In this way, in combination with the switching mode combination of the above-mentioned remote node 130 or 730 and the switching modes of the first optical path switching units SUR1a, SUR1b, SUR1c, SUR2a, SUR2b, SUR2c, the optical network system 500 will provide more Multiple detection path selections, and the use of time-division multiplex technology, enables the optical network system 500 to rebuild the network when the fiber component is damaged. The possible ways in which the optical network system 500 rebuilds the network are further described below in conjunction with FIGS. 8A and 8B.

圖8A與圖8B是圖5A實施例的光學網路系統具有光纖元件損毀情形時的光路示意圖。請參照圖8A,在本實施例中,光學網路系統500的多處皆發生光纖元件損毀的情形,此時的光收發單元110可先發出偵測光束70,並使偵測光束70經由第一光纖121ac、處於非交錯模式下的第一光路切換單元SUR2a、處於交錯模式下的第一光路切換單元SUR1a以及第二光纖123a而傳遞至感測器124λ6、124λ1而形成轉換光束80λ6、80λ1。接著,請參照圖8A,光收發單元110可再發出偵測光束70,並使偵測光束70經由第一光纖121ac、處於非交錯模式下的第一光路切換單元SUR2a、SUR1a、處於交錯模式下的第一光路切換單元SUR1而傳遞至感測器124λ2、124λ3,而形成轉換光束80λ2、80λ3。並且, 部份的偵測光束70會在繼續經由處於非交錯模式下的第一光路切換單元SUR1c以及第二光纖123a而傳遞至感測器124λ4、124λ5而形成轉換光束80λ4、80λ5。由於轉換光束80λ1、80λ2、80λ3、80λ4、80λ5、80λ6皆可沿其原本的傳遞路徑被傳遞回光收發單元110,因此光收發單元110仍可透過感測器124λ1、124λ2、124λ3、124λ4、124λ5、124λ6來進行後續的監測與分析。8A and FIG. 8B are schematic diagrams showing the optical path of the optical network system of the embodiment of FIG. 5A in the case where the optical fiber component is damaged. Referring to FIG. 8A, in the embodiment, the optical fiber component is damaged in multiple places in the optical network system 500. At this time, the optical transceiver unit 110 may first emit the detection beam 70, and the detection beam 70 passes through the first An optical fiber 121ac, a first optical path switching unit SUR2a in a non-interlaced mode, a first optical path switching unit SUR1a in an interleaved mode, and a second optical fiber 123a are transmitted to the sensors 124λ6, 124λ1 to form converted beams 80λ6, 80λ1. Next, referring to FIG. 8A, the optical transceiver unit 110 can re-issue the detection beam 70 and cause the detection beam 70 to pass through the first optical fiber 121ac, the first optical path switching units SUR2a, SUR1a in the non-interlaced mode, in the interlaced mode. The first optical path switching unit SUR1 is transmitted to the sensors 124λ2, 124λ3 to form converted beams 80λ2, 80λ3. and, A portion of the detection beam 70 will continue to be transmitted to the sensors 124λ4, 124λ5 via the first optical path switching unit SUR1c and the second optical fiber 123a in the non-interlaced mode to form converted beams 80λ4, 80λ5. Since the converted beams 80λ1, 80λ2, 80λ3, 80λ4, 80λ5, 80λ6 can be transmitted back to the optical transceiver unit 110 along the original transmission path, the optical transceiver unit 110 can still pass through the sensors 124λ1, 124λ2, 124λ3, 124λ4, 124λ5. , 124λ6 for subsequent monitoring and analysis.

如此一來,圖5A實施例的光學網路系統500在發生光纖元件損毀情形時,仍可依據所要偵測的區域與斷點的位置,透過第一光路切換單元SUR1a、SUR1b、SUR1c、SUR2a、SUR2b、SUR2c的模式切換與分時多工的技術來控制偵測光束70行進的適當路徑,以重建光學網路系統500。如此,即便光學網路系統500發生光纖元件損毀的情形,仍可保有其監測功能。此外,光學網路系統500亦可利用分時多工的技術將信號分別在不同時間分送至不同光學網路單元120R1、120R2的感測區域進行即時的監測。As a result, the optical network system 500 of the embodiment of FIG. 5A can still pass through the first optical path switching units SUR1a, SUR1b, SUR1c, SUR2a according to the location of the area to be detected and the location of the breakpoint when the optical fiber component is damaged. The SUR2b, SUR2c mode switching and time division multiplexing techniques control the appropriate path of the detection beam 70 to reconstruct the optical network system 500. Thus, even if the optical network system 500 is damaged by the optical fiber component, its monitoring function can be retained. In addition, the optical network system 500 can also use the time division multiplexing technology to separately distribute the signals to the sensing areas of the different optical network units 120R1, 120R2 at different times for immediate monitoring.

此外,值得注意的是,光學網路系統的形狀皆不以前述示意圖形狀為限,在其他的實施例中,光學更可利用多個遠端節點130的分布來對光學網路系統進行擴充及設計。以下將搭配圖9至圖10,針對光學網路系統的可能形態進行進一步的說明。In addition, it should be noted that the shape of the optical network system is not limited to the foregoing schematic shape. In other embodiments, the optical system may utilize the distribution of the plurality of remote nodes 130 to expand the optical network system. design. The possible form of the optical network system will be further described below with reference to Figures 9-10.

圖9是本發明又一實施例的一種光學網路系統的架構示意圖。請參照圖9,本實施例的光學網路系統900與圖5A實施例的光學網路系統500類似,而差異如下所述。在本實施例中,至少一遠端節點130為多個遠端節點130N1、130N2、130N3、130N4、 130N5、130N6,且偵測光束70經由部分的遠端節點130N1、130N2、130N3、130N4、130N5、130N6以及部份共用光路徑CT傳遞至各光學網路單元120R1、120R2、120R3、120R4、120R5、120R6的每一感測器124λ1、124λ2、124λ3、124λ4、124λ5、124λ6中。換言之,當光收發單元110欲將偵測光束70傳遞至光學網路單元120R1中時,偵測光束70可具有經由遠端節點130N1、130N2、130N3、130N4、130N5、130N6的多種不同路徑組合的選擇。舉例而言,如圖9所示,偵測光束70經由遠端節點130N1、130N2而傳遞至光學網路單元120R1中的感測器124λ1、124λ2、124λ3、124λ4、124λ5、124λ6中。此外,由於光學網路系統900亦包括了光學網路系統500的多個光學網路單元120R1、120R2及光收發單元110等構件,因此光學網路系統900同樣具有光學網路系統500所提及的重建網路、分時多工及其他優點,在此便不再贅述。FIG. 9 is a schematic structural diagram of an optical network system according to still another embodiment of the present invention. Referring to Figure 9, the optical network system 900 of the present embodiment is similar to the optical network system 500 of the embodiment of Figure 5A, with the differences described below. In this embodiment, at least one remote node 130 is a plurality of remote nodes 130N1, 130N2, 130N3, 130N4, 130N5, 130N6, and the detecting beam 70 is transmitted to each of the optical network units 120R1, 120R2, 120R3, 120R4, 120R5 via a part of the remote nodes 130N1, 130N2, 130N3, 130N4, 130N5, 130N6 and a part of the shared optical path CT, Each of the sensors 120λ, 124λ2, 124λ3, 124λ4, 124λ5, 124λ6. In other words, when the optical transceiver unit 110 wants to transmit the detection beam 70 into the optical network unit 120R1, the detection beam 70 may have a combination of a plurality of different paths via the remote nodes 130N1, 130N2, 130N3, 130N4, 130N5, 130N6. select. For example, as shown in FIG. 9, the detection beam 70 is transmitted to the sensors 124λ1, 124λ2, 124λ3, 124λ4, 124λ5, 124λ6 in the optical network unit 120R1 via the remote nodes 130N1, 130N2. In addition, since the optical network system 900 also includes components of the optical network units 120R1, 120R2 and the optical transceiver unit 110 of the optical network system 500, the optical network system 900 also has the optical network system 500 mentioned. Rebuilding the network, time-sharing and other advantages will not be repeated here.

圖10是本發明再一實施例的一種光學網路系統的架構示意圖。請參照圖10,本實施例的光學網路系統1000與圖9實施例的光學網路系統900類似,而差異如下所述。在本實施例中,各光學網路單元120R1、120RN的外環狀光路121分別由多條第一光纖121a、這些第一光路切換單元SU以及遠端節點130、光收發單元110及其組合之一連接形成。舉例而言,光學網路單元120R1的外環狀光路121R1是由多條第一光纖121a、第一光路切換單元SU、光收發單元110以及遠端節點130連接形成。另一方面,光 學網路單元120RN的外環狀光路121由多條第一光纖121a、第一光路切換單元SU以及遠端節點130連接形成。換言之,光學網路單元120RN的外環狀光路121並不直接與光收發單元110相通,但仍可透過各遠端節點130的配置,而使偵測光束仍可被傳遞至光學網路單元120RN中。如此,光學網路系統1000將可透過擴充光學網路單元的數量,而可有效提升光學網路系統1000的感測容量。FIG. 10 is a schematic structural diagram of an optical network system according to still another embodiment of the present invention. Referring to FIG. 10, the optical network system 1000 of the present embodiment is similar to the optical network system 900 of the embodiment of FIG. 9, and the differences are as follows. In this embodiment, the outer annular optical paths 121 of the optical network units 120R1 and 120RN are respectively composed of a plurality of first optical fibers 121a, the first optical path switching units SU, the remote node 130, the optical transceiver unit 110, and a combination thereof. A connection is formed. For example, the outer annular optical path 121R1 of the optical network unit 120R1 is formed by connecting a plurality of first optical fibers 121a, a first optical path switching unit SU, an optical transceiver unit 110, and a remote node 130. On the other hand, light The outer annular optical path 121 of the learning network unit 120RN is formed by connecting a plurality of first optical fibers 121a, a first optical path switching unit SU, and a remote node 130. In other words, the outer annular optical path 121 of the optical network unit 120RN is not directly connected to the optical transceiver unit 110, but can still be transmitted through the configuration of each remote node 130, so that the detection beam can still be transmitted to the optical network unit 120RN. in. As such, the optical network system 1000 will be able to effectively increase the sensing capacity of the optical network system 1000 by expanding the number of optical network units.

此外,由於光學網路系統1000亦包括了光學網路系統900的多個光學網路單元120、多個遠端節點130及光收發單元110等構件,因此光學網路系統1000同樣具有光學網路系統900所提及的重建網路、分時多工及其他優點,在此便不再贅述。In addition, since the optical network system 1000 also includes a plurality of optical network units 120 of the optical network system 900, a plurality of remote nodes 130, and an optical transceiver unit 110, the optical network system 1000 also has an optical network. Reconstruction networks, time division multiplexing, and other advantages mentioned by system 900 are not repeated here.

圖11A是本發明又一實施例的一種遠端節點的外觀示意圖。圖11B是圖11A實施例的遠端節點的內部結構示意圖。圖11C是圖11A實施例的遠端節點的一種通路模式示意圖。請參照圖11A及圖11B,本實施例的遠端節點1130與圖7A實施例的遠端節點730類似,而差異如下所述。在本實施例中,遠端節點1130的光埠E1、E2、E3、E4、E5、E6分別與第二光路切換單元SU的接點A1、B4、B1、A4、C3、C2相連。換言之,遠端節點1130的光埠E1、E2、E3、E4、E5、E6所連接的內部接點與遠端節點730的光埠E1、E2、E3、E4、E5、E6所連接的內部接點並不相同。FIG. 11A is a schematic diagram of the appearance of a remote node according to still another embodiment of the present invention. FIG. 11B is a schematic diagram showing the internal structure of the remote node of the embodiment of FIG. 11A. Figure 11C is a schematic diagram of a path pattern of the remote node of the embodiment of Figure 11A. Referring to Figures 11A and 11B, the remote node 1130 of the present embodiment is similar to the remote node 730 of the embodiment of Figure 7A, with the differences described below. In this embodiment, the apertures E1, E2, E3, E4, E5, and E6 of the remote node 1130 are respectively connected to the contacts A1, B4, B1, A4, C3, and C2 of the second optical path switching unit SU. In other words, the internal contacts connected to the apertures E1, E2, E3, E4, E5, and E6 of the remote node 1130 are connected to the internal connections of the optical ports E1, E2, E3, E4, E5, and E6 of the remote node 730. The points are not the same.

因此,當偵測光束欲從光埠E1傳遞至遠端節點1130,並從光埠E2傳遞出遠端節點1130,遠端節點1130內部的第二光路 切換單元SUN1a、SUN1b將會皆處於非交錯模式。此時的偵測光束70將會先後通過接點A1、A2、B3、B4,而形成遠端節點1130的通路模式之一(如圖11C所示)。如此,由於遠端節點1130中的偵測光束70在經由2個第二光路切換單元SU的情況下,即可達到與遠端節點730中需經由3個第二光路切換單元SU類似的通路模式效果(如圖7C所示),因此遠端節點1130將可達到降低光功率消耗的效果。Therefore, when the detection beam is to be transmitted from the aperture E1 to the remote node 1130 and the remote node 1130 is transmitted from the aperture E2, the second optical path inside the remote node 1130 The switching units SUN1a, SUN1b will all be in the non-interlaced mode. At this time, the detecting beam 70 will pass through the contacts A1, A2, B3, and B4, respectively, to form one of the path modes of the remote node 1130 (as shown in FIG. 11C). In this way, since the detecting beam 70 in the remote node 1130 is in the case of passing through the two second optical path switching units SU, a path mode similar to that required to be via the three second optical path switching units SU in the remote node 730 can be achieved. The effect (as shown in Figure 7C), so the remote node 1130 will achieve the effect of reducing optical power consumption.

綜上所述,本發明的實施例的光學網路系統可透過第一光路切換單元的模式切換與分時多工的技術來控制偵測光束行進的適當路徑。如此,即便光學網路系統發生光纖元件損毀的情形,仍可依據所要偵測的區域與斷點的位置,重建網路系統,而仍可保有其監測功能。此外,光學網路系統亦可利用分時多工的技術將信號分別在不同時間分送至不同感測區域進行即時的監測。並且,更可透過擴充光學網路系統的光學網路單元以使偵測範圍增加。如此,光學網路系統的感測容量將可有效提升,且因此亦可具有更加完善的重建功能與擴充功能。In summary, the optical network system of the embodiment of the present invention can control the proper path of detecting the traveling of the light beam through the mode switching and time division multiplexing techniques of the first optical path switching unit. In this way, even if the optical network system is damaged, the network system can be reconstructed according to the location of the area to be detected and the location of the breakpoint, and the monitoring function can still be maintained. In addition, the optical network system can also use time-multiplexed technology to distribute signals to different sensing areas at different times for immediate monitoring. Moreover, the optical network unit of the optical network system can be expanded to increase the detection range. In this way, the sensing capacity of the optical network system can be effectively improved, and thus it is also possible to have more complete reconstruction functions and expansion functions.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

70‧‧‧偵測光束70‧‧‧Detecting beam

900‧‧‧光學網路系統900‧‧‧Optical Network System

110‧‧‧光收發單元110‧‧‧Optical transceiver unit

120R1、120R2、120R3、120R4、120R5、120R6‧‧‧光學網路單元120R1, 120R2, 120R3, 120R4, 120R5, 120R6‧‧‧ optical network unit

124λ1、124λ2、124λ3、124λ4、124λ5、124λ6‧‧‧感測器124λ1, 124λ2, 124λ3, 124λ4, 124λ5, 124λ6‧‧‧ sensors

130N1、130N2、130N3、130N4、130N5、130N6‧‧‧遠端節點130N1, 130N2, 130N3, 130N4, 130N5, 130N6‧‧‧ remote node

CT‧‧‧共用光路徑CT‧‧‧Shared light path

Claims (14)

一種光學網路系統,包括:一光收發單元,用以提供一偵測光束;多個光學網路單元,包括:一外環狀光路;一內環狀光路,被該外環狀光路所環繞,其中來自該光收發單元的該偵測光束經由該外環狀光路進入該內環狀光路;至少一第一光路切換單元,配置於該外環狀光路與該內環狀光路上,且用以在一交錯模式與一非交錯模式間切換,其中當該第一光路切換單元切換至該交錯模式時,該外環狀光路與該內環狀光路透過該第一光路切換單元相通,當該第一光路切換單元切換至該非交錯模式時,該外環狀光路與該內環狀光路無法透過該第一光路切換單元相通;以及至少一感測器,配置於該內環狀光路上,且用以將至少部分該偵測光束轉換成一轉換光束,其中該光收發單元用以感測該轉換光束,且該轉換光束的參數隨著該感測器接收到外界的物理量的不同而有所不同;以及至少一遠端節點,連接相鄰的該些光學網路單元,其中該至少一遠端節點、該光收發單元分別位於多個共用光路徑的一端上,相鄰的該些光學網路單元的部分該些外環狀光路彼此共用其中一該共用光路徑,且該偵測光束經由部分該至少一遠端節點以 及部份該共用光路徑傳遞至各該光學網路單元的每一該感測器中。 An optical network system includes: an optical transceiver unit for providing a detection beam; a plurality of optical network units including: an outer annular optical path; and an inner annular optical path surrounded by the outer annular optical path The detecting light beam from the optical transceiver unit enters the inner annular optical path via the outer annular optical path; at least one first optical path switching unit is disposed on the outer annular optical path and the inner annular optical path, and is used Switching between an interlaced mode and a non-interleaved mode, wherein when the first optical path switching unit switches to the interlaced mode, the outer annular optical path and the inner annular optical path communicate with the first optical path switching unit, when When the first optical path switching unit is switched to the non-interlaced mode, the outer annular optical path and the inner annular optical path are incapable of communicating with the first optical path switching unit; and at least one sensor is disposed on the inner annular optical path, and The method is configured to convert at least a portion of the detected light beam into a converted light beam, wherein the optical transceiver unit is configured to sense the converted light beam, and the parameter of the converted light beam is received by the sensor with a physical quantity of the external The at least one remote node is connected to the adjacent optical network units, wherein the at least one remote node and the optical transceiver unit are respectively located at one end of the plurality of shared optical paths, adjacent to each other. Portions of the plurality of optical network units share the one of the common optical paths with each of the outer annular optical paths, and the detecting light beam is via a portion of the at least one remote node And a portion of the shared optical path is transmitted to each of the sensors of each of the optical network units. 如申請專利範圍第1項所述的光學網路系統,其中每一該遠端節點包括多個第二光路切換單元,該些第二光路切換單元彼此連接,並形成每一該遠端節點的多個光埠,且各該第二光路切換單元用以在一交錯模式與一非交錯模式間切換,當該些第二光路切換單元切換至該些交錯模式、該些非交錯模式及其組合之一時,該偵測光束自其中一該光埠傳遞至該遠端節點中,並從其餘光埠的其中一者傳遞出該遠端節點。 The optical network system of claim 1, wherein each of the remote nodes comprises a plurality of second optical path switching units, the second optical path switching units being connected to each other and forming each of the remote nodes a plurality of apertures, and each of the second optical path switching units is configured to switch between an interlaced mode and a non-interleaved mode, and the second optical path switching units switch to the interlaced modes, the non-interlaced modes, and combinations thereof In one of the cases, the detecting beam is transmitted from one of the apertures to the remote node, and the remote node is transmitted from one of the remaining apertures. 如申請專利範圍第2項所述的光學網路系統,其中每一該遠端節點包括四個第二光路切換單元,該些第二光路切換單元形成每一該遠端節點的六個光埠,且該偵測光束自其中一該光埠傳遞至每一該遠端節點中,並從另五個光埠的其中任一者傳遞出該遠端節點。 The optical network system of claim 2, wherein each of the remote nodes comprises four second optical path switching units, and the second optical path switching units form six apertures of each of the remote nodes. And the detecting beam is transmitted from one of the apertures to each of the remote nodes, and the remote node is transmitted from any one of the other five apertures. 如申請專利範圍第2項所述的光學網路系統,其中每一該遠端節點包括三個第二光路切換單元,該些第二光路切換單元形成每一該遠端節點的六個光埠,且該偵測光束自其中一該光埠傳遞至每一該遠端節點中,並從另五個光埠的其中一者傳遞出該遠端節點。 The optical network system of claim 2, wherein each of the remote nodes comprises three second optical path switching units, and the second optical path switching units form six apertures of each of the remote nodes. And the detecting beam is transmitted from one of the apertures to each of the remote nodes, and the remote node is transmitted from one of the other five apertures. 如申請專利範圍第1項所述的光學網路系統,其中該外環狀光路由多條第一光纖、該些第一光路切換單元以及該至少一遠端節點、該光收發單元及其組合之一連接形成,且位於每一該共 用光路徑上的該些第一光纖被相鄰二光學網路單元所共用。 The optical network system of claim 1, wherein the outer annular light routes a plurality of first optical fibers, the first optical path switching units, the at least one remote node, the optical transceiver unit, and combinations thereof One of the connections is formed and located at each of the total The first fibers on the light path are shared by adjacent two optical network units. 如申請專利範圍第5項所述的光學網路系統,其中該內環狀光路由多條第二光纖、該些第一光路切換單元與該些感測器連結形成。 The optical network system of claim 5, wherein the inner annular light is routed to the plurality of second optical fibers, and the first optical path switching units are coupled to the plurality of sensors. 如申請專利範圍第6項所述的光學網路系統,其中每一該第一光路切換單元與該些第一光纖的其中之二以及該些第二光纖的其中之二連接。 The optical network system of claim 6, wherein each of the first optical path switching units is connected to two of the first optical fibers and two of the second optical fibers. 如申請專利範圍第7項所述的光學網路系統,其中當各該第一光路切換單元切換至該非交錯模式時,各該第一光路切換單元使該偵測光束的傳遞路徑為自其中一該第一光纖傳遞至另一該第一光纖或自其中一該第二光纖傳遞至另一該第二光纖,以使該偵測光束在經過各該第一光路切換單元後繼續在該外環狀光路或內環狀光路傳遞。 The optical network system of claim 7, wherein each of the first optical path switching units causes the transmission path of the detection beam to be one of the first optical path switching units when the first optical path switching unit is switched to the non-interlaced mode. Passing the first optical fiber to another one or the second optical fiber to another second optical fiber, so that the detecting light beam continues in the outer ring after passing through each of the first optical path switching units The light path or the inner ring light path is transmitted. 如申請專利範圍第7項所述的光學網路系統,其中當各該第一光路切換單元切換至該交錯模式時,各該第一光路切換單元使該偵測光束的傳遞路徑為自一側的該第一光纖與該第二光纖之一傳遞至另一側的該第一光纖與該第二光纖之另一,以使在該外環狀光路與該內環狀光路之一傳遞的該偵測光束經由該第一光路切換單元傳遞至該外環狀光路與該內環狀光路之另一。 The optical network system of claim 7, wherein each of the first optical path switching units causes the transmission path of the detection beam to be from one side when each of the first optical path switching units is switched to the interlaced mode Passing one of the first optical fiber and the second optical fiber to the other of the first optical fiber and the second optical fiber on the other side to transmit the one of the outer annular optical path and the inner annular optical path The detecting beam is transmitted to the other of the outer annular optical path and the inner annular optical path via the first optical path switching unit. 如申請專利範圍第1項所述的光學網路系統,其中各該感測器將至少部分該偵測光束轉換成該轉換光束的方法為對具有一特定參數的部分該偵測光束進行反射,該特定參數隨著該感測 器接收到該外界的該物理量的不同而有所不同,且該特定參數為該轉換光束的參數。 The optical network system of claim 1, wherein each of the sensors converts at least a portion of the detected beam into the converted beam by reflecting a portion of the detected beam having a specific parameter. The specific parameter follows the sensing The device receives the difference in the physical quantity of the outside, and the specific parameter is a parameter of the converted beam. 如申請專利範圍第10項所述的光學網路系統,其中該至少一感測器為多個感測器,且該些感測器所形成的該些轉換光束的參數彼此不相同。 The optical network system of claim 10, wherein the at least one sensor is a plurality of sensors, and the parameters of the converted beams formed by the sensors are different from each other. 如申請專利範圍第10項所述的光學網路系統,其中該些轉換光束的參數為該些轉換光束的波長。 The optical network system of claim 10, wherein the parameters of the converted beams are the wavelengths of the converted beams. 如申請專利範圍第1項所述的光學網路系統,其中各該感測器為光纖布拉格光柵。 The optical network system of claim 1, wherein each of the sensors is a fiber Bragg grating. 如申請專利範圍第1項所述的光學網路系統,其中各該感測器接收到該外界的該物理量為應力或溫度。The optical network system of claim 1, wherein the physical quantity of each of the sensors received by the sensor is stress or temperature.
TW102121410A 2013-06-17 2013-06-17 Optical network system TWI505654B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102121410A TWI505654B (en) 2013-06-17 2013-06-17 Optical network system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102121410A TWI505654B (en) 2013-06-17 2013-06-17 Optical network system

Publications (2)

Publication Number Publication Date
TW201501481A TW201501481A (en) 2015-01-01
TWI505654B true TWI505654B (en) 2015-10-21

Family

ID=52718097

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102121410A TWI505654B (en) 2013-06-17 2013-06-17 Optical network system

Country Status (1)

Country Link
TW (1) TWI505654B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220086541A1 (en) * 2020-09-11 2022-03-17 Nec Laboratories America, Inc Distance-route resource sharing for distributed fiber optic sensors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323974B1 (en) * 2000-01-25 2001-11-27 Corning Incorporated Optical protection system for liquid crystal switches
TW200827798A (en) * 2006-12-20 2008-07-01 Inventec Multimedia & Telecom Switching device of light-beam channel of optical fiber network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323974B1 (en) * 2000-01-25 2001-11-27 Corning Incorporated Optical protection system for liquid crystal switches
TW200827798A (en) * 2006-12-20 2008-07-01 Inventec Multimedia & Telecom Switching device of light-beam channel of optical fiber network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Kai-Ming Feng et al.,"Fiber Bragg Grating-Based Three-Dimensional Multipoint Ring-Mesh Sensing System With Robust Self-Healing Function", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 18, NO. 5, SEPTEMBER/OCTOBER 2012 *
Peng-Chun Peng et al., "Fiber Bragg Grating Sensor System With Two-Level Ring Architecture", IEEE SENSORS JOURNAL, VOL. 9, NO. 4, APRIL 2009, pages 309-313 *
Shu-Tsung Kuo et al., "A Delta-Star-Based Multipoint Fiber Bragg Grating Sensor Network", IEEE SENSORS JOURNAL, VOL. 11, NO. 4, APRIL 2011 *

Also Published As

Publication number Publication date
TW201501481A (en) 2015-01-01

Similar Documents

Publication Publication Date Title
US7925126B2 (en) Fiber sensing system with self-detection mechanism
JP4448597B2 (en) Optical switch with test port
JP2011527755A5 (en)
WO1987004029A1 (en) Optical ring network
TWI505654B (en) Optical network system
Chang et al. A large-scale optical fiber sensor network with reconfigurable routing path functionality
KR20180091674A (en) Remote Node Identification System for Optical Fiber Using Optical Time Domain Reflectometer and Device for The Same
CN1955771B (en) Dual optical switch
JP5634136B2 (en) Optical switch system, optical switch system management control device, and management control method
JP4383162B2 (en) Optical branch line monitoring system
CN102291180A (en) Method for designing extensible triangular optical fiber sensing network with high reliability
JP3998694B2 (en) Optical switch device
CN201039186Y (en) Invalid compensation optical fiber grating sensing network
JP2003309523A (en) Optical transmission path interference detection system
JP2005091160A (en) Device for monitoring optical path
RU2346307C1 (en) Optical signal switching unit
Yuan et al. A wavelength-time division multiplexing sensor network with failure detection using fiber Bragg grating
KR100682401B1 (en) A system for transmitting and receiving data signal of underwater acoustic sensor array
Sun et al. Using new models to enhance optical-fiber-sensor networks
JP2008252579A (en) Node arranged by using wavelength selection switch, and inter-node connection confirming method
TWI482952B (en) Light interference system
JP2004252069A (en) DUPLEX 2x2 OPTICAL SWITCH DEVICE
JP4251637B2 (en) Wavelength transmission filter and manufacturing method thereof
Xu et al. Operation of a mesh grid optic-fiber sensor network with self-reconfigurable function
Wu et al. Ring topology based mesh sensing system with self-healing function using FBGs and AWG

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees