TWI504233B - Depth estimation method and device using the same - Google Patents

Depth estimation method and device using the same Download PDF

Info

Publication number
TWI504233B
TWI504233B TW100147984A TW100147984A TWI504233B TW I504233 B TWI504233 B TW I504233B TW 100147984 A TW100147984 A TW 100147984A TW 100147984 A TW100147984 A TW 100147984A TW I504233 B TWI504233 B TW I504233B
Authority
TW
Taiwan
Prior art keywords
depth
frame data
target frame
value
partition
Prior art date
Application number
TW100147984A
Other languages
Chinese (zh)
Other versions
TW201328314A (en
Inventor
Chih Wei Kao
Yu Shian Shen
Tzu Hung Chen
Houng Jyh Wang
Original Assignee
Teco Elec & Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teco Elec & Machinery Co Ltd filed Critical Teco Elec & Machinery Co Ltd
Priority to TW100147984A priority Critical patent/TWI504233B/en
Publication of TW201328314A publication Critical patent/TW201328314A/en
Application granted granted Critical
Publication of TWI504233B publication Critical patent/TWI504233B/en

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

深度估測方法及其裝置Depth estimation method and device thereof

本發明是有關於一種深度估測方法及應用其之裝置,且特別是有關於一種經由物件為基礎的深度估測來找出初始深度值的深度估測方法及應用其之裝置。The present invention relates to a depth estimation method and a device therefor, and more particularly to a depth estimation method for finding an initial depth value via an object-based depth estimation and a device using the same.

在科技發展日新月異的現今時代中,立體影像多媒體系統逐漸被業界所重視。一般來說,在立體影像/視訊的應用中,雙視域影像比對(Stereo Matching)影像處理技術,是目前業界急需開發的立體影像核心技術。在現有技術中,雙視域影像比對技術係先根據雙視域影像計算出影像深度分佈圖。In today's fast-changing technology era, stereoscopic multimedia systems are gradually being valued by the industry. In general, in the application of stereoscopic video/video, the dual-view image matching (Stereo Matching) image processing technology is a stereoscopic image core technology that is urgently needed in the industry. In the prior art, the dual-view image comparison technique first calculates an image depth map according to the dual-view image.

一般來說,深度分佈圖對於立體影像的品質是至關重要的,據此,如何設計出具有計算複雜度較低之雙視域影像比對深度估計方法為業界不斷致力的方向之一。In general, depth maps are critical to the quality of stereo images. Based on this, how to design a dual-view image contrast depth estimation method with low computational complexity is one of the industries' dedication.

本發明有關於一種深度估測方法及其裝置,其係用以:將目標圖框資料劃分為多個物件分區,並經由物件比對操作來針對各物件分區找出一筆初始深度值;針對各個物件分區決定同群資訊,其係將各物件分區對應至一個或多個同群物件分區;及根據各物件分區之初始深度值及同一同群物件分區之內部之其他初始深度值,產生精煉深度值。據此,相較於傳統深度估測方法,本發明相關之深度估測方法及裝置具有可經由物件比對操作來找出初始深度值及參考同群資訊來產生精煉深度值的優點。The invention relates to a depth estimation method and a device thereof, which are used for: dividing a target frame data into a plurality of object partitions, and finding an initial depth value for each object partition by an object comparison operation; The object partition determines the same group information, which corresponds to each object partition to one or more groups of the same group; and the refinement depth is generated according to the initial depth value of each object partition and other initial depth values inside the same group of objects value. Accordingly, the depth estimation method and apparatus of the present invention have the advantage of finding the initial depth value and the reference group information to generate the refined depth value through the object comparison operation compared to the conventional depth estimation method.

根據本發明之第一方面,提出一種深度估測方法,用以針對動態多視角影像資料進行深度估測。深度估測方法包括下列步驟。首先對動態多視角影像資料進行解壓縮,以找出目標圖框資料及次視角目標圖框資料。接著將目標圖框資料劃分為多個物件分區,並產生物件分割資訊。然後判斷目標圖框資料為I類圖框還是P類/B類圖框。當目標圖框資料為I類圖框時,參考物件分割資訊對目標圖框資料進行深度估測,以找出目標圖框資料對應之深度分佈資料。當目標圖框資料為P類/B類圖框時,參考目標圖框資料對應之移動向量資訊及前一筆目標圖框資料之深度分佈資料,來找出目標圖框資料對應之深度分佈資料。According to a first aspect of the present invention, a depth estimation method is proposed for performing depth estimation on dynamic multi-view image data. The depth estimation method includes the following steps. First, the dynamic multi-view image data is decompressed to find the target frame data and the sub-view target frame data. Then, the target frame data is divided into multiple object partitions, and object segmentation information is generated. Then, it is judged whether the target frame data is a class I frame or a P class/B class frame. When the target frame data is a class I frame, the reference object segmentation information is used to perform depth estimation on the target frame data to find the depth distribution data corresponding to the target frame data. When the target frame data is a P-class/B-type frame, the depth distribution data corresponding to the target frame data is found by referring to the motion vector information corresponding to the target frame data and the depth distribution data of the previous target frame data.

根據本發明之第二方面,提出再一種深度估測方法,用以針對多視角輸入影像資料進行深度估測,多視角輸入影像資料包括目標圖框資料及次視角目標圖框資料。深度估測方法包括下列步驟。首先將目標圖框資料劃分為多個物件分區。接著針對各物件分區於次視角目標圖框資料中進行物件比對,以對應至物件分區中比對成功之各物件分區,並決定比對成功之各物件分區的初始深度值。然後針對比對失敗之物件分區,參考與比對失敗之物件分區相鄰之多個相鄰物件分區的初始深度值,決定比對失敗之各物件分區的初始深度值。接著針對各物件分區決定同群資訊,其用以將各物件分區對應至至少一同群物件分區。之後針對各物件分區,根據各物件分區之初始深度值及同一同群物件分區內之其他初始深度值,產生精煉深度值。According to the second aspect of the present invention, another depth estimation method is proposed for performing depth estimation on multi-view input image data, and the multi-view input image data includes target frame data and sub-view target frame data. The depth estimation method includes the following steps. The target frame data is first divided into multiple object partitions. Then, the object comparison is performed on each object partition in the sub-view target frame data to correspond to the object partitions in the object partition, and the initial depth values of the successfully succeeded object partitions are determined. Then, for the object partition that fails the comparison, the initial depth value of each object partition that fails the comparison is determined by referring to the initial depth values of the plurality of adjacent object partitions adjacent to the object partition that failed the comparison. The same group information is then determined for each object partition, which is used to partition each object into at least one group of objects. Then, for each object partition, a refined depth value is generated according to the initial depth value of each object partition and other initial depth values in the same group of objects.

根據本發明之第三及第四方面,提出一種深度估測裝置,其用以執行本發明第一及第二方面所述之深度估測方法。According to the third and fourth aspects of the present invention, there is provided a depth estimating apparatus for performing the depth estimating method according to the first and second aspects of the present invention.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

請參照第1圖,其繪示依照本發明實施例之深度估測裝置的方塊圖。深度估測裝置1例如包括處理器10、記憶體20及匯流排路徑30。舉例來說,本實施例之深度估測方法可以程式碼的方式來實現,並儲存於記憶體20;處理器10經由匯流排路徑30存取記憶體20中之程式碼,藉此實現本實施例之深度估測方法。Please refer to FIG. 1 , which is a block diagram of a depth estimating apparatus according to an embodiment of the present invention. The depth estimating device 1 includes, for example, a processor 10, a memory 20, and a bus path 30. For example, the depth estimation method in this embodiment can be implemented in a coded manner and stored in the memory 20; the processor 10 accesses the code in the memory 20 via the bus path 30, thereby implementing the implementation. Example of depth estimation method.

接下來,係列舉不同實施例,來針對本實施例之深度估測裝置1所執行之深度估測方法做進一步的說明。Next, a series of different embodiments will be further described to further describe the depth estimation method performed by the depth estimating device 1 of the present embodiment.

第一實施例First embodiment

本實施例之深度估測方法及裝置係用以針對靜態之輸入影像資料進行深度估測。舉例來說,輸入影像資料為雙視域影像資料,其中包括目標圖框資料F1及對應之次視角目標圖框資料F2。The depth estimation method and apparatus of this embodiment are used for depth estimation of static input image data. For example, the input image data is dual-view image data, including target frame data F1 and corresponding secondary view target frame data F2.

請參照第2圖,其繪示依照本發明第一實施例之深度估測方法的流程圖。深度估測方法包括下列步驟。首先如步驟(a),處理器10進行影像分割操作,以將目標圖框資料F1劃分為多個物件分區A_1、A_2、...、A_n,其中n為自然數。舉例來說,處理器10係以參考目標圖框資料F1中各個畫素對應之顏色資訊,來判斷其與相鄰之其他畫素是否具有相近的顏色,藉此判斷其是否屬於相同的物件分區。在一個操作實例中,目標圖框資料F1的示意圖可如第3圖所示,其中n等於9,而物件分區A_1及A_9。Referring to FIG. 2, a flow chart of a depth estimation method according to a first embodiment of the present invention is shown. The depth estimation method includes the following steps. First, as step (a), the processor 10 performs an image segmentation operation to divide the target frame material F1 into a plurality of object partitions A_1, A_2, ..., A_n, where n is a natural number. For example, the processor 10 determines whether it has a similar color to other adjacent pixels by referring to the color information corresponding to each pixel in the target frame data F1, thereby determining whether it belongs to the same object partition. . In an example of operation, the schematic of the target frame data F1 can be as shown in FIG. 3, where n is equal to 9, and the object partitions A_1 and A_9.

接著如步驟(b),處理器10針對各物件分區A_1-A_n於次視角目標圖框資料F2中進行物件比對,以針對物件分區A_1-A_n中比對成功之各物件分區找出視差值Dis,並據以決定比對成功之各物件分區的初始深度值Di。舉例來說,處理器10係應用標準化相關係數法(Normalized Cross-Correlation,NCC)來實現步驟(b)中的比對操作,其中相關係數r例如可以下列方程式表示(1):Then, as in step (b), the processor 10 compares the objects in the sub-view target frame data F2 for each object partition A_1-A_n to find the parallax for each object partition in the object partition A_1-A_n. The value Dis is used to determine the initial depth value Di of each object partition that is successful. For example, the processor 10 applies a Normalized Cross-Correlation (NCC) to implement the alignment operation in the step (b), wherein the correlation coefficient r can be expressed, for example, by the following equation (1):

其中Gs (i,j)為來源樣本資訊,例如是目標圖框資料F1中對應至畫素位置(i,j)的畫素資料;Gt (i,j)為目標樣本資訊,即是次視角目標圖框資料F2中對應至畫素位置(i,j)的畫素資料;分別代表來源樣本內部資訊的平均值及目標內部資訊的平均值。Where G s (i, j) is the source sample information, for example, the pixel data corresponding to the pixel position (i, j) in the target frame data F1; G t (i, j) is the target sample information, that is, The pixel data corresponding to the pixel position (i, j) in the sub-view target frame data F2; and Represents the average of the internal information of the source sample and the average of the internal information of the target.

步驟(b)中的物件比對操作例如在一個橫向搜索範圍中進行,藉此對應至各物件A_1-A_n,參考相關係數r來找出最佳的視差值。舉例來說,此橫向搜索範圍為x方向畫素位置介於-60至+60之間的範圍;以物件A_1的比對操作來說,處理器10係將目標圖框資料F1中之物件分區A_1依序地與次視角目標圖框資料F2中橫向平移-60至+60畫素座標值的目標物件進行比對,藉此對應地找出121筆相關係數值r(-60)、r(-59)、...、r(-1)、r(0)、r(1)、...、r(60)。The object comparison operation in step (b) is performed, for example, in a lateral search range, thereby corresponding to each object A_1-A_n, with reference to the correlation coefficient r to find the optimum disparity value. For example, the horizontal search range is a range in which the pixel position in the x direction is between -60 and +60; in the comparison operation of the object A_1, the processor 10 partitions the object in the target frame data F1. A_1 sequentially compares with the target object of the horizontal-translation target frame data F2 and horizontally shifts from -60 to +60 pixel coordinates, thereby correspondingly finding 121 correlation coefficient values r(-60), r( -59), ..., r(-1), r(0), r(1), ..., r(60).

處理器10更找出此些相關係數值r(-60)-r(60)中的最大相關係數值r_max,並判斷最大相關係數值r_max是否實質上大於門檻值;若是,則處理器10以最大相關係數值r_max對應之視差值來做為物件分區A_1的初始深度值Di。當最大相關係數r_max小於門檻值時,處理器10係判斷物件分區A_1的比對操作為失敗。另,該門檻值係可為內設值,然亦可由使用者進行調整。The processor 10 further finds the maximum correlation coefficient value r_max among the correlation coefficient values r(-60)-r(60), and determines whether the maximum correlation coefficient value r_max is substantially greater than the threshold value; if so, the processor 10 The maximum correlation coefficient value r_max corresponds to the disparity value as the initial depth value Di of the object partition A_1. When the maximum correlation coefficient r_max is less than the threshold value, the processor 10 determines that the alignment operation of the object partition A_1 is a failure. In addition, the threshold value can be a built-in value, but can also be adjusted by the user.

然後如步驟(c),針對比對失敗之物件分區,處理器10使用與比對失敗之物件分區相鄰之一個或多個相鄰物件分區的初始深度值Di,來決定比對失敗之各物件分區的初始深度值。Then, as in step (c), for the object partition that failed the comparison, the processor 10 determines the failure of the comparison using the initial depth value Di of one or more adjacent object partitions adjacent to the object partition that failed the comparison. The initial depth value of the object partition.

以第3圖所示的目標圖框資料F1的例子來說,物件分區A_1例如為比對失敗之物件分區,物件分區A_2-A_6為與物件分區A_1相鄰的物件分區,而物件分區A_7-A_9為未與物件分區A_1相鄰的物件分區。在步驟(c)的操作中,處理器10係找出物件分區A_1與相鄰物件分區A_2-A_6的相關係數,並將物件分區A_1的初始深度值設定為其中相關係數最高的相鄰物件分區(例如是物件分區A_2)的初始深度值Di。In the example of the target frame data F1 shown in FIG. 3, the object partition A_1 is, for example, an object partition that fails the comparison, and the object partition A_2-A_6 is an object partition adjacent to the object partition A_1, and the object partition A_7- A_9 is an object partition that is not adjacent to the object partition A_1. In the operation of step (c), the processor 10 finds the correlation coefficient between the object partition A_1 and the adjacent object partition A_2-A_6, and sets the initial depth value of the object partition A_1 to the adjacent object partition with the highest correlation coefficient. The initial depth value Di (for example, the object partition A_2).

據此,經由步驟(b)及(c)的操作,處理器10可針對各物件分區A_1-A_n給定一個初始深度值Di。Accordingly, the processor 10 can provide an initial depth value Di for each of the object partitions A_1-A_n via the operations of steps (b) and (c).

接著如步驟(d),處理器10針對各物件分區A_1-A_n決定同群資訊Ig_1、Ig_2、...、Ig_n,同群資訊Ig_1-Ig_n分別用以將物件分區A_1-A_n對應至至少一個同群物件分區。舉例來說,處理器10係參考各物件分區A_1-A_n的顏色資訊,來判斷其是否屬於相同的分群,藉此產生同群資訊Ig_1-Ig_n,其中物件分區A_1-A_n的顏色資訊例如以CIELUV色空間表示之顏色資訊。Then, as step (d), the processor 10 determines the same group information Ig_1, Ig_2, ..., Ig_n for each object partition A_1-A_n, and the same group information Ig_1-Ig_n is used to respectively correspond the object partition A_1-A_n to at least one Partition object partitioning. For example, the processor 10 refers to the color information of each object partition A_1-A_n to determine whether they belong to the same group, thereby generating the same group information Ig_1-Ig_n, wherein the color information of the object partition A_1-A_n is, for example, CIELUV. The color space represents the color information.

由於處理器10針對目標圖框資料F1中之各物件分區產生對應之同群資訊的操作為實質上相同,接下來係僅以處理器10找出目標圖框資料F(f)中之物件分區A_1的同群資訊Ig_1的情形為例做說明。Since the operation of the processor 10 to generate the corresponding group information for each object partition in the target frame data F1 is substantially the same, the processor 10 finds only the object partition in the target frame data F(f). The case of the same group information Ig_1 of A_1 is taken as an example.

在步驟(d)中,處理器10先找出目標圖框資料F1中與物件分區A_1相鄰的分區,例如是物件分區A_2-A_6。接著處理器10參考物件分區A_2-A_6及A_1的顏色資訊,並經由下列方程式(2)來判斷各物件分區A_2-A_6與物件分區A_1是否屬於相同之分群:In step (d), the processor 10 first finds a partition adjacent to the object partition A_1 in the target frame data F1, for example, an object partition A_2-A_6. The processor 10 then refers to the color information of the object partitions A_2-A_6 and A_1, and determines whether the object partitions A_2-A_6 and the object partition A_1 belong to the same group by the following equation (2):

|Ls -Lt |+|Us -Ut |+|Vs -Vt |<Threshold (2)|L s -L t |+|U s -U t |+|V s -V t |<Threshold (2)

Ls 、Us 、Vs 係為對應至物件分區A_1的顏色資訊,其係以CIELUV色空間座標來表示;Lt 、Ut 、Vt 係為對應至物件分區A_2-A_6其中之一的顏色資訊,其亦以CIELUV色空間來表示。L s , U s , V s are color information corresponding to the object partition A_1, which is represented by CIELUV color space coordinates; L t , U t , V t are corresponding to one of the object partitions A_2-A_6 Color information, which is also represented by the CIELUV color space.

當方程式(2)成立時,表示此物件分區(例如是物件分區A_2)與物件分區A_1具有相近的顏色,而處理器10係認為其屬於相同的分群。經由相似的操作,處理器10係依序地將對應至各物件分區A_2-A_6的顏色資訊依序地代入方程式(2)中,以找出與物件分區A_1屬於相同分群的同群物件分區。例如包括物件分區A_2、A_3及A_4。When equation (2) is established, it indicates that the object partition (e.g., object partition A_2) has a similar color to object partition A_1, and processor 10 considers it to belong to the same cluster. Through a similar operation, the processor 10 sequentially substitutes the color information corresponding to each object partition A_2-A_6 into equation (2) to find the same group object partition that belongs to the same group as the object partition A_1. For example, the object partitions A_2, A_3, and A_4 are included.

之後如步驟(e),處理器10針對同一同群物件分區內各個物件分區之初始深度值,來對同一同群物件分區內之各初始深度值進行調整,以對各物件分區產生精煉深度值。換言之,針對各物件分區,處理器10根據各物件分區之初始深度值Di及其之同群物件分區內各物件分區對應之初始深度值,產生精煉深度值D_ref。舉例來說,物件分區A_1-A_4屬於相同的同群物件分區A;而以針對物件分區A_1的操作來說,處理器10係根據物件分區A_1-A_4的初始深度值來產生精煉深度值D_ref。舉例來說,處理器10係計算物件分區A_1之初始深度值Di與各物件分區A_2-A_45之初始深度值的絕對差值和(Sum of Absolute Differences,SAD)。換言之,處理器10針對物件分區A_1找出多筆(例如是3筆)SAD中之最小值,並以其對應之初始深度值來取代物件分區A_1的初始深度值Di。進一步的說,處理器10的SAD計算操作例如可以下列方程式(3)-(7)表示:Then, as in step (e), the processor 10 adjusts the initial depth values in the same group of objects for the initial depth values of the respective object partitions in the same group of objects to generate refined depth values for each object partition. . In other words, for each object partition, the processor 10 generates a refined depth value D_ref according to the initial depth value Di of each object partition and the initial depth value corresponding to each object partition in the same group partition. For example, the object partitions A_1-A_4 belong to the same same group object partition A; and for the operation of the object partition A_1, the processor 10 generates the refined depth value D_ref according to the initial depth value of the object partitions A_1-A_4. For example, the processor 10 calculates the Sum of Absolute Differences (SAD) of the initial depth value Di of the object partition A_1 and the initial depth values of the object partitions A_2-A_45. In other words, the processor 10 finds the minimum of a plurality of (for example, three) SADs for the object partition A_1 and replaces the initial depth value Di of the object partition A_1 with its corresponding initial depth value. Further, the SAD calculation operation of the processor 10 can be expressed, for example, by the following equations (3)-(7):

SADA_1 =|DiA_1 -DiA_2 |+|DiA_1 -DiA_3 |+|DiA_1 -DiA_4 | (3)SAD A_1 =|Di A_1 -Di A_2 |+|Di A_1 -Di A_3 |+|Di A_1 -Di A_4 | (3)

SADA_2 =|DiA_2 -DiA_1 |+|DiA_2 -DiA_3 |+|DiA_2 -DiA_4 | (4)SAD A_2 =|Di A_2 -Di A_1 |+|Di A_2 -Di A_3 |+|Di A_2 -Di A_4 | (4)

SADA_3 =|DiA_3 -DiA_1 |+|DiA_3 -DiA_2 |+|DiA_3 -DiA_4 | (5)SAD A_3 =|Di A_3 -Di A_1 |+|Di A_3 -Di A_2 |+|Di A_3 -Di A_4 | (5)

SADA_4 =|DiA_4 -DiA_1 |+|DiA_4 -DiA_2 |+|DiA_4 -DiA_3 | (6)SAD A_4 =|Di A_4 -Di A_1 |+|Di A_4 -Di A_2 |+|Di A_4 -Di A_3 | (6)

SAD=Min(SADA_1 ,SADA_2 ,SADA_3 ,SADA_4 ) (7)SAD=Min(SAD A_1 ,SAD A_2 ,SAD A_3 ,SAD A_4 ) (7)

據此,經由前述步驟(a)-(e)的操作,本實施例之深度估測裝置1可有效地針對物件分區A_1找出對應之精煉深度值D_ref。基於相似之步驟,本實施例之深度估測裝置1亦可針對目標圖框資料F1中之其他物件分區A_2-A_n找出對應之精煉深度值D_ref,藉此完成針對目標圖框資料F1進行深度估測之操作。Accordingly, the depth estimating apparatus 1 of the present embodiment can efficiently find the corresponding refined depth value D_ref for the object partition A_1 via the operations of the foregoing steps (a)-(e). Based on the similar steps, the depth estimation apparatus 1 of the present embodiment can also find the corresponding refined depth value D_ref for the other object partitions A_2-A_n in the target frame data F1, thereby completing the depth for the target frame data F1. Estimated operation.

本實施例之深度估測方法及其裝置係:將目標圖框資料F1劃分為多個物件分區,並經由物件比對操作,來針對各物件分區找出一筆初始深度值;針對各個物件分區決定同群資訊,其係將各物件分區對應至一個或多個同群物件分區;及根據各物件分區之初始深度值及同一同群物件分區之其他初始深度值,產生精煉深度值。據此,相較於傳統深度估測方法,本實施例之深度估測方法及裝置具有可經由物件比對操作來找出初始深度值及參考同群資訊來產生精煉深度值的優點。The depth estimation method and device of the embodiment are: dividing the target frame data F1 into a plurality of object partitions, and finding an initial depth value for each object partition through the object comparison operation; determining for each object partition The same group information, which corresponds to each object partition to one or more groups of the same group; and the refined depth value is generated according to the initial depth value of each object partition and other initial depth values of the same group of objects. Accordingly, compared with the conventional depth estimation method, the depth estimation method and apparatus of the present embodiment have the advantage that the initial depth value and the reference group information can be found through the object comparison operation to generate the refined depth value.

第二實施例Second embodiment

本實施例之深度估測方法與第一實施例對應之方法不同之處在於其更包括對精煉深度值進行畫素為基礎之進一步處理。請參照第4圖,其繪示依照本發明第二實施例之深度估測方法的流程圖。舉例來說,本實施例之深度估測方法於步驟(e)之後,更包括步驟(f)及(g)。The depth estimation method of the present embodiment is different from the method corresponding to the first embodiment in that it further includes further processing based on the pixel of the refining depth value. Please refer to FIG. 4, which is a flow chart showing a depth estimation method according to a second embodiment of the present invention. For example, the depth estimation method of this embodiment further includes steps (f) and (g) after the step (e).

於步驟(f)中,處理器10係參考精煉深度值D_ref,針對目標圖框資料F1進行以畫素為基礎之影像深度估測,以對應至目標圖框資料F1中之各筆畫素找出一筆畫素深度值D_pixel。之後如步驟(g),處理器10係對目標圖框資料F1對應之畫素深度值D_pixel進行平滑化操作,以決定深度分佈資料D(t)。In step (f), the processor 10 refers to the refinement depth value D_ref, and performs a pixel-based image depth estimation for the target frame data F1 to correspond to each of the target pixels in the target frame data F1. A single pixel depth value D_pixel. Then, as step (g), the processor 10 performs a smoothing operation on the pixel depth value D_pixel corresponding to the target frame data F1 to determine the depth distribution data D(t).

請參照第5圖,其繪示依照本發明第二實施例之深度估測方法的部份流程圖。進一步的說,步驟(f)中更例如包括子步驟(f1)-(f3)。首先如步驟(f1),處理器10以精煉深度值D_ref決定搜尋範圍R,並據以針對目標圖框資料F1中各些筆畫素計算多筆配對成本(Matching Cost)值C,其中各筆配對成本值分別對應至多個不同之視差值。Referring to FIG. 5, a partial flow chart of a depth estimation method according to a second embodiment of the present invention is shown. Further, in step (f), for example, sub-steps (f1)-(f3) are included. First, as step (f1), the processor 10 determines the search range R by using the refined depth value D_ref, and calculates a plurality of matching cost values C for each of the pen pixels in the target frame data F1, wherein each pair is matched. The cost values correspond to a plurality of different disparity values, respectively.

請參照第6圖,其繪示目標圖框資料F1及次視角目標圖框資料F2的示意圖。舉例來說,目標圖框資料F1中之畫素資料P(i,j)係對應至座標位置(i,j),且其對應地具有精煉深度值D_ref(i,j),其中目標圖框資料F1例如具有M×N之畫素陣列,而i及j為分別小於或等於M及N的自然數。次視角目標圖框資料F2中的畫素資料P'(i,j)亦對應至座標位置(i,j),搜尋範圍R為以座標位置(i+d_ref(i,j),j)為中心,左右寬度為r的搜尋範圍。處理器10係將畫素資料P(i,j)與搜尋範圍R中之各2r-1筆畫素資料進行比對操作,以對應至2r-1筆視差值得到2r-1筆配對成本值C(d(i,j),-r+1)、C(d(i,j),-r+2)、...、C(d(i,j),0)、...、C(d(i,j),r-1),其中處理器10找出各筆代價值的操作可以下列方程式(8)表示:Please refer to FIG. 6 , which illustrates a schematic diagram of the target frame data F1 and the secondary view target frame data F2 . For example, the pixel data P(i, j) in the target frame data F1 corresponds to the coordinate position (i, j), and correspondingly has a refined depth value D_ref(i, j), wherein the target frame The data F1 has, for example, an M×N pixel array, and i and j are natural numbers less than or equal to M and N, respectively. The pixel data P'(i,j) in the sub-view target frame data F2 also corresponds to the coordinate position (i,j), and the search range R is the coordinate position (i+d_ref(i,j),j). The center, the left and right width is the search range of r. The processor 10 compares the pixel data P(i,j) with each 2r-1 pixel data in the search range R to obtain a 2r-1 pen pairing cost value corresponding to the 2r-1 pen parallax value. C(d(i,j), -r+1), C(d(i,j), -r+2),...,C(d(i,j),0),..., C(d(i, j), r-1), wherein the operation of the processor 10 to find the value of each pen can be expressed by the following equation (8):

C(d(i,j),z)=|P(i,j)-P'(i+d-ref(i,j)+z,j)|,-r<z<r (8)C(d(i,j),z)=|P(i,j)-P'(i+d-ref(i,j)+z,j)|, -r<z<r (8)

舉例來說,寬度r係等於精煉深度值D_ref(i,j),而處理器10係對應至畫素資料P(i,j)找出2r-1筆配對成本值C(d(i,j),-r+1)至C(d(i,j),r-1)。據此,基於相似之操作,處理器10可針對目標圖框資料F1中之各M×N筆畫素資料,找出2r-1筆配對成本值;舉例來說,此M×N×(2r-1)筆配對成本值可以第7圖之三維資料結構表示。For example, the width r is equal to the refining depth value D_ref(i,j), and the processor 10 corresponds to the pixel data P(i,j) to find the 2r-1 pen pairing cost value C(d(i,j) ), -r+1) to C(d(i,j), r-1). Accordingly, based on the similar operation, the processor 10 can find the 2r-1 pen pairing cost value for each M×N pen pixel data in the target frame data F1; for example, this M×N×(2r- 1) The pen pairing cost value can be represented by the three-dimensional data structure of Fig. 7.

接著如步驟(f2),處理器10應用濾波器,來針對配對成本值中對應至相同視差值的複數筆配對成本值進行濾波操作。舉例來說,以對應至配對成本值C(d(i,j),r-1)的M×N筆代價值C(d(1,1),r-1)-C(d(M,N),r-1)來說,處理器10係應用箱型濾波器(Box Filter)來對此M×N筆代價值C(d(1,1),r-1)-C(d(M,N),r-1)進行濾波操作。Next, as in step (f2), the processor 10 applies a filter to perform a filtering operation on the complex pairing cost values corresponding to the same disparity values in the pairing cost values. For example, with the M×N pen value C(d(1,1), r-1)-C(d(M,) corresponding to the pairing cost value C(d(i,j), r-1) For N), r-1), the processor 10 applies a Box Filter to the value of this M×N pen C(d(1,1), r-1)-C(d( M, N), r-1) performs a filtering operation.

之後如步驟(f3),於此實施例中,處理器10應用動態規劃(Dynamic Programming)演算法,來針對目標圖框資料F1中之各筆畫素找出對應之畫素深度值D_pixel。舉例來說,動態規劃演算法針對第7圖所示之三維資料結構中對應至相同Y座標值的配對成本值平面上,找出一條對應至最小比對疊代值累加值的路徑,藉此針對各個X座標值找出一筆對應的視差值。以第8圖所示的例子來說,其例如為Y座標值等於1的配對成本值平面,而其中對應至X座標值X1-X5的視差值例如分別為d2、d3、d3、d2、d3及d1。Then, as step (f3), in this embodiment, the processor 10 applies a dynamic programming algorithm to find a corresponding pixel depth value D_pixel for each pixel in the target frame data F1. For example, the dynamic programming algorithm finds a path corresponding to the accumulated value of the minimum alignment pair value for the paired cost value plane corresponding to the same Y coordinate value in the three-dimensional data structure shown in FIG. Find a corresponding disparity value for each X coordinate value. In the example shown in FIG. 8, it is, for example, a paired cost value plane whose Y coordinate value is equal to 1, and the disparity values corresponding to the X coordinate values X1-X5 are, for example, d2, d3, d3, d2, respectively. D3 and d1.

據此,經由前述步驟(a)-(g)的操作,本實施例之深度估測裝置1可有效地針對各筆畫素資料找出對應之視差值,並對應地決定其之畫素深度值D_pixel。According to the operation of the foregoing steps (a)-(g), the depth estimating apparatus 1 of the present embodiment can effectively find the corresponding disparity value for each pen element data, and correspondingly determine the pixel depth thereof. The value is D_pixel.

對於本實施例之深度估測方法來說,其中之步驟(f)及(g)之操作需要耗損處理器10極大的運算資源。據此,本實施例之深度估測方法更例如在步驟(e)及(f)之間提供判斷步驟,以在找出精煉深度值D_ref後,對應地判斷是否執行需佔用較高運算能力的步驟(f)及(g)。在一個例子中,此判斷步驟的判斷條件可為使用者提供之指令。For the depth estimation method of the embodiment, the operations of steps (f) and (g) need to consume the enormous computing resources of the processor 10. Accordingly, the depth estimation method of the present embodiment further provides a judging step between steps (e) and (f), for example, to determine whether to perform a higher computing power after finding the refinement depth value D_ref. Steps (f) and (g). In one example, the determination condition of the determining step can be an instruction provided by the user.

本實施例之深度估測方法及其裝置係用以:將目標圖框資料F1劃分為多個物件分區,並經由物件比對操作,來針對各物件分區找出一筆初始深度值;針對各個物件分區決定同群資訊,其係將各物件分區對應至一個或多個同群物件分區;根據各物件分區之初始深度值及同一同群物件分區內各物件區塊之初始深度值,產生精煉深度值;及以畫素為基礎對精煉深度值進行處理,以決定深度分布資料。據此,相較於傳統深度估測方法,本實施例之深度估測方法及裝置具有可經由物件比對操作來找出初始深度值及參考同群資訊來產生精煉深度值的優點。The depth estimation method and the device of the embodiment are used to: divide the target frame data F1 into a plurality of object partitions, and find an initial depth value for each object partition through the object comparison operation; for each object The partition determines the same group information, which corresponds to each object partition to one or more groups of the same group; according to the initial depth value of each object partition and the initial depth value of each object block in the same group of objects, the refinement depth is generated. Value; and the refinement depth value is processed on a pixel basis to determine the depth distribution data. Accordingly, compared with the conventional depth estimation method, the depth estimation method and apparatus of the present embodiment have the advantage that the initial depth value and the reference group information can be found through the object comparison operation to generate the refined depth value.

第三實施例Third embodiment

本實施例之深度估測方法與第一及第二實施例對應之方法不同之處在於其係針對動態多視角影像資料來進行深度估測。The depth estimation method of this embodiment differs from the first and second embodiments in that it performs depth estimation for dynamic multi-view image data.

請參照第9圖,其繪示依照本發明第三實施例之動態估測方法的流程圖。本實施例之深度估測方法包括下列步驟。首先如步驟(A),處理器10針對動態多視角影像資料MD進行解壓縮,以找出對應至時間t之目標圖框資料F1(t)及次視角目標圖框資料F2(t),其中參數t為整數。舉例來說,處理器10在步驟(A)中更根據動態多視角影像資料MD解壓縮,得到目標圖框資料F1(t)的移動向量資訊I_mv;處理器10更針對移動向量資訊I_mv進行前處理操作,以進行雜訊濾除,並得到更理想的移動向量資訊I_mv。Referring to FIG. 9, a flow chart of a dynamic estimation method according to a third embodiment of the present invention is shown. The depth estimation method of this embodiment includes the following steps. First, as step (A), the processor 10 decompresses the dynamic multi-view image data MD to find the target frame data F1(t) and the sub-view target frame data F2(t) corresponding to the time t, wherein The parameter t is an integer. For example, the processor 10 decompresses the dynamic multi-view image data MD in step (A) to obtain the motion vector information I_mv of the target frame data F1(t); the processor 10 further performs the motion vector information I_mv. The processing operation is performed to perform noise filtering, and a more ideal moving vector information I_mv is obtained.

接著如步驟(B),處理器10將目標圖框資料F1(t)劃分為多物件分區A_1-A_n,並對應地產生物件分割資訊I_partition,其中物件分割資訊I_partition用以指示目標圖框資料F1(t)中之畫素資料與各物件分區A_1-A_n的對應關係。舉例來說,本實施例之步驟(B)之相關操作與第一實施例中之步驟(a)為實質上相同,於此不再對其進行贅述。Then, as step (B), the processor 10 divides the target frame data F1(t) into a multi-object partition A_1-A_n, and corresponds to the real estate bio-partition information I_partition, wherein the object split information I_partition is used to indicate the target frame data F1. Correspondence between the pixel data in (t) and each object partition A_1-A_n. For example, the related operation of the step (B) of the embodiment is substantially the same as the step (a) in the first embodiment, and details are not described herein again.

然後如步驟(C),處理器10判斷目標圖框資料F1(t)為I類圖框還是P類/B類圖框。一般來說,當目標圖框資料F1(t)為I類圖框時,處理器10將解壓縮得到完整的影像內容。據此,當目標圖框資料F1(t)為I類圖框時,本實施例之動態估測方法係執行步驟(D),處理器10參考物件分割資訊I_partition對目標圖框資料F1(t)進行深度估測,以找出目標圖框資料F1(t)對應之深度分佈資料D(t)。Then, as in step (C), the processor 10 determines whether the target frame material F1(t) is a class I frame or a class P/class B frame. In general, when the target frame material F1(t) is a class I frame, the processor 10 will decompress to obtain the complete image content. Accordingly, when the target frame data F1(t) is a class I frame, the dynamic estimation method of the embodiment performs step (D), and the processor 10 refers to the object segmentation information I_partition to the target frame data F1 (t). A depth estimation is performed to find the depth distribution data D(t) corresponding to the target frame data F1(t).

請參照第10圖,其繪示依照本發明第三實施例之深度估測方法的部份流程圖。舉例來說,動態估測方法的步驟(D)例如包括子步驟(D1)-(D5),其中步驟(D1)更包括子步驟(D11)、(D12),而步驟(D4)更包括子步驟(D41)-(D43)。在一個例子中,子步驟(D11)、(D12)、(D2)、(D3)、(D4)及(D5)係分別執行與第二實施例中之步驟(b)、(c)、(d)、(e)、(f)及(g)實質上相同的操作;步驟(D41)-(D43)係分別執行與第二實施例中之步驟(f1)-(f3)實質上相同的操作。Please refer to FIG. 10, which is a partial flow chart of a depth estimation method according to a third embodiment of the present invention. For example, the step (D) of the dynamic estimation method includes, for example, sub-steps (D1)-(D5), wherein step (D1) further includes sub-steps (D11), (D12), and step (D4) further includes sub- Step (D41) - (D43). In one example, sub-steps (D11), (D12), (D2), (D3), (D4), and (D5) are performed separately from steps (b), (c), (in the second embodiment). d), (e), (f), and (g) are substantially the same operations; steps (D41)-(D43) are performed substantially the same as steps (f1)-(f3) in the second embodiment, respectively. operating.

換言之,在判斷目標圖框資料F1(t)為具有完整的影像內容的I圖框時,處理器10係執行與第二實施例之深度估測方法中之流程步驟(b)-(g)實質上相同的步驟,來針對各筆畫素資料找出對應之視差值,並對應地決定其之畫素深度值D_pixel。且如第二實施例之步驟(e)、(g),於此實施例中,步驟(D4)、(D5)亦可經判斷後再執行。In other words, when it is determined that the target frame material F1(t) is an I frame having complete image content, the processor 10 performs the flow steps (b)-(g) in the depth estimation method of the second embodiment. In substantially the same step, the corresponding disparity value is found for each stroke data, and the pixel depth value D_pixel is determined correspondingly. And in steps (e) and (g) of the second embodiment, in this embodiment, steps (D4) and (D5) may also be performed after being judged.

在步驟(C)之中,當目標圖框資料F1(t)為P類/B類圖框時,本實施例之動態估測方法係執行步驟(E),處理器10參考該目標圖框資料F1(t)對應之移動向量資訊I_mv及前一筆目標圖框資料F1(t-1)的深度分佈資料D(t-1),來找出目標圖框資料F1(t)對應之深度分佈資料D(t)。In the step (C), when the target frame data F1(t) is a P class/B class frame, the dynamic estimation method of the embodiment performs the step (E), and the processor 10 refers to the target frame. The depth vector D(t-1) of the motion vector information I_mv corresponding to the data F1(t) and the previous target frame data F1(t-1) is used to find the depth distribution corresponding to the target frame data F1(t). Information D(t).

請參照第11圖,其繪示依照本發明第三實施例之深度估測方法的部份流程圖。步驟(E)例如包括子步驟(E1)-(E5)。首先如步驟(E1),處理器10參考物件分割資訊I_partition,於目標圖框資料F1(t)找出第i個物件分區A_i,其中物件分區A_i對應至多個目前物件巨集區塊(Macroblock),其中i為自然數,而i之起始值為1。請參照第12圖,其繪示目標圖框資料F1(t)及前一筆目標圖框資料F1(t-1)的示意圖。舉例來說,物件分區A_i例如對應地包括巨集區塊BK1-BK6。Please refer to FIG. 11 , which is a partial flow chart of a depth estimation method according to a third embodiment of the present invention. Step (E) includes, for example, sub-steps (E1)-(E5). First, as step (E1), the processor 10 refers to the object segmentation information I_partition, and finds the i-th object partition A_i in the target frame data F1(t), wherein the object partition A_i corresponds to a plurality of current object macroblocks (Macroblock). Where i is a natural number and the starting value of i is 1. Please refer to FIG. 12, which shows a schematic diagram of the target frame data F1(t) and the previous target frame data F1(t-1). For example, the object partition A_i, for example, correspondingly includes macroblocks BK1-BK6.

接著如步驟(E2),處理器10參考移動向量資訊I_MV,找出目前物件巨集區塊對應之移動向量,其中此些移動向量將目前物件巨集區塊分別對應至前一筆目標圖框資料F1(t-1)中之多個移動對應巨集區塊。以第12圖的例子來說,物件分區A_i中之巨集區塊BK1-BK6分別對應至移動向量MV1-MV6,而移動向量MV1-MV6分別指向前一筆目標圖框資料F1(t-1)中之移動對應巨集區塊BKM1-BKM6。Then, as step (E2), the processor 10 refers to the motion vector information I_MV to find a motion vector corresponding to the current object macroblock, wherein the motion vectors respectively correspond to the current object macroblock to the previous target frame data. Multiple movements in F1(t-1) correspond to macroblocks. In the example of Fig. 12, the macroblocks BK1-BK6 in the object partition A_i correspond to the motion vectors MV1-MV6, respectively, and the motion vectors MV1-MV6 respectively point to the previous target frame data F1(t-1). The movement in the middle corresponds to the macro block BKM1-BKM6.

然後如步驟(E3),處理器10參考各個移動向量,找出與各移動對應巨集區塊對應之先前深度值。以第12圖的例子來說,處理器10例如於前一次之深度估測操作中完成針對前一筆目標圖框資料F1(t-1)的深度估測操作,而移動對應巨集區塊BKM1-BKM6例如分別對應之先前深度值D_M1-D_M6。Then, as in step (E3), the processor 10 refers to each of the motion vectors to find a previous depth value corresponding to each of the corresponding macroblocks. In the example of FIG. 12, the processor 10 completes the depth estimation operation for the previous target frame data F1(t-1), for example, in the previous depth estimation operation, and moves the corresponding macro block BKM1. -BKM6 corresponds, for example, to the previous depth values D_M1-D_M6, respectively.

接著如步驟(E4),處理器10根據與目標物件巨集區塊對應之多筆該先前深度值,找出物件分區A_i之深度值。以第12圖的例子來說,處理器10例如對先前深度值D_M1-D_M6求平均值,並以此平均值做為物件分區A_i的深度值。Next, as step (E4), the processor 10 finds the depth value of the object partition A_i according to the plurality of previous depth values corresponding to the target object macroblock. In the example of Fig. 12, the processor 10 averages the previous depth values D_M1-D_M6, for example, and uses this average as the depth value of the object partition A_i.

之後如步驟(E5),處理器10係將該參數i遞增1,並重複步驟(E1)-(E4),來針對目標圖框資料F1(t)中所有之物件分區進行相關之深度估測操作。Then, as step (E5), the processor 10 increments the parameter i by 1, and repeats steps (E1)-(E4) to perform relevant depth estimation for all object partitions in the target frame data F1(t). operating.

本實施例之深度估測方法及其裝置係用以針對動態多視角影像資料進行深度估測,其中本實施例之深度估測方法及裝置係對動態多視角影像資料進行解壓縮,以找出目標圖框資料F1(t)。本實施例之深度估測方法及裝置更判斷目標圖框資料F1(t)為I類圖框還是P類/B類圖框;當目標圖框資料F1(t)為I類圖框時,其係參考物件分割資訊對目標圖框資料F1(t)進行深度估測,以找出目標圖框資料F1(t)對應之深度分佈資料D(t)。當目標圖框資料F1(t)為P類/B類圖框時,其係參考目標圖框資料F1(t)對應之移動向量資訊及前一筆目標圖框資料F1(t-1)的深度分佈資料D(t-1),來找出目標圖框資料F1(t)對應之深度分佈資料D(t)。據此,相較於傳統深度估測方法,本實施例之深度估測方法及裝置具有可參考解壓縮得到之移動向量資訊來針對動態多視角影像資料進行深度估測的優點。The depth estimation method and the device of the embodiment are used for depth estimation of dynamic multi-view image data, wherein the depth estimation method and device of the embodiment decompress the dynamic multi-view image data to find out Target frame data F1(t). The depth estimation method and device of the embodiment further determine whether the target frame data F1(t) is a class I frame or a class P/class B frame; when the target frame data F1(t) is a class I frame, It is based on the object segmentation information to deeply estimate the target frame data F1(t) to find the depth distribution data D(t) corresponding to the target frame data F1(t). When the target frame data F1(t) is a P class/B type frame, it refers to the movement vector information corresponding to the target frame data F1(t) and the depth of the previous target frame data F1(t-1). The data D(t-1) is distributed to find the depth distribution data D(t) corresponding to the target frame data F1(t). Accordingly, compared with the conventional depth estimation method, the depth estimation method and apparatus of the embodiment have the advantages of referring to the decompressed motion vector information to perform depth estimation on the dynamic multi-view image data.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

1...深度估測裝置1. . . Depth estimation device

10...處理器10. . . processor

20...記憶體20. . . Memory

30...匯流排路徑30. . . Bus path

F1、F1(t)...目標圖框資料F1, F1(t). . . Target frame data

F2...次視角目標圖框資料F2. . . Secondary perspective target frame data

A_1-A_9...物件分區A_1-A_9. . . Object partition

P(i,j)、P'(i,j)...畫素資料P(i,j), P'(i,j). . . Pixel data

BK1-BK6...巨集區塊BK1-BK6. . . Macro block

BKM1-BKM6...移動對應巨集區塊BKM1-BKM6. . . Move corresponding macro block

第1圖繪示依照本發明實施例之深度估測裝置的方塊圖。FIG. 1 is a block diagram of a depth estimating apparatus according to an embodiment of the present invention.

第2圖繪示依照本發明第一實施例之深度估測方法的流程圖。2 is a flow chart showing a depth estimation method according to a first embodiment of the present invention.

第3圖繪示目標圖框資料F1的示意圖。FIG. 3 is a schematic diagram of the target frame data F1.

第4圖繪示依照本發明第二實施例之深度估測方法的流程圖。4 is a flow chart showing a depth estimation method according to a second embodiment of the present invention.

第5圖繪示依照本發明第二實施例之深度估測方法的部份流程圖。FIG. 5 is a partial flow chart showing a depth estimation method according to a second embodiment of the present invention.

第6圖繪示目標圖框資料F1及次視角目標圖框資料F2的示意圖。FIG. 6 is a schematic diagram showing the target frame data F1 and the secondary view target frame data F2.

第7圖繪示乃配對成本值之三維資料結構的示意圖。Figure 7 is a schematic diagram showing the three-dimensional data structure of the paired cost values.

第8圖繪示乃動態規劃演算法的示意圖。Figure 8 is a schematic diagram showing the dynamic programming algorithm.

第9圖繪示依照本發明第三實施例之動態估測方法的流程圖。FIG. 9 is a flow chart showing a dynamic estimation method according to a third embodiment of the present invention.

第10圖繪示依照本發明第三實施例之深度估測方法的部份流程圖。FIG. 10 is a partial flow chart showing a depth estimation method according to a third embodiment of the present invention.

第11圖繪示依照本發明第三實施例之深度估測方法的部份流程圖。11 is a partial flow chart showing a depth estimation method according to a third embodiment of the present invention.

第12圖繪示目標圖框資料F1(t)及前一筆目標圖框資料F1(t-1)的示意圖。Figure 12 is a schematic diagram showing the target frame data F1(t) and the previous target frame data F1(t-1).

(A)-(E)...流程步驟(A)-(E). . . Process step

Claims (17)

一種深度估測方法,用以針對一動態多視角影像資料進行深度估測,該深度估測方法包括:(a) 對該動態多視角影像資料進行解壓縮,以找出一目標圖框資料;(b) 將該目標圖框資料劃分為複數個物件分區,並對應地產生一物件分割資訊;(c) 判斷該目標圖框資料為一I類圖框或為一P類/B類圖框;(d) 當該目標圖框資料為該I類圖框時,參考該物件分割資訊對該目標圖框資料進行深度估測,以找出該目標圖框資料對應之一深度分佈資料;以及(e) 當該目標圖框資料為該P類/B類圖框時,參考該目標圖框資料對應之一移動向量資訊及前一筆該目標圖框資料的深度分佈資料,來找出該目標圖框資料之該深度分佈資料。A depth estimation method for performing depth estimation on a dynamic multi-view image data, the depth estimation method comprising: (a) decompressing the dynamic multi-view image data to find a target frame data; (b) dividing the target frame data into a plurality of object partitions and correspondingly generating an object segmentation information; (c) determining that the target frame data is a class I frame or a class P/B frame (d) when the target frame data is the type I frame, the target frame data is deeply estimated by referring to the object segmentation information to find a depth distribution data corresponding to the target frame data; (e) When the target frame data is the P type/B type frame, refer to one of the moving vector information corresponding to the target frame data and the depth distribution data of the previous target frame data to find the target The depth distribution data of the frame data. 如申請專利範圍第1項所述之深度估測方法,其中步驟(e)更包括:(e1) 參考該物件分割資訊,於該目標圖框資料區分出複數個物件分區,其中該些物件分區對應至複數個目前物件巨集區塊(Macroblock);(e2) 參考該移動向量資訊,找出該些目前物件巨集區塊對應之複數個移動向量,其中該些移動向量用以將該些目前物件巨集區塊分別對應至前一筆該目標圖框資料中之複數個移動對應巨集區塊;(e3) 參考各該些移動向量,找出複數筆先前深度值,該複數筆先前深度值係與各該些移動對應巨集區塊相對應;(e4) 根據與該些目標物件巨集區塊對應之複數筆該先前深度值,找出該複數個物件分區之深度值。For example, in the depth estimation method described in claim 1, the step (e) further includes: (e1) referring to the object segmentation information, and distinguishing the plurality of object partitions in the target frame data, wherein the object partitions Corresponding to a plurality of current object macroblocks (Macroblock); (e2) refer to the motion vector information to find a plurality of motion vectors corresponding to the current object macroblocks, wherein the motion vectors are used to At present, the object macroblocks respectively correspond to a plurality of moving corresponding macroblocks in the previous target frame data; (e3) refer to each of the motion vectors to find a plurality of previous depth values, the previous depth of the plurality of pens The value system corresponds to each of the corresponding corresponding macroblocks; (e4) finding a depth value of the plurality of object partitions according to the plurality of previous depth values corresponding to the target object macroblocks. 如申請專利範圍第1項所述之深度估測方法,其中步驟(b)係參考該目標圖框資料中各筆畫素的顏色資訊,來產生該物件分割資訊。For example, in the depth estimation method described in claim 1, the step (b) refers to the color information of each pixel in the target frame data to generate the object segmentation information. 如申請專利範圍第1項所述之深度估測方法,其中步驟(d)更包括:(d1) 針對該目標圖框資料進行以物件分區為基礎之影像深度估測,以針對該目標圖框資料中之各該些物件分區估計得到一初始深度值;(d2) 針對各該些物件分區決定一同群資訊,該同群資訊用以將各該些物件分區對應至複數同群物件分區;及(d3) 針對同一同群物件分區內之各該些物件分區之各該初始深度值,對同一同群物件分區內之各該初始深度值進行調整,以對各物件分區產生一精煉深度值。The depth estimation method according to claim 1, wherein the step (d) further comprises: (d1) performing image depth estimation based on the object partitioning on the target frame data, to target the target frame Each of the object partitions in the data is estimated to have an initial depth value; (d2) determining a same group information for each of the object partitions, the same group information for partitioning each of the objects to a plurality of the same group of objects; and (d3) For each of the initial depth values of each of the object partitions in the same group of objects, the initial depth values in the same group of objects are adjusted to generate a refined depth value for each object partition. 如申請專利範圍第4項所述之深度估測方法,其中於步驟(a)中,更經由對該動態多視角影像資料進行解壓縮以找出一次視角目標圖框資料,其中步驟(d1)更包括:(d11) 針對各該些物件分區於該次視角目標圖框資料中進行物件比對,以利用比對成功之物件分區找出一視差值,並據以決定該初始深度值;及(d12) 針對該些物件分區中比對失敗之物件分區,參考與比對失敗之物件分區相鄰之複數個相鄰物件分區的初始深度值,來決定比對失敗之物件分區的該初始深度值。The depth estimation method according to claim 4, wherein in step (a), the dynamic multi-view image data is decompressed to find a view target frame data, wherein step (d1) The method further includes: (d11) performing an object comparison on each of the object partitions in the sub-view target frame data, to find a disparity value by using the succeeding object partition, and determining the initial depth value accordingly; And (d12) determining, for the object partition in the object partition, the initial depth value of the plurality of adjacent object partitions adjacent to the object partition that failed the comparison to determine the initial of the object partition that failed the comparison Depth value. 如申請專利範圍第4項或第5項所述之深度估測方法,其中於步驟(d3)之後更包括:(d4) 參考該精煉深度值,針對該目標圖框資料及該次視角目標圖框資料進行以畫素為基礎之影像深度估測,以對該目標圖框資料中之各筆畫素找出與其相對應之畫素深度值;及(d5) 對該目標圖框資料之各筆畫素相對應之該些畫素深度值進行平滑化操作,以決定該深度分佈資料。The depth estimation method according to claim 4 or 5, wherein after the step (d3), the method further includes: (d4) referring to the refining depth value, and the target frame data and the sub-angle target image The frame data is subjected to a pixel-based image depth estimation to find a corresponding pixel depth value for each of the target pixels in the target frame data; and (d5) each stroke of the target frame data The pixel depth values corresponding to the pixels are smoothed to determine the depth distribution data. 如申請專利範圍第6項所述之深度估測方法,其中步驟(d4)之操作更包括:(d41) 以該精煉深度值決定一搜尋範圍,並據以針對該目標圖框資料中各該些筆畫素計算複數筆配對成本(Matching Cost)值,其中該些配對成本值係與複數視差值具有對應關係;(d42) 應用濾波器,來針對該些配對成本值中對應至相同視差值的配對成本值進行濾波操作;及(d43) 利用經濾波器處理後之配對成本值得出與各該些筆畫素對應之該畫素深度值。The depth estimation method according to claim 6, wherein the operation of the step (d4) further comprises: (d41) determining a search range by the refined depth value, and according to the target frame data The pen pixels calculate a pairing cost (Matching Cost) value, wherein the pairing cost values have a corresponding relationship with the complex disparity values; (d42) applying a filter to correspond to the same parallax for the pairing cost values The pairing cost value of the value is subjected to a filtering operation; and (d43) the pairing cost processed by the filter is used to derive the pixel depth value corresponding to each of the pen pixels. 一種深度估測裝置,用以執行依照申請專利範圍第1-7項其中之一的深度估測方法。A depth estimating device for performing a depth estimation method according to one of claims 1-7 of the patent application. 一種深度估測方法,用以針對一多視角輸入影像資料進行深度估測,該多視角輸入影像資料包括一目標圖框資料及一次視角目標圖框資料,該深度估測方法包括:(a) 將該目標圖框資料劃分為複數個物件分區;(b) 針對各該些物件分區於該次視角目標圖框資料中進行物件比對,以於該次視角目標圖框資料中比對出相對應之各物件分區,並據以對比對成功之各物件分區產生各自之一初始深度值;(c) 針對該些物件分區中比對失敗之物件分區,參考與其相鄰之比對成功之各物件分區的初始深度值,決定比對失敗之各物件分區的該初始深度值;(d) 針對各該些物件分區決定一同群資訊,該同群資訊用以將各該些物件分區對應至複數同群物件分區;以及(e) 針對同一同群物件分區內之各該些物件分區之各該初始深度值,對同一同群物件分區內之各該初始深度值進行調整,以對各物件分區產生一精煉深度值。A depth estimation method for performing depth estimation on a multi-view input image data, the multi-view input image data comprising a target frame data and a view target frame data, wherein the depth estimation method comprises: (a) Dividing the target frame data into a plurality of object partitions; (b) performing an object comparison on each of the object partitions in the sub-angle target frame data, so as to compare the phases in the target image frame data of the sub-view Corresponding to each object partition, and according to the comparison of the success of each object partition to generate one of the initial depth value; (c) for the object partition in the object partition failure, refer to its adjacent comparison success The initial depth value of the object partition determines the initial depth value of each object partition that fails to be determined; (d) determining the same group information for each of the object partitions, the same group information is used to map each of the objects to the plural The same group of objects; and (e) for each of the initial depth values of each of the object partitions in the same group of objects, each of the initial depths in the same group of objects Adjust the value, for each object to produce a partition refining depth value. 如申請專利範圍第9項所述之深度估測方法,其中於步驟(e)之後更包括:(f) 參考該精煉深度值,針對該目標圖框資料及該次視角目標圖框資料進行以畫素為基礎之影像深度估測,以對該目標圖框資料中之各筆畫素找出一畫素深度值;及(g) 對該目標圖框資料對應之該些畫素深度值進行平滑化操作,以決定該目標圖框資料之一深度分佈資料。The depth estimation method according to claim 9 , wherein after the step (e), the method further comprises: (f) referring to the refining depth value, and performing the target frame data and the sub-angle target frame data. a pixel-based image depth estimation to find a pixel depth value for each of the target pixels in the target frame data; and (g) smoothing the pixel depth values corresponding to the target frame data Operation to determine the depth distribution of one of the target frame data. 如申請專利範圍第10項所述之深度估測方法,其中步驟(f)之操作更包括:(f1) 以該精煉深度值決定於次視角目標圖框資料之一搜尋範圍,並據以針對該目標圖框資料中各該些筆畫素計算複數筆配對成本(Matching Cost)值,其中該些配對成本值係與複數個視差值具有對應關係;(f2) 應用濾波器,來針對該些配對成本值中對應至相同視差值的配對成本值進行濾波操作;及(f3) 利用經濾波器處理後之配對成本值得出與各該些筆畫素對應之該畫素深度值。The depth estimation method according to claim 10, wherein the operation of the step (f) further comprises: (f1) determining, by the refining depth value, a search range of the sub-view target frame data, and according to Each of the pen pixels in the target frame data calculates a pairing cost (Matching Cost) value, wherein the paired cost values have a corresponding relationship with a plurality of disparity values; (f2) applying a filter to target the And a pairing cost value corresponding to the same disparity value in the pairing cost value is subjected to a filtering operation; and (f3) using the filter-processed pairing cost value to obtain the pixel depth value corresponding to each of the pen pixels. 如申請專利範圍第9項所述之深度估測方法,其中步驟(g)之操作更包括:參考該些物件分區資訊來對該目標圖框資料對應之該些畫素深度值進行平滑化操作,以決定該目標圖框資料之一深度分佈資料。The depth estimation method according to claim 9 , wherein the step (g) further comprises: referring to the object partition information to smooth the pixel depth values corresponding to the target frame data. To determine the depth distribution of one of the target frame data. 如申請專利範圍第9項所述之深度估測方法,其中步驟(a)係參考該目標圖框資料中各筆畫素的顏色資訊,來產生該些物件分區。The depth estimation method according to claim 9, wherein the step (a) refers to the color information of each of the pixels in the target frame data to generate the object partitions. 如申請專利範圍第9項所述之深度估測方法,其中於步驟(b)中更包括:針對各該些物件分區於該次視角目標圖框資料中進行物件比對,以對比對成功之各物件分區找出一視差值,並據以決定比對成功之各物件分區的該初始深度值。The depth estimation method according to claim 9 , wherein in the step (b), the object comparison is performed on each of the objects in the sub-view target frame data to compare the successes. Each object partition finds a disparity value and determines the initial depth value of each object partition that is successfully aligned. 如申請專利範圍第9項所述之深度估測方法,其中於步驟(c)中更包括:針對該些物件分區中比對失敗之物件分區,參考與比對失敗之物件分區相鄰之複數個相鄰物件分區的初始深度值,決定比對失敗之各物件分區的該初始深度值。The depth estimation method according to claim 9, wherein in the step (c), the object partition of the object failure in the partition of the object is referenced, and the reference is adjacent to the object partition that fails the comparison. The initial depth value of a neighboring object partition determines the initial depth value of each object partition that failed. 如申請專利範圍第9項所述之深度估測方法,其中於步驟(d)中更包括:參考各該些物件分區之色彩、亮度、紋理、邊緣資訊其中之一或全部,來決定該同群資訊。The depth estimation method according to claim 9 , wherein in the step (d), the method further comprises: referencing one or all of the color, brightness, texture, and edge information of each of the object partitions to determine the same Group information. 一種深度估測裝置,用以執行依照申請專利範圍第9-16項其中之一的深度估測方法。A depth estimating device for performing a depth estimation method according to one of claims 9-16 of the patent application.
TW100147984A 2011-12-22 2011-12-22 Depth estimation method and device using the same TWI504233B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100147984A TWI504233B (en) 2011-12-22 2011-12-22 Depth estimation method and device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100147984A TWI504233B (en) 2011-12-22 2011-12-22 Depth estimation method and device using the same

Publications (2)

Publication Number Publication Date
TW201328314A TW201328314A (en) 2013-07-01
TWI504233B true TWI504233B (en) 2015-10-11

Family

ID=49225369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100147984A TWI504233B (en) 2011-12-22 2011-12-22 Depth estimation method and device using the same

Country Status (1)

Country Link
TW (1) TWI504233B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108765480B (en) * 2017-04-10 2022-03-15 钰立微电子股份有限公司 Advanced treatment equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137580A (en) * 1998-09-22 2000-10-24 Creo Srl Autofocus system
US20030223499A1 (en) * 2002-04-09 2003-12-04 Nicholas Routhier Process and system for encoding and playback of stereoscopic video sequences
US6847728B2 (en) * 2002-12-09 2005-01-25 Sarnoff Corporation Dynamic depth recovery from multiple synchronized video streams
US20100194866A1 (en) * 2009-02-05 2010-08-05 Naoaki Komiya Electronic imaging device and driving method thereof
US20100208994A1 (en) * 2009-02-11 2010-08-19 Ning Yao Filling holes in depth maps
CN101840574A (en) * 2010-04-16 2010-09-22 西安电子科技大学 Depth estimation method based on edge pixel features

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137580A (en) * 1998-09-22 2000-10-24 Creo Srl Autofocus system
US20030223499A1 (en) * 2002-04-09 2003-12-04 Nicholas Routhier Process and system for encoding and playback of stereoscopic video sequences
US6847728B2 (en) * 2002-12-09 2005-01-25 Sarnoff Corporation Dynamic depth recovery from multiple synchronized video streams
US20100194866A1 (en) * 2009-02-05 2010-08-05 Naoaki Komiya Electronic imaging device and driving method thereof
US20100208994A1 (en) * 2009-02-11 2010-08-19 Ning Yao Filling holes in depth maps
CN101840574A (en) * 2010-04-16 2010-09-22 西安电子科技大学 Depth estimation method based on edge pixel features

Also Published As

Publication number Publication date
TW201328314A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
US11455712B2 (en) Method and apparatus for enhancing stereo vision
US9153032B2 (en) Conversion method and apparatus with depth map generation
US9030469B2 (en) Method for generating depth maps from monocular images and systems using the same
CN107871321B (en) Image segmentation method and device
KR102380862B1 (en) Method and apparatus for image processing
US9100642B2 (en) Adjustable depth layers for three-dimensional images
Jung et al. Depth sensation enhancement using the just noticeable depth difference
US9111350B1 (en) Conversion of monoscopic visual content to stereoscopic 3D
US9661307B1 (en) Depth map generation using motion cues for conversion of monoscopic visual content to stereoscopic 3D
JP4796072B2 (en) Image rendering based on image segmentation
CN105005988A (en) Three-dimensional matching method based on interactive image segmentation
Zhu et al. An improved depth image based virtual view synthesis method for interactive 3D video
JP2000253422A (en) Method for generating three-dimensionall image from two-dimensional image
US20160203612A1 (en) Method and apparatus for generating superpixels for multi-view images
TWI504233B (en) Depth estimation method and device using the same
US9787980B2 (en) Auxiliary information map upsampling
EP2932710B1 (en) Method and apparatus for segmentation of 3d image data
Kuo et al. High efficiency depth image-based rendering with simplified inpainting-based hole filling
US20130229408A1 (en) Apparatus and method for efficient viewer-centric depth adjustment based on virtual fronto-parallel planar projection in stereoscopic images
CN110740308B (en) Time consistent reliability delivery system
TW201909116A (en) Depth calculation method and device thereof
Chen et al. Improving Graph Cuts algorithm to transform sequence of stereo image to depth map
TWI485651B (en) Method for depth estimation and device usnig the same
CN111476836B (en) Parallax optimization method and device based on image segmentation
Chen et al. A high performance parallel graph cut optimization for depth estimation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees