TWI502097B - 自金屬前驅物溶液製備金屬之方法及其應用 - Google Patents

自金屬前驅物溶液製備金屬之方法及其應用 Download PDF

Info

Publication number
TWI502097B
TWI502097B TW103116166A TW103116166A TWI502097B TW I502097 B TWI502097 B TW I502097B TW 103116166 A TW103116166 A TW 103116166A TW 103116166 A TW103116166 A TW 103116166A TW I502097 B TWI502097 B TW I502097B
Authority
TW
Taiwan
Prior art keywords
transition metal
substrate
precursor solution
metal
metal precursor
Prior art date
Application number
TW103116166A
Other languages
English (en)
Other versions
TW201542870A (zh
Inventor
I Chun Cheng
Jian Zhang Chen
Cheng Che Hsu
Haoming Chang
Hsiao Wei Liu
Chia Yun Chou
Ting Jui Wu
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW103116166A priority Critical patent/TWI502097B/zh
Priority to US14/562,635 priority patent/US20150322573A1/en
Application granted granted Critical
Publication of TWI502097B publication Critical patent/TWI502097B/zh
Publication of TW201542870A publication Critical patent/TW201542870A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/005Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/145Radiation by charged particles, e.g. electron beams or ion irradiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemically Coating (AREA)

Description

自金屬前驅物溶液製備金屬之方法及其應用
本說明書揭露一種自金屬前驅物溶液製備金屬之方法及其應用,其利用大氣噴射電漿處理該金屬前驅物溶液後,將可使之轉化成金屬。
在中華民國第097134931號專利申請案(案名:熱轉換金屬前驅物層至半導體層及/或太陽能模組之方法及裝置)中,提供一種將基質上的金屬前驅物層熱轉換至半導體層的方法,及亦關於一種實行該方法及於基質上製造太陽能模組之裝置。此發明的目的在於提供一種用於將任何所欲基質上的金屬層熱轉換至半傳導層的加速及簡單實現的快速方法,及亦提供一種適合用於執行該方法及用於製造具有高效率的太陽能模組之裝置。此是憑藉至少以金屬前驅物層預先製備的基質於分割為複數個溫度區域的爐子中進行加熱而達到,加熱係在約大氣壓力的壓力下,以複數個步驟加熱至達到400℃及600℃之間的結束溫度之預定溫度及係於包含載氣及蒸氣相硫屬元素的混合物之大氣中轉換至半傳導層並且維持結束溫度。
另外,在中華民國第099103930號專利申請案(案名:具氧化物之半導體層溫度轉變金屬前驅物用裝置及方法)中,提供一種利用氧族元素回收將平坦基板上的金屬先驅物薄膜熱轉變成半導體薄膜之方法及一種進行該方法之裝置。此發明之目的在於,提供一種將平坦基板上的金 屬先驅物薄膜熱簡單及快速轉變成半導體薄膜之方法及一種以最低氧族元素用量進行該方法之裝置。此發明使一基板在一爐中之大氣壓力環境下,被加熱至400℃至600℃之終溫度,並在一載氣與氧族元素蒸氣之混合物中被轉變成半導體薄膜,未被使用於反應之氧族元素蒸氣被回收到製程中。
另外,在中華民國第102114224號專利申請案(案名:由金屬脒鹽前驅物製造介電膜的方法)中,提供一種用於使用金屬脒鹽前驅物原子層沉積包含混合金屬氧化物之膜的方法。混合金屬氧化物膜可包含鑭系元素及諸如鉿、鋯及/或鈦之過渡金屬。此等混合金屬氧化物膜可用作以下各者中之介電層:電容器、電晶體、動態隨機存取記憶體單元、電阻式隨機存取記憶體單元、快閃記憶體單元及顯示面板。
太陽能電池是一種可將太陽能直接轉化為電能的裝置,而染料敏化太陽能電池(DSSC)的構想最早是由Tsubomura等學者所提出,但電池的光電轉換效率並不高,因此沒有引起各界重視。直到1991年,由瑞士洛桑理工大學O'Regan和Grätzel教授所領導之研究團隊將多孔隙的二氧化鈦薄膜吸附上釕金屬錯合物的色素分子作為DSSC光電極,其光電轉換效率提升至7.1%~7.9%。另根據目前文獻紀載,DSSC的光電轉換效率可高達13.1%。DSSC之組成架構如三明治一般,根據不同層可分為:透明導電電極/奈米多孔隙二氧化鈦/金屬錯合物染料分子/電解液/對電極。DSSC的工作原理牽涉著氧化還原反應,當染料受到光激發後,電子由基態躍至激發態並轉移至二氧化鈦半導體上,透過導電玻璃將電子導引至外部迴路加以利用,電子接著會流到對電極,並和被氧化的電解液還原,從而完成電子傳輸的步驟。對電極在DSSC扮演著重要的角色,通常可使用的對電極須兼具催化性及導電性。目前對電極的材料係以金屬鉑為主流,其製程方式常見的有濺鍍法及液態旋轉塗佈法。然而以液態旋轉塗佈法製備鉑電極時,需 要經過長時間的烘烤(以小時為單位)來移除有機物質。而長時間的烘烤卻與DSSC成本低廉且製程快速的特點相悖。
申請人經悉心設計與研究,並一本鍥而不捨之精神,終構思出本案「自金屬前驅物溶液製備金屬之方法及其應用」,以下為本案之簡要說明。
本說明書揭露一種自金屬前驅物溶液製備金屬之方法及其應用,其利用大氣噴射電漿加熱該液體前驅物後,將可使之轉化成金屬。
為達上述目的,本說明書提供一種金屬製備方法,包括下列步驟:提供一前驅物溶液,該前驅物溶液中具有溶劑及一金屬前驅物;以及利用一大氣噴射電漿處理該前驅物溶液以去除該溶劑,並轉化該金屬前驅物以獲得該金屬。
為達上述目的,本說明書亦提供一種製備金屬的裝置,其包含:一承載單元,用以承載一基板,其中該基板上具有一金屬前驅物溶液;以及一電漿產生單元,用以產生一大氣噴射電漿,其中該大氣噴射電漿用以加熱位於該基板上之該金屬前驅物溶液,並轉化該金屬前驅物溶液而於該基板上形成該金屬。
為達上述目的,本說明書亦提供一種電極製備方法,包括下列步驟:提供一絕緣基板,該絕緣基板上具有一金屬前驅物溶液;以及利用一大氣噴射電漿處理該金屬前驅物溶液,以將該絕緣基板製備成該電極。
為達上述目的,本說明書亦提供一種電極製備方法,包括下列步驟:提供一基板,該基板上具有一金屬前驅物溶液;以及利用一大氣噴射電漿處理該金屬前驅物溶液,以轉化該金屬前驅物溶液而於該基板上形成一金屬,以將該基板製備成該電極。
第一圖為本案鉑電極及比較例鉑電極之電流-電壓(I-V)曲線圖。
第二圖為本案金薄膜實施例及對照比較例透過電子顯微鏡在放大5000倍下觀察之結果。
第三圖為本案金薄膜實施例的X光照射圖譜。
本案的裝置與方法將可由以下的實例說明而得到充分瞭解,並使得熟習本技藝之人士可以據以完成。然本案之實施型態並不以下列實例為限。
在本說明書的一實施例中,利用FTO(Fluorine-doped tin oxide)導電玻璃做為基板,並以丙酮及異丙醇各清洗15分鐘後,以鉑前驅物溶液(含有20mg的氯鉑酸(H2 PtCl6 )金屬前驅物及10mL的異丙醇)為原料(金屬中心原子為鉑),在該清洗過後的FTO導電玻璃上以旋轉塗佈法(1000rpm,10秒)塗佈一層鉑前驅物溶液後,以大氣噴射電漿(atmospheric pressure plasma jet,APPJ)噴燒,使該FTO導電玻璃加熱至360℃之一工作溫度後,分別維持該溫度20、40、60及120秒之工作時間,以完成四種電漿處理時間之鉑電極(即在FTO導電玻璃上形成鉑粒子,可因之提供催化效果)的製備。其中電漿操作參數為30slm流量的氮氣、275V的操作電壓和7/33微秒的工作週期(duty cycle)。電漿源與基板距離為2公分,而石英管開口的圓半徑則為1.7公分。
另外,本說明書更提供一比較例,該比較例中的鉑電極製備條件,除了最終係以爐管進行15分鐘的400℃高溫烘烤(即傳統之高溫退火製程,實際升降溫需耗時3小時)外,其餘均與本說明書上述鉑電極實施例 相同。
接著,以上述各種條件製備而成之鉑電極,分別搭配具有緻密層及離散層、且經過四氯化鈦後處理的二氧化鈦光電極組裝成DSSC、並作為其中之對電極後,量測各DSSC之開路電壓(Voc )、短路電流(Jsc )、理想因子(FF%)和光電轉換效率(η%)等光電特性,記載如下表一所示。
從表一可知,以大氣噴射電漿處理40秒至60秒的鉑對電極,與傳統爐管退火處理具有相當的效率。表一顯示了利用大氣噴射電漿,確實可以在短時間(1分鐘)內製備出鉑對電極,且其應用於染料敏化太陽能電池時,其效率確實與爐管退火處理之鉑對電極相當。
請參閱第一圖,其為本案上述鉑電極實施例及比較例鉑電極之電流-電壓曲線圖。透過第一圖可知,本案上述鉑電極實施例相較於傳統爐管退火之鉑電極,確實具有相近之電性性質。然而,本案上述鉑電極實施例的製備時間及程序,相較於傳統爐管退火之鉑電極所需者,均見大幅度的改善。
在另一實施例中,以金前驅物溶液(含有0.308g的氯金酸(HAuCl4 )金屬前驅物及2mL的異丙醇)為原料(金屬中心原子為金),在 一般玻璃基板上塗佈一層此金前驅物溶液後,以大氣噴射電漿對之分別噴燒7、20及60秒,以至少透過電漿的溫度及電漿中高反應性物種(如激發態分子或自由基等),與金前驅物溶液進行反應,使得該金屬前驅物轉化為具有薄膜型態的金,進而完成三種電漿處理時間之金薄膜的製備。其中電漿操作參數為30slm流量的氮氣、275V的操作電壓和7/33微秒的工作週期。電漿源與基板距離為2公分,而石英管開口的圓半徑則為1.7公分。
另外,本說明書亦提供一比較例,該比較例中的金薄膜製備條件,除了最終係以爐管進行15分鐘的400℃高溫烘烤(即傳統之高溫退火製程,實際升降溫需耗時3小時)外,其餘均與本說明書上述金薄膜實施例相同。
就外觀上而言,上述金薄膜實施例呈現金屬色澤之連續薄膜,而對照比較例則非連續薄膜態。
另請參閱第二圖,其為透過電子顯微鏡在放大5000倍下觀察上述金薄膜實施例及對照比較例之結果。其中第一圖包含四個子圖,由左至右分別顯示以大氣噴射電漿處理7、20及60秒之金薄膜實施例及對照比較例結果。透過第二圖可知,以大氣噴射電漿處理7、20及60秒之金薄膜的確呈現連續之薄膜態,而對照比較例則無法形成連續之薄膜。
請續參閱第三圖,其為以大氣噴射電漿處理7、20及60秒之金薄膜實施例的X光照射圖譜。透過第三圖可知,上述金薄膜實施例所述之薄膜成分的確為金,且在60秒內以大氣噴射電漿處理之結果,處理時間愈長,結晶性愈佳。
此外,以大氣噴射電漿處理7、20及60秒之金薄膜的片阻值(sheet resistance)記載如下表二所示。
透過表二可知,以大氣噴射電漿處理7秒的金薄膜即可量測得到低片阻值,且隨著處理時間的增加,金薄膜的電性會獲得改善而使片阻值下降。此外,透過表二亦可知,以大氣噴射電漿處理所製備金薄膜之技術,其中金屬連續薄膜的結果及特性,將可使原本之絕緣基板(如玻璃)成為一電極,進而可取代以昂貴之導電玻璃作為電極基板的習知技術。至於對照比較例則因無法形成連續之薄膜,故使得片阻值過大而超過儀器可測上限,乃至於無法測得片阻值。其中,上述薄膜為「連續」之定義,包括但不限於:薄膜在肉眼外觀上完整且呈現金屬光澤、薄膜在顯微鏡觀察下呈現網狀連接分布(例如第一圖中大氣噴射電漿處理7及20秒之薄膜外觀所示)或無縫隙連接分布(例如第一圖中大氣噴射電漿處理60秒之薄膜外觀所示)、或此薄膜分布於基板上而使得電流可在薄膜上導通(非斷路)。
而在一具體實施例中,若以HAuCl4 、H2 PtCl6 、PdCl2 、RuCl3 、Pd(C5 H7 O2 )2 (bis(2,4-pentanedionato)palladium(II),Pd(acac)2 )、Cu(N2 H3 COO)2 、(AA)2 Pd、(AA)3 Ru、Pd(CH3 COO)2 、Cu(CH3 COO)2 、Cu(NO3 )2 、AgNO3 、Ni(NO3 )2 或Co(NO3 )2 (AA:acetylacetonate)等金屬前驅物溶解於水、chloroform、i-dioxane、toluene、methyl isobutyl ketone、p-xylene、o-xylene、bromobenzene、valeric acid、dimethyl sulfoxide、n-caproic acid等溶劑或其組合中,再以大氣噴射電漿處理,確實可以將該等金屬前驅 物之金屬中心原子轉化出對應之Au(金)、Ag(銀)、Pt(鉑)、Pd(鈀)、Ru(釕)、Cu(銅)、Ni(鎳)、Co(鈷)等金屬。本說明書所使用之溶劑,可以使用但不局限於上述之溶劑種類。本說明書所使用之電漿氣體可使用但不限於:氫氣、氧氣、氬氣、氦氣、空氣等。本說明書所使用的電漿的驅動電源種類可以使用包括但不限於:直流、交流、脈衝、射頻等。電漿的種類可以使用包括但不限於:噴射式電漿、介電質放電式電漿等。而上述所轉化出的金屬,將具有一連續薄膜態或一顆粒態,分別可用以作為導電電極及催化之用。
此外,本說明書另提供一具體實施例,其係一種製備金屬的裝置。該裝置包含一承載單元及一電漿產生單元,該承載單元承載一基板,該基板上具有一金屬前驅物溶液,該電漿產生單元則用以產生一大氣噴射電漿,該大氣噴射電漿用以加熱位於該基板上之該金屬前驅物溶液,以轉化該金屬前驅物溶液而快速地於該基板上形成該金屬。其中,若該基板為導電基板,則該金屬具有連續薄膜型態或顆粒型態,而若該基板為絕緣基板,則該金屬較佳為具有連續薄膜型態。
具體而言,以下所列之實施例可以對本發明做更清楚的描述。
1.一種金屬製備方法,包括下列步驟:提供一前驅物溶液,該前驅物溶液中具有一金屬前驅物;以及利用一大氣噴射電漿處理該前驅物溶液,以使該金屬前驅物轉化成該金屬。
2.如實施例1項所述之方法,其中該大氣噴射電漿加熱處理該前驅物溶液。
3.如實施例1所述之方法,其中該金屬具有一連續薄膜型態或一顆粒型態。
4.一種製備金屬的裝置,其包含:一承載單元,用以承載一基板,其中該基板上具有一金屬前驅物溶液;以及一電漿產生單元,用以產生一大氣噴射電漿,其中該大氣噴射電漿用以加熱位於該基板上之該金屬前驅物溶液,並轉化該金屬前驅物溶液而於該基板上形成該金屬。
5.如實施例4所述之裝置,其中若該基板為一導電基板,則該金屬具有一連續薄膜型態或一顆粒型態,而若該基板為一絕緣基板,則該金屬具有該連續薄膜型態。
6.一種電極製備方法,包括下列步驟:提供一絕緣基板,該絕緣基板上具有一金屬前驅物溶液;以及利用一大氣噴射電漿處理該金屬前驅物溶液,以將該絕緣基板製備成該電極。
7.如實施例6所述之方法,其中該金屬前驅物溶液中具有一金屬前驅物,該大氣噴射電漿加熱處理該金屬前驅物溶液,以使該金屬前驅物轉化成一金屬,該金屬於該絕緣基板上形成一薄膜,以形成該電極。
8.如實施例6所述之方法,其中該金屬前驅物溶液中具有一金屬前驅物,該大氣噴射電漿加熱處理該金屬前驅物溶液,以使該金屬前驅物轉化成一金屬,該金屬於該基板上形成一連續薄膜。
9.一種電極製備方法,包括下列步驟:提供一基板,該基板上具有一金屬前驅物溶液;以及利用一大氣噴射電漿處理該金屬前驅物溶液,以轉化該金屬前驅物溶液而於該基板上形成一金屬,以將該基板製備成該電極。
10.如實施例9所述之方法,其中若該基板為一導電基板,則該金屬具有一連續薄膜型態或一顆粒型態,而若該基板為一絕緣基板,則該金屬具有該連續薄膜型態。
透過上述實施例可知,本說明書的確提供了一種自金屬前驅 物溶液製備金屬之方法及其應用。即如本說明書實施例,透過大氣噴射電漿之處理,在常壓下即可快速地將金屬前驅物溶液轉化(還原)為相應連續金屬薄膜或金屬顆粒,一併解決了習知技術中需以低壓電漿處理、爐管熱輔助之費時耗能、及/或金屬前驅物製備複雜等缺點。
惟值得注意,縱使本案已由上述之實例所詳細敘述,而可由在此領域具通常知識者任施匠思而為諸般修飾,然該等修飾皆不脫離如附實施例所欲保護者。

Claims (9)

  1. 一種過渡金屬製備方法,包括下列步驟:提供一前驅物溶液,該前驅物溶液中具有一過渡金屬前驅物;將該前驅物溶液塗佈於一基板上;以及利用一大氣噴射電漿處理該前驅物溶液,以使該過渡金屬前驅物轉化成一連續薄膜型態過渡金屬或一顆粒型態過渡金屬,其中該顆粒型態過渡金屬應用於光電化學電池、太陽能電池中。
  2. 如申請專利範圍第1項所述之方法,其中該大氣噴射電漿加熱處理該前驅物溶液。
  3. 一種製備過渡金屬的裝置,其包含:一承載單元,用以承載一基板,其中該基板上具有一過渡金屬前驅物溶液;以及一電漿產生單元,用以產生一大氣噴射電漿,其中該大氣噴射電漿用以加熱位於該基板上之該過渡金屬前驅物溶液,並轉化該過渡金屬前驅物溶液而於該基板上形成一連續薄膜型態過渡金屬或一顆粒型態過渡金屬,其中該顆粒型態過渡金屬應用於光電化學電池、太陽能電池中。
  4. 如申請專利範圍第3項所述之裝置,其中若該基板為一導電基板,則該金屬具有一連續薄膜型態或一顆粒型態,而若該基板為一絕緣基板,則該金屬具有該連續薄膜型態。
  5. 一種電極製備方法,包括下列步驟:提供一絕緣基板,該絕緣基板上具有一過渡金屬前驅物溶液;以及利用一大氣噴射電漿處理該過渡金屬前驅物溶液,以將該絕緣基板製備成該電極,其中該電極具有一連續薄膜型態過渡金屬。
  6. 如申請專利範圍第5項所述之方法,其中該過渡金屬前驅物溶液中具有 一過渡金屬前驅物,該大氣噴射電漿加熱處理該過渡金屬前驅物溶液,以使該過渡金屬前驅物轉化成一過渡金屬,該過渡金屬於該絕緣基板上形成一薄膜,以形成該電極。
  7. 如申請專利範圍第5項所述之方法,其中該過渡金屬前驅物溶液中具有一過渡金屬前驅物,該大氣噴射電漿加熱處理該過渡金屬前驅物溶液,以使該過渡金屬前驅物轉化成一過渡金屬,該過渡金屬於該基板上形成一連續薄膜。
  8. 一種電極製備方法,包括下列步驟:提供一基板,該基板上具有一過渡金屬前驅物溶液;以及利用一大氣噴射電漿處理該過渡金屬前驅物溶液,以轉化該過渡金屬前驅物溶液而於該基板上形成一連續薄膜型態過渡金屬或一顆粒型態過渡金屬,以將該基板製備成該電極,若為顆粒型態過渡金屬,該電極應用於光電化學電池、太陽能電池中。
  9. 如申請專利範圍第8項所述之方法,其中若該基板為一導電基板,則該金屬具有一連續薄膜型態或一顆粒型態,而若該基板為一絕緣基板,則該金屬具有該連續薄膜型態。
TW103116166A 2014-05-06 2014-05-06 自金屬前驅物溶液製備金屬之方法及其應用 TWI502097B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103116166A TWI502097B (zh) 2014-05-06 2014-05-06 自金屬前驅物溶液製備金屬之方法及其應用
US14/562,635 US20150322573A1 (en) 2014-05-06 2014-12-05 Method for preparing metal from metal precursor solution and the application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103116166A TWI502097B (zh) 2014-05-06 2014-05-06 自金屬前驅物溶液製備金屬之方法及其應用

Publications (2)

Publication Number Publication Date
TWI502097B true TWI502097B (zh) 2015-10-01
TW201542870A TW201542870A (zh) 2015-11-16

Family

ID=54367307

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103116166A TWI502097B (zh) 2014-05-06 2014-05-06 自金屬前驅物溶液製備金屬之方法及其應用

Country Status (2)

Country Link
US (1) US20150322573A1 (zh)
TW (1) TWI502097B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3510179A4 (en) * 2016-09-12 2020-06-10 Oreltech Ltd. FORMATION OF AN ACTIVE METAL COMPONENT IN HYBRID MATERIALS
JP2023500427A (ja) * 2019-09-10 2023-01-06 ユーシーエル ビジネス リミテッド プラズマジェット堆積プロセス

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025151A1 (de) * 2007-05-29 2008-09-04 Innovent E.V. Verfahren zum Beschichten eines Substrats
JP2010156022A (ja) * 2008-12-27 2010-07-15 Osaka Univ 誘電体基材表面の触媒フリー金属化方法及び金属膜付き誘電体基材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025151A1 (de) * 2007-05-29 2008-09-04 Innovent E.V. Verfahren zum Beschichten eines Substrats
JP2010156022A (ja) * 2008-12-27 2010-07-15 Osaka Univ 誘電体基材表面の触媒フリー金属化方法及び金属膜付き誘電体基材

Also Published As

Publication number Publication date
TW201542870A (zh) 2015-11-16
US20150322573A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
Li et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells
Sheng et al. Rational design of photoelectrodes with rapid charge transport for photoelectrochemical applications
Zhang et al. Engineering highly ordered iron titanate nanotube array photoanodes for enhanced solar water splitting activity
Liu et al. Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells
Chandiran et al. Low-temperature crystalline titanium dioxide by atomic layer deposition for dye-sensitized solar cells
Guerin et al. Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications
Li et al. Defective black TiO2 nanotube arrays for enhanced photocatalytic and photoelectrochemical applications
Soltani et al. A novel growth control of nanoplates WO3 photoanodes with dual oxygen and tungsten vacancies for efficient photoelectrochemical water splitting performance
Chandiran et al. Quantum-confined ZnO nanoshell photoanodes for mesoscopic solar cells
CN101354971B (zh) 掺杂金属的染料敏化TiO2纳晶薄膜光电极的制备方法
Nikraz et al. Mesoporous titania films prepared by flame stabilized on a rotating surface: application in dye sensitized solar cells
Huang et al. TiO2 compact layers prepared for high performance dye-sensitized solar cells
Huang et al. Low-temperature photochemical activation of sol-gel titanium dioxide films for efficient planar heterojunction perovskite solar cells
Suresh et al. Plasmonic Ag@ Nb2O5 surface passivation layer on quantum confined SnO2 films for high current dye-sensitized solar cell applications
Lei et al. ZnO@ TiO2 architectures for a high efficiency dye-sensitized solar cell
Kim et al. Facile and controllable surface-functionalization of TiO2 nanotubes array for highly-efficient photoelectrochemical water-oxidation
Fodjouong et al. Synthesis of ZnO nanostructure films by thermal evaporation approach and their application in dye-sensitized solar cells
Tsai et al. Low-temperature (< 40 C) atmospheric-pressure dielectric-barrier-discharge-jet treatment on nickel oxide for p–i–n structure perovskite solar cells
TWI502097B (zh) 自金屬前驅物溶液製備金屬之方法及其應用
Meng et al. Effect of the compact Ti layer on the efficiency of dye-sensitized solar cells assembled using stainless steel sheets
Islavath et al. Spray coated seed layer for scalable synthesis of aligned ZnO nanowire arrays on FTO substrate and their photovoltaic properties
Yuan et al. Anatase TiO2 sol as a low reactive precursor to form the photoanodes with compact films of dye-sensitized solar cells
Chang et al. Atmospheric-pressure-plasma-jet particulate TiO2 scattering layer deposition processes for dye-sensitized solar cells
Ghani et al. Highly ordered combined structure of anodic TiO2 nanotubes and TiO2 nanoparticles prepared by a novel route for dye-sensitized solar cells
Filippin et al. Low‐Temperature Plasma Processing of Platinum Porphyrins for the Development of Metal Nanostructured Layers