TWI499187B - Control system and method for reducing switching loss in a charge pump - Google Patents
Control system and method for reducing switching loss in a charge pump Download PDFInfo
- Publication number
- TWI499187B TWI499187B TW102145094A TW102145094A TWI499187B TW I499187 B TWI499187 B TW I499187B TW 102145094 A TW102145094 A TW 102145094A TW 102145094 A TW102145094 A TW 102145094A TW I499187 B TWI499187 B TW I499187B
- Authority
- TW
- Taiwan
- Prior art keywords
- switching
- group
- switching transistor
- sub
- transistor group
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明係關於充電泵之技術領域,尤指一種可減少切換損失之充電泵控制系統及方法。 The present invention relates to the technical field of a charge pump, and more particularly to a charge pump control system and method that can reduce switching losses.
圖1係一習知充電泵(Charge pump)100之方塊圖,該充電泵100包含了一控制電路(Controller)110、一切換電晶體群(Switching transistor group)120以及一被動元件群(Passive device group)130,該控制電路110接收M個輸入訊號(Input signal)並產生N個控制訊號(Control signal),其中M,N≧1。該N個控制訊號連接至該切換電晶體群120的N個切換電晶體(圖未示),以控制該N個切換電晶體的導通與關閉。 1 is a block diagram of a conventional charge pump 100 including a control circuit 110, a switching transistor group 120, and a passive component group (Passive device). Group) 130, the control circuit 110 receives M input signals and generates N control signals, where M, N ≧ 1. The N control signals are connected to N switching transistors (not shown) of the switching transistor group 120 to control the turning on and off of the N switching transistors.
該切換電晶體群120連接至該被動元件群130與一輸入電壓(VIN)。其中該被動元件群130包含了飛跨電容(Flying capacitor)與輸出穩壓電容(Decoupling capacitor)。透過該N個控制訊號用以控制切換該N個切換電晶體的切換順序,進而使輸出端電壓(VOUT)提高到所需的電壓位準。 The switching transistor group 120 is coupled to the passive component group 130 and an input voltage (VIN). The passive component group 130 includes a flying capacitor and an output decoupling capacitor. The N control signals are used to control the switching sequence of the N switching transistors, thereby increasing the output voltage (V OUT ) to a desired voltage level.
圖2為圖1中的充電泵的詳細電路圖,其中, 該控制電路110輸出4個控制訊號A、B、C、D,該切換電晶體群120包含四個切換電晶體MP1、MP2、MP3、MN1,該被動元件群130包含一飛跨電容(Flying capacitor)C0與一輸出穩壓電容(Decoupling capacitor)C1。如圖2所示,該控制電路110、該切換電晶體群120及被動元件群130組成的兩倍壓充電泵電路。 2 is a detailed circuit diagram of the charge pump of FIG. 1, wherein the control circuit 110 outputs four control signals A, B, C, and D. The switching transistor group 120 includes four switching transistors MP1, MP2, and MP3. MN1, the passive component group 130 includes a flying capacitor C 0 and an output decoupling capacitor C 1 . As shown in FIG. 2, the control circuit 110, the switching transistor group 120 and the passive component group 130 form a double voltage charge pump circuit.
於第一個相位(Phase 1)時,該切換電晶體群120的切換電晶體MP1、MN1導通,切換電晶體MP2、MP3則關閉。此時輸入電壓(VIN)會儲存在該飛跨電容C0上。於第二個相位(Phase 2)時,該切換電晶體MP1、MN1關閉,切換電晶體MP2、MP3則導通,此時在第一個相位時儲存至該飛跨電容C0上的電壓(VIN)會傳遞至輸出端(VSP),再加上切換電晶體MP2端也連接至輸入電壓(VIN),此時輸出電壓(VSP)將會為輸入電壓(VIN)的兩倍。 In the first phase (Phase 1), the switching transistors MP1 and MN1 of the switching transistor group 120 are turned on, and the switching transistors MP2 and MP3 are turned off. At this time, the input voltage (VIN) is stored on the flying capacitor C 0 . In the second phase (Phase 2), the switching transistors MP1, MN1 are turned off, and the switching transistors MP2, MP3 are turned on, and the voltage stored to the flying capacitor C 0 at the first phase (VIN) It is passed to the output (VSP), and the switching transistor MP2 is also connected to the input voltage (VIN), at which point the output voltage (VSP) will be twice the input voltage (VIN).
由圖2可知,習知的充電泵之切換電晶體(Switching transistor)所採用的為單一電晶體,無論負載的輕重大小情況底下,都是使用同一顆切換電晶體,會形成固定的切換損失。然而,在輕載時影響效率最大的成分是切換損失,此即為充電泵在輕載狀態時效率不佳的最主要來源,也是其技術之缺點。因此,習知充電泵之控制系統及方法實仍有改善的空間。 As can be seen from FIG. 2, the switching transistor of the conventional charging pump adopts a single transistor, and the same switching transistor is used under the condition of the weight and weight of the load, which will form a fixed switching loss. However, the component that affects the most efficiency at light load is the switching loss, which is the most important source of inefficiency of the charge pump in the light load state, and is also a disadvantage of its technology. Therefore, there is still room for improvement in the control system and method of the conventional charging pump.
本發明之目的主要係在提供一可減少切換損失 之充電泵控制系統及方法,可降低輕載時的切換損失(Switching Loss),以節省功率消耗。 The object of the present invention is mainly to provide a reduction in switching loss The charge pump control system and method can reduce switching loss (Lighting Loss) at light load to save power consumption.
依據本發明之一特色,本發明提出一種可減少切換損失之充電泵控制系統,其包含一充電泵、一電流偵測電路、一狀態判斷電路、及一控制單元。該充電泵具有一輸入端、一輸出端及一切換電晶體群,其將一輸入電壓利用該切換電晶體群進行切換,使該輸入端電壓升壓,俾將該輸出端電壓轉換至一預設電壓位準。該電流偵測電路耦合至該充電泵,以感測該充電泵之該輸入端及該輸出端之負載,俾產生對應該負載之一偵測訊號。該狀態判斷電路耦合至電流偵測電路,依據該電流偵測電路所產生之偵測訊號,以產生一判斷訊號。該控制單元耦合至該充電泵及該狀態判斷電路,該控制單元接收一輸入控制訊號及該判斷訊號,依據該輸入控制訊號及該判斷訊號,產生一第一組切換訊號、一第二組切換訊號、一第三組切換訊號、及一第四組切換訊號,以控制該充電泵的該切換電晶體群的導通與關閉。 According to a feature of the present invention, the present invention provides a charge pump control system capable of reducing switching loss, comprising a charge pump, a current detecting circuit, a state determining circuit, and a control unit. The charging pump has an input end, an output end and a switching transistor group, wherein an input voltage is switched by the switching transistor group, the input terminal voltage is boosted, and the output terminal voltage is converted to a pre-charge. Set the voltage level. The current detecting circuit is coupled to the charging pump to sense the input of the charging pump and the output of the output, and generate a detection signal corresponding to the load. The state determining circuit is coupled to the current detecting circuit to generate a determining signal according to the detecting signal generated by the current detecting circuit. The control unit is coupled to the charge pump and the state determination circuit. The control unit receives an input control signal and the determination signal, and generates a first group of switching signals and a second group of switches according to the input control signal and the determination signal. The signal, a third set of switching signals, and a fourth set of switching signals are used to control the turning on and off of the switching transistor group of the charging pump.
依據本發明之另一特色,本發明提出一種充電泵之控制方法,包含步驟:(A)使用一電流偵測電路偵測一充電泵之電流,經由該電流偵測電路產生相對於該充電泵負載電流之一偵測訊號,其中,該充電泵具有一切換電晶體群;(B)使用一狀態判斷電路依據該電流偵測電路所產生之偵測訊號,以產生一判斷訊號;(C)使用一控制單元以接收一輸入控制訊號及該判斷訊號,並依據該輸入控制訊號 及該判斷訊號,產生一第一組切換訊號、一第二組切換訊號、一第三組切換訊號、及一第四組切換訊號,以控制該充電泵的該切換電晶體群的導通與關閉。 According to another feature of the present invention, the present invention provides a control method for a charge pump, comprising the steps of: (A) detecting a current of a charge pump using a current detecting circuit, and generating a current relative to the charge pump via the current detecting circuit One of the load current detection signals, wherein the charge pump has a switching transistor group; (B) using a state determination circuit to generate a determination signal according to the detection signal generated by the current detection circuit; (C) Using a control unit to receive an input control signal and the determination signal, and control the signal according to the input And the determining signal, generating a first group of switching signals, a second group of switching signals, a third group of switching signals, and a fourth group of switching signals to control the turning on and off of the switching transistor group of the charging pump .
100‧‧‧充電泵 100‧‧‧Charging pump
110‧‧‧控制電路 110‧‧‧Control circuit
120‧‧‧切換電晶體群 120‧‧‧Switching the transistor group
130‧‧‧被動元件群 130‧‧‧ Passive component group
300‧‧‧可減少切換損失之充電泵控制系統 300‧‧‧Charging pump control system with reduced switching losses
310‧‧‧充電泵 310‧‧‧Charging pump
320‧‧‧電流偵測電路 320‧‧‧ Current detection circuit
330‧‧‧狀態判斷電路 330‧‧‧State Judgment Circuit
340‧‧‧控制單元 340‧‧‧Control unit
311、313、315、317‧‧‧第一至第四子切換電晶體群 311, 313, 315, 317‧‧‧ first to fourth sub-switching transistor groups
321‧‧‧運算放大器 321‧‧‧Operational Amplifier
323‧‧‧第一偵測電晶體 323‧‧‧First detection transistor
325‧‧‧第二偵測電晶體 325‧‧‧Second detection transistor
327‧‧‧阻抗 327‧‧‧ Impedance
圖1係一習知充電泵之方塊圖。 Figure 1 is a block diagram of a conventional charge pump.
圖2為圖1中的充電泵的詳細電路圖。 2 is a detailed circuit diagram of the charge pump of FIG. 1.
圖3係本發明一種可減少切換損失之充電泵控制系統的方塊圖。 3 is a block diagram of a charge pump control system of the present invention that reduces switching losses.
圖4係本發明一種可減少切換損失之充電泵控制系統的電路圖。 4 is a circuit diagram of a charge pump control system of the present invention that reduces switching losses.
圖5係本發明一種2位元可減少切換損失之充電泵控制系統的電路圖。 Figure 5 is a circuit diagram of a 2-bit passive charge pump control system that reduces switching losses.
圖6係本發明一種充電泵之控制方法的流程圖。 Figure 6 is a flow chart showing a method of controlling a charge pump of the present invention.
圖3係本發明一種可減少切換損失之充電泵控制系統的方塊圖,該充電泵控制系統300包含一充電泵(Charge Pump)310、一電流偵測(Current Sensing)電路320、一狀態判斷電路(Status Detector)330、一控制單元(Controller)340。 3 is a block diagram of a charge pump control system capable of reducing switching loss according to the present invention. The charge pump control system 300 includes a charge pump 310, a current sensing circuit 320, and a state determination circuit. (Status Detector) 330, a control unit (Controller) 340.
一併參照圖4之充電泵控制系統300的電路圖,該充電泵310具有一輸入端(Vin)、一輸出端(VSP)、一 切換電晶體群(311、313、315、317)、一飛跨電容(Flying Capacitor)C0及一輸出穩壓電容(Decoupling Capacitor)C1,其係將一輸入電壓(Vin)利用該切換電晶體群進行切換,使該輸入端電壓(Vin)升壓,俾將該輸出端電壓轉換至一預設電壓位準。 Referring to the circuit diagram of the charge pump control system 300 of FIG. 4, the charge pump 310 has an input terminal (Vin), an output terminal (VSP), a switching transistor group (311, 313, 315, 317), and a fly. A Flying Capacitor C 0 and an Output Capacitor C 1 are used to switch an input voltage (Vin) by the switching transistor group to boost the input voltage (Vin).转换 Convert the output voltage to a preset voltage level.
該電流偵測電路320耦合至該充電泵310,以感測該充電泵之該輸入端(Vin)及該輸出端(VSP)之負載,俾產生對應該負載之一偵測訊號(VSENSE)。 The current detecting circuit 320 is coupled to the charging pump 310 to sense the input of the charging pump (Vin) and the output (VSP), and generate a detection signal (V SENSE ) corresponding to the load. .
該狀態判斷電路330耦合至電流偵測電路320,依據該電流偵測電路所產生之該偵測訊號(VSENSE),以產生一判斷訊號(VC)。 The state determining circuit 330 is coupled to the current detecting circuit 320, and generates a determining signal (V C ) according to the detecting signal (V SENSE ) generated by the current detecting circuit.
該控制單元340耦合至該充電泵310及該狀態判斷電路330,該控制單元340接收一輸入控制訊號(M)及該判斷訊號(VC),依據該輸入控制訊號及該判斷訊號,產生一第一組切換訊號、一第二組切換訊號、一第三組切換訊號、及一第四組切換訊號,用以控制該充電泵310的該切換電晶體群的導通與關閉。 The control unit 340 is coupled to the charge pump 310 and the state determination circuit 330. The control unit 340 receives an input control signal (M) and the determination signal (V C ), and generates a signal according to the input control signal and the determination signal. The first group of switching signals, a second group of switching signals, a third group of switching signals, and a fourth group of switching signals are used to control the turning on and off of the switching transistor group of the charging pump 310.
圖4係本發明一種可減少切換損失之充電泵控制系統300的電路圖。如圖4所示,該充電泵310具有一輸入端(Vin)、一輸出端(VSP)、一切換電晶體群(311、313、315、317)、一飛跨電容(Flying Capacitor)C0及一輸出穩壓電容(Decoupling Capacitor)C1、一第一開關S1及一第二開關S2,該切換電晶體群(311、313、315、317)耦合至該飛跨電容C0與該輸出穩壓電容C1,利用該切換電晶體群(311、313、315、 317)的導通與關閉,對該飛跨電容C0進行充放電(Charge/Discharge),進而在該輸出穩壓電容(Decoupling Capacitor)C1的一第一端(T11)產生出相對應倍率的電壓。 4 is a circuit diagram of a charge pump control system 300 of the present invention that reduces switching losses. As shown in FIG. 4, the charge pump 310 has an input terminal (Vin), an output terminal (VSP), a switching transistor group (311, 313, 315, 317), and a flying capacitor (Flying Capacitor) C 0 . and an output capacitor voltage regulator (Decoupling capacitor) C 1, a first switch S1 and a second switch S2, the group of the switching transistor (311,313,315,317) coupled to the flying capacitor to the output C 0 stabilizing capacitance C 1, with which the switching transistor group (311,313,315, 317) is turned on and off, the charge and discharge (charge / discharge) of the flying capacitor C 0, the output of the further stabilization capacitor ( decoupling Capacitor) C a first terminal (T11) 1 produces a voltage corresponding to the magnification.
前述的切換電晶體群(311、313、315、317)包含第一至第四子切換電晶體群(Sub-Switching)311、313、315、317,該第一至第四組切換訊號A1~AN、B1~BN、E1~EN、D1~DN分別連接施加至該第一至第四子切換電晶體群311、313、315、317。 The foregoing switching transistor group (311, 313, 315, 317) includes first to fourth sub-switching groups 311, 313, 315, 317, and the first to fourth group switching signals A1~ AN, B1 to BN, E1 to EN, and D1 to DN are respectively applied to the first to fourth sub-switching transistor groups 311, 313, 315, and 317.
該第一及該第三子切換電晶體群311、315耦合至該飛跨電容C0的一第一端T01,該第二及該第四子切換電晶體群313、317耦合至該飛跨電容C0的一第二端T02,該輸出穩壓電容C1的該第一端T11連接至該輸出端(VSP),並耦合至該第三子切換電晶體群315,其一第二端T12連接至一低電位(GND)。 The first and the third sub-switching transistor groups 311, 315 are coupled to a first end T01 of the flying capacitor C 0 , and the second and fourth sub-switching transistor groups 313 , 317 are coupled to the flying cross a second terminal of capacitor C T02 0, and the output of the first regulator capacitor C is connected to terminal T11 1 to the output terminal (the VSP), and coupled to the third sub-group of the switching transistor 315, a second end thereof T12 is connected to a low potential (GND).
該第一開關S1的一第一端T21耦合至該飛跨電容C0的該第一端T01,其一第二端T22耦合至該電流偵測電路320,該第二開關S2的一第一端T31耦合至該輸入端(Vin),其一第二端T32耦合至該第一開關S1的該第二端T22。 A first end T21 of the first switch S1 is coupled to the first end T01 of the flying capacitor C 0 , and a second end T22 is coupled to the current detecting circuit 320 , a first of the second switch S2 Terminal T31 is coupled to the input terminal (Vin) and a second terminal T32 is coupled to the second terminal T22 of the first switch S1.
如圖4所示,該第一子切換電晶體群311包含N個PMOS電晶體MP11~MP1N,N為正整數。該N個PMOS電晶體MP11~MP1N的閘極分別連接至該第一組切換訊號A1~AN。該N個PMOS電晶體MP11~MP1N的源極連接至該輸入端(Vin)。該N個PMOS電晶體MP11~MP1N的汲極連接至 該飛跨電容C0的第一端T01。該第一子切換電晶體群311內的電晶體MP10~MP1N之寬長比(W/L ratio)相同。 As shown in FIG. 4, the first sub-switching transistor group 311 includes N PMOS transistors MP11 to MP1N, and N is a positive integer. The gates of the N PMOS transistors MP11~MP1N are respectively connected to the first group of switching signals A1~AN. The sources of the N PMOS transistors MP11 to MP1N are connected to the input terminal (Vin). The drains of the N PMOS transistors MP11 to MP1N are connected to the first terminal T01 of the flying capacitor C 0 . The widths (W/L ratio) of the transistors MP10 to MP1N in the first sub-switching transistor group 311 are the same.
該第二子切換電晶體群313包含N個PMOS電晶體MP21~MP2N。該N個PMOS電晶體MP21~MP2N的閘極分別連接至該第二組切換訊號B1~BN。該N個PMOS電晶體MP11~MP1N的源極連接至該輸入端(Vin)。該N個PMOS電晶體MP21~MP2N的汲極連接至該飛跨電容C0的第二端T02。該第二子切換電晶體群313內的電晶體MP21~MP2N之寬長比(W/L ratio)相同。 The second sub-switching transistor group 313 includes N PMOS transistors MP21 to MP2N. The gates of the N PMOS transistors MP21~MP2N are respectively connected to the second group of switching signals B1~BN. The sources of the N PMOS transistors MP11 to MP1N are connected to the input terminal (Vin). The drains of the N PMOS transistors MP21 to MP2N are connected to the second terminal T02 of the flying capacitor C 0 . The widths (W/L ratio) of the transistors MP21 to MP2N in the second sub-switching transistor group 313 are the same.
該第三子切換電晶體群315包含N個PMOS電晶體MP31~MP3N。該N個PMOS電晶體MP31~MP3N的閘極分別連接至該第三組切換訊號E1~EN。該N個PMOS電晶體MP31~MP3N的源極連接至該飛跨電容C0的第一端T01。該N個PMOS電晶體MP31~MP3N的汲極連接至該輸出端(VSP)。該第三子切換電晶體群315內的電晶體MP31~MP3N之寬長比(W/L ratio)相同。 The third sub-switching transistor group 315 includes N PMOS transistors MP31 to MP3N. The gates of the N PMOS transistors MP31~MP3N are respectively connected to the third group of switching signals E1~EN. The sources of the N PMOS transistors MP31 MP MP3N are connected to the first terminal T01 of the flying capacitor C 0 . The drains of the N PMOS transistors MP31 to MP3N are connected to the output terminal (VSP). The widths (W/L ratio) of the transistors MP31 to MP3N in the third sub-switching transistor group 315 are the same.
該第四子切換電晶體群317包含N個NMOS電晶體MN11~MN1N。該N個NMOS電晶體MN11~MV1N的閘極分別連接至該第四組切換訊號D1~DN。該N個NMOS電晶體MN11~MV1N的源極連接至一低電位(GND)。該N個NMOS電晶體MN11~MV1N的汲極連接至該飛跨電容C0的第二端T02。該第四子切換電晶體群317內的電晶體MN11~MV1N之寬長比(W/L ratio)相同。 The fourth sub-switching transistor group 317 includes N NMOS transistors MN11 MN MN1N. The gates of the N NMOS transistors MN11 MV MV1N are respectively connected to the fourth group of switching signals D1 DN DN. The sources of the N NMOS transistors MN11 MV MV1N are connected to a low potential (GND). The drains of the N NMOS transistors MN11 MV MV1N are connected to the second terminal T02 of the flying capacitor C 0 . The widths (W/L ratio) of the transistors MN11 to MV1N in the fourth sub-switching transistor group 317 are the same.
該電流偵測電路320包含一運算放大器 (Operation Amplifier)321、一第一偵測電晶體323、一第二偵測電晶體325,及一阻抗327。該第一偵測電晶體323的源極連接至該輸入端(Vin),其閘極連接至該低電位(GND),其汲極連接至該第二偵測電晶體325的汲極及該運算放大器321的一非反相輸入端(+),該運算放大器321的一反相輸入端(-)連接至該第一開關S1的該第二端T22,其一輸出端連接至該第二偵測電晶體325的一閘極,該第二偵測電晶體325的源極連接至該阻抗327的一第一端,該阻抗327的一第二端連接至該低電位(GND)。由於該第一偵測電晶體323為PMOS電晶體,且其閘極連接至該低電位(GND),因此該第一偵測電晶體323恆為導通狀態,故該第一偵測電晶體323源極的電壓大小為該輸入端電壓(Vin)。該運算放大器321比較該輸入端電壓(Vin)及該第一開關S1的該第二端T22之電壓,以產生該偵測訊號(VSENSE)。 The current detecting circuit 320 includes an operational amplifier (amplifier) 321 , a first detecting transistor 323 , a second detecting transistor 325 , and an impedance 327 . The source of the first detecting transistor 323 is connected to the input terminal (Vin), the gate thereof is connected to the low potential (GND), and the drain is connected to the drain of the second detecting transistor 325 and the gate a non-inverting input terminal (+) of the operational amplifier 321 , an inverting input terminal (−) of the operational amplifier 321 is connected to the second terminal T22 of the first switch S1 , and an output terminal thereof is connected to the second terminal A gate of the detecting transistor 325 is connected. The source of the second detecting transistor 325 is connected to a first end of the impedance 327, and a second end of the impedance 327 is connected to the low potential (GND). Since the first detecting transistor 323 is a PMOS transistor and the gate thereof is connected to the low potential (GND), the first detecting transistor 323 is always in an on state, so the first detecting transistor 323 The voltage of the source is the voltage at the input (Vin). The operational amplifier 321 compares the voltage of the input terminal (Vin) with the voltage of the second terminal T22 of the first switch S1 to generate the detection signal (V SENSE ).
該狀態判斷電路330包含至少一個比較器(Comparator)與至少一個參考位準(Voltage reference),該至少一個比較器用以將該電流偵測電路320輸出之該偵測訊號與該至少一個參考位準(Voltage reference)做比較,進而產生該判斷訊號。 The state judging circuit 330 includes at least one comparator and at least one reference reference, and the at least one comparator is configured to output the detecting signal and the at least one reference level to the current detecting circuit 320. (Voltage reference) to make a comparison, and then generate the judgment signal.
該控制單元340於一第一相位時,控制該第一組切換訊號A1~AN、該第二組切換訊號B1~BN、該第三組切換訊號E1~EN、及該第四組切換訊號D1~DN,用以由該飛跨電容的該第一端對該飛跨電容C0充電。該控制單元340於一第二相位時,控制該第一組切換訊號A1~AN、該第二組切 換訊號B1~BN、該第三組切換訊號E1~EN、及該一第四組切換訊號D1~DN,用以由該飛跨電容C0的第二端對該飛跨電容充電。 The control unit 340 controls the first group of switching signals A1~AN, the second group of switching signals B1~BN, the third group of switching signals E1~EN, and the fourth group of switching signals D1 in a first phase. ~DN for charging the flying capacitor C 0 by the first end of the flying capacitor. The control unit 340 controls the first group of switching signals A1~AN, the second group of switching signals B1~BN, the third group of switching signals E1~EN, and the fourth group of switching signals in a second phase. D1~DN for charging the flying capacitor by the second end of the flying capacitor C 0 .
於該第一相位(Phase 1)時,該第二及第三子切換電晶體群313、315係為關閉,該第一及第四子切換電晶體群311、317中至少有一切換電晶體為導通。此時輸入電壓(VIN)會儲存在該飛跨電容C0上。於該第二相位(Phase 2)時,該第一及第四子切換電晶體群311、317係全部關閉,該第二及第三子切換電晶體群313、315係至少有一切換電晶體導通。此時在該第一相位(Phase 1)儲存至該飛跨電容C0上的電壓(VIN)會傳遞至輸出端(VSP),再加上該第二子切換電晶體群313的PMOS電晶體MP21~MP2N端也連接至輸入電壓(VIN),此時輸出電壓(VSP)將會為輸入電壓(VIN)的兩倍。 In the first phase (Phase 1), the second and third sub-switching transistor groups 313 and 315 are turned off, and at least one of the first and fourth sub-switching transistor groups 311 and 317 is switched. Turn on. At this time, the input voltage (VIN) is stored on the flying capacitor C 0 . In the second phase (Phase 2), the first and fourth sub-switching transistor groups 311, 317 are all turned off, and the second and third sub-switching transistor groups 313, 315 are at least one switching transistor turned on. . At this time, the voltage (VIN) stored in the first phase (Phase 1) to the flying capacitor C 0 is transmitted to the output terminal (VSP), and the PMOS transistor of the second sub-switching transistor group 313 is added. The MP21~MP2N terminal is also connected to the input voltage (VIN), and the output voltage (VSP) will be twice the input voltage (VIN).
於本實施例中,該第一子切換電晶體群內的電晶體之寬長比(W/L ratio)相同、該第二子切換電晶體群內的電晶體之寬長比(W/L ratio)相同、該第三子切換電晶體群內的電晶體之寬長比(W/L ratio)相同、該第四子切換電晶體群內的電晶體之寬長比(W/L ratio)相同,因此,當一個電晶體導通時,可以提供一電流I,以及當電晶體全部導通時,可以提供一電流N×I。當在重載(heavy load)時,可將相關的電晶體全部導通,用以使大的電流(例如:N×I)對該飛跨電容C0進行充電。當在輕載時,則可僅導通部分的電晶體,用以使較小的電流(例如:1×I)對該飛跨電容C0充電。 In this embodiment, the width-to-length ratio (W/L ratio) of the transistors in the first sub-switching transistor group is the same, and the width-to-length ratio of the transistors in the second sub-switching transistor group (W/L) The ratio is the same, the width-to-length ratio (W/L ratio) of the transistors in the third sub-switching transistor group is the same, and the width-to-length ratio (W/L ratio) of the transistors in the fourth sub-switching transistor group is the same The same, therefore, when a transistor is turned on, a current I can be supplied, and when the transistor is fully turned on, a current N × I can be supplied. When in heavy load, the relevant transistors can all be turned on to enable a large current (eg, N×I) to charge the flying capacitor C 0 . When at light load, only a portion of the transistor can be turned on to charge a small current (eg, 1×I) to the flying capacitor C 0 .
在切換的過程中,當PMOS電晶體MP11導通時,對應的PMOS電晶體MP21則關閉,因此該第一開關S1將會導通、以及該第二開關S2則被關閉,該電流偵測電路320將會感測出流經切換電晶體之電流與電壓,其中,感測的切換電晶體可為切換電晶體群裡的任一切換電晶體,進而會產生對應該負載之該偵測訊號(VSENSE)。 During the switching process, when the PMOS transistor MP11 is turned on, the corresponding PMOS transistor MP21 is turned off, so the first switch S1 will be turned on, and the second switch S2 is turned off, and the current detecting circuit 320 will be turned off. The current and voltage flowing through the switching transistor are sensed, wherein the sensing switching transistor can be any switching transistor in the switching transistor group, and the detection signal corresponding to the load is generated (V SENSE ).
該狀態判斷電路330接收該偵測訊號(VSENSE)。該狀態判斷電路330包含至少一個比較器(Comparator)與至少一個參考位準(Voltage reference),其中,該至少一個比較器將該電流偵測電路320輸出之該偵測訊號(VSENSE)與該至少一個參考位準(Voltage reference)做比較,進而產生該判斷訊號Vc。 The state determination circuit 330 receives the detection signal (VSENSE). The state judging circuit 330 includes at least one comparator and at least one reference reference, wherein the at least one comparator outputs the detection signal (V SENSE ) output by the current detecting circuit 320 At least one reference reference is compared to generate the determination signal Vc.
該狀態判斷電路330的比較器的數量K與子切換電晶體群中的N個電晶體的數量有關,其中,可以用公式K=log2(N)表示。例如,當子切換電晶體群中有8個電晶體時,此時則需3個比較器。該狀態判斷電路330會依據該偵測訊號(VSENSE)與參考位準(VREF1~VREFK)比較而產生一K位元之該判斷訊號(Vc),其中K為比較器的數量,該判斷訊號(Vc)連接施加至控制單元,用以產生相對應的控制訊號,也用以決定需多少電晶體須導通或關閉,進而達到最佳效能。 The number K of comparators of the state determination circuit 330 is related to the number of N transistors in the sub-switching transistor group, wherein it can be expressed by the formula K = log 2 ( N ). For example, when there are 8 transistors in the sub-switching transistor group, three comparators are required at this time. The state determining circuit 330 generates a K-bit of the determination signal (Vc) according to the detection signal (V SENSE ) and the reference level (V REF1 ~V REFK ), where K is the number of comparators, A decision signal (Vc) connection is applied to the control unit for generating a corresponding control signal, and is also used to determine how much transistor to be turned on or off for optimal performance.
當PMOS電晶體MP11關閉時,對應的PMOS電晶體MP21則導通,因此該第一開關S1將會被關閉,以及該第二開關S2則導通,此時無需感測切換電晶體之電 流,以避免產生誤動作。 When the PMOS transistor MP11 is turned off, the corresponding PMOS transistor MP21 is turned on, so the first switch S1 will be turned off, and the second switch S2 is turned on, and there is no need to sense the switching transistor voltage. Flow to avoid malfunctions.
由於充電泵處於重載時影響效率最大的因素為導通損耗(Conduction Loss),在輕載時處於影響效率最大的因素為切換損失(Switching Loss),故在重載時使用較多之電晶體導通,以減低其導通損失,以及在輕載時使用較少電晶體導通,以減低其切換損失,進而提高充電泵在輕載時的轉換效率。 Since the most important factor affecting the efficiency of the charge pump is the conduction loss (Conduction Loss), the most influential factor at the light load is the switching loss (Switching Loss), so more transistor conduction is used during heavy load. In order to reduce its conduction loss and use less transistor conduction at light loads to reduce its switching loss, thereby improving the conversion efficiency of the charge pump at light loads.
於本實施例中,切換電晶體群內的電晶體之寬長比(W/L ratio)為相同,於其他實施例中,該第一子切換電晶體群至第四子切換電晶體群內的電晶體之寬長比亦可為二進制加權(binary weight),相對應的控制訊號則為熟於該技術者基於本案前述之說明所能完成,故不再贅述。 In this embodiment, the width-to-length ratio (W/L ratio) of the transistors in the switching transistor group is the same. In other embodiments, the first sub-switching transistor group to the fourth sub-switching transistor group are The width-to-length ratio of the transistor can also be a binary weight, and the corresponding control signal can be completed by those skilled in the art based on the foregoing description of the present invention, and therefore will not be described again.
圖5係本發明一種2位元可減少切換損失之充電泵控制系統300的電路圖。如圖5所示,該狀態判斷電路330係使用兩個比較器,用以產生2位元的該判斷訊號Vc。 Figure 5 is a circuit diagram of a 2-bit charge pump control system 300 that reduces switching losses. As shown in FIG. 5, the state judging circuit 330 uses two comparators for generating the 2-bit decision signal Vc.
圖6係本發明一種充電泵之控制方法的流程圖。請一併參照前述充電泵控制系統300的電路圖。首先,於步驟(A)中,使用一電流偵測電路(Current Sensing)320偵測一充電泵(Charge Pump)310之電流,經由該電流偵測電路320產生相對應於該充電泵(Charge Pump)310之一偵測訊號VSENSE,其中,該充電泵(Charge Pump)310具有一切換電晶體群。 Figure 6 is a flow chart showing a method of controlling a charge pump of the present invention. Please refer to the circuit diagram of the aforementioned charge pump control system 300. First, in step (A), a current detecting circuit (Current Sensing) 320 is used to detect a current of a charge pump 310, and the current detecting circuit 320 generates a corresponding charging pump (Charge Pump). One of the 310 detection signals V SENSE , wherein the charge pump 310 has a switching transistor group.
於步驟(B)中,使用一狀態判斷電路(Status Detector)330依據該電流偵測電路320所產生之偵測訊號 VSENSE,以產生一判斷訊號Vc。 In the step (B), a state detection circuit (Status Detector) 330 is used to generate a determination signal Vc according to the detection signal V SENSE generated by the current detection circuit 320.
於步驟(C)中,使用一控制單元(Controller)340以接收一輸入控制訊號(M)及該判斷訊號Vc,並依據該輸入控制訊號(M)及該判斷訊號(Vc),產生一第一組切換訊號A1~AN、一第二組切換訊號B1~BN、一第三組切換訊號E1~EN、及一第四組切換訊號D1~DN,以控制該充電泵310的該切換電晶體群的導通與關閉,其中,該控制單元340依據該充電泵310的一輸出端(VSP)負載以導通該切換電晶體群中的電晶體數目。當該輸出端負載大時,該切換電晶體群中有較多之切換電晶體被導通,當該輸出端負載小時,該切換電晶體群中有較少之切換電晶體被導通。 In the step (C), a control unit (Controller) 340 is used to receive an input control signal (M) and the determination signal Vc, and generate a first according to the input control signal (M) and the determination signal (Vc). a switching signal A1~AN, a second group of switching signals B1~BN, a third group of switching signals E1~EN, and a fourth group of switching signals D1~DN to control the switching transistor of the charging pump 310 The group is turned on and off, wherein the control unit 340 is responsive to an output (VSP) load of the charge pump 310 to turn on the number of transistors in the switching transistor group. When the output load is large, more switching transistors in the switching transistor group are turned on, and when the output terminal is small, fewer switching transistors in the switching transistor group are turned on.
比較圖2的習知技術與圖4本案的技術可知,習知技術不論在負載大或負載小時,均用同一電流對飛跨電容進行充電,負載的情形並沒有列入考慮,容易造成切換損失,然而,本發明在該輸出端負載大時,該切換電晶體群中有較多之切換電晶體被導通,以較大電流對飛跨電容充電,當該輸出端負載小時,該切換電晶體群中有較少之切換電晶體被導通,以較小電流對飛跨電容充電,藉此減少切換損失。 Comparing the prior art of FIG. 2 with the technique of FIG. 4, the conventional technology uses the same current to charge the flying capacitor regardless of the load or the load, and the load is not taken into consideration, which easily causes switching loss. However, in the present invention, when the load at the output is large, more switching transistors in the switching transistor group are turned on, charging the flying capacitor with a larger current, and when the output is under load, the switching transistor There are fewer switching transistors in the group that are turned on, charging the flying capacitors with a smaller current, thereby reducing switching losses.
由上述說明可知,本發明是一種在切換式充電泵(Switched charge pump)中加入輕載效率提升機制(Light-load improvement function),用以改善輕載效率的電路與方法,進而減少因為切換電晶體在切換時脈(switching clock)時所產生的切換損失(Switching loss)。本發明將充電泵 裡之切換電晶體(Switching Transistor)細分成4個子切換電晶體,再利用電流偵測電路320偵測當時的負載大小。電流偵測電路320會依據流經切換電晶體的電流大小,以產生對應該負載之一偵測訊號。控制單元340進而控制子切換電晶體所需動作的數量,在大負載時會讓較多的子切換電晶體動作,在小負載時會降低子切換電晶體動作的數量,藉此控制電路的切換損失,如此可達到改善輕載效率的功能。 It can be seen from the above description that the present invention is a circuit and method for improving light load efficiency by adding a light-load improvement function to a switched charge pump, thereby reducing switching power. The switching loss generated by the crystal when switching the clock. The invention will charge the pump The switching transistor is subdivided into four sub-switching transistors, and the current detecting circuit 320 is used to detect the current load. The current detecting circuit 320 generates a signal corresponding to one of the loads according to the magnitude of the current flowing through the switching transistor. The control unit 340 further controls the number of required operations of the sub-switching transistor, and causes more sub-switching transistors to operate during a large load, and reduces the number of sub-switching transistor operations at a small load, thereby switching the control circuit. Loss, so you can achieve the function of improving light load efficiency.
上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。 The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.
310‧‧‧充電泵 310‧‧‧Charging pump
320‧‧‧電流偵測電路 320‧‧‧ Current detection circuit
330‧‧‧狀態判斷電路 330‧‧‧State Judgment Circuit
340‧‧‧控制單元 340‧‧‧Control unit
311、313、315、317‧‧‧第一至第四子切換電晶體群 311, 313, 315, 317‧‧‧ first to fourth sub-switching transistor groups
321‧‧‧運算放大器 321‧‧‧Operational Amplifier
323‧‧‧第一偵測電晶體 323‧‧‧First detection transistor
325‧‧‧第二偵測電晶體 325‧‧‧Second detection transistor
327‧‧‧阻抗 327‧‧‧ Impedance
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102145094A TWI499187B (en) | 2013-12-09 | 2013-12-09 | Control system and method for reducing switching loss in a charge pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102145094A TWI499187B (en) | 2013-12-09 | 2013-12-09 | Control system and method for reducing switching loss in a charge pump |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201524097A TW201524097A (en) | 2015-06-16 |
TWI499187B true TWI499187B (en) | 2015-09-01 |
Family
ID=53935853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102145094A TWI499187B (en) | 2013-12-09 | 2013-12-09 | Control system and method for reducing switching loss in a charge pump |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI499187B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101057403A (en) * | 2004-11-15 | 2007-10-17 | 皇家飞利浦电子股份有限公司 | Adiabatic cmos design |
TW200924374A (en) * | 2007-08-03 | 2009-06-01 | Wolfson Microelectronics Plc | Amplifier circuit and method of amplifying a signal in an amplifier circuit |
TW200934078A (en) * | 2007-12-11 | 2009-08-01 | Wolfson Microelectronics Plc | Charge pump circuit and methods of operation thereof and portable audio apparatus including charge pump circuits |
TW201037950A (en) * | 2009-04-01 | 2010-10-16 | Tpo Displays Corp | DC/DC converter, method for operating DC/DC converter, switch circuit of DC/DC converter and apparatus including DC/DC converter |
-
2013
- 2013-12-09 TW TW102145094A patent/TWI499187B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101057403A (en) * | 2004-11-15 | 2007-10-17 | 皇家飞利浦电子股份有限公司 | Adiabatic cmos design |
TW200924374A (en) * | 2007-08-03 | 2009-06-01 | Wolfson Microelectronics Plc | Amplifier circuit and method of amplifying a signal in an amplifier circuit |
TW200934078A (en) * | 2007-12-11 | 2009-08-01 | Wolfson Microelectronics Plc | Charge pump circuit and methods of operation thereof and portable audio apparatus including charge pump circuits |
TW201037950A (en) * | 2009-04-01 | 2010-10-16 | Tpo Displays Corp | DC/DC converter, method for operating DC/DC converter, switch circuit of DC/DC converter and apparatus including DC/DC converter |
Also Published As
Publication number | Publication date |
---|---|
TW201524097A (en) | 2015-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI437404B (en) | Voltage regulator | |
WO2018161834A1 (en) | Low-dropout regulators | |
KR100991699B1 (en) | Voltage regulator circuit and control method therefor | |
JP2018506955A (en) | Multilevel switching regulator circuit and method with finite state machine control | |
CN104914909B (en) | A kind of power control and method | |
KR101699772B1 (en) | Power converter and method of converting power | |
KR102151179B1 (en) | Hysteretic switching regulator | |
KR102220316B1 (en) | Dual-mode switching dc-dc converter and method of controlling the same | |
JP6098057B2 (en) | Power supply control circuit, power supply device, and power supply control method | |
JP2011223829A (en) | Control circuit for negative voltage charge pump circuit, negative voltage charge pump circuit, and electronic device and audio system each employing them | |
KR20080014681A (en) | Synchronous rectification switching regulator, and circuit and method for controlling the same | |
JP2014086073A (en) | Low drop-out regulator | |
KR20080011088A (en) | Constant voltage supply circuit | |
JP2015141463A (en) | Voltage regulator | |
US11881780B2 (en) | Dynamic biasing circuit for main comparator to improve load-transient and line-transient performance of buck converter in 100% mode | |
CN113839556B (en) | DC-DC converter and control circuit thereof | |
US10063132B1 (en) | Over-current protection circuit | |
KR101389854B1 (en) | Power supply control circuit | |
CN117389371B (en) | Dual-loop frequency compensation circuit suitable for LDO and compensation method thereof | |
CN103529895B (en) | A kind of High-stability voltage regulator | |
JP2016143341A (en) | Voltage regulator | |
JP2015012668A (en) | Soft start circuit and power supply device | |
WO2023246861A1 (en) | Dc-dc converter | |
JP2012070501A (en) | Voltage generation circuit | |
TWI499187B (en) | Control system and method for reducing switching loss in a charge pump |