TWI502844B - Photovoltaic module and control method thereof - Google Patents

Photovoltaic module and control method thereof Download PDF

Info

Publication number
TWI502844B
TWI502844B TW102141460A TW102141460A TWI502844B TW I502844 B TWI502844 B TW I502844B TW 102141460 A TW102141460 A TW 102141460A TW 102141460 A TW102141460 A TW 102141460A TW I502844 B TWI502844 B TW I502844B
Authority
TW
Taiwan
Prior art keywords
voltage
output
output power
antenna
solar module
Prior art date
Application number
TW102141460A
Other languages
Chinese (zh)
Other versions
TW201519555A (en
Inventor
Huimin Hsieh
Yiming Huang
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW102141460A priority Critical patent/TWI502844B/en
Priority to CN201310739245.1A priority patent/CN103888073B/en
Publication of TW201519555A publication Critical patent/TW201519555A/en
Application granted granted Critical
Publication of TWI502844B publication Critical patent/TWI502844B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Description

太陽能模組及其控制方法Solar module and control method thereof

本發明是關於一種太陽能模組及其控制方法,且特別是有關於一種具有識別單元的太陽能模組及其控制方法。The invention relates to a solar module and a control method thereof, and in particular to a solar module with an identification unit and a control method thereof.

請參照第1圖,第1圖繪示傳統的一種太陽能發電系統100的示意圖。太陽能發電系統100包含太陽能陣列110和直流/交流逆變器(DC/AC Inverter)120。太陽能陣列110將接收的光能轉換為電能並將電能提供給直流/交流逆變器120。直流/交流逆變器120將接收的電能轉換成交流電後,再提供交流電給交流負載130或是併入市電140。Please refer to FIG. 1 , which illustrates a schematic diagram of a conventional solar power generation system 100 . The solar power generation system 100 includes a solar array 110 and a DC/AC inverter 120. The solar array 110 converts the received light energy into electrical energy and provides the electrical energy to the DC/AC inverter 120. The DC/AC inverter 120 converts the received electrical energy into an alternating current, and then supplies the alternating current to the alternating current load 130 or to the mains 140.

太陽能陣列110包含複數個太陽能板111。由於每個太陽能板111可提供的電壓不大,因此傳統的做法是將多個太陽能板111串聯成一個太陽能板串列110a,用以提高輸出的電壓值。接著,再透過並聯多個太陽能板串列110a形成太陽能陣列110,用以增加太陽能發電系統100的發電量。The solar array 110 includes a plurality of solar panels 111. Since the voltage that each solar panel 111 can provide is not large, it is conventional to connect a plurality of solar panels 111 in series to form a solar panel string 110a for increasing the voltage value of the output. Then, the solar array 110 is formed by connecting a plurality of solar panel strings 110a in parallel to increase the amount of power generated by the solar power generation system 100.

當太陽能板串列110a中的一個太陽能板111的輸 出功率發生異常時(如:發生遮陰或是損壞等情況),會造成太陽發電系統的發電效率降低。由於太陽能板串列110a中每個太陽能板111彼此串聯,使得每個太陽能板111輸出的電流皆相同,因此傳統的檢測方法必須逐一對每一個太陽能板111的輸出端和輸入端進行量測,以追查太陽能板111是否發生異常。When the solar panel 111 in the solar panel string 110a is lost When the output power is abnormal (such as when shading or damage occurs), the power generation efficiency of the solar power generation system is lowered. Since each of the solar panels 111 in the solar panel series 110a is connected in series such that the current output by each of the solar panels 111 is the same, the conventional detecting method must measure the output end and the input end of each of the solar panels 111 one by one. In order to trace whether the solar panel 111 is abnormal.

在大型的太陽能發電站中,其輸出功率可能是百萬瓦以上的等級。因此,這些發電站中配置了大量的太陽能板串列。然而,若是利用傳統的檢測方法,則無法迅速且有效地檢測發生異常的太陽能板。換句話說,傳統的檢測方式不僅費時、費工,也會影響到太陽能發電系統運作的效能。In large solar power plants, the output power may be on the order of megawatts or more. Therefore, a large number of solar panels are arranged in these power plants. However, if a conventional detection method is used, it is not possible to quickly and efficiently detect an abnormal solar panel. In other words, the traditional detection method is not only time-consuming and labor-intensive, but also affects the performance of the solar power system.

為了解決上述問題,本發明揭示一種太陽能模組以及其控制方法,藉以減少檢測太陽能板的時間,使得太陽能發電系統的運作更有效率。In order to solve the above problems, the present invention discloses a solar module and a control method thereof, thereby reducing the time for detecting the solar panel, and making the operation of the solar power generation system more efficient.

本揭示內容之一態樣是關於一種太陽能模組。太陽能模組對應一讀取裝置。太陽能模組包含太陽能板、識別單元以及控制單元。太陽能板用以將接收的光能轉換為輸出電能。輸出電能具有相應的輸出電壓及輸出功率。識別單元包含天線以及相應太陽能模組的標識,其中天線電性耦接標識。控制單元電性耦接於太陽能板及識別單元之間,且用以接收輸出電壓並根據輸出功率是否位於預設範 圍決定致能或者禁能天線。One aspect of the present disclosure is directed to a solar module. The solar module corresponds to a reading device. The solar module includes a solar panel, an identification unit, and a control unit. The solar panel is used to convert the received light energy into output electrical energy. The output power has a corresponding output voltage and output power. The identification unit includes an antenna and an identifier of the corresponding solar module, wherein the antenna is electrically coupled to the identifier. The control unit is electrically coupled between the solar panel and the identification unit, and is configured to receive the output voltage and according to whether the output power is in a preset range It is decided to enable or disable the antenna.

根據本發明一實施例,當所述輸出功率位於所述預設範圍內時,所述控制單元致能所述天線。所述讀取裝置透過所述天線接收所述標識之相應訊號。當所述輸出功率位於所述預設範圍之外時,所述控制單元禁能所述天線。According to an embodiment of the invention, the control unit enables the antenna when the output power is within the preset range. The reading device receives the corresponding signal of the identifier through the antenna. The control unit disables the antenna when the output power is outside the preset range.

根據本發明一實施例,所述控制單元更用以比較所述輸出電壓與第一電壓以及比較所述輸出電壓與所述第二電壓,並且根據比較的結果決定所述輸出功率是否位於所述預設範圍。當所述輸出電壓大於或等於第一電壓且小於或等於第二電壓時,所述控制單元判斷所述輸出功率位於所述預設範圍內。當所述輸出電壓小於第一電壓或大於第二電壓時,所述控制單元判斷所述輸出功率位於所述預設範圍之外。According to an embodiment of the invention, the control unit is further configured to compare the output voltage with the first voltage and compare the output voltage with the second voltage, and determine, according to a result of the comparison, whether the output power is located in the Preset range. When the output voltage is greater than or equal to the first voltage and less than or equal to the second voltage, the control unit determines that the output power is within the preset range. When the output voltage is less than the first voltage or greater than the second voltage, the control unit determines that the output power is outside the preset range.

根據本發明一實施例,所述控制單元包含第一比較器、第二比較器以及及閘。第一比較器具有第一反相端、第一非反相端以及第一輸出端。第一非反相端電性耦接所述太陽能板,且用以接收所述輸出電壓。第一反相端用以接收第一電壓。第二比較器具有第二反相端、第二非反相端以及第二輸出端。第二反相端電性耦接所述太陽能板,且用以接收所述輸出電壓。第二非反相端用以接收第二電壓。及閘具有第一輸入端、第二輸入端以及輸出端。第一輸入端電性耦接第一輸出端。第二輸入端電性耦接第二輸出端。According to an embodiment of the invention, the control unit includes a first comparator, a second comparator, and a AND gate. The first comparator has a first inverting terminal, a first non-inverting terminal, and a first output terminal. The first non-inverting terminal is electrically coupled to the solar panel and configured to receive the output voltage. The first inverting terminal is configured to receive the first voltage. The second comparator has a second inverting terminal, a second non-inverting terminal, and a second output terminal. The second inverting terminal is electrically coupled to the solar panel and configured to receive the output voltage. The second non-inverting terminal is configured to receive the second voltage. The gate has a first input, a second input, and an output. The first input end is electrically coupled to the first output end. The second input is electrically coupled to the second output.

根據本發明一實施例,所述控制單元更包含繼電 器。繼電器電性耦接於所述及閘的所述輸出端以及所述識別單元的所述天線之間,並且用以根據所述及閘的輸出訊號導通或斷開。According to an embodiment of the invention, the control unit further comprises a relay Device. The relay is electrically coupled between the output end of the NAND gate and the antenna of the identification unit, and is configured to be turned on or off according to the output signal of the NAND gate.

根據本發明一實施例,所述預設範圍介於所述太陽能板所能提供之最大輸出功率乘以一預設百分比與最大輸出功率之間。According to an embodiment of the invention, the preset range is between a maximum output power that the solar panel can provide, multiplied by a predetermined percentage and a maximum output power.

根據本發明一實施例,所述識別單元包含無線射頻識別(Radio Frequency Identification,RFID)模組、近場通訊(Near Field Communication,NFC)模組或其組合。According to an embodiment of the invention, the identification unit comprises a Radio Frequency Identification (RFID) module, a Near Field Communication (NFC) module, or a combination thereof.

本揭示內容之另一態樣是關於一種太陽能模組的控制方法。所述控制方法包含:偵測太陽能模組中的太陽能板所提供電能的輸出電壓;根據太陽能板所提供電能的輸出功率是否位於預設範圍決定致能或者禁能太陽能模組中的天線,當輸出功率位於預設範圍內時,致能天線,相應於太陽能模組的讀取裝置透過天線接收太陽能模組中的標識之相應訊號,當輸出功率位於預設範圍之外時,禁能天線。Another aspect of the present disclosure is directed to a method of controlling a solar module. The control method includes: detecting an output voltage of the electric energy provided by the solar panel in the solar module; determining whether to enable or disable the antenna in the solar module according to whether the output power of the electric energy provided by the solar panel is in a preset range When the output power is within the preset range, the antenna is enabled, and the reading device corresponding to the solar module receives the corresponding signal of the identifier in the solar module through the antenna, and disables the antenna when the output power is outside the preset range.

根據本發明一實施例,根據所述太陽能板所提供電能的所述輸出功率是否位於所述預設範圍決定致能或者禁能所述太陽能模組中的所述天線,當所述輸出功率位於所述預設範圍內時,致能所述天線,相應於所述太陽能模組的讀取裝置透過所述天線接收所述太陽能模組中的標識之相應訊號,當所述輸出功率位於所述預設範圍之外時,禁能所述天線之步驟更包含:比較相應於所述輸出功率之所 述輸出電壓是否大於或等於第一電壓;比較相應於所述輸出功率之所述輸出電壓是否小於或等於第二電壓;當所述輸出電壓大於或等於第一電壓以及小於或等於第二電壓時,判斷所述輸出功率位於所述預設範圍內;當所述輸出電壓小於第一電壓或大於第二電壓時,判斷所述輸出功率位於所述預設範圍之外。According to an embodiment of the invention, whether the output power of the electrical energy provided by the solar panel is located in the predetermined range determines whether the antenna in the solar module is enabled or disabled, when the output power is located When the preset range is within, the antenna is enabled, and the reading device corresponding to the solar module receives the corresponding signal of the identifier in the solar module through the antenna, when the output power is located in the When the preset range is out, the step of disabling the antenna further comprises: comparing the corresponding output power Whether the output voltage is greater than or equal to the first voltage; comparing whether the output voltage corresponding to the output power is less than or equal to the second voltage; when the output voltage is greater than or equal to the first voltage and less than or equal to the second voltage Determining that the output power is within the preset range; and when the output voltage is less than the first voltage or greater than the second voltage, determining that the output power is outside the preset range.

根據本發明一實施例,所述預設範圍介於所述太陽能板所能提供之最大輸出功率乘以一預設百分比與最大輸出功率之間。According to an embodiment of the invention, the preset range is between a maximum output power that the solar panel can provide, multiplied by a predetermined percentage and a maximum output power.

綜上所述,本發明提供的太陽能模組其檢測方法並不需要逐一對每一個太陽能模組的輸入端和輸出端進行實際量測,因此可大幅減少檢測時間。亦即,本發明提供的太陽能模組其檢測方法可快速且有效率地檢測出太陽能模組發生異常的情況。In summary, the detection method of the solar module provided by the present invention does not need to perform actual measurement on the input end and the output end of each solar module one by one, thereby greatly reducing the detection time. That is, the detection method of the solar module provided by the present invention can quickly and efficiently detect the abnormality of the solar module.

100‧‧‧太陽能發電系統100‧‧‧Solar power system

110‧‧‧太陽能陣列110‧‧‧Solar array

110a‧‧‧太陽能板串列110a‧‧‧Solar panel series

111‧‧‧太陽能板111‧‧‧ solar panels

120‧‧‧直流/交流逆變器120‧‧‧DC/AC inverter

130‧‧‧交流負載130‧‧‧AC load

140‧‧‧市電140‧‧‧Power

300‧‧‧無線射頻識別模組300‧‧‧ Radio Frequency Identification Module

310‧‧‧天線310‧‧‧Antenna

320‧‧‧標識320‧‧‧ logo

200‧‧‧太陽能模組200‧‧‧ solar modules

210‧‧‧太陽能板210‧‧‧ solar panels

220‧‧‧識別單元220‧‧‧ Identification unit

221‧‧‧天線221‧‧‧Antenna

222‧‧‧標識222‧‧‧ logo

230‧‧‧控制單元230‧‧‧Control unit

240‧‧‧讀取裝置240‧‧‧Reading device

400‧‧‧太陽能模組400‧‧‧ solar modules

410‧‧‧太陽能板410‧‧‧ solar panels

420‧‧‧識別單元420‧‧‧ Identification unit

321‧‧‧控制器321‧‧‧ Controller

322‧‧‧記憶體322‧‧‧ memory

P11‧‧‧第一反相端P11‧‧‧first inverting end

P12‧‧‧第一非反相端P12‧‧‧ first non-inverting end

P13‧‧‧第一輸出端P13‧‧‧ first output

P21‧‧‧第二反相端P21‧‧‧Second inverting end

P22‧‧‧第二非反相端P22‧‧‧Second non-inverting end

P23‧‧‧第二輸出端P23‧‧‧second output

P31‧‧‧第一輸入端P31‧‧‧ first input

P32‧‧‧第二輸入端P32‧‧‧ second input

P33‧‧‧輸出端P33‧‧‧ output

421‧‧‧天線421‧‧‧Antenna

422‧‧‧標識422‧‧‧ logo

430‧‧‧控制單元430‧‧‧Control unit

431‧‧‧第一比較器431‧‧‧First comparator

432‧‧‧第二比較器432‧‧‧Second comparator

433‧‧‧及閘433‧‧‧ and gate

434‧‧‧繼電器434‧‧‧ Relay

435‧‧‧發光元件435‧‧‧Lighting elements

LP‧‧‧線圈LP‧‧‧ coil

D1‧‧‧二極體D1‧‧‧ diode

SW‧‧‧開關SW‧‧ switch

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖繪示傳統的一種太陽能發電系統的示意圖;第2a圖是根據本發明一實施例繪示的一種太陽能模組的方塊圖;第2b圖是根據本發明一實施例繪示的一種太陽能板的輸出功率相應於輸出電壓之曲線圖;第2c圖是根據本發明另一實施例繪示的一種太陽能板 的輸出功率相應於輸出電壓之曲線圖;第3圖是根據本發明一實施例繪示的一種無線射頻識別模組的示意圖;第4圖是根據本發明一實施例繪示的一種太陽能模組的示意圖;以及第5圖是根據本發明一實施例繪示的一種太陽能模組的控制方法的流程圖。The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A block diagram of a solar module according to an embodiment of the invention; FIG. 2b is a graph showing an output power of a solar panel corresponding to an output voltage according to an embodiment of the invention; and FIG. 2c is a diagram according to the present invention. An embodiment of a solar panel FIG. 3 is a schematic diagram of a radio frequency identification module according to an embodiment of the invention; FIG. 4 is a schematic diagram of a solar module according to an embodiment of the invention; FIG. 5 is a flow chart of a method for controlling a solar module according to an embodiment of the invention.

請參照第2a圖,第2a圖是根據本發明一實施例繪示的一種太陽能模組200的方塊圖。太陽能模組200包含太陽能板210、識別單元220以及控制單元230。太陽能板210用以將接收的光能轉換為輸出電能,所述輸出電能具有相應的輸出電壓和輸出功率。識別單元220包含天線221和標識222。標識222具有相應太陽能模組200的資料且電性耦接天線221,標識222可以例如是晶片。控制單元230電性耦接於太陽能板210及識別單元220之間,且用以接收太陽能板210提供的輸出電壓。另外,控制單元230還根據輸出功率是否位於預設範圍決定致能或者禁能天線221。在一實施例中,控制單元230可設置於接線盒(Junction Box)中,然本發明並不以此為限。Referring to FIG. 2a, FIG. 2a is a block diagram of a solar module 200 according to an embodiment of the invention. The solar module 200 includes a solar panel 210, an identification unit 220, and a control unit 230. The solar panel 210 is configured to convert received light energy into output electrical energy having a corresponding output voltage and output power. The identification unit 220 includes an antenna 221 and an identification 222. The identifier 222 has the data of the corresponding solar module 200 and is electrically coupled to the antenna 221, and the identifier 222 can be, for example, a wafer. The control unit 230 is electrically coupled between the solar panel 210 and the identification unit 220 and is configured to receive an output voltage provided by the solar panel 210. In addition, the control unit 230 determines whether to enable or disable the antenna 221 according to whether the output power is in a preset range. In an embodiment, the control unit 230 can be disposed in a junction box, but the invention is not limited thereto.

在一實施例中,上述預設範圍介於太陽能板210所能提供之最大輸出功率(Maximum Power Point,MPP)乘以一預設百分比與最大輸出功率之間,其中預設百分比可 依環境或是設計需求設定。In an embodiment, the preset range is between a maximum power (MPP) that the solar panel 210 can provide, multiplied by a preset percentage and a maximum output power, wherein the preset percentage is Set according to the environment or design requirements.

請一併參照第2a圖和第2b圖,第2b圖是根據本發明一實施例繪示的一種太陽能板的輸出功率相應於輸出電壓之曲線圖,其中橫軸代表輸出電壓,縱軸代表輸出功率,而各條曲線則代表在不同的日射照度下太陽能板的輸出功率相應於輸出電壓之曲線。在本實施例中,預設範圍介於最大輸出功率的90%與最大輸出功率之間(如:第2b圖所示之空白區域),然本實施例並不以此為限。Referring to FIG. 2a and FIG. 2b together, FIG. 2b is a graph of output power corresponding to output voltage of a solar panel according to an embodiment of the invention, wherein the horizontal axis represents the output voltage and the vertical axis represents the output. Power, and each curve represents a curve of the output power of the solar panel corresponding to the output voltage at different insolation illuminations. In this embodiment, the preset range is between 90% of the maximum output power and the maximum output power (for example, the blank area shown in FIG. 2b), but the embodiment is not limited thereto.

在一實施例中,如第2b圖所示,當日射照度不同時,太陽能板210能提供的最大輸出功率亦會不同(如:太陽能板210在照度1000瓦特/平方公尺時能提供的最大輸出功率大於太陽能板210在照度800瓦特/平方公尺時能提供的最大輸出功率)。因此,當控制單元230偵測太陽能板210提供的輸出功率時,同時會偵測當下的日射照度,並根據內建一查值表(未繪示於圖中)判斷在所述日射照度下太陽能板210所能提供的最大輸出供率,然後根據所述最大輸出功率建立預設範圍。In an embodiment, as shown in FIG. 2b, when the solar illuminance is different, the maximum output power that the solar panel 210 can provide will also be different (for example, the maximum solar panel 210 can provide at an illumination of 1000 watts/m 2 ). The output power is greater than the maximum output power that the solar panel 210 can provide at an illumination of 800 watts per square meter. Therefore, when the control unit 230 detects the output power provided by the solar panel 210, it simultaneously detects the current solar illuminance, and determines the solar energy under the solar illuminance according to a built-in check value table (not shown). The maximum output supply rate that the board 210 can provide, and then establishes a preset range based on the maximum output power.

具體來說,當太陽能模組200發生異常時(如:發生遮陰或是損壞等情況),太陽能板210轉換的電能並無法達到預設正常的輸出功率(如:實際輸出功率小於最大輸出功率的90%)。因此,控制單元230可藉由偵測太陽能板210在一日射照度(如:1000瓦特/平方公尺)下提供的輸出功率是否位於預設範圍(如:實際輸出功率是否位於180瓦特和200瓦特之間)來判斷太陽能模組200是否發生異 常。Specifically, when the solar module 200 is abnormal (such as shading or damage), the converted energy of the solar panel 210 cannot reach the preset normal output power (for example, the actual output power is less than the maximum output power). 90%). Therefore, the control unit 230 can detect whether the output power provided by the solar panel 210 under one-day illuminance (eg, 1000 watts/m 2 ) is within a preset range (eg, whether the actual output power is located at 180 watts and 200 watts). Between the two) to determine whether the solar module 200 is different often.

當太陽能模組200正常運作時,控制單元230偵測太陽能板210提供的輸出功率位於預設範圍內(如:第2b圖所示之空白區域)。此時,控制單元230可致能識別單元220中的的天線221。藉此,相應於太陽能模組200的讀取裝置240可以透過天線221接收標識222之相應訊號。在一實施例中,標識222可具有相應太陽能模組200的資料,例如:序號、輸出功率、日射照度、環境溫度等。因此,當太陽能模組200正常操作時,使用者可透過讀取裝置240讀取相應所述太陽能模組200的資料進行分析。When the solar module 200 is operating normally, the control unit 230 detects that the output power provided by the solar panel 210 is within a preset range (eg, a blank area as shown in FIG. 2b). At this time, the control unit 230 can enable the antenna 221 in the unit 220 to be identified. Thereby, the reading device 240 corresponding to the solar module 200 can receive the corresponding signal of the identifier 222 through the antenna 221. In an embodiment, the identification 222 may have data of the corresponding solar module 200, such as: serial number, output power, solar illuminance, ambient temperature, and the like. Therefore, when the solar module 200 is in normal operation, the user can read the data of the corresponding solar module 200 through the reading device 240 for analysis.

相反地,當太陽能模組200發生異常時,控制單元230偵測太陽能板210提供的輸出功率位於預設範圍之外(如:第2b圖所示之陰影區域)。此時,控制單元230禁能天線221;亦即,此時讀取裝置240並無法經由天線221接收到標識222的資料。藉此,透過讀取裝置240是否能夠接收識別單元220的訊號來判斷太陽能模組200是否異常,可達到快速且有效率地檢測太陽能模組200。Conversely, when an abnormality occurs in the solar module 200, the control unit 230 detects that the output power provided by the solar panel 210 is outside the preset range (eg, the shaded area shown in FIG. 2b). At this time, the control unit 230 disables the antenna 221; that is, the reading device 240 cannot receive the data of the marker 222 via the antenna 221. Thereby, whether the solar module 200 is abnormal is determined by whether the reading device 240 can receive the signal of the identification unit 220, and the solar module 200 can be detected quickly and efficiently.

另一方面,太陽能板210提供的輸出功率除了跟日射照度有關之外,還跟環境溫度有關。請參照第2c圖,第2c圖是根據本發明另一實施例繪示的一種太陽能板的輸出功率相應於輸出電壓之曲線圖,其中橫軸代表輸出電壓,縱軸代表輸出功率,而各條曲線則代表在不同的環境溫度下太陽能板的輸出功率相應於輸出電壓之曲線。On the other hand, the output power provided by the solar panel 210 is related to the ambient temperature in addition to the solar illuminance. Referring to FIG. 2c, FIG. 2c is a graph showing an output power of a solar panel corresponding to an output voltage according to another embodiment of the present invention, wherein a horizontal axis represents an output voltage, and a vertical axis represents an output power, and each of the strips The curve represents the curve of the output power of the solar panel corresponding to the output voltage at different ambient temperatures.

在一實施例中,如第2c圖所示,當環境溫度不同 時,太陽能板210能提供的最大輸出功率亦會不同(如:太陽能板210在溫度25度時能提供的最大輸出功率大於太陽能板210在溫度50度時能提供的最大輸出功率)。換言之,預設範圍亦會隨著環境溫度而變化(如:溫度25度時的預設範圍介於電壓V1~V2之間,溫度50度時的預設範圍介於電壓V1'~V2'之間,溫度75度時的預設範圍介於電壓V1"~V2"之間)。因此,當控制單元230偵測太陽能板210提供的輸出功率時,亦會偵測當下的環境溫度,並根據查值表判斷在所述環境溫度下太陽能板210所能提供的最大輸出功率,建立預設範圍。In an embodiment, as shown in Figure 2c, when the ambient temperature is different The maximum output power that the solar panel 210 can provide will also be different (eg, the maximum output power that the solar panel 210 can provide at a temperature of 25 degrees is greater than the maximum output power that the solar panel 210 can provide at a temperature of 50 degrees). In other words, the preset range will also change with the ambient temperature (for example, the preset range at a temperature of 25 degrees is between voltages V1 and V2, and the preset range at a temperature of 50 degrees is between voltages V1' and V2'. The preset range at a temperature of 75 degrees is between the voltages V1"~V2"). Therefore, when the control unit 230 detects the output power provided by the solar panel 210, it also detects the current ambient temperature, and determines the maximum output power that the solar panel 210 can provide at the ambient temperature according to the look-up table. Preset range.

類似地,控制單元230可藉由偵測太陽能板210在一環境溫度(如:25度)下提供的輸出功率是否位於預設範圍(如:實際輸出功率是否位於180瓦特和200瓦特之間)來判斷太陽能模組200是否發生異常。當太陽能模組200正常運作時,控制單元230偵測太陽能板210提供的輸出功率位於預設範圍內。當太陽能模組200發生異常時,控制單元230偵測太陽能板210提供的輸出功率位於預設範圍之外。接著,根據判斷的結果進行如上述實施方式之操作,於此不再贅述。Similarly, the control unit 230 can detect whether the output power provided by the solar panel 210 at an ambient temperature (eg, 25 degrees) is within a preset range (eg, whether the actual output power is between 180 watts and 200 watts). It is determined whether the solar module 200 is abnormal. When the solar module 200 is in normal operation, the control unit 230 detects that the output power provided by the solar panel 210 is within a preset range. When an abnormality occurs in the solar module 200, the control unit 230 detects that the output power provided by the solar panel 210 is outside the preset range. Then, the operation of the above embodiment is performed according to the result of the judgment, and details are not described herein again.

在一實施例中,識別單元220可包含無線射頻識別(Radio Frequency Identification,RFID)模組、近場通訊(Near Field Communication,NFC)模組或其組合。讀取裝置240可以是具有無線射頻識別功能的讀取裝置(如:無線射頻識別讀取器),或是具有近場通訊功能的裝置(如: 具有進場通訊的手機)。換句話說,讀取裝置240的種類是依據太陽能模組200中的識別單元220的種類決定。In an embodiment, the identification unit 220 may include a Radio Frequency Identification (RFID) module, a Near Field Communication (NFC) module, or a combination thereof. The reading device 240 can be a reading device with a radio frequency identification function (such as a radio frequency identification reader) or a device having a near field communication function (eg: Mobile phone with incoming communication). In other words, the type of the reading device 240 is determined according to the type of the identification unit 220 in the solar module 200.

請參照第3圖,第3圖是根據本發明一實施例繪示的一種無線射頻識別模組300的示意圖,其中第3圖中所示的無線射頻識別模組300可應用於第2a圖中所示的太陽能模組200及以下實施方式中的其它太陽能模組中,但不以此為限。Please refer to FIG. 3 , which is a schematic diagram of a radio frequency identification module 300 according to an embodiment of the invention. The radio frequency identification module 300 shown in FIG. 3 can be applied to the second embodiment. The solar module 200 shown and other solar modules in the following embodiments are not limited thereto.

如第3圖所示,無線射頻識別模組300包含天線310以及標識320。標識320包含控制器321以及記憶體322。當讀取裝置(未繪示於圖中)發送無線電訊號時,無線射頻識別模組300透過天線310接收無線電訊號,並且藉由控制器321將無線電訊號進行相關運算處理(如:解密)後,根據經處理後的訊號對記憶體322進行讀寫的操作。接著,被讀取的資料透過控制器321進行相關運算處理(如:加密)後再透過天線310回傳給讀取器。因此,當天線310被禁能時,讀取裝置就無法對無線射頻識別模組300進行任何操作,也就是無法讀取到標識320的相應訊號。As shown in FIG. 3, the radio frequency identification module 300 includes an antenna 310 and an identifier 320. The identifier 320 includes a controller 321 and a memory 322. When the reading device (not shown) transmits a radio signal, the radio frequency identification module 300 receives the radio signal through the antenna 310, and after the controller 321 performs the correlation operation processing (eg, decryption) on the radio signal, The memory 322 is read and written according to the processed signal. Then, the read data is subjected to correlation processing (eg, encryption) by the controller 321 and then transmitted back to the reader through the antenna 310. Therefore, when the antenna 310 is disabled, the reading device cannot perform any operation on the radio frequency identification module 300, that is, the corresponding signal of the identifier 320 cannot be read.

請參照第4圖,第4圖是根據本發明一實施例繪示的一種太陽能模組400的示意圖。類似地,太陽能模組400包含太陽能板410、識別單元420和控制單元430。識別單元420包含天線421和標識422,其操作與連接關係皆類似於上述實施方式的連接與操作,在此並不贅述。在本實施例中,識別單元420包含無線射頻辨識模組,但並不以此 為限。Referring to FIG. 4, FIG. 4 is a schematic diagram of a solar module 400 according to an embodiment of the invention. Similarly, the solar module 400 includes a solar panel 410, an identification unit 420, and a control unit 430. The identification unit 420 includes an antenna 421 and an identifier 422. The operation and connection relationship are similar to the connection and operation of the foregoing embodiment, and are not described herein. In this embodiment, the identification unit 420 includes a radio frequency identification module, but does not use this Limited.

如第4圖所示,控制單元430包含第一比較器431、第二比較器432和及閘(AND gate)433。第一比較器431具有第一反相端P11、第一非反相端P12以及第一輸出端P13。第一非反相端P12電性耦接太陽能板410且用以接收輸出電壓Vo。第一反相端P11用以接收第一電壓V1。第二比較器432具有第二反相端P21、第二非反相端P22以及第二輸出端P23。第二反相端P21電性耦接太陽能板410且用以接收輸出電壓Vo。第二非反相端P22用以接收第二電壓V2。及閘433具第一輸入端P31、第二輸入端P32以及輸出端P33。第一輸入端P31以及第二輸入端P32分別電性耦接第一比較器431的第一輸出端P13和第二比較器432的第二輸出端P23。As shown in FIG. 4, the control unit 430 includes a first comparator 431, a second comparator 432, and an AND gate 433. The first comparator 431 has a first inverting terminal P11, a first non-inverting terminal P12, and a first output terminal P13. The first non-inverting terminal P12 is electrically coupled to the solar panel 410 and configured to receive the output voltage Vo. The first inverting terminal P11 is configured to receive the first voltage V1. The second comparator 432 has a second inverting terminal P21, a second non-inverting terminal P22, and a second output terminal P23. The second inverting terminal P21 is electrically coupled to the solar panel 410 and configured to receive the output voltage Vo. The second non-inverting terminal P22 is configured to receive the second voltage V2. The gate 433 has a first input terminal P31, a second input terminal P32, and an output terminal P33. The first input terminal P31 and the second input terminal P32 are electrically coupled to the first output terminal P13 of the first comparator 431 and the second output terminal P23 of the second comparator 432, respectively.

請同時參照第2b圖和第4圖,當太陽能板的輸出功率位於預設範圍時(如:第2圖所示之空白區域),輸出電壓大約都介於第一電壓V1和第二電壓V2之間。因此,在本實施例中,控制單元430可以透過偵測太陽能板410提供的輸出電壓Vo是否介於第一電壓V1和第二電壓V2之間,來判斷太陽能板410的輸出功率是否位於預設範圍內。Please refer to both Figure 2b and Figure 4. When the output power of the solar panel is within the preset range (such as the blank area shown in Figure 2), the output voltage is approximately between the first voltage V1 and the second voltage V2. between. Therefore, in the embodiment, the control unit 430 can determine whether the output power of the solar panel 410 is at a preset by detecting whether the output voltage Vo provided by the solar panel 410 is between the first voltage V1 and the second voltage V2. Within the scope.

操作上,當控制單元430偵測輸出電壓Vo大於或等於第一電壓V1時,第一比較器431的第一輸出端P13會輸出高邏輯準位訊號。當輸出電壓Vo小於第一電壓V1時,第一比較器431的第一輸出端P13則是輸出低邏輯準 位訊號。另外,當控制單元430偵測輸出電壓Vo小於或等於第二電壓V2時,第二比較器432的第二輸出端P23會輸出高邏輯準位訊號。當輸出電壓Vo大於第二電壓V2時,第二比較器432的第二輸出端P23則是輸出低邏輯準位訊號。當及閘433於第一輸入端P31和第二輸入端P32皆接收到高邏輯準位訊號時,及閘433會於輸出端P33輸出高邏輯準位訊號。當第一輸入端P31或第二輸入端P32接收到低邏輯準位訊號時,及閘433則是在輸出端P33輸出低邏輯準位訊號。In operation, when the control unit 430 detects that the output voltage Vo is greater than or equal to the first voltage V1, the first output terminal P13 of the first comparator 431 outputs a high logic level signal. When the output voltage Vo is smaller than the first voltage V1, the first output terminal P13 of the first comparator 431 is output low logic Bit signal. In addition, when the control unit 430 detects that the output voltage Vo is less than or equal to the second voltage V2, the second output terminal P23 of the second comparator 432 outputs a high logic level signal. When the output voltage Vo is greater than the second voltage V2, the second output terminal P23 of the second comparator 432 outputs a low logic level signal. When the gate 433 receives the high logic level signal at both the first input terminal P31 and the second input terminal P32, the gate 433 outputs a high logic level signal at the output terminal P33. When the first input terminal P31 or the second input terminal P32 receives the low logic level signal, the AND gate 433 outputs a low logic level signal at the output terminal P33.

換句話說,當輸出電壓Vo介於第一電壓V1和第二電壓V2之間時,控制單元430判斷太陽能板410提供的輸出功率位於預設範圍內,並且透過及閘433輸出高邏輯訊號。相反地,當輸出電壓Vo小於第一電壓V1或是大於第二電壓V2時,控制單元430判斷太陽能板410提供的輸出功率位於預設範圍之外,並且透過及閘433輸出低邏輯訊號。In other words, when the output voltage Vo is between the first voltage V1 and the second voltage V2, the control unit 430 determines that the output power provided by the solar panel 410 is within a preset range, and outputs a high logic signal through the AND gate 433. Conversely, when the output voltage Vo is smaller than the first voltage V1 or greater than the second voltage V2, the control unit 430 determines that the output power provided by the solar panel 410 is outside the preset range, and outputs a low logic signal through the AND gate 433.

另一方面,控制單元430更可包含繼電器434。繼電器434包含線圈LP、二極體D1以及開關SW。線圈LP電性耦接於及閘433的輸出端P33。開關SW電性耦接識別單元420的天線421。當及閘433輸出高邏輯訊號給線圈LP時(亦即,在線圈LP上有電流通過),在線圈LP上會產生感應電磁,使得開關SW導通並且致能天線421。相反地,當及閘433輸出低邏輯訊號給線圈LP時(亦即,線圈LP上並未有電流通過時),開關SW則是維持斷開的狀態並 且禁能天線421。On the other hand, the control unit 430 may further include a relay 434. The relay 434 includes a coil LP, a diode D1, and a switch SW. The coil LP is electrically coupled to the output terminal P33 of the AND gate 433. The switch SW is electrically coupled to the antenna 421 of the identification unit 420. When the AND gate 433 outputs a high logic signal to the coil LP (i.e., there is current flowing through the coil LP), induced electromagnetic is generated on the coil LP, causing the switch SW to conduct and enable the antenna 421. Conversely, when the AND gate 433 outputs a low logic signal to the coil LP (that is, when there is no current flowing through the coil LP), the switch SW is maintained in the off state. The antenna 421 is disabled.

在一實施例中,及閘433的輸出端P33還可電性耦接發光元件435(如:發光二極體),然本發明並不以此為限。當及閘433經由輸出端P33輸出高邏輯訊號時(亦即,太陽能板410提供的輸出功率位於預設範圍內),可致能發光元件435發光。藉此,使用者可直接根據發光元件435是否發光判斷太陽能模組400是否發生異常。In an embodiment, the output terminal P33 of the gate 433 is also electrically coupled to the light-emitting element 435 (eg, a light-emitting diode), but the invention is not limited thereto. When the AND gate 433 outputs a high logic signal via the output terminal P33 (that is, the output power provided by the solar panel 410 is within a preset range), the light emitting element 435 can be enabled to emit light. Thereby, the user can directly determine whether the solar module 400 is abnormal according to whether the light-emitting element 435 emits light.

由上述揭示內容可知,透過偵測太陽能板410的輸出電壓Vo判斷太陽能模組400是否發生異常,可簡化控制單元430設計的複雜度,並且增加檢測太陽能模組400的效率。此外,本實施例僅例示一種根據太陽能板410的輸出電壓判斷其輸出功率是否在預設範圍內的實施方式;換言之,任何本領域具通常知識者,在不脫離本發明之精神和範圍內,當可設計不同實施方式,來實現上述判斷輸出功率是否在預設範圍內的效果。It can be seen from the above disclosure that determining whether the solar module 400 is abnormal by detecting the output voltage Vo of the solar panel 410 can simplify the design of the control unit 430 and increase the efficiency of detecting the solar module 400. In addition, the present embodiment only exemplifies an embodiment in which the output power of the solar panel 410 is judged whether the output power is within a preset range; in other words, any person having ordinary skill in the art, without departing from the spirit and scope of the present invention, When different embodiments can be designed, the above effect of determining whether the output power is within a preset range is achieved.

請參照第5圖,第5圖是根據本發明一實施例繪示的一種太陽能模組的控制方法的流程圖。為了方便以及清楚說明,以下關於控制方法的說明以第4圖所示的太陽能模組400為例,但並不以此為限。Referring to FIG. 5, FIG. 5 is a flow chart of a method for controlling a solar module according to an embodiment of the invention. For convenience and clarity of explanation, the following description of the control method is exemplified by the solar module 400 shown in FIG. 4, but is not limited thereto.

首先,在步驟S510中,偵測太陽能模組400中的太陽能板410於一日射照度和/或一環境溫度下所提供的電能。所述電能具有相應的輸出功率和輸出電壓。接著,在步驟S530中,判斷太陽能板410所提供電能的輸出功率在所述日射照度或所述環境溫度下是否位於預設範圍,藉此 決定致能或者禁能太陽能模組400中的天線421。進一步來說,藉由比較太陽能板410在所述日射照度或所述環境溫度下提供的輸出電壓Vo是否大於或等於第一電壓V1,以及比較輸出電壓Vo是否小於或等於第二電壓V2(亦即,判斷輸出電壓Vo是否介於第一電壓V1和第二電壓V2之間),可決定太陽能板410提供的輸出功率是否位於預設範圍內,進而判斷太陽能模組400是否異常。First, in step S510, the solar panel 410 in the solar module 400 is detected to provide electrical energy at a single illuminance and/or an ambient temperature. The electrical energy has a corresponding output power and an output voltage. Next, in step S530, it is determined whether the output power of the electric energy provided by the solar panel 410 is within a preset range at the solar illuminance or the ambient temperature, thereby It is decided to enable or disable the antenna 421 in the solar module 400. Further, by comparing whether the output voltage Vo provided by the solar panel 410 at the solar illuminance or the ambient temperature is greater than or equal to the first voltage V1, and comparing whether the output voltage Vo is less than or equal to the second voltage V2 (also That is, determining whether the output voltage Vo is between the first voltage V1 and the second voltage V2 determines whether the output power provided by the solar panel 410 is within a preset range, thereby determining whether the solar module 400 is abnormal.

當太陽能板410提供的輸出功率位於預設範圍內時,則進行步驟S550,致能天線421。此時,相應於太陽能模組的讀取裝置(如:相應於識別單元420的無線射頻辨識讀取器)透過天線421接收太陽能模組400中的標識422之相應訊號。進一步來說,當太陽能板410提供的輸出電壓Vo大於或等於第一電壓V1以及小於或等於第二電壓V2時(亦即,輸出電壓Vo介於第一電壓V1和第二電壓V2之間),太陽能板410提供的輸出功率係經判定位於預設範圍內,依此,太陽能模組400係經判定處於正常操作狀態,且天線421會被致能而使得讀取裝置可讀取標識422之相應訊號。When the output power provided by the solar panel 410 is within the preset range, then step S550 is performed to enable the antenna 421. At this time, the reading device corresponding to the solar module (eg, the RFID reader corresponding to the identification unit 420) receives the corresponding signal of the identifier 422 in the solar module 400 through the antenna 421. Further, when the output voltage Vo provided by the solar panel 410 is greater than or equal to the first voltage V1 and less than or equal to the second voltage V2 (that is, the output voltage Vo is between the first voltage V1 and the second voltage V2) The output power provided by the solar panel 410 is determined to be within a preset range. Accordingly, the solar module 400 is determined to be in a normal operating state, and the antenna 421 is enabled to enable the reading device to read the identifier 422. Corresponding signal.

當太陽能板410提供的輸出功率位於預設範圍之外時(亦即,輸出電壓Vo小於第一電壓V1或大於第二電壓V2),則進行步驟S570,禁能天線421,使得讀取裝置無法透過天線421讀取太陽能模組400之相應訊號;亦即,太陽能模組400係經判定發生異常。When the output power provided by the solar panel 410 is outside the preset range (that is, the output voltage Vo is smaller than the first voltage V1 or greater than the second voltage V2), step S570 is performed to disable the antenna 421, so that the reading device cannot The corresponding signal of the solar module 400 is read through the antenna 421; that is, the solar module 400 is determined to be abnormal.

由上述本發明的實施例可知,太陽能模組藉由配置 識別單元,並且藉由致能或禁能識別單元內的天線,即可透過相應太陽能模組的讀取裝置檢測太陽能模組是否發生異常。與傳統的檢測方法相比,本發明提供的太陽能模組其檢測方法並不需要逐一對每一個太陽能模組的輸入端和輸出端進行實際量測,因此可大幅減少檢測時間。亦即,本發明提供的檢測方法可快速且有效率地檢測出太陽能模組發生異常的情況。It can be seen from the above embodiments of the present invention that the solar module is configured by The identification unit, and by enabling or disabling the antenna in the identification unit, can detect whether the solar module is abnormal through the reading device of the corresponding solar module. Compared with the conventional detection method, the detection method of the solar module provided by the invention does not need to perform actual measurement on the input end and the output end of each solar module one by one, thereby greatly reducing the detection time. That is, the detection method provided by the present invention can quickly and efficiently detect an abnormality of the solar module.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

200‧‧‧太陽能模組200‧‧‧ solar modules

210‧‧‧太陽能板210‧‧‧ solar panels

220‧‧‧識別單元220‧‧‧ Identification unit

221‧‧‧天線221‧‧‧Antenna

222‧‧‧標識222‧‧‧ logo

230‧‧‧控制單元230‧‧‧Control unit

240‧‧‧讀取裝置240‧‧‧Reading device

Claims (10)

一種太陽能模組,對應一讀取裝置,該太陽能模組包含:一太陽能板,用以將接收的光能轉換為一輸出電能,且該輸出電能具有一輸出電壓及一輸出功率;一識別單元,包含一天線以及相應該太陽能模組的一標識,該天線電性耦接該標識;以及一控制單元,包含一繼電器,該控制單元電性耦接於該太陽能板及該識別單元之間,用以接收該輸出電壓並根據該輸出功率是否位於一預設範圍決定導通或斷開該繼電器以致能或者禁能該天線。 A solar module corresponding to a reading device, the solar module comprising: a solar panel for converting received light energy into an output electrical energy, wherein the output electrical energy has an output voltage and an output power; An antenna and an identifier of the corresponding solar module, the antenna is electrically coupled to the identifier; and a control unit includes a relay electrically coupled between the solar panel and the identification unit, The antenna is configured to receive the output voltage and determine whether to turn on or off the relay to enable or disable the antenna according to whether the output power is within a predetermined range. 如請求項1所述之太陽能模組,其中當該輸出功率位於該預設範圍內時,該控制單元致能該天線,該讀取裝置透過該天線接收該標識之相應訊號,當該輸出功率位於該預設範圍之外時,該控制單元禁能該天線。 The solar module of claim 1, wherein the control unit enables the antenna when the output power is within the preset range, and the reading device receives the corresponding signal of the identifier through the antenna, when the output power The control unit disables the antenna when it is outside the preset range. 如請求項1或2所述之太陽能模組,其中該控制單元更用以比較該輸出電壓與一第一電壓以及比較該輸出電壓與一第二電壓以決定該輸出功率是否位於該預設範圍,當該輸出電壓大於或等於該第一電壓且小於或等於該第二電壓時,該控制單元判斷該輸出功率位於該預設範圍內,當該輸出電壓小於該第一電壓或大於該第二電壓時,該控制單元判斷該輸出功率位於該預設範圍之外。 The solar module of claim 1 or 2, wherein the control unit is further configured to compare the output voltage with a first voltage and compare the output voltage with a second voltage to determine whether the output power is within the preset range When the output voltage is greater than or equal to the first voltage and less than or equal to the second voltage, the control unit determines that the output power is within the preset range, when the output voltage is less than the first voltage or greater than the second At the time of voltage, the control unit determines that the output power is outside the preset range. 如請求項1或2所述之太陽能模組,該控制單元包含:一第一比較器,具有一第一反相端、一第一非反相端以及一第一輸出端,其中該第一非反相端電性耦接該太陽能板,用以接收該輸出電壓,該第一反相端用以接收一第一電壓,;一第二比較器,具有一第二反相端、一第二非反相端以及一第二輸出端,其中該第二反相端電性耦接該太陽能板,用以接收該輸出電壓,該第二非反相端用以接收一第二電壓;以及一及閘,具有一第一輸入端、一第二輸入端以及一輸出端,其中該第一輸入端電性耦接該第一輸出端,該第二輸入端電性耦接該第二輸出端。 The solar module of claim 1 or 2, wherein the control unit comprises: a first comparator having a first inverting terminal, a first non-inverting terminal, and a first output terminal, wherein the first The non-inverting terminal is electrically coupled to the solar panel for receiving the output voltage, the first inverting terminal is configured to receive a first voltage, and the second comparator has a second inverting terminal, a first a second non-inverting terminal electrically coupled to the solar panel for receiving the output voltage, and a second non-inverting terminal for receiving a second voltage; And a first input end, a second input end, and an output end, wherein the first input end is electrically coupled to the first output end, and the second input end is electrically coupled to the second output end end. 如請求項4所述之太陽能模組,其中該繼電器電性耦接於該及閘的該輸出端以及該識別單元的該天線之間,用以根據該及閘的輸出訊號導通或斷開。 The solar module of claim 4, wherein the relay is electrically coupled between the output of the gate and the antenna of the identification unit for turning on or off according to an output signal of the gate. 如請求項1或2所述之太陽能模組,其中該預設範圍介於該太陽能板所能提供之一最大輸出功率乘以一預設百分比與該最大輸出功率之間。 The solar module of claim 1 or 2, wherein the predetermined range is between a maximum output power that the solar panel can provide, multiplied by a predetermined percentage, and the maximum output power. 如請求項1或所述之太陽能模組,其中該識別單元 包含一無線射頻識別(Radio Frequency Identification,RFID)模組、一近場通訊(Near Field Communication,NFC)模組或其組合。 The solar module of claim 1 or claim, wherein the identification unit The invention comprises a radio frequency identification (RFID) module, a near field communication (NFC) module or a combination thereof. 一種太陽能模組的控制方法,包含:偵測該太陽能模組中一太陽能板所提供電能的一輸出電壓;根據該太陽能板所提供電能的一輸出功率是否位於一預設範圍決定致能或者禁能該太陽能模組中的一天線,當該輸出功率位於該預設範圍內時,致能該天線,相應於該太陽能模組的一讀取裝置透過該天線接收該太陽能模組中的一標識之相應訊號,當該輸出功率位於該預設範圍之外時,禁能該天線。 A solar module control method includes: detecting an output voltage of a power provided by a solar panel in the solar module; determining whether the output power of the power provided by the solar panel is within a predetermined range An antenna of the solar module is configured to enable the antenna when the output power is within the preset range, and a reading device corresponding to the solar module receives an identifier of the solar module through the antenna Corresponding signal, when the output power is outside the preset range, the antenna is disabled. 如請求項8所述之方法,其中根據該太陽能板所提供電能的一輸出功率是否位於一預設範圍決定致能或者禁能該太陽能模組中的一天線,當該輸出功率位於該預設範圍內時,致能該天線,相應於該太陽能模組的一讀取裝置透過該天線接收該太陽能模組中的一標識之相應訊號,當該輸出功率位於該預設範圍之外時,禁能該天線之步驟更包含:比較相應於該輸出功率之該輸出電壓是否大於或等於一第一電壓;比較相應於該輸出功率之該輸出電壓是否小於或等於 一第二電壓;當該輸出電壓大於或等於該第一電壓以及小於或等於該第二電壓時,判斷該輸出功率位於該預設範圍內;以及當該輸出電壓小於該第一電壓或者大於該第二電壓時,判斷該輸出功率位於該預設範圍之外。 The method of claim 8, wherein determining whether to enable or disable an antenna in the solar module according to whether an output power of the power provided by the solar panel is located in a predetermined range, when the output power is at the preset In the range, the antenna is enabled, and a reading device corresponding to the solar module receives a corresponding signal of an identifier in the solar module through the antenna, and when the output power is outside the preset range, the antenna is disabled. The step of enabling the antenna further comprises: comparing whether the output voltage corresponding to the output power is greater than or equal to a first voltage; comparing whether the output voltage corresponding to the output power is less than or equal to a second voltage; when the output voltage is greater than or equal to the first voltage and less than or equal to the second voltage, determining that the output power is within the preset range; and when the output voltage is less than the first voltage or greater than When the second voltage is applied, it is determined that the output power is outside the preset range. 如請求項8或9所述之方法,其中該預設範圍介於該太陽能板所能提供之一最大輸出功率乘以一預設百分比與該最大輸出功率之間。The method of claim 8 or 9, wherein the predetermined range is between a maximum output power that the solar panel can provide, multiplied by a predetermined percentage, and the maximum output power.
TW102141460A 2013-11-14 2013-11-14 Photovoltaic module and control method thereof TWI502844B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102141460A TWI502844B (en) 2013-11-14 2013-11-14 Photovoltaic module and control method thereof
CN201310739245.1A CN103888073B (en) 2013-11-14 2013-12-23 solar module and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102141460A TWI502844B (en) 2013-11-14 2013-11-14 Photovoltaic module and control method thereof

Publications (2)

Publication Number Publication Date
TW201519555A TW201519555A (en) 2015-05-16
TWI502844B true TWI502844B (en) 2015-10-01

Family

ID=50956820

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102141460A TWI502844B (en) 2013-11-14 2013-11-14 Photovoltaic module and control method thereof

Country Status (2)

Country Link
CN (1) CN103888073B (en)
TW (1) TWI502844B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017106842A1 (en) 2015-12-18 2017-06-22 Southwire Company, Llc Cable integrated solar inverter
US11438988B1 (en) 2017-08-11 2022-09-06 Southwire Company, Llc DC power management system
CN109040335B (en) * 2018-07-13 2021-10-26 北京晖宏科技有限公司 Coding system and method for solar module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200701667A (en) * 2005-06-16 2007-01-01 Inventec Corp Apparatus and method for monitoring status of a wireless system
CN101953060A (en) * 2006-12-06 2011-01-19 太阳能安吉科技 Distributed power harvesting systems using DC power sources
TW201123670A (en) * 2009-12-23 2011-07-01 Univ Nat Taiwan Solar electric power generation system and monitoring method of the same
TWM412338U (en) * 2011-02-15 2011-09-21 Atek Plus Co Ltd Voltage monitoring device of alternative energy power generation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201918920U (en) * 2009-12-21 2011-08-03 叶明宝 Intelligent photovoltaic battery component
CN201656560U (en) * 2010-03-19 2010-11-24 深圳市新天光电科技有限公司 Real-time monitoring system for photovoltaic power station component status
BRPI1102491A2 (en) * 2011-05-20 2013-06-25 Asel Tech Tecnologia E Automacao Ltda pipeline line break monitoring and detection system
CN202854569U (en) * 2012-09-07 2013-04-03 南京优阳光伏技术有限公司 Solar photovoltaic assembly level monitoring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200701667A (en) * 2005-06-16 2007-01-01 Inventec Corp Apparatus and method for monitoring status of a wireless system
CN101953060A (en) * 2006-12-06 2011-01-19 太阳能安吉科技 Distributed power harvesting systems using DC power sources
TW201123670A (en) * 2009-12-23 2011-07-01 Univ Nat Taiwan Solar electric power generation system and monitoring method of the same
TWM412338U (en) * 2011-02-15 2011-09-21 Atek Plus Co Ltd Voltage monitoring device of alternative energy power generation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ultrafast TTL Comparators AD9696/AD9698 datasheet, "http://www.analog.com/static/imported-files/data_sheets_obsolete/OBSOLETE%20WATERMARK/AD9696.pdf", 發佈日期:2001年2月1日 *

Also Published As

Publication number Publication date
CN103888073B (en) 2016-03-02
CN103888073A (en) 2014-06-25
TW201519555A (en) 2015-05-16

Similar Documents

Publication Publication Date Title
US10389300B2 (en) Photovoltaic system having fault diagnosis apparatus, and fault diagnosis method for photovoltaic system
US9000615B2 (en) Solar power module with safety features and related method of operation
US8575783B2 (en) Solar panel as infrared signal receiver and processor
US20190215935A1 (en) Integrated Antenna Assemblies For Light Fixtures
US10218182B2 (en) Photovoltaic systems with voltage limiting devices
TWI502844B (en) Photovoltaic module and control method thereof
KR101492528B1 (en) Method for monitoring photovoltaic power generation by using rtu and wireless rtu device therefor
TWI676333B (en) Electronic apparatus and charging method thereof
TW201717538A (en) Thermal management of systems with electric components
US8286020B2 (en) Power supply and protection method thereof
Padmavathi et al. Fault detection and identification of solar panels using Bluetooth
KR101000734B1 (en) Apparatus sensing shade and breaking down of solar photovaltaic power generation cell line/module/group and monitoring solar photovaltaic power generation amount
US10938341B2 (en) Apparatus and system for detecting photovoltaic health and quality in solar panels
US9678120B2 (en) Electrical load identification using system line voltage
JP6408864B2 (en) Method and apparatus for measuring characteristics of solar panel
EP2902792A1 (en) Power measurement
JP6712269B2 (en) Power distribution system
JP5794957B2 (en) Indicator for photovoltaic power generation
US20180233909A1 (en) Smart low voltage direct current infrastructure
TW202020437A (en) Solar energy detection module and solar panel
JP6625469B2 (en) Power control device
JP5881759B2 (en) Performance inspection apparatus and program for photovoltaic power generation system
KR20140112877A (en) Monitoring device
KR20130088343A (en) Solar genepating apparatus using the solar light and solar heat
KR101319242B1 (en) solar genepating apparatus using the solar light and solar heat