TWI502777B - Semiconductor element and manufacturing method thereof - Google Patents

Semiconductor element and manufacturing method thereof Download PDF

Info

Publication number
TWI502777B
TWI502777B TW101128282A TW101128282A TWI502777B TW I502777 B TWI502777 B TW I502777B TW 101128282 A TW101128282 A TW 101128282A TW 101128282 A TW101128282 A TW 101128282A TW I502777 B TWI502777 B TW I502777B
Authority
TW
Taiwan
Prior art keywords
layer
type
doped semiconductor
light
semiconductor device
Prior art date
Application number
TW101128282A
Other languages
Chinese (zh)
Other versions
TW201407837A (en
Inventor
Chun Yen Chang
Jet Rung Chang
Yuet-Wing Li
Original Assignee
Univ Nat Chiao Tung
Himax Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung, Himax Display Inc filed Critical Univ Nat Chiao Tung
Priority to TW101128282A priority Critical patent/TWI502777B/en
Publication of TW201407837A publication Critical patent/TW201407837A/en
Application granted granted Critical
Publication of TWI502777B publication Critical patent/TWI502777B/en

Links

Landscapes

  • Led Devices (AREA)

Description

半導體元件及其製作方法Semiconductor component and manufacturing method thereof

本發明是有關於一種半導體元件及其製作方法,且特別是關於一種發光的半導體元件及其製作方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a light emitting semiconductor device and a method of fabricating the same.

隨著光電技術的進步,半導體元件的製造與應用已漸趨成熟,諸如發光二極體(light-emitting diode,LED)或雷射元件等皆可由半導體元件製作而成。以發光二極體為例,由於其具有低污染、低消耗功率、反應時間(response time)短、使用壽命長等優點,已廣泛應用於各式光源或照明的領域,諸如交通號誌、戶外看板及顯示器背光源等。使發光二極體日漸成為備受矚目的光電產業之一。With the advancement of optoelectronic technology, the manufacture and application of semiconductor components have gradually matured, such as light-emitting diodes (LEDs) or laser components, which can be fabricated from semiconductor components. Taking the light-emitting diode as an example, it has been widely used in various fields of light source or illumination, such as traffic signs and outdoor, due to its advantages of low pollution, low power consumption, short response time, and long service life. Kanban and display backlights, etc. Light-emitting diodes have become one of the most eye-catching optoelectronic industries.

目前,發光二極體混成白光的方法主要是以藍光發光二極體或紫外線發光二極體(UV LED)激發黃色螢光粉來混成白光。然而,螢光粉之長波長之光的轉換效率不佳,使混成之白光偏冷色調,進而造成發光二極體的衍色性不佳。此外,螢光粉會吸收能量,造成發光二極體出射之光的能量的損失。因此,如何降低光能量的損失以及提升長波長之光的轉換效率以改善衍色性,實為當前發人員亟欲解決的議題之一。At present, the method of mixing white light of a light-emitting diode is mainly to use a blue light-emitting diode or an ultraviolet light-emitting diode (UV LED) to excite yellow phosphor powder to mix white light. However, the conversion efficiency of the long-wavelength light of the phosphor powder is not good, so that the white light of the mixed white light is cooled, and the color rendering of the light-emitting diode is poor. In addition, the phosphor absorbs energy, causing a loss of energy from the light emitted by the light-emitting diode. Therefore, how to reduce the loss of light energy and improve the conversion efficiency of long-wavelength light to improve the color rendering is one of the issues that current researchers are trying to solve.

本發明提供一種半導體元件的製作方法,其可製作出具有衍色性良好的半導體元件。The present invention provides a method of fabricating a semiconductor device which can produce a semiconductor device having good color rendering properties.

本發明提供一種半導體元件,其具有良好的衍色性。The present invention provides a semiconductor element which has good color rendering properties.

本發明提供一種半導體元件的製作方法,包括以下步驟。提供基材,基材具有底座以及位於底座上的多個柱狀體。於各柱狀體的側壁上以及柱狀體間的底座上形成保護層。於柱狀體的頂面上成長第一型摻雜半導體材料,以形成多個第一型摻雜半導體結構。各第一型摻雜半導體結構具有底面以及連接底面的多個側壁面,且各側壁面相對底面傾斜。於第一型摻雜半導體結構的側壁面上形成多層發光層,其中各發光層包括一金屬元素,且此金屬元素於此些發光層中有3種以上的含量。於最上層之發光層上形成第二型摻雜半導體層。The present invention provides a method of fabricating a semiconductor device, comprising the following steps. A substrate is provided, the substrate having a base and a plurality of columns on the base. A protective layer is formed on the side walls of each of the columnar bodies and on the base between the columns. A first type doped semiconductor material is grown on the top surface of the column to form a plurality of first type doped semiconductor structures. Each of the first type doped semiconductor structures has a bottom surface and a plurality of side wall surfaces connected to the bottom surface, and each of the side wall surfaces is inclined with respect to the bottom surface. A plurality of light emitting layers are formed on sidewalls of the first type doped semiconductor structure, wherein each of the light emitting layers includes a metal element, and the metal element has a content of three or more of the light emitting layers. A second type doped semiconductor layer is formed on the uppermost light emitting layer.

在本發明之一實施例中,前述之半導體元件的製作方法,更包括於第二型摻雜半導體層上形成導電層。In an embodiment of the invention, the method for fabricating the semiconductor device further includes forming a conductive layer on the second type doped semiconductor layer.

在本發明之一實施例中,前述之基材的製作方法包括以下步驟。於基板上形成未摻雜半導體層。於未摻雜半導體層上成長第一型摻雜半導體材料,以形成第一型摻雜半導體材料層。圖案化第一型摻雜半導體材料層,以形成柱狀體以及底座,其中底座包括第一型摻雜半導體材料層之柱狀體以外的區域、基板以及未摻雜半導體層。In an embodiment of the invention, the method for fabricating the aforementioned substrate comprises the following steps. An undoped semiconductor layer is formed on the substrate. A first type of doped semiconductor material is grown on the undoped semiconductor layer to form a first type of doped semiconductor material layer. The first type doped semiconductor material layer is patterned to form a columnar body and a base, wherein the base includes a region other than the columnar body of the first type doped semiconductor material layer, the substrate, and the undoped semiconductor layer.

本發明提供一種以上述製作方法製作而成的半導體元件。The present invention provides a semiconductor device produced by the above-described production method.

在本發明之一實施例中,前述之保護層的材質為二氧化矽。In an embodiment of the invention, the protective layer is made of cerium oxide.

在本發明之一實施例中,前述之最上層之發光層的側 壁面與該第一型摻雜半導體結構之該底面夾一角度,該角度不大於65度。In an embodiment of the invention, the side of the uppermost layer of the luminescent layer The wall is at an angle to the bottom surface of the first doped semiconductor structure, the angle being no greater than 65 degrees.

在本發明之一實施例中,前述之第一型摻雜半導體層的形狀為平台狀或金字塔狀。In an embodiment of the invention, the shape of the first type doped semiconductor layer is a plate shape or a pyramid shape.

在本發明之一實施例中,前述之金屬元素為銦。In an embodiment of the invention, the aforementioned metal element is indium.

在本發明之一實施例中,前述之發光層的化學式為Inx Ga1-x N,且x介於0至0.4之間。In an embodiment of the invention, the luminescent layer has a chemical formula of In x Ga 1-x N and x is between 0 and 0.4.

在本發明之一實施例中,前述之第一型與第二型之一為P型,且第一型與第二型之另一為N型。In an embodiment of the invention, one of the first type and the second type is a P type, and the other of the first type and the second type is an N type.

在本發明之一實施例中,前述之導電層為透明的導電層。In an embodiment of the invention, the conductive layer is a transparent conductive layer.

基於上述,本發明可在無須配置螢光層下,藉由調變配置於第一型摻雜半導體結構上之多層發光層內之所述金屬元素的含量,使多層發光層所出射之光的波長能涵蓋可見光之波長範圍。如此一來,可降低前述螢光粉之吸收能量的問題以及螢光粉之長波長之光的轉換效率不佳的問題,進而製作出高功率以及衍色性良好的半導體元件。Based on the above, the present invention can illuminate the light emitted by the multi-layer luminescent layer by modulating the content of the metal element disposed in the multi-layer luminescent layer disposed on the first type doped semiconductor structure without arranging the luminescent layer. The wavelength can cover the wavelength range of visible light. As a result, the problem of the absorption energy of the phosphor powder and the problem of poor conversion efficiency of the long-wavelength light of the phosphor powder can be reduced, and a semiconductor element having high power and good color rendering properties can be produced.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1為發明一實施例之半導體元件的製作流程圖。請參照圖1,本實施例之半導體元件的製作方法包括:提供基材(步驟S100),此基材具有底座以及位於底座上的多 個柱狀體。於各柱狀體的側壁上形成保護層(步驟S200)。於柱狀體的頂面上成長第一型摻雜半導體材料,以形成多個第一型摻雜半導體結構(步驟S300),其中各第一型摻雜半導體結構具有底面以及連接底面的多個側壁面。於第一型摻雜半導體結構的側壁面上形成多層發光層(步驟S400)。於最上層之發光層上形成第二型摻雜半導體層(步驟S500)。在本實施例中,半導體元件的製作方法例如是依序地進行步驟S100至步驟S500。1 is a flow chart showing the fabrication of a semiconductor device in accordance with an embodiment of the invention. Referring to FIG. 1, a method for fabricating a semiconductor device of the present embodiment includes: providing a substrate (step S100), the substrate having a base and a plurality of bases Columns. A protective layer is formed on the side walls of each of the columnar bodies (step S200). Growing a first type doped semiconductor material on a top surface of the column to form a plurality of first type doped semiconductor structures (step S300), wherein each of the first type doped semiconductor structures has a bottom surface and a plurality of bottom surfaces Side wall surface. A plurality of light emitting layers are formed on sidewall faces of the first type doped semiconductor structure (step S400). A second type doped semiconductor layer is formed on the uppermost light emitting layer (step S500). In the present embodiment, the manufacturing method of the semiconductor element is, for example, sequentially performing steps S100 to S500.

以下將搭配圖2A至圖2E以及圖3A至圖3G針對半導體元件的製作方法進行詳細的說明。Hereinafter, a method of fabricating a semiconductor device will be described in detail with reference to FIGS. 2A to 2E and FIGS. 3A to 3G.

圖2A至圖2E為步驟S100中之基材之製作流程的剖面示意圖。在本實施例中,基材之柱狀體例如是以奈米壓印(nanoimprint lithography)的方式,將形成有凹凸圖案的奈米壓印鑄模以按壓的方式轉印圖案至基材上,進而形成多個柱狀體。具體而言,請參照圖2A,首先,於一基板10上形成一未摻雜半導體層20。基板10可以是藍寶石基板(氧化鋁,Al2O3)、碳化矽(SiC)基板、矽(Si)基板、砷化鎵(GaAs)基板、磷化鎵(GaP)基板、氮化鎵(GaN)基板、鋁酸鋰(LiAlO2)基板、鎵酸鋰(LiGaO2)基板或是其他適用於磊晶的基板。在本實施例中,基板10以(0001)面(即c plane)之藍寶石基板作為舉例說明,而未摻雜半導體層20的材料以氮化鎵作為舉例說明,但本發明不以此為限。2A to 2E are schematic cross-sectional views showing a manufacturing process of the substrate in the step S100. In the present embodiment, the columnar body of the substrate is, for example, a nanoimprint lithography, and the nanoimprint mold having the concave-convex pattern is transferred to the substrate by pressing, and further A plurality of columnar bodies are formed. Specifically, referring to FIG. 2A, first, an undoped semiconductor layer 20 is formed on a substrate 10. The substrate 10 may be a sapphire substrate (alumina, Al 2 O 3 ), a tantalum carbide (SiC) substrate, a germanium (Si) substrate, a gallium arsenide (GaAs) substrate, a gallium phosphide (GaP) substrate, a gallium nitride (GaN) substrate, Lithium aluminate (LiAlO2) substrate, lithium gallium hydride (LiGaO2) substrate or other substrate suitable for epitaxy. In the present embodiment, the substrate 10 is exemplified by a (0001) plane (ie, c plane) sapphire substrate, and the material of the undoped semiconductor layer 20 is exemplified by gallium nitride, but the invention is not limited thereto. .

接著,於未摻雜半導體層20上成長第一型摻雜半導 體材料,以形成第一型摻雜半導體材料層30。在本實施例中,第一型摻雜半導體材料以N型氮化鎵作為舉例說明,但本發明不以此為限。此外,形成前述未摻雜半導體層20以及第一型摻雜半導體材料層30的方法例如是有機金屬化學氣相沈積(Metal-Organic Chemical Vapor Deposition,MOCVD)法,但本發明不以此為限。在其他實施例中,形成前述未摻雜半導體層20以及第一型摻雜半導體材料層30的方法亦可以是分子束磊晶(Molecular Beam Epitaxy,MBE)、濺鍍(Sputtering)、蒸鍍(Evaporation)、脈衝雷射沈積法(Pulse Laser Deposition,PLD)、氣相磊晶(Vapor Phase Epitaxy,VPE)或液相磊晶(Liquid Phase Epitaxy,LPE)等方法。另外,未摻雜半導體層20以及第一型摻雜半導體材料層30的厚度H20 、H30 例如皆為3微米(μm),但本發明亦不以此為限。Next, a first type doped semiconductor material is grown on the undoped semiconductor layer 20 to form a first type doped semiconductor material layer 30. In the present embodiment, the first type doped semiconductor material is exemplified by N-type gallium nitride, but the invention is not limited thereto. In addition, the method of forming the undoped semiconductor layer 20 and the first type doped semiconductor material layer 30 is, for example, a Metal-Organic Chemical Vapor Deposition (MOCVD) method, but the invention is not limited thereto. . In other embodiments, the method of forming the undoped semiconductor layer 20 and the first type doped semiconductor material layer 30 may also be Molecular Beam Epitaxy (MBE), sputtering, and evaporation ( Evaporation, Pulse Laser Deposition (PLD), Vapor Phase Epitaxy (VPE) or Liquid Phase Epitaxy (LPE). In addition, the thicknesses H 20 and H 30 of the undoped semiconductor layer 20 and the first type doped semiconductor material layer 30 are, for example, 3 micrometers (μm), but the invention is not limited thereto.

接著,於第一型摻雜半導體材料層30上相繼地形成介電層40以及代轉印層50。在本實施例中,介電層40的材料可以是無機材料,其中無機材料例如是氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層。代轉印層50的材料可以是聚合物。此外,介電層40以及代轉印層50的厚度H40 、H50 例如分別為0.4μm與0.2μm,但本發明不以此為限。Next, a dielectric layer 40 and a generation transfer layer 50 are successively formed on the first type doped semiconductor material layer 30. In the present embodiment, the material of the dielectric layer 40 may be an inorganic material, wherein the inorganic material is, for example, tantalum oxide, tantalum nitride, hafnium oxynitride, hafnium aluminum oxide or a stacked layer of at least two of the above materials. The material of the transfer layer 50 may be a polymer. In addition, the thicknesses H 40 and H 50 of the dielectric layer 40 and the generation transfer layer 50 are, for example, 0.4 μm and 0.2 μm, respectively, but the invention is not limited thereto.

請參照圖2B,將一圖案化模具(未繪示)放置於代轉印層50上,且圖案化模具與代轉印層50直接接觸。再將圖案化模具、基板10以及其上之膜層(包括未摻雜半導 體層20、第一型摻雜半導體材料層30、介電層40以及代轉印層50)進行一升溫製程。接而,施以圖案化模具一高壓,以將圖案化模具上之圖案轉印於代轉印層50,並形成多個柱狀圖案P1。接著,將圖案化模具、基板10以及其上之膜層冷卻至室溫,並使圖案化模具與基板10分離。Referring to FIG. 2B, a patterned mold (not shown) is placed on the generation transfer layer 50, and the patterned mold is in direct contact with the generation transfer layer 50. Patterning the mold, the substrate 10, and the film layer thereon (including undoped semiconductors) The bulk layer 20, the first type doped semiconductor material layer 30, the dielectric layer 40, and the generation transfer layer 50) are subjected to a temperature rising process. Next, the patterned mold is subjected to a high pressure to transfer the pattern on the patterned mold to the transfer layer 50, and a plurality of columnar patterns P1 are formed. Next, the patterned mold, the substrate 10, and the film layer thereon are cooled to room temperature, and the patterned mold is separated from the substrate 10.

在本實施例中,相鄰兩柱狀圖案P1之間的間距P50 以及各柱狀圖案P1的直徑D50 皆約為0.35μm,換言之,間距P50 與直徑D50 的比例為1:1,但本發明不以此為限。在其他實施例中,間距P50 與直徑D50 的比例可視實際需求而定。In this embodiment, the pitch P 50 between the adjacent two columnar patterns P1 and the diameter D 50 of each of the columnar patterns P1 are both about 0.35 μm, in other words, the ratio of the pitch P 50 to the diameter D 50 is 1:1. However, the invention is not limited thereto. In other embodiments, the ratio of the pitch P 50 to the diameter D 50 may depend on actual needs.

請參照圖2C,以柱狀圖案P1為罩幕,圖案化介電層40,以形成多個與柱狀圖案P1實質上具有相同輪廓的柱狀圖案P2。在本實施例中,圖案化介電層40的方法例如是藉由氧電漿(O2 plasma)之反應離子蝕刻(Reactive Ion Etching,RIE)步驟S1圖案化介電層40。在其他實施例中,圖案化介電層40的方法亦可以是使用三氟甲烷電漿之反應離子蝕刻步驟。Referring to FIG. 2C, the dielectric layer 40 is patterned by using the columnar pattern P1 as a mask to form a plurality of columnar patterns P2 having substantially the same contour as the columnar pattern P1. In the present embodiment, the method of patterning the dielectric layer 40 is, for example, patterning the dielectric layer 40 by a reactive ion etching (RIE) step S1 of an oxygen plasma (O 2 plasma). In other embodiments, the method of patterning the dielectric layer 40 may also be a reactive ion etching step using a trifluoromethane plasma.

請參照圖2D,繼續以柱狀圖案P1為罩幕,圖案化第一型摻雜半導體材料層30,以形成圖1中所述之多個柱狀體30a以及底座B,其中底座B包括第一型摻雜半導體材料層30之柱狀體30a以外的區域(即底部30b)、基板10以及未摻雜半導體層20。在本實施例中,此圖案化製程例如是以感應耦合電漿蝕刻(Inductively Coupled Plasma etching,ICP etching)步驟S2,圖案化第一型摻雜半導體 材料層30,而形成多個柱狀體30a以及連接此些柱狀體30a之底部30b。Referring to FIG. 2D, the first type doped semiconductor material layer 30 is patterned by using the columnar pattern P1 as a mask to form a plurality of columnar bodies 30a and a base B as described in FIG. A region other than the columnar body 30a of the semiconductor material layer 30 (i.e., the bottom portion 30b), the substrate 10, and the undoped semiconductor layer 20 are doped. In this embodiment, the patterning process is, for example, inductively coupled plasma etching (ICP etching) step S2, patterning the first type doped semiconductor The material layer 30 forms a plurality of columnar bodies 30a and a bottom portion 30b connecting the columnar bodies 30a.

值得一提的是,在圖案化第一型摻雜半導體材料層30時,部份的第一型摻雜半導體材料層30會被移除,而多個柱狀體30a內因晶格不匹配(lattice mismatch)所產生之差排(dislocation)的缺陷密度會隨著第一型摻雜半導體材料層30之移除面積的增加而減少,而半導體元件之發光效率因而提升。It is worth mentioning that when the first type doped semiconductor material layer 30 is patterned, part of the first type doped semiconductor material layer 30 is removed, and the plurality of columnar bodies 30a are lattice mismatched ( The defect density of the dislocation generated by the lattice mismatch is reduced as the removed area of the first type doped semiconductor material layer 30 is increased, and the luminous efficiency of the semiconductor element is thereby increased.

請參照圖2E,移除位於柱狀體30a上的柱狀圖案P1以及柱狀圖案P2以初步完成基材100的製作。在本實施例中,基材100中之柱狀體30a的輪廓實值上與柱狀圖案P1以及柱狀圖案P2相同。換言之,柱狀體30a之直徑D30a 以及相鄰兩柱狀體30a之間的間距P30a 與柱狀圖案P1之直徑D50 以及間距P50 實值上相同。具體而言,柱狀體30a之直徑D30a 以及相鄰兩柱狀體30a之間的間距P30a 皆約為0.35μm,而柱狀體30a之高度H30a 約為1μm。在其他的實施例中,在初步形成基材100之後,可選擇性地藉由反應離子蝕刻步驟對各柱狀體30a之直徑D30a 、間距P30a 以及高度H30a 進行微調。如此一來,亦可改變後續形成於此些柱狀體30a上之第一型摻雜半導體結構的形貌或尺寸。Referring to FIG. 2E, the columnar pattern P1 and the columnar pattern P2 on the columnar body 30a are removed to initially complete the fabrication of the substrate 100. In the present embodiment, the outline of the columnar body 30a in the substrate 100 is the same as the columnar pattern P1 and the columnar pattern P2. In other words, the diameter D 30a of the columnar body 30a and the pitch P 30a between the adjacent two columnar bodies 30a are the same as the diameter D 50 and the pitch P 50 of the columnar pattern P1. Specifically, the diameter D 30a of the columnar body 30a and the pitch P 30a between the adjacent two columnar bodies 30a are both about 0.35 μm, and the height H 30a of the columnar body 30a is about 1 μm. In other embodiments, after the preliminary formation of the substrate 100, the diameter D 30a , the pitch P 30a , and the height H 30a of each of the columnar bodies 30a may be selectively finely adjusted by a reactive ion etching step. In this way, the topography or size of the first type doped semiconductor structure formed on the columnar bodies 30a may be changed.

圖3A至圖3G為發明一實施例之半導體元件的製作流程之剖面示意圖。請參照圖3A,提供一基材310,此基材300具有底座B以及位於底座B上的多個柱狀體30a。在本實施例中,基材310例如是應用前述實施例之基材 100。在其他實施例中,基材310之柱狀體30a亦可以是透過其他蝕刻、雷射加工或其他合適的方法製作而成。3A to 3G are schematic cross-sectional views showing a manufacturing process of a semiconductor device according to an embodiment of the invention. Referring to FIG. 3A, a substrate 310 having a base B and a plurality of columnar bodies 30a on the base B is provided. In the present embodiment, the substrate 310 is, for example, a substrate to which the foregoing embodiments are applied. 100. In other embodiments, the columnar body 30a of the substrate 310 may also be fabricated by other etching, laser processing, or other suitable methods.

請參照圖3B,於各柱狀體30a的側壁S30a 上以及第一型摻雜半導體材料層30之柱狀體30a以外的區域(即底部30b)上形成保護層320。在本實施例中,保護層320的材料例如是二氧化矽,但本發明不限於此。此外,保護層320的形成方法例如是包括以下步驟。首先,將保護層320的材料形成於基材310上,其中形成的方法可以是電漿化學氣相沈積(Plasma Chemical Vapor Deposition,PECVD)法或是旋塗式玻璃(Spin on glass,SOG)法。接著,可進行一升溫製程,使相鄰兩柱狀體30a之間產生孔隙V1。再藉由一反應離子蝕刻步驟,移除位於各柱狀體30a之頂面T30a 上之保護層320的材料,並曝露出各柱狀體30a之頂面T30a ,使保護層320包覆於各柱狀體30a的側壁S30a 上且覆蓋於柱狀體30a間的底部30b上。Referring to Figure 3B, on a sidewall of each columnar body 30a S 30a, 30a and a region other than the pillar-shaped first-type doping layer of semiconductor material of the body 30 (i.e., the bottom 30b) formed on the protective layer 320. In the present embodiment, the material of the protective layer 320 is, for example, hafnium oxide, but the invention is not limited thereto. Further, the method of forming the protective layer 320 includes, for example, the following steps. First, the material of the protective layer 320 is formed on the substrate 310, and the method of forming may be a plasma chemical vapor deposition (PECVD) method or a spin on glass (SOG) method. . Next, a temperature rising process can be performed to create a void V1 between the adjacent two columnar bodies 30a. And then by a reactive ion etching step, removing the material located in the top surface of the protective layer 30a of each columnar body 30a of T 320 and expose the top surface 30a of each columnar body 30a of the T, the protective layer 320 covering The side wall S 30a of each of the columnar bodies 30a covers the bottom portion 30b between the columnar bodies 30a.

需說明的是,不同的製程方法會改變保護層320的形貌。在本實施例中,相鄰兩柱狀體30a之間存在孔隙V1。然而,在其他實施例中,保護層320亦可能填滿相鄰兩柱狀體30a之間。It should be noted that different process methods change the appearance of the protective layer 320. In the present embodiment, a void V1 exists between adjacent two columnar bodies 30a. However, in other embodiments, the protective layer 320 may also fill between the adjacent two columns 30a.

請參照圖3C,於柱狀體30a的頂面T30a 上二次成長第一型摻雜半導體材料,以形成多個第一型摻雜半導體結構330。在本實施例中,此處所述之第一型摻雜半導體材料例如是與前述之第一型摻雜半導體材料層30的材料相同。換言之,第一型摻雜半導體材料例如是N型氮化鎵。此外, 前述形成多個第一型摻雜半導體結構330的方法例如是利用有機金屬化學氣相沈積法以選區磊晶(selective area epitaxy)的方式成長第一型摻雜半導體材料。Referring to FIG. 3C, the first type doped semiconductor material is grown twice on the top surface T 30a of the columnar body 30a to form a plurality of first type doped semiconductor structures 330. In the present embodiment, the first type doped semiconductor material described herein is, for example, the same as the material of the first type doped semiconductor material layer 30 described above. In other words, the first type doped semiconductor material is, for example, N-type gallium nitride. In addition, the foregoing method of forming the plurality of first type doped semiconductor structures 330 is, for example, growing the first type doped semiconductor material by means of an organometallic chemical vapor deposition method in a selective area epitaxy manner.

此外,在成長第一型摻雜半導體材料時,第一型摻雜半導體材料會由柱狀體30a之頂面T30a 往兩柱狀體30a之間延伸,最後接合在一起,並形成多個第一型摻雜半導體結構330。詳言之,各第一型摻雜半導體結構330分別位於其中一個柱狀體30a上,且各第一型摻雜半導體結構330具有底面B330 以及連接底面B330 的多個側壁面S330 ,其中第一型摻雜半導體結構330之底面B330 的部份區域直接與保護層320以及柱狀體30a之頂面T30a 接觸。In addition, when the first type doped semiconductor material is grown, the first type doped semiconductor material is extended from the top surface T 30a of the columnar body 30a to the two columnar bodies 30a, and finally joined together and formed into a plurality of The first type doped semiconductor structure 330. In detail, each first-type doped semiconductor structure 330 is positioned on each of which a columnar body 30a, and each of the first type doped semiconductor structure 330 having a bottom surface and a plurality of side wall surfaces 330 B connected to the bottom surface 330 of the B S 330, A portion of the bottom surface B 330 of the first type doped semiconductor structure 330 is in direct contact with the protective layer 320 and the top surface T 30a of the columnar body 30a.

第一型摻雜半導體結構330之底面B330 的形狀例如是六邊形,此處所述六邊形並非限定正六邊形。詳言之,第一型摻雜半導體結構330之底面B330 的形狀會隨著製程參數的改變而有所不同,因此本發明並不限定六邊形需為正六邊形(即不限定六邊形為六邊等長)。另外,第一型摻雜半導體結構330之底面積由底面B330 往遠離底面B330 的方向遞減,且各側壁面S330 相對底面B330 傾斜一第一角度θ1。此第一角度θ1例如是不大於65度。此處所述第一角度θ1是指第一型摻雜半導體結構330的側壁面S330 與底面B330 的夾角,而所述第一角度θ1“不大於”65度是指第一角度θ1介於0度至65度之間。The shape of the bottom surface B 330 of the first type doped semiconductor structure 330 is, for example, a hexagon, and the hexagon here does not define a regular hexagon. In detail, the shape of the bottom surface B 330 of the first type doped semiconductor structure 330 may vary according to the process parameters. Therefore, the present invention does not limit the hexagon to be a regular hexagon (ie, does not define six sides). The shape is six equal lengths). Further, a first-type doping of the bottom area of the semiconductor structure 330 away from the bottom surface to the bottom surface 330 B B 330 decreasing direction, and each side wall surface opposite the bottom surface 330 S B 330 is inclined a first angle θ1. This first angle θ1 is, for example, not more than 65 degrees. The first angle θ1 herein refers to the angle between the sidewall surface S 330 of the first type doped semiconductor structure 330 and the bottom surface B 330 , and the first angle θ1 “not greater than” 65 degrees means that the first angle θ1 Between 0 and 65 degrees.

隨著製程參數的不同(包括製程時間、溫度、壓力等)、第一型摻雜半導體材料的改變(影響晶格排列)以及 相鄰兩柱狀體30a之間的間距P30a 或柱狀體30a之直徑D30a 的改變,形成於柱狀體30a上之第一型摻雜半導體結構330的形貌(包括形狀以及第一角度θ1)或尺寸亦會有所不同。舉例而言,當改變製程的溫度時,第一型摻雜半導體結構330的側壁面S330 可形成{10-1n}的面,其中n為整數。以n為1作為舉例說明,側壁面S330 (即{10-11}的面)與底面B330 (例如是c plane)的夾角例如約為62度,但本發明不用以限定底面B330 或側壁面S330 的平面須為c plane及{10-1N}的面。在其他實施例中,底面B330 亦可以是-c plane,而側壁面S330 可以是相對於-c plane夾不大於65度的平面。With process parameters (including process time, temperature, pressure, etc.), changes in the first type of doped semiconductor material (affecting the lattice arrangement) and the spacing P 30a or column between the adjacent two columns 30a The change in the diameter D 30a of 30a, the topography (including the shape and the first angle θ1) or the size of the first type doped semiconductor structure 330 formed on the columnar body 30a may also differ. For example, when the temperature of the process is changed, the sidewall face S 330 of the first type doped semiconductor structure 330 may form a face of {10-1n}, where n is an integer. Taking n as 1 as an example, the angle between the side wall surface S 330 (ie, the surface of {10-11}) and the bottom surface B 330 (for example, the c plane) is, for example, about 62 degrees, but the present invention does not need to define the bottom surface B 330 or The plane of the side wall surface S 330 shall be a plane of c plane and {10-1N}. In other embodiments, the bottom surface B 330 may also be a -c plane, and the side wall surface S 330 may be a plane that is not more than 65 degrees with respect to the -c plane.

此外,第一型摻雜半導體結構330的形狀可以是平台狀或金字塔狀。詳言之,請參照圖3C以及圖3C’,當製程時間較少、溫度較高、壓力較低、相鄰兩柱狀體30a之間的間距P30a 較大或柱狀體30a之直徑D30a 較大時,第一型摻雜半導體結構330的形狀例如會是如圖3C’中所示之平台狀。需說明的是,為使第一型摻雜半導體材料得以順利地由柱狀體30a之頂面T30a 往兩柱狀體30a之間延伸並接合在一起,相鄰兩柱狀體30a之間的間距P30a 需不大於5μm。另一方面,當製程時間增加、溫度降低、壓力升高、相鄰兩柱狀體30a之間的間距P30a 縮小或柱狀體30a之直徑D30a 縮小時,第一型摻雜半導體結構330的形狀例如會是如圖3C中所示之金字塔狀。Further, the shape of the first type doped semiconductor structure 330 may be a plate shape or a pyramid shape. In detail, referring to FIG. 3C and FIG. 3C', when the process time is small, the temperature is high, the pressure is low, the pitch P 30a between the adjacent two columnar bodies 30a is large or the diameter D of the columnar body 30a is D. When 30a is large, the shape of the first type doped semiconductor structure 330 may be, for example, a plate shape as shown in FIG. 3C'. It should be noted that in order to smoothly extend and bond the first type doped semiconductor material from the top surface T 30a of the columnar body 30a to the two columnar bodies 30a, between the adjacent two columnar bodies 30a The pitch P 30a needs to be no more than 5 μm. On the other hand, when the process time is increased, the temperature is lowered, the pressure is increased, the pitch P 30a between the adjacent two columns 30a is reduced, or the diameter D 30a of the columnar body 30a is reduced, the first type doped semiconductor structure 330 The shape will be, for example, a pyramid shape as shown in Fig. 3C.

值得一提的是,在成長第一型摻雜半導體材料時,由 於橫向再成長磊晶(Epitaxial lateral overgrowth,ELOG)之二次成長效應可減少第一型摻雜半導體材料所承受之應力,降低疊層缺陷(stacking defaults)或差排(dislocation)之情況的發生,因此使本實施例之半導體元件的發光效率可有效地被提升。It is worth mentioning that when growing the first type of doped semiconductor material, The secondary growth effect of Epitaxial lateral overgrowth (ELOG) can reduce the stress on the first type of doped semiconductor material and reduce the occurrence of stacking defaults or dislocations. Therefore, the luminous efficiency of the semiconductor element of the present embodiment can be effectively improved.

此外,在第一型摻雜半導體材料由柱狀體30a之頂面T30a 往兩柱狀體30a之間延伸且接合後,由圖3B中所述之升溫製程所產生之孔隙V1會形成一封閉的空間。由於此空間內的介質(例如是空氣)不同於其周圍的介質(包括第一型摻雜半導體材料以及保護層320的材料),因此,由發光層所出射之光在行經此封閉的空間時,被折射的機率會增加,進而提升半導體元件之光取出率,使本實施例之半導體元件之發光效率得以進一步地被提升。In addition, after the first type doped semiconductor material is extended from the top surface T 30a of the columnar body 30a to the two columnar bodies 30a and joined, the void V1 generated by the temperature rising process described in FIG. 3B forms a Closed space. Since the medium (for example, air) in this space is different from the medium around it (including the material of the first type doped semiconductor material and the protective layer 320), the light emitted by the luminescent layer passes through the closed space. The probability of being refracted is increased, thereby increasing the light extraction rate of the semiconductor element, and the luminous efficiency of the semiconductor element of the present embodiment is further improved.

請參照圖3D,於第一型摻雜半導體結構330的側壁面S330 上形成多層發光層340。本實施例以雙層發光層340a、340b作為舉例說明,但本發明不用以限定發光層340的數量。此外,發光層340a、340b共形於第一型摻雜半導體結構330的側壁面S330 上。具體而言,發光層340a、340b相對於第一型摻雜半導體結構330的底面B330 起伏。Referring to FIG. 3D, a plurality of light emitting layers 340 are formed on the sidewall surface S 330 of the first type doped semiconductor structure 330. This embodiment is exemplified by the two-layer light-emitting layers 340a and 340b, but the present invention is not limited to the number of the light-emitting layers 340. Further, the light emitting layers 340a, 340b are conformed to the sidewall surface S 330 of the first type doped semiconductor structure 330. Specifically, the light emitting layers 340a, 340b undulate with respect to the bottom surface B 330 of the first type doped semiconductor structure 330.

值得一提的是,習知技術之發光層是形成於二維的第一型摻雜半導體層上(指發光層與第一型摻雜半導體層的接觸面為一平面)。相較之下,本實施例之發光層340是形成於具有起伏之三維的第一型摻雜半導體結構330上。因此,本實施例之發光層340與第一型摻雜半導體結構33 的接觸面積較大。換言之,相較於習知技術,本實施例之半導體結構可具有較大的有效發光區域。It is worth mentioning that the light-emitting layer of the prior art is formed on the two-dimensional first-type doped semiconductor layer (the contact surface of the light-emitting layer and the first-type doped semiconductor layer is a plane). In contrast, the light-emitting layer 340 of the present embodiment is formed on the first-type doped semiconductor structure 330 having three dimensions of undulations. Therefore, the light emitting layer 340 of the embodiment and the first type doped semiconductor structure 33 The contact area is large. In other words, the semiconductor structure of the present embodiment can have a larger effective light-emitting area than conventional techniques.

此外,最上層之發光層340b的側壁面S340b 相對底面B330 傾斜,且此相對傾斜的程度實質上與前述之側壁面S330 相對底面B330 傾斜的程度相同。詳言之,發光層340b的側壁面S340b 與底面B330 夾的第二角度θ2與第一角度θ1實質上相同。因此,發光層340b的側壁面S340b 可承繼前述第一型摻雜半導體結構330的側壁面S330 而形成例如是{10-1N}的面。Further, the side wall surface S 340b of the uppermost light-emitting layer 340b is inclined with respect to the bottom surface B 330 , and the degree of relative inclination is substantially the same as the degree of inclination of the aforementioned side wall surface S 330 with respect to the bottom surface B 330 . In detail, the second angle θ2 of the side wall surface S 340b of the light-emitting layer 340b and the bottom surface B 330 is substantially the same as the first angle θ1. Therefore, the sidewall surface S 340b of the light-emitting layer 340b can follow the sidewall surface S 330 of the first-type doped semiconductor structure 330 to form a surface of, for example, {10-1N}.

值得一提的是,在c plane下,當施加電壓於半導體元件時,極化場的生成易造成量子井中的量子侷限史塔克效應(Quantum Confined Stark Effect,QCSE),此效應會降低半導體元件的發光效率。一般而言,為減緩量子侷限史塔克效應,習知技術會以具有半極化面之基板替代前述之c plane基板來成長半導體元件的膜層。然而,此種基板造價非常昂貴。相較之下,本實施例可藉由發光層340b的側壁面S340b 承繼第一型摻雜半導體結構330的側壁面S330 而形成{10-1N}之半極化面,藉此減緩量子侷限史塔克效應,使量子井內的內建電場變小、內部量子效率(Internal Quantum Efficiency,IQE)提高,並縮減量子井的輻射複合時間。換言之,本實施例可在一般的平面下(指非半極化面,例如是c plane)製作出半極化面,並達成前述減緩量子侷限史塔克效應的功效。It is worth mentioning that in the c plane, when a voltage is applied to the semiconductor component, the generation of the polarization field is liable to cause a Quantum Confined Stark Effect (QCSE) in the quantum well, which reduces the semiconductor component. Luminous efficiency. In general, in order to alleviate the quantum-limited Stark effect, conventional techniques use a substrate having a semi-polarized surface instead of the aforementioned c-plane substrate to grow a film layer of a semiconductor element. However, such substrates are very expensive to manufacture. In contrast, by the present embodiment may be a light emitting layer 340b, a first side wall surface S inherited type side wall surface 340b of the semiconductor structure 330 is doped to form 330 S {10-1N} The semi-polar surfaces, thereby slowing quantum Limiting the Stark effect, the built-in electric field in the quantum well is reduced, the internal quantum efficiency (IQE) is improved, and the radiation recombination time of the quantum well is reduced. In other words, the present embodiment can produce a semi-polarized surface in a general plane (referring to a non-semi-polar plane, such as a c plane), and achieve the aforementioned effect of slowing down the quantum confined Stuck effect.

另外,多層發光層340包括一金屬元素,且此金屬元 素於此些發光層340中有3種以上的含量。在本實施例中,金屬元素例如是銦。具體而言,發光層340a、340b例如為量子井(quantum well)層或多重量子井(multiple quantum well,MQW)層。換言之,發光層340a、340b可各別包括至少一量子屏障(quantum barrier)層以及至少一量子井(quantum well)層。發光層340a、340b之量子屏障層以及量子井層的化學式例如是Inx Ga1-x N,其中x代表元素之莫耳分律,且x介於0至0.4之間。在本實施例中,量子屏障層之x例如是介於0至0.4之間,而量子井層之x例如是介於0至0.4之間。In addition, the multilayer light-emitting layer 340 includes a metal element, and the metal element has a content of three or more kinds in the light-emitting layer 340. In the present embodiment, the metal element is, for example, indium. Specifically, the light-emitting layers 340a, 340b are, for example, a quantum well layer or a multiple quantum well (MQW) layer. In other words, the light-emitting layers 340a, 340b may each include at least one quantum barrier layer and at least one quantum well layer. The chemical barrier of the quantum barrier layer of the luminescent layers 340a, 340b and the quantum well layer is, for example, In x Ga 1-x N, where x represents the molar law of the element and x is between 0 and 0.4. In the present embodiment, the x of the quantum barrier layer is, for example, between 0 and 0.4, and the x of the quantum well layer is, for example, between 0 and 0.4.

在同一發光層340a(或發光層340b)內,量子屏障層之銦含量可與量子井層之銦含量不同,且量子屏障層之銦含量會隨著所對應之量子井層之銦含量而具有一較佳的範圍。換言之,同一發光層340a(或發光層340b)內,即可能有兩種銦含量(即量子屏障層之銦含量以及量子井層之銦含量)。此外,在不同的發光層340a及340b中,量子井層內的銦含量可以不同。因此,在本實施例之發光層340中,可有3種以上的銦含量。需說明的是,雖然圖3D中發光層340a及340b繪示為相同的厚度,但本發明並不限定各發光層340a及340b的厚度,發光層340a及340b的厚度需視實際需求而定。In the same light-emitting layer 340a (or light-emitting layer 340b), the indium content of the quantum barrier layer may be different from the indium content of the quantum well layer, and the indium content of the quantum barrier layer may have an indium content corresponding to the quantum well layer. A preferred range. In other words, within the same luminescent layer 340a (or luminescent layer 340b), there may be two indium contents (ie, the indium content of the quantum barrier layer and the indium content of the quantum well layer). Further, in different light-emitting layers 340a and 340b, the indium content in the quantum well layer may be different. Therefore, in the light-emitting layer 340 of the present embodiment, there may be three or more kinds of indium contents. It should be noted that although the light-emitting layers 340a and 340b are the same thickness in FIG. 3D, the present invention does not limit the thickness of each of the light-emitting layers 340a and 340b, and the thickness of the light-emitting layers 340a and 340b depends on actual needs.

藉由調變發光層340中銦之含量(即改變x),本實施例之半導體元件可出射涵蓋可見光波段的光。舉例而言,當量子井層之x為0.13(化學式為In0.13 Ga0.87 N),而量子 屏障層之x為0(化學式為GaN)時,發光層340可出射藍光。又或者,當量子井層之x為0.23(化學式為In0.23 Ga0.77 N),而量子屏障層之x為0.1(化學式為In0.1 Ga0.9 N)時,發光層340可出射綠光。By modulating the content of indium in the light-emitting layer 340 (i.e., changing x), the semiconductor device of the present embodiment can emit light covering the visible light band. For example, when the x of the equivalent subwell layer is 0.13 (the chemical formula is In 0.13 Ga 0.87 N), and the x of the quantum barrier layer is 0 (the chemical formula is GaN), the luminescent layer 340 can emit blue light. Alternatively, when the x of the equivalent sub-well layer is 0.23 (the chemical formula is In 0.23 Ga 0.77 N), and the x of the quantum barrier layer is 0.1 (the chemical formula is In 0.1 Ga 0.9 N), the luminescent layer 340 can emit green light.

需說明的是,前段所述發光層340之量子井層的x以及量子屏障層之x僅為舉例說明,而非用以限定本發明。所屬技術領域中具有通常知識者可藉由改變各發光層340中之量子井層之銦含量的莫耳分率(指x)與量子屏障層之銦含量的莫耳分率而獲得不同波段的光。進一步而言,各發光層340中之量子井層之銦含量的莫耳分率(指x)與量子屏障層之銦含量的莫耳分率可能不同,且量子屏障層之銦含量的莫耳分率會隨量子井層之銦含量的莫耳分率之改變而有所變化。舉例而言,量子屏障層之銦含量的莫耳分率可能隨量子井層之銦含量的莫耳分率的增加而增加。It should be noted that the x of the quantum well layer and the x of the quantum barrier layer of the light-emitting layer 340 in the preceding paragraph are merely illustrative and not intended to limit the present invention. Those skilled in the art can obtain different bands by changing the molar fraction (indicator x) of the indium content of the quantum well layer in each of the light-emitting layers 340 and the molar fraction of the indium content of the quantum barrier layer. Light. Further, the molar fraction (indicator x) of the indium content of the quantum well layer in each of the light-emitting layers 340 may be different from the molar fraction of the indium content of the quantum barrier layer, and the indium content of the quantum barrier layer is Mohr. The fraction will vary with the change in the molar fraction of the indium content of the quantum well layer. For example, the molar fraction of the indium content of the quantum barrier layer may increase as the molar fraction of the indium content of the quantum well layer increases.

在本實施例中,藉由調變配置於第一型摻雜半導體結構330上之多層發光層340內之金屬元素銦的含量(金屬鎵的含量會隨著銦的含量而變),使多層發光層340所出射之光的波長能涵蓋可見光之波長範圍。如此一來,半導體元件即可出射不同波段的色光並混成白光。換言之,本實施例之半導體元件可在無須配置螢光層下,藉由調變配置於第一型摻雜半導體結構330上之多層發光層340內之所述金屬元素的含量,使多層發光層340所出射之光的波長能涵蓋可見光之波長範圍。因此,相較於先前技術需搭 配螢光粉混成白光,本實施例之半導體元件可降低螢光粉之吸收能量的問題以及螢光粉之長波長之光的轉換效率不佳的問題,進而製作出高功率以及衍色性良好的半導體元件。In this embodiment, the content of the metal element indium in the multilayer light-emitting layer 340 disposed on the first-type doped semiconductor structure 330 is modulated (the content of the metal gallium varies with the content of indium), so that the multilayer The wavelength of the light emitted by the luminescent layer 340 can cover the wavelength range of visible light. In this way, the semiconductor component can emit color light of different wavelength bands and mix white light. In other words, the semiconductor device of the present embodiment can modulate the content of the metal element in the plurality of light-emitting layers 340 disposed on the first-type doped semiconductor structure 330 without arranging the phosphor layer, thereby making the multi-layer light-emitting layer The wavelength of the light emitted by 340 can cover the wavelength range of visible light. Therefore, compared to the prior art The fluorescent element is mixed with white light, and the semiconductor element of the embodiment can reduce the problem of the absorption energy of the phosphor powder and the problem of poor conversion efficiency of the long-wavelength light of the phosphor powder, thereby producing high power and good color rendering. Semiconductor component.

請參照圖3E,接著,於最上層之發光層340b上形成第二型摻雜半導體層350,其中第二型摻雜半導體層350例如是共形於發光層340b的側壁面S340b 。此外,在本實施例中,第二型摻雜半導體層350以P型氮化鎵作為舉例說明,但本發明不用以限定第一型與第二型的型態,而僅是說明第一型與第二型之一為P型,且第一型與第二型之另一為N型。另外,形成第二型摻雜半導體層350的方法可以是有機金屬化學氣相沈積、分子束磊晶、濺鍍、蒸鍍、脈衝雷射沈積法、氣相磊晶或液相磊晶等方法。Referring to FIG. 3E, a second type doped semiconductor layer 350 is formed on the uppermost light emitting layer 340b, wherein the second type doped semiconductor layer 350 is, for example, conformed to the sidewall surface S 340b of the light emitting layer 340b . In addition, in the present embodiment, the second type doped semiconductor layer 350 is exemplified by P-type gallium nitride, but the present invention is not limited to the first type and the second type, but only the first type. One of the first type and the second type is a P type, and the other of the first type and the second type is an N type. In addition, the method of forming the second type doped semiconductor layer 350 may be organic metal chemical vapor deposition, molecular beam epitaxy, sputtering, evaporation, pulsed laser deposition, vapor epitaxy or liquid phase epitaxy. .

請參照圖3F,本實施例之半導體元件可進一步地於第二型摻雜半導體層350上形成一導電層360。此處所述導電層360即前述之電流擴散層。在本實施例中,導電層360的材料例如是透明的材料,特別是透明的導電材料。此處所述透明的材料泛指一般具備高穿透率的材料,而並非用以限定穿透率為100%之材料。此外,透明的導電材料例如是金屬氧化物,如銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、銦鍺鋅氧化物、或其它合適的氧化物、或者是上述至少二者之堆疊層。Referring to FIG. 3F, the semiconductor device of the present embodiment may further form a conductive layer 360 on the second type doped semiconductor layer 350. The conductive layer 360 described herein is the aforementioned current diffusion layer. In the present embodiment, the material of the conductive layer 360 is, for example, a transparent material, particularly a transparent conductive material. The transparent material described herein generally refers to a material that generally has a high transmittance, and is not intended to define a material having a transmittance of 100%. Further, the transparent conductive material is, for example, a metal oxide such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium antimony zinc oxide, or other suitable oxide, or at least The stack of the two.

請參照圖3G,本實施例之半導體元件200亦可進一步地於第一型摻雜半導體材料層之柱狀體以外的區域(即 底部30b)以及導電層360上分別形成一第一電極372以及一第二電極374,其中第一電極372以及第二電極374可以是單層或是多層導電材料堆疊而成,而導電材料例如是金、鈦、鋁、鉻、鉑、其他導電材料或這些材料的組合。在完成第一電極372以及第二電極374之後,本實施例之半導體元件200即初步完成。Referring to FIG. 3G, the semiconductor device 200 of the present embodiment may further be in a region other than the columnar body of the first type doped semiconductor material layer (ie, A first electrode 372 and a second electrode 374 are respectively formed on the bottom portion 30b) and the conductive layer 360. The first electrode 372 and the second electrode 374 may be a single layer or a plurality of layers of conductive materials, and the conductive material is, for example, Gold, titanium, aluminum, chromium, platinum, other conductive materials or a combination of these materials. After the first electrode 372 and the second electrode 374 are completed, the semiconductor device 200 of the present embodiment is initially completed.

綜上所述,本發明藉由調變配置於第一型摻雜半導體結構上之多層發光層內之所述金屬元素的含量,使多層發光層所出射之光的波長能涵蓋可見光之波長範圍。瘥無須配置螢光粉下,本實施例之半導體元件可降低螢光粉之吸收能量的問題以及螢光粉之長波長之光的轉換效率不佳的問題,進而製作出高功率以及衍色性良好的半導體元件。In summary, the present invention modulates the content of the metal element in the multi-layered light-emitting layer disposed on the first-type doped semiconductor structure, so that the wavelength of the light emitted by the multi-layered light-emitting layer can cover the wavelength range of visible light. . The semiconductor element of the present embodiment can reduce the problem of the energy absorption of the phosphor powder and the problem of poor conversion efficiency of the long-wavelength light of the phosphor powder, thereby producing high power and color rendering. Good semiconductor components.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧基板10‧‧‧Substrate

20‧‧‧未摻雜半導體層20‧‧‧Undoped semiconductor layer

30‧‧‧第一型摻雜半導體材料層30‧‧‧First type doped semiconductor material layer

30a‧‧‧柱狀體30a‧‧‧ columnar body

30b‧‧‧底部30b‧‧‧ bottom

40‧‧‧介電層40‧‧‧ dielectric layer

50‧‧‧代轉印層50‧‧‧generation transfer layer

100、310‧‧‧基材100, 310‧‧‧ substrate

200‧‧‧半導體元件200‧‧‧Semiconductor components

320‧‧‧保護層320‧‧‧Protective layer

330‧‧‧第一型摻雜半導體結構330‧‧‧First type doped semiconductor structure

340、340a、340b‧‧‧發光層340, 340a, 340b‧‧‧ luminescent layer

350‧‧‧第二型摻雜半導體層350‧‧‧Second type doped semiconductor layer

360‧‧‧導電層360‧‧‧ Conductive layer

372‧‧‧第一電極372‧‧‧first electrode

374‧‧‧第二電極374‧‧‧second electrode

B‧‧‧底座B‧‧‧Base

P1、P2‧‧‧柱狀圖案P1, P2‧‧‧ columnar pattern

V1‧‧‧孔隙V1‧‧‧ pores

S30a ‧‧‧側壁S 30a ‧‧‧ Sidewall

S330 、S340b ‧‧‧側壁面S 330 , S 340b ‧‧‧ side wall

T30a ‧‧‧頂面T 30a ‧‧‧ top

B330 ‧‧‧底面B 330 ‧‧‧Bottom

D30a 、D50 ‧‧‧直徑D 30a , D 50 ‧‧‧ diameter

P30a 、P50 ‧‧‧間距P 30a , P 50 ‧‧‧ spacing

H30a ‧‧‧高度H 30a ‧‧‧ Height

H20 、H30 、H40 、H50 ‧‧‧厚度H 20 , H 30 , H 40 , H 50 ‧ ‧ thickness

θ1‧‧‧第一角度Θ1‧‧‧ first angle

θ2‧‧‧第二角度Θ2‧‧‧second angle

圖1為發明一實施例之半導體元件的製作流程圖。1 is a flow chart showing the fabrication of a semiconductor device in accordance with an embodiment of the invention.

圖2A至圖2E為步驟S100所述之基材之製作流程的剖面示意圖。2A to 2E are schematic cross-sectional views showing a manufacturing process of the substrate described in the step S100.

圖3A至圖3G為發明一實施例之半導體元件的製作流程之剖面示意圖。3A to 3G are schematic cross-sectional views showing a manufacturing process of a semiconductor device according to an embodiment of the invention.

10‧‧‧基板10‧‧‧Substrate

20‧‧‧未摻雜半導體層20‧‧‧Undoped semiconductor layer

30a‧‧‧柱狀體30a‧‧‧ columnar body

30b‧‧‧底部30b‧‧‧ bottom

200‧‧‧半導體元件200‧‧‧Semiconductor components

320‧‧‧保護層320‧‧‧Protective layer

330‧‧‧第一型摻雜半導體結構330‧‧‧First type doped semiconductor structure

340、340a、340b‧‧‧發光層340, 340a, 340b‧‧‧ luminescent layer

350‧‧‧第二型摻雜半導體層350‧‧‧Second type doped semiconductor layer

360‧‧‧導電層360‧‧‧ Conductive layer

372‧‧‧第一電極372‧‧‧first electrode

374‧‧‧第二電極374‧‧‧second electrode

B‧‧‧底座B‧‧‧Base

S330 、S340b ‧‧‧側壁面S 330 , S 340b ‧‧‧ side wall

B330 ‧‧‧底面B 330 ‧‧‧Bottom

θ1‧‧‧第一角度Θ1‧‧‧ first angle

θ2‧‧‧第二角度Θ2‧‧‧second angle

Claims (17)

一種半導體元件的製作方法,包括:提供一基材,該基材具有一底座以及位於該底座上的多個柱狀體;於各該柱狀體的側壁上以及該些柱狀體間的該底座上形成一保護層;於該些柱狀體的頂面上成長一第一型摻雜半導體材料,以形成多個第一型摻雜半導體結構,其中各該第一型摻雜半導體結構具有一底面以及連接該底面的多個側壁面,且各該側壁面相對該底面傾斜;於該些第一型摻雜半導體結構的該些側壁面上形成多層發光層,其中各該發光層包括一金屬元素,且該金屬元素於該些發光層中有3種以上的含量;以及於最上層之發光層上形成一第二型摻雜半導體層,其中最上層之發光層的側壁面與該第一型摻雜半導體結構之該底面夾一角度,該角度不大於65度。 A method of fabricating a semiconductor device, comprising: providing a substrate having a base and a plurality of columnar bodies on the base; the sidewalls of each of the columns and the columnar body Forming a protective layer on the base; growing a first type of doped semiconductor material on the top surface of the plurality of columns to form a plurality of first type doped semiconductor structures, wherein each of the first type doped semiconductor structures has a bottom surface and a plurality of sidewall surfaces connected to the bottom surface, wherein each of the sidewall surfaces is inclined with respect to the bottom surface; forming a plurality of light emitting layers on the sidewall surfaces of the first type of doped semiconductor structures, wherein each of the light emitting layers comprises a light emitting layer a metal element, and the metal element has a content of three or more kinds in the light-emitting layers; and forming a second-type doped semiconductor layer on the uppermost light-emitting layer, wherein a sidewall surface of the uppermost light-emitting layer and the first layer The bottom surface of the doped semiconductor structure is sandwiched by an angle that is no greater than 65 degrees. 如申請專利範圍第1項所述之半導體元件的製作方法,其中該保護層的材質為二氧化矽。 The method for fabricating a semiconductor device according to claim 1, wherein the protective layer is made of cerium oxide. 如申請專利範圍第1項所述之半導體元件的製作方法,其中該些第一型摻雜半導體結構的形狀為平台狀或金字塔狀。 The method for fabricating a semiconductor device according to claim 1, wherein the first type of doped semiconductor structure has a shape of a plate or a pyramid. 如申請專利範圍第1項所述之半導體元件的製作方法,其中該金屬元素為銦。 The method of fabricating a semiconductor device according to claim 1, wherein the metal element is indium. 如申請專利範圍第1項所述之半導體元件的製作方 法,其中該發光層的化學式為Inx Ga1-x N,且x介於0至0.4之間。The method of fabricating a semiconductor device according to claim 1, wherein the luminescent layer has a chemical formula of In x Ga 1-x N and x is between 0 and 0.4. 如申請專利範圍第1項所述之半導體元件的製作方法,其中該第一型與該第二型之一為P型,且該第一型與該第二型之另一為N型。 The method of fabricating a semiconductor device according to claim 1, wherein one of the first type and the second type is a P type, and the other of the first type and the second type is an N type. 如申請專利範圍第1項所述之半導體元件的製作方法,更包括:於該第二型摻雜半導體層上形成一導電層。 The method for fabricating a semiconductor device according to claim 1, further comprising: forming a conductive layer on the second type doped semiconductor layer. 如申請專利範圍第7項所述之半導體元件的製作方法,導電層為透明的導電層。 The method of fabricating the semiconductor device of claim 7, wherein the conductive layer is a transparent conductive layer. 如申請專利範圍第1項所述之半導體元件的製作方法,其中該基材的製作方法包括:於一基板上形成一未摻雜半導體層;於該未摻雜半導體層上成長該第一型摻雜半導體材料,以形成一第一型摻雜半導體材料層;以及圖案化該第一型摻雜半導體材料層,以形成該些柱狀體以及該底座,其中該底座包括該第一型摻雜半導體材料層之該些柱狀體以外的區域、該基板以及該未摻雜半導體層。 The method for fabricating a semiconductor device according to claim 1, wherein the substrate is formed by: forming an undoped semiconductor layer on a substrate; growing the first type on the undoped semiconductor layer Doping a semiconductor material to form a first type doped semiconductor material layer; and patterning the first type doped semiconductor material layer to form the columnar body and the base, wherein the base includes the first type of doping A region other than the plurality of pillars of the semiconductor material layer, the substrate, and the undoped semiconductor layer. 一種半導體元件,包括:一基板;一未摻雜半導體層,配置於該基板上;一第一型摻雜半導體材料層,配置於該未摻雜半導體層上,其中該第一型摻雜半導體材料層包括多個柱狀體; 一保護層,配置於該些柱狀體的側壁上以及該些柱狀體間的該第一型摻雜半導體材料層上;多個第一型摻雜半導體結構,配置於該些柱狀體的頂面上,其中各該第一型摻雜半導體結構具有一底面以及連接該底面的多個側壁面,且各該側壁面相對該底面傾斜;多層發光層,配置於該些第一型摻雜半導體結構的該些側壁面上,其中各該發光層包括一金屬元素,且該金屬元素於該些發光層中有3種以上的含量;以及一第二型摻雜半導體層,配置於最上層之發光層上,其中最上層之發光層的側壁面與該第一型摻雜半導體結構之該底面夾一角度,該角度不大於65度。 A semiconductor device comprising: a substrate; an undoped semiconductor layer disposed on the substrate; a first doped semiconductor material layer disposed on the undoped semiconductor layer, wherein the first doped semiconductor The material layer includes a plurality of columnar bodies; a protective layer disposed on sidewalls of the pillars and the first type of doped semiconductor material layer between the pillars; and a plurality of first type doped semiconductor structures disposed on the pillars The top surface of the first type doped semiconductor structure has a bottom surface and a plurality of sidewall surfaces connected to the bottom surface, and each of the sidewall surfaces is inclined with respect to the bottom surface; and the plurality of light emitting layers are disposed in the first type of doping The sidewalls of the semiconductor structure, wherein each of the light-emitting layers comprises a metal element, and the metal element has a content of three or more kinds in the light-emitting layers; and a second-type doped semiconductor layer is disposed at the most On the upper luminescent layer, the sidewall surface of the uppermost luminescent layer is at an angle to the bottom surface of the first type doped semiconductor structure, the angle being no more than 65 degrees. 如申請專利範圍第10項所述之半導體元件,其中該保護層的材質為二氧化矽。 The semiconductor device according to claim 10, wherein the protective layer is made of cerium oxide. 如申請專利範圍第10項所述之半導體元件,其中該些第一型摻雜半導體結構的形狀為平台狀或金字塔狀。 The semiconductor device of claim 10, wherein the first type of doped semiconductor structure has a shape of a plate or a pyramid. 如申請專利範圍第10項所述之半導體元件,其中該金屬元素為銦。 The semiconductor device according to claim 10, wherein the metal element is indium. 如申請專利範圍第10項所述之半導體元件,其中該發光層的化學式為Inx Ga1-x N,且x介於0至0.4之間。The semiconductor device according to claim 10, wherein the luminescent layer has a chemical formula of In x Ga 1-x N and x is between 0 and 0.4. 如申請專利範圍第10項所述之半導體元件,其中該第一型與該第二型之一為P型,且該第一型與該第二型之另一為N型。 The semiconductor device of claim 10, wherein one of the first type and the second type is a P type, and the other of the first type and the second type is an N type. 如申請專利範圍第10項所述之半導體元件,更包 括:一導電層,配置於該第二型摻雜半導體層上。 For example, the semiconductor component described in claim 10, And comprising: a conductive layer disposed on the second type doped semiconductor layer. 如申請專利範圍第16項所述之半導體元件,其中該導電層為透明的導電層。 The semiconductor device of claim 16, wherein the conductive layer is a transparent conductive layer.
TW101128282A 2012-08-06 2012-08-06 Semiconductor element and manufacturing method thereof TWI502777B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101128282A TWI502777B (en) 2012-08-06 2012-08-06 Semiconductor element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101128282A TWI502777B (en) 2012-08-06 2012-08-06 Semiconductor element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201407837A TW201407837A (en) 2014-02-16
TWI502777B true TWI502777B (en) 2015-10-01

Family

ID=50550601

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101128282A TWI502777B (en) 2012-08-06 2012-08-06 Semiconductor element and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI502777B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050039673A1 (en) * 2003-08-22 2005-02-24 Matsushita Electric Industrial Co., Ltd. Manufacturing method for semiconductor device, semiconductor device and semiconductor wafer
US20060284187A1 (en) * 2005-06-17 2006-12-21 Lumileds Lighting U.S, Llc Grown photonic crystals in semiconductor light emitting devices
TW201044637A (en) * 2009-03-06 2010-12-16 Showa Denko Kk Group III nitride compound semiconductor light emitting device and production method thereof, and lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050039673A1 (en) * 2003-08-22 2005-02-24 Matsushita Electric Industrial Co., Ltd. Manufacturing method for semiconductor device, semiconductor device and semiconductor wafer
US20060284187A1 (en) * 2005-06-17 2006-12-21 Lumileds Lighting U.S, Llc Grown photonic crystals in semiconductor light emitting devices
TW201044637A (en) * 2009-03-06 2010-12-16 Showa Denko Kk Group III nitride compound semiconductor light emitting device and production method thereof, and lamp

Also Published As

Publication number Publication date
TW201407837A (en) 2014-02-16

Similar Documents

Publication Publication Date Title
US8895329B2 (en) Patterned substrate for light emitting diode and light emitting diode employing the same
US9478705B2 (en) Solid state light emitting devices based on crystallographically relaxed structures
JP6081536B2 (en) Light emitting diode
TWI750387B (en) Optoelectronic device
TWI476953B (en) Semiconductor light-emitting device and manufacturing method thereof
KR100921466B1 (en) Nitride light emitting device and method of making the same
US8704227B2 (en) Light emitting diode and fabrication method thereof
CN102024898B (en) LED (light-emitting diode) and manufacturing method thereof
TWI555228B (en) Led chip and manufacture method thereof
TWI774759B (en) Light-emitting device and manufacturing method thereof
TWI548113B (en) Semiconductor light-emitting device and manufacturing method thereof
KR20130099574A (en) Light emitting diode having gallium nitride substrate
TWI502777B (en) Semiconductor element and manufacturing method thereof
TWI484663B (en) Semiconductor light-emitting device and manufacturing method thereof
US20230387346A1 (en) Semiconductor structure and manufacturing method therefor, and light-emitting device and manufacturing method therefor
KR101337614B1 (en) Substrate for light emitting device and fabrication method thereof
KR100801618B1 (en) Light emitting element and method of fabricating the same
TW202243273A (en) Light-emitting device
CN114628552A (en) Flip LED chip and manufacturing method thereof
KR20120001992A (en) Substrate for light emitting device and fabrication method thereof
KR20180083112A (en) Substrate and semiconductor device having the same
US20130200333A1 (en) Semiconductor light-emitting element with cortex-like nanostructures
KR20120004048A (en) Substrate for light emitting device and fabrication method thereof
KR20130098761A (en) Light emitting diode having gallium nitride substrate