TWI500117B - Method of manufacturing non-volatile memory - Google Patents

Method of manufacturing non-volatile memory Download PDF

Info

Publication number
TWI500117B
TWI500117B TW102100386A TW102100386A TWI500117B TW I500117 B TWI500117 B TW I500117B TW 102100386 A TW102100386 A TW 102100386A TW 102100386 A TW102100386 A TW 102100386A TW I500117 B TWI500117 B TW I500117B
Authority
TW
Taiwan
Prior art keywords
mask layer
layer
volatile memory
mask
substrate
Prior art date
Application number
TW102100386A
Other languages
Chinese (zh)
Other versions
TW201428896A (en
Inventor
Hsiu Han Liao
Yen Lin Tseng
Chiang Hung Chen
Yu Kai Liao
Yao Ting Tsai
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW102100386A priority Critical patent/TWI500117B/en
Publication of TW201428896A publication Critical patent/TW201428896A/en
Application granted granted Critical
Publication of TWI500117B publication Critical patent/TWI500117B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Element Separation (AREA)

Description

非揮發性記憶體之製造方法Non-volatile memory manufacturing method

本發明係有關於半導體裝置之製造方法,且特別是有關於一種非揮發性記憶體裝置之製造方法。The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating a non-volatile memory device.

非揮發性記憶體(non-volatile memory,NVM)由於寫入的資料在斷電後不會消失,且可進行多次讀取、寫入、抹除等特性,因此被廣泛應用於各種電子產品中,例如行動電話及數位相機等可攜式電子裝置。典型的非揮發性記憶體包括了由浮置閘極(floating gate,FG)及控制閘極(control gate,CG)所構成的堆疊式閘極結構,其中浮置閘極設置於基底與控制閘極之間,在浮置閘極與基底之間具有穿隧介電層,在控制閘極與浮置閘極之間則具有閘極介電層。可藉由控制浮置閘極中的電子分佈狀態,改變記憶單元的臨界電壓(threshold voltage,Vt),進而達到讀取、寫入、或抹除資料的效果。Non-volatile memory (NVM) is widely used in various electronic products because the written data does not disappear after power-off and can be read, written, and erased multiple times. Among them, portable electronic devices such as mobile phones and digital cameras. A typical non-volatile memory includes a stacked gate structure composed of a floating gate (FG) and a control gate (CG), wherein the floating gate is disposed on the substrate and the control gate Between the electrodes, there is a tunneling dielectric layer between the floating gate and the substrate, and a gate dielectric layer between the control gate and the floating gate. By controlling the state of electron distribution in the floating gate, the threshold voltage (Vt) of the memory cell is changed, thereby achieving the effect of reading, writing, or erasing data.

對於不同種類的非揮發性記憶體裝置,係利用對控制閘極施加適當電壓,使記憶單元之通道(channel)中的電子藉由不同機制進出浮置閘極,以改變其浮置閘極中的電荷分佈狀態。因此,記憶單元之浮置閘極的界面性質(例如浮置閘極與閘極介電層之間的表面均勻度)對於資料的讀取、寫入、抹除具有顯著的影響。For different types of non-volatile memory devices, an appropriate voltage is applied to the control gate so that electrons in the channel of the memory cell enter and exit the floating gate through different mechanisms to change the floating gate. The state of charge distribution. Therefore, the interface properties of the floating gate of the memory cell (such as the surface uniformity between the floating gate and the gate dielectric layer) have a significant impact on the reading, writing, and erasing of the data.

第1A~1D圖為一系列剖面圖,用以說明習知非揮發性記憶體裝置100之製造方法的流程。首先,可在基底10上形成隔離結構,例如淺溝槽隔離(shallow trench isolation,STI),以電性隔離各個電子元件。如第1A圖所示,基底10包括記憶單元區C及週邊區P,在前述二個區域(記憶單元區C及週邊區P)分別具有複數隔離結構102c及102p突出於基底10的表面。介電層104c及104p分別形成於各個隔離結構102c及102p之間。在介電層104c及104p上方分別形成第一罩幕層106c及106p,此第一罩幕 層106c及106p是在形成隔離結構時,作為非隔離結構形成區域的罩幕層之用。接著,如第1B圖所示,為了形成記憶單元之浮置閘極,移除第一罩幕層106c及106p以露出各個隔離結構102c、102p之間的開口,並進行井佈植(well implantation)I。如第1C圖所示,在移除介電層104c及104p及形成穿隧介電層104c’及104p’等步驟後,毯覆式形成導體層108於基底10之表面上以填充各個隔離結構102c及102p之間的開口,作為非揮發性記憶體裝置之浮置閘極。1A to 1D are a series of cross-sectional views for explaining the flow of a conventional method of manufacturing the non-volatile memory device 100. First, an isolation structure, such as shallow trench isolation (STI), may be formed on the substrate 10 to electrically isolate the various electronic components. As shown in FIG. 1A, the substrate 10 includes a memory cell region C and a peripheral region P. The two regions (the memory cell region C and the peripheral region P) respectively have a plurality of isolation structures 102c and 102p protruding from the surface of the substrate 10. Dielectric layers 104c and 104p are formed between the respective isolation structures 102c and 102p, respectively. Forming first mask layers 106c and 106p above the dielectric layers 104c and 104p, respectively, the first mask The layers 106c and 106p are used as a mask layer for forming a non-isolated structure when forming an isolation structure. Next, as shown in FIG. 1B, in order to form the floating gate of the memory cell, the first mask layers 106c and 106p are removed to expose the openings between the respective isolation structures 102c, 102p, and well implanted )I. As shown in FIG. 1C, after removing the dielectric layers 104c and 104p and forming the tunneling dielectric layers 104c' and 104p', the conductor layer 108 is blanket-formed on the surface of the substrate 10 to fill the isolation structures. An opening between 102c and 102p as a floating gate of a non-volatile memory device.

在填入作為浮置閘極的導體層108後,需要將基底10上方結構的表面平坦化,以確保記憶單元的電性並利於後續製程的進行,故可實施一化學機械研磨(chemical mechanical polish,CMP)步驟。此步驟通常藉由先形成一圖案化之研磨阻擋層覆蓋於基底10的週邊區上,再以此圖案化之研磨阻擋層為基準,將基底10上方的結構研磨至適當的厚度及表面均勻度。如第1C圖所示,研磨阻擋層110通常是利用在基底10上方沈積一層與導體層108具有不同蝕刻選擇比的膜層而形成,例如在使用多晶矽作為導體層108時,可沈積由一氮化矽層與一四乙氧基矽烷(tetraethyl orthosilicate,TEOS)層積而形成之雙層結構作為研磨阻擋層110。藉由一光學微影及蝕刻步驟,可選擇性移除研磨阻擋層110位於記憶單元區C的部份,留下位於週邊區P的部份而形成圖案化之研磨阻擋層110’。然而,請同時參照第1C~1D圖,由於圖案化之研磨阻擋層110’是設置於導體層108之上,因此基底10上部份導體層108厚度較薄的區域其高度可能略低於圖案化之研磨阻擋層110’,導致進行化學機械研磨時,這些厚度較薄的區域無法受到充分的研磨而使基底10上方結構的表面均勻度變差,例如在非揮發性記憶體裝置100的記憶單元區C的浮置閘極上可能會形成碟狀凹陷D(gate dishing),或在週邊區P可能會有導體層材料的殘留等等,進而產生裝置失效、臨界電壓漂移(Vt distribution shift)、裝置可靠度降低、及生產良率降低等問題。After filling in the conductor layer 108 as a floating gate, it is necessary to planarize the surface of the structure above the substrate 10 to ensure the electrical properties of the memory cell and facilitate the subsequent process, so that a chemical mechanical polish can be implemented. , CMP) steps. This step is usually performed by first forming a patterned polishing barrier layer over the peripheral region of the substrate 10, and polishing the structure above the substrate 10 to an appropriate thickness and surface uniformity based on the patterned polishing barrier layer. . As shown in FIG. 1C, the polishing barrier layer 110 is generally formed by depositing a layer of a film having a different etching selectivity from the conductor layer 108 over the substrate 10. For example, when a polysilicon is used as the conductor layer 108, a nitrogen can be deposited. A two-layer structure in which a ruthenium layer is laminated with tetraethyl orthosilicate (TEOS) is used as the polishing barrier layer 110. The portion of the polishing barrier layer 110 located in the memory cell region C can be selectively removed by an optical lithography and etching step, leaving a portion of the peripheral region P to form a patterned polishing barrier layer 110'. However, please refer to FIG. 1C~1D at the same time. Since the patterned polishing barrier layer 110' is disposed on the conductor layer 108, the thickness of the portion of the substrate 10 on which the conductor layer 108 is thin may be slightly lower than the pattern. The polishing barrier layer 110' causes the thinner regions to be subjected to sufficient polishing to cause surface uniformity of the structure above the substrate 10 to deteriorate, for example, in the memory of the non-volatile memory device 100. A dishing may be formed on the floating gate of the cell C, or a residual material of the conductor layer may be present in the peripheral region P, thereby causing device failure, Vt distribution shift, Equipment reliability is reduced, and production yield is reduced.

因此,亟需尋求一種新的非揮發性記憶體之製造方法,以解決習知方法中上述的問題,並改善記憶體裝置的效能。Therefore, there is a need to find a new method for manufacturing non-volatile memory to solve the above problems in the conventional methods and to improve the performance of the memory device.

本發明一實施例提供一種非揮發性記憶體之製造方法,包 括:提供一基底,基底包括一記憶單元區及一週邊區,基底具有複數隔離結構突出於基底的表面,且在隔離結構之間具有一介電層及位於介電層上的一第一罩幕層;回蝕刻第一罩幕層,使第一罩幕層低於隔離結構;在隔離結構及第一罩幕層上毯覆式形成一第二罩幕層;選擇性移除位於記憶單元區之第二罩幕層及第一罩幕層;移除位於週邊區之第二罩幕層,留下位於週邊區之第一罩幕層;在位於記憶單元區之隔離結構之間形成一導電層;以及以位於週邊區之第一罩幕層為研磨終止層,實施一化學機械研磨步驟。An embodiment of the present invention provides a method for manufacturing a non-volatile memory, including The invention comprises: providing a substrate, the substrate comprises a memory cell region and a peripheral region, the substrate has a plurality of isolation structures protruding from the surface of the substrate, and a dielectric layer between the isolation structures and a first cover on the dielectric layer Curtain layer; etch back the first mask layer to make the first mask layer lower than the isolation structure; blanket forming a second mask layer on the isolation structure and the first mask layer; selectively removing the memory layer a second mask layer and a first mask layer; removing a second mask layer located in the peripheral region, leaving a first mask layer in the peripheral region; forming a gap between the isolation structures located in the memory unit region a conductive layer; and a chemical mechanical polishing step is performed by using a first mask layer located in the peripheral region as a polishing stop layer.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:The above and other objects, features and advantages of the present invention will become more <RTIgt;

10、20‧‧‧基底10, 20‧‧‧ base

100、200‧‧‧非揮發性記憶體裝置100, 200‧‧‧ non-volatile memory devices

102c、102p、202c、202p‧‧‧隔離結構102c, 102p, 202c, 202p‧‧‧ isolation structure

104c、104p、204‧‧‧介電層104c, 104p, 204‧‧‧ dielectric layer

104c’、104p’、204’‧‧‧穿隧介電層104c', 104p', 204'‧‧‧ tunneling dielectric layer

108‧‧‧導體層108‧‧‧Conductor layer

110‧‧‧研磨終止層110‧‧‧Making stop layer

110’‧‧‧圖案化之研磨終止層110’‧‧‧ patterned grinding stop layer

206c、206p‧‧‧第一罩幕層206c, 206p‧‧‧ first cover layer

208‧‧‧第二罩幕層208‧‧‧second cover layer

208’‧‧‧圖案化之第二罩幕層208’‧‧‧ patterned second mask

210c‧‧‧開口210c‧‧‧ openings

212c‧‧‧浮置閘極212c‧‧‧Floating gate

C‧‧‧記憶單元區C‧‧‧ memory unit area

P‧‧‧週邊區P‧‧‧ surrounding area

D‧‧‧碟狀凹陷之缺陷D‧‧‧ Defects in dishing

t‧‧‧高度差T‧‧‧ height difference

I‧‧‧井佈植(離子佈植)I‧‧‧ well planting (ion implant)

第1A~1D圖為一系列剖面圖,用以說明習知非揮發性記憶體之製造方法的流程。Figures 1A to 1D are a series of cross-sectional views illustrating the flow of a conventional method of manufacturing a non-volatile memory.

第2A~2E圖為一系列剖面圖,用以說明本發明之非揮發性記憶體製造方法的一實施例的流程。2A-2E are a series of cross-sectional views for explaining the flow of an embodiment of the non-volatile memory manufacturing method of the present invention.

本發明提供數個實施例以說明本發明之技術特徵,實施例之內容及繪製之圖式僅作為例示說明之用,並非用以限縮本發明保護範圍。圖式中可能省略非必要元件,不同特徵可能並未按照比例繪製。本發明所揭示內容可能在不同實施例中使用重複的元件符號,並不代表不同實施例或圖式間具有關聯。此外,一元件形成於另一元件「上方」、「之上」、「下方」或「之下」可包含兩元件直接接觸的實施例,或也可包含兩元件之間夾設有其它額外元件的實施例。各種元件可能以任意不同比例顯示以使圖示清晰簡潔。The present invention is to be construed as being limited to the scope of the present invention. Non-essential elements may be omitted from the drawings, and different features may not be drawn to scale. The present disclosure may have overlapping element symbols in different embodiments and does not represent an association between different embodiments or drawings. In addition, an element formed "above", "above", "below" or "below" another element may include an embodiment in which two elements are in direct contact, or may include other additional elements interposed between the two elements. An embodiment. The various components may be displayed at any different scale to make the illustration clear and concise.

第2A~2E圖為一系列剖面圖,用以說明本發明之非揮發性記憶體之製造方法的一實施例的流程。2A-2E are a series of cross-sectional views for explaining the flow of an embodiment of the method of manufacturing the non-volatile memory of the present invention.

首先,請參照第2A圖,提供一基底20,基底20包括一記憶單元區C及一週邊區P。在基底20之前述二個區域(記憶單元區C及週邊區P)中分別形成有複數隔離結構202c及202p,其突出於基底20表面。 前述隔離結構202c及202p可使用本領域所熟知的淺溝槽隔離製程形成,例如可於基底20上依序沈積一介電層材料(未繪示)及一第一罩幕層材料(未繪示)後,藉由一光學微影及蝕刻步驟移除部份第一罩幕層材料、介電層材料及基底20,以在基底20內形成複數溝槽,而在各個溝槽之間則形成介電層204及位於介電層204上的第一罩幕層206c及206p。然後於前述溝槽中填入介電材料,以分別形成突出於基底20表面的隔離結構202c及202p,用以電性隔離不同裝置,例如記憶單元。在此步驟中,基底20可為一矽基底,介電層204(或介電層材料)可包括氧化矽,其厚度可介於140~180奈米之間,並可藉由熱氧化法或化學氣相沈積法形成。第一罩幕層206c及206p可包括氮化矽,並可藉由化學氣相沈積法形成。隔離結構202c及202p可包括以適當方法形成之氧化矽,例如藉由高密度電漿化學氣相沈積法(high density plasma chemical vapor deposition,HDP-CVD)所形成之氧化矽。在形成隔離結構202c及202p之後,並不移除第一罩幕層206c及206p,因此在各個隔離結構202c及202p之間的介電層204上仍然保有第一罩幕層206c及206p。First, referring to FIG. 2A, a substrate 20 is provided. The substrate 20 includes a memory cell region C and a peripheral region P. A plurality of isolation structures 202c and 202p are formed in the two regions (the memory cell region C and the peripheral region P) of the substrate 20, respectively, which protrude from the surface of the substrate 20. The isolation structures 202c and 202p can be formed by using a shallow trench isolation process well known in the art. For example, a dielectric layer material (not shown) and a first mask layer material can be sequentially deposited on the substrate 20. After being shown, a portion of the first mask layer material, the dielectric layer material, and the substrate 20 are removed by an optical lithography and etching step to form a plurality of trenches in the substrate 20, and between the trenches. A dielectric layer 204 and first mask layers 206c and 206p on the dielectric layer 204 are formed. Dielectric materials are then filled into the trenches to form isolation structures 202c and 202p that protrude from the surface of substrate 20, respectively, for electrically isolating different devices, such as memory cells. In this step, the substrate 20 may be a germanium substrate, and the dielectric layer 204 (or dielectric layer material) may include germanium oxide, which may have a thickness between 140 and 180 nanometers, and may be thermally oxidized or Formed by chemical vapor deposition. The first mask layers 206c and 206p may include tantalum nitride and may be formed by chemical vapor deposition. The isolation structures 202c and 202p may include ruthenium oxide formed by a suitable method, such as ruthenium oxide formed by high density plasma chemical vapor deposition (HDP-CVD). After the isolation structures 202c and 202p are formed, the first mask layers 206c and 206p are not removed, so that the first mask layers 206c and 206p remain on the dielectric layer 204 between the isolation structures 202c and 202p.

接著,請參照第2B圖,回蝕刻第一罩幕層206c及206p表面的一部分,使第一罩幕層206c及206p的表面低於隔離結構202c及202p,且與隔離結構202c及202p具有一高度差t。隨後,在隔離結構202c及202p以及第一罩幕層206c及206p上毯覆式形成一第二罩幕層208。在回蝕刻步驟之前,可先使用本領域所熟知的去氧化矽(de-glass)製程,使隔離結構202c及202p約略低於第一罩幕層206c及206p而便於整面性(blanket)移除第一罩幕層206c及206p。在本實施例中,高度差t為150~300埃(Å)。第二罩幕層208可使用多晶矽,其厚度為大於300埃,且可使用例如化學氣相沈積法而形成。Next, referring to FIG. 2B, a portion of the surface of the first mask layers 206c and 206p is etched back so that the surfaces of the first mask layers 206c and 206p are lower than the isolation structures 202c and 202p, and have one with the isolation structures 202c and 202p. Height difference t. Subsequently, a second mask layer 208 is blanket formed on the isolation structures 202c and 202p and the first mask layers 206c and 206p. Prior to the etch back step, a de-glass process well known in the art can be used to make the isolation structures 202c and 202p approximately lower than the first mask layers 206c and 206p for ease of blanketing. The first mask layers 206c and 206p are removed. In the present embodiment, the height difference t is 150 to 300 Å (Å). The second mask layer 208 can use a polysilicon having a thickness greater than 300 angstroms and can be formed using, for example, chemical vapor deposition.

請參照第2C圖,為了形成各個記憶單元的浮置閘極,需要移除至少位於記憶單元區C之第一罩幕層206c及第二罩幕層208,以露出各個隔離結構202c之間的開口210c。在本實施例中,於形成第二罩幕層208之後,係先藉由一光學微影及蝕刻步驟圖案化第二罩幕層208,以選擇性移除第二罩幕層208位於記憶單元區C的部份而僅留下位於週邊區P的第二罩幕圖案層208’。之後,再移除位於記憶單元區C的第一罩幕層206c。在 移除位於記憶單元區C的第一罩幕層206c時,由於位於週邊區P的第一罩幕層206p受到第二罩幕圖案層208’的保護,因此不會與位於記憶單元區C的第一罩幕層206c一起被移除,而可繼續保留於後續步驟中。移除第一罩幕層206的方法可包括濕蝕刻。Referring to FIG. 2C, in order to form the floating gates of the respective memory cells, it is necessary to remove at least the first mask layer 206c and the second mask layer 208 located in the memory cell region C to expose between the isolation structures 202c. Opening 210c. In this embodiment, after the second mask layer 208 is formed, the second mask layer 208 is patterned by an optical lithography and etching step to selectively remove the second mask layer 208 in the memory unit. Part of the area C leaves only the second mask pattern layer 208' located in the peripheral area P. Thereafter, the first mask layer 206c located in the memory cell region C is removed. in When the first mask layer 206c located in the memory cell region C is removed, since the first mask layer 206p located in the peripheral region P is protected by the second mask pattern layer 208', it is not located in the memory cell region C. The first mask layer 206c is removed together and can remain in the subsequent steps. The method of removing the first mask layer 206 can include wet etching.

請參照第2D圖,將第二罩幕圖案層208’移除,且可依本領域所熟知的技術進行記憶體單元之井佈植I。之後,請參照第2E圖,在佈植完成後可移除位於記憶單元區C的介電層204c,並另行形成穿隧介電層204c’,以確保記憶單元之介電層的品質,並於第2D圖所示的結構上毯覆式形成一導體層(未繪示),以填充記憶單元區C中各個隔離結構202c及202p之間的開口210c(標示於第2D圖中),並以位於週邊區P之第一罩幕層206p為研磨終止層,實施一化學機械研磨步驟以進行表面平坦化,並於記憶單元區C中形成浮置閘極212c。在本實施例中,由於進行化學機械研磨時,對多晶矽及氧化矽的蝕刻選擇比較為接近,而多晶矽與氮化矽的蝕刻選擇比差異較大,故進行化學機械研磨時,由多晶矽所構成之導體層材料及由氧化矽所構成之隔離結構202c及202p兩者的研磨速度較相近且較快,而由氮化矽所構成之第一罩幕層206p的研磨速度較慢,而使位於週邊區P之第一罩幕層206p成為研磨的基準點。在完成化學機械研磨步驟後,即可得到在位於記憶單元區C的隔離結構202c之間具有浮置閘極212c之非揮發性記憶體裝置200。在本實施例中,位於週邊區P的隔離結構202p之間則仍然保留第一罩幕層206p。Referring to Figure 2D, the second mask pattern layer 208' is removed and the memory cell can be implanted in accordance with techniques well known in the art. Thereafter, referring to FIG. 2E, after the implantation is completed, the dielectric layer 204c located in the memory cell region C can be removed, and the tunnel dielectric layer 204c' is separately formed to ensure the quality of the dielectric layer of the memory cell, and Forming a conductor layer (not shown) on the structure shown in FIG. 2D to fill the opening 210c (in the 2D figure) between the isolation structures 202c and 202p in the memory cell region C, and The first mask layer 206p located in the peripheral region P is used as a polishing stop layer, a chemical mechanical polishing step is performed to planarize the surface, and a floating gate 212c is formed in the memory cell region C. In the present embodiment, since the etching selection of polycrystalline germanium and cerium oxide is relatively close when chemical mechanical polishing is performed, and the etching selectivity ratios of polycrystalline germanium and tantalum nitride are largely different, when chemical mechanical polishing is performed, polycrystalline germanium is formed. The polishing layer material and the isolation structures 202c and 202p composed of yttrium oxide are relatively faster and faster, and the first mask layer 206p composed of tantalum nitride has a slower polishing speed. The first mask layer 206p of the peripheral region P serves as a reference point for polishing. After the chemical mechanical polishing step is completed, a non-volatile memory device 200 having a floating gate 212c between the isolation structures 202c located in the memory cell region C is obtained. In the present embodiment, the first mask layer 206p remains between the isolation structures 202p of the peripheral region P.

由於本發明係使用高度低於隔離結構202c及202p且設置於導體層材料下方的第一罩幕層206p作為研磨終止層,相較於在習知技術中使用設置於導體層108上方而可能高於部份區域之導體層108的第一罩幕層110,作為研磨終止層(請參照第1D圖),本發明可確保非揮發性記憶體裝置200在製作過程中,其表面被研磨至目標高度,因而可避免表面均勻度不佳(例如具有碟狀凹陷、導體層材料殘留等缺陷),導致裝置失效、臨界電壓漂移、裝置可靠度及生產良率降低等問題。此外,本發明所提供之非揮發性記憶體製造方法與現行製程相容,且步驟簡單,故可在不增加生產成本的情況下提昇裝置效能。Since the present invention uses the first mask layer 206p which is lower in height than the isolation structures 202c and 202p and disposed under the conductor layer material as the polishing stop layer, it may be higher than that disposed in the conductor layer 108 in the prior art. The first mask layer 110 of the conductor layer 108 in a portion of the region serves as a polishing stop layer (refer to FIG. 1D), and the present invention ensures that the surface of the non-volatile memory device 200 is ground to the target during fabrication. The height can avoid poor surface uniformity (such as disc-shaped depressions, defects in the conductor layer material, etc.), resulting in problems such as device failure, critical voltage drift, device reliability, and reduced production yield. In addition, the non-volatile memory manufacturing method provided by the present invention is compatible with the current process, and the steps are simple, so that the device performance can be improved without increasing the production cost.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限 定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the invention has been disclosed above in several preferred embodiments, it is not intended to be limiting The invention may be modified and modified in any way without departing from the spirit and scope of the invention, and the scope of the invention is defined by the scope of the appended claims. Prevail.

20‧‧‧基底20‧‧‧Base

202c、202p‧‧‧隔離結構202c, 202p‧‧‧ isolation structure

204‧‧‧介電層204‧‧‧Dielectric layer

206p‧‧‧第一罩幕層206p‧‧‧First cover layer

208’‧‧‧第二罩幕圖案層208’‧‧‧Second mask pattern layer

210c‧‧‧開口210c‧‧‧ openings

C‧‧‧記憶單元區C‧‧‧ memory unit area

P‧‧‧週邊區P‧‧‧ surrounding area

t‧‧‧第一罩幕層與隔離結構之高度差t‧‧‧The difference between the height of the first mask layer and the isolation structure

Claims (8)

一種非揮發性記憶體之製造方法,包括:提供一基底,該基底包括一記憶單元區及一週邊區,該基底具有複數隔離結構突出於該基底的表面,且在該等隔離結構之間具有一介電層及位於該介電層上的一第一罩幕層;回蝕刻該第一罩幕層,使該第一罩幕層低於該等隔離結構;於回蝕刻該第一罩幕層後,在該等隔離結構及該第一罩幕層上毯覆式形成一第二罩幕層;選擇性移除位於該記憶單元區之該第二罩幕層及該第一罩幕層;移除位於該週邊區之該第二罩幕層,留下位於該週邊區之該第一罩幕層;在位於該記憶單元區之該等隔離結構之間形成一導電層;以及以位於該週邊區之該第一罩幕層為研磨終止層,對該導電層實施一化學機械研磨步驟。 A method of manufacturing a non-volatile memory, comprising: providing a substrate, the substrate comprising a memory cell region and a peripheral region, the substrate having a plurality of isolation structures protruding from a surface of the substrate, and having between the isolation structures a dielectric layer and a first mask layer on the dielectric layer; etch back the first mask layer such that the first mask layer is lower than the isolation structures; and etching back the first mask After the layer, a second mask layer is blanket-formed on the isolation structures and the first mask layer; and the second mask layer and the first mask layer located in the memory cell region are selectively removed Removing the second mask layer in the peripheral region, leaving the first mask layer in the peripheral region; forming a conductive layer between the isolation structures located in the memory cell region; The first mask layer of the peripheral region is a polishing stop layer, and a chemical mechanical polishing step is performed on the conductive layer. 如申請專利範圍第1項所述之非揮發性記憶體之製造方法,其中該第二罩幕層為多晶矽。 The method of manufacturing a non-volatile memory according to claim 1, wherein the second mask layer is polycrystalline germanium. 如申請專利範圍第1項所述之非揮發性記憶體之製造方法,其中選擇性移除位於該記憶單元區之該第二罩幕層及該第一罩幕層的步驟包括實施一微影及蝕刻步驟。 The method of manufacturing a non-volatile memory according to claim 1, wherein the step of selectively removing the second mask layer and the first mask layer located in the memory unit region comprises performing a lithography And etching steps. 如申請專利範圍第1項所述之非揮發性記憶體之製造方 法,其中形成該第二罩幕層之步驟包括一化學氣相沈積步驟。 Manufacturer of non-volatile memory as described in claim 1 The method wherein the step of forming the second mask layer comprises a chemical vapor deposition step. 如申請專利範圍第1項所述之非揮發性記憶體之製造方法,其中該第一罩幕層包括氮化矽。 The method of manufacturing a non-volatile memory according to claim 1, wherein the first mask layer comprises tantalum nitride. 如申請專利範圍第1項所述之非揮發性記憶體之製造方法,其中該等隔離結構包括氧化矽。 The method of manufacturing a non-volatile memory according to claim 1, wherein the isolation structure comprises ruthenium oxide. 如申請專利範圍第1項所述之非揮發性記憶體之製造方法,其中該介電層包括氧化矽。 The method of manufacturing a non-volatile memory according to claim 1, wherein the dielectric layer comprises ruthenium oxide. 如申請專利範圍第1項所述之非揮發性記憶體之製造方法,其中該導電層包括多晶矽。The method of manufacturing a non-volatile memory according to claim 1, wherein the conductive layer comprises polycrystalline germanium.
TW102100386A 2013-01-07 2013-01-07 Method of manufacturing non-volatile memory TWI500117B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102100386A TWI500117B (en) 2013-01-07 2013-01-07 Method of manufacturing non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102100386A TWI500117B (en) 2013-01-07 2013-01-07 Method of manufacturing non-volatile memory

Publications (2)

Publication Number Publication Date
TW201428896A TW201428896A (en) 2014-07-16
TWI500117B true TWI500117B (en) 2015-09-11

Family

ID=51726178

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102100386A TWI500117B (en) 2013-01-07 2013-01-07 Method of manufacturing non-volatile memory

Country Status (1)

Country Link
TW (1) TWI500117B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI689081B (en) * 2018-10-02 2020-03-21 華邦電子股份有限公司 Method for manufacturing non-volatile memory device
CN111081709B (en) * 2018-10-22 2022-07-22 华邦电子股份有限公司 Method of manufacturing nonvolatile memory device
TWI802829B (en) * 2020-12-09 2023-05-21 華邦電子股份有限公司 Method for manufacturing non-volatile memory device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200709350A (en) * 2005-08-19 2007-03-01 Winbond Electronics Corp Method of forming a non-volatile memory and the structure thereof
TW201011899A (en) * 2008-09-04 2010-03-16 Powerchip Semiconductor Corp Memory device and manufacturing method thereof, and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200709350A (en) * 2005-08-19 2007-03-01 Winbond Electronics Corp Method of forming a non-volatile memory and the structure thereof
TW201011899A (en) * 2008-09-04 2010-03-16 Powerchip Semiconductor Corp Memory device and manufacturing method thereof, and semiconductor device

Also Published As

Publication number Publication date
TW201428896A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
US9576801B2 (en) High dielectric constant/metal gate (HK/MG) compatible floating gate (FG)/ferroelectric dipole non-volatile memory
JP5116294B2 (en) Semiconductor structure and manufacturing method thereof (vertical SOI trench SONOS cell)
US20130217197A1 (en) Integration technique using thermal oxide select gate dielectric for select gate and replacement gate for logic
KR20100013980A (en) Method of fabricating the trench isolation layer for semiconductor device
TW201909385A (en) Method for manufacturing integrated circuit
CN108091562B (en) ONO etching method of SONOS memory
JP4834303B2 (en) Manufacturing method of split gate type flash memory device
CN101989566B (en) Manufacture method of semiconductor device and flash memory device
TWI500117B (en) Method of manufacturing non-volatile memory
JP2006509366A (en) Self-aligned shallow trench isolation with improved coupling coefficient in floating gate devices
US20080012063A1 (en) Flash Memory and Method for Manufacturing the Same
US20060244095A1 (en) Method of forming a shallow trench isolation structure with reduced leakage current in a semiconductor device
TWI713978B (en) Semiconductor device and manufacturing method thereof
TWI762043B (en) Semiconductor device and manufacturing method thereof
CN103943571B (en) The manufacture method of nonvolatile memory
US7061041B2 (en) Memory device
US9595588B1 (en) Semiconductor device with embedded cell and method of manufacturing the same
KR100824152B1 (en) Method of manufacturing flash memory device
US9123579B2 (en) 3D memory process and structures
TW202145533A (en) Memory device and method of making the same
KR100806040B1 (en) Method of manufacturing flash memory device
KR100620233B1 (en) Method for fabricating the flash memory device
US10636671B1 (en) Planarization process
KR20060008594A (en) Method of manufacturing nand flash memory device
KR100966988B1 (en) Non-volatile memory device and method of fabricating the same