TWI495045B - Stack capacitor and method of forming the same - Google Patents
Stack capacitor and method of forming the same Download PDFInfo
- Publication number
- TWI495045B TWI495045B TW100142253A TW100142253A TWI495045B TW I495045 B TWI495045 B TW I495045B TW 100142253 A TW100142253 A TW 100142253A TW 100142253 A TW100142253 A TW 100142253A TW I495045 B TWI495045 B TW I495045B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- opening
- supporting layer
- insulating layer
- supporting
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Description
本發明是有關於一種半導體結構及其製造方法,且特別是有關於一種具有強化結構之堆疊式電容器及其製造方法。The present invention relates to a semiconductor structure and a method of fabricating the same, and more particularly to a stacked capacitor having a reinforced structure and a method of fabricating the same.
DRAM的記憶單元是由彼此電性連接之MOS電晶體及電容器構成。電容器主要用以儲存代表資料之電荷,必須具備高電容量才可確保資料不易漏失。The memory cell of the DRAM is composed of an MOS transistor and a capacitor electrically connected to each other. Capacitors are mainly used to store the charge representing the data, and must have high capacitance to ensure that the data is not easily lost.
增加電容器的電荷儲存能力的方法除了增加介電材料之介電常數以及減少介電材料之厚度外,還可以利用增加電容器的表面積來達成。然而,隨著半導體技術持續朝向次微米及深次微米推進時,傳統的電容器製程已經不敷使用,因此研究人員開發具有高介電常數之介電材料以及增加電容器的表面積,以增加電容器的電容值。In addition to increasing the dielectric constant of the dielectric material and reducing the thickness of the dielectric material, the method of increasing the charge storage capacity of the capacitor can also be achieved by increasing the surface area of the capacitor. However, as semiconductor technology continues to move toward submicron and deep submicron advances, conventional capacitor processes are no longer sufficient, so researchers have developed dielectric materials with high dielectric constants and increased the surface area of capacitors to increase capacitor capacitance. value.
一般而言,增加表面積最直覺的方式就是增加電容高度,而此一方式將直接牽涉到電容器本身的機械強度不足的問題。當電容器的機械強度不足時,容易發現電容結構變形甚至傾倒的現象。有鑑於此,如何形成具有強化結構之堆疊式電容器,已得到業界的高度注意。In general, the most intuitive way to increase the surface area is to increase the capacitance height, and this approach will directly involve the problem of insufficient mechanical strength of the capacitor itself. When the mechanical strength of the capacitor is insufficient, it is easy to find the phenomenon that the capacitor structure is deformed or even dumped. In view of this, how to form a stacked capacitor having a reinforced structure has been highly noticed by the industry.
本發明提供一種堆疊式電容器及其製造方法。本發明之堆疊式電容器可以較習知之堆疊式電容器具有更高的高度以及更大的電容器表面積,且其強化結構可以避免電容結構變形甚至傾倒的現象。The invention provides a stacked capacitor and a method of manufacturing the same. The stacked capacitor of the present invention can have a higher height and a larger capacitor surface area than conventional stacked capacitors, and its reinforcing structure can avoid deformation or even dumping of the capacitor structure.
本發明提供一種堆疊式電容器的製造方法。於基底上依序形成第一支撐層、第一絕緣層、第二支撐層、第二絕緣層、第三支撐層及硬罩幕層。於第二支撐層、第二絕緣層、第三支撐層及硬罩幕層中形成至少一第一開口。於第一開口的側壁上形成間隙壁。以間隙壁為罩幕,於第一支撐層及第一絕緣層中形成第二開口。進行一後退製程,以加大第二開口於第一絕緣層中的寬度。移除間隙壁。於第二開口及第一開口中依序形成下電極、介電層及上電極。The present invention provides a method of fabricating a stacked capacitor. Forming a first support layer, a first insulating layer, a second supporting layer, a second insulating layer, a third supporting layer and a hard mask layer on the substrate. Forming at least one first opening in the second supporting layer, the second insulating layer, the third supporting layer, and the hard mask layer. A spacer is formed on the sidewall of the first opening. The second opening is formed in the first supporting layer and the first insulating layer by using the spacer as a mask. A back-off process is performed to increase the width of the second opening in the first insulating layer. Remove the spacers. A lower electrode, a dielectric layer and an upper electrode are sequentially formed in the second opening and the first opening.
本發明另提供一種堆疊式電容器,包括基底、第一支撐層、第一絕緣層、第二支撐層、第二絕緣層、第三支撐層、下電極、介電層及上電極。第一支撐層、第一絕緣層、第二支撐層、第二絕緣層及第三支撐層依序配置在基底上。第二支撐層、第二絕緣層及第三支撐層中具有第一開口,且第一支撐層及第一絕緣層中具有第二開口,且第二開口於第一絕緣層中的寬度大於第一開口的寬度。下電極、介電層及上電極依序配置在第二開口及第一開口中。The present invention further provides a stacked capacitor comprising a substrate, a first supporting layer, a first insulating layer, a second supporting layer, a second insulating layer, a third supporting layer, a lower electrode, a dielectric layer and an upper electrode. The first supporting layer, the first insulating layer, the second supporting layer, the second insulating layer and the third supporting layer are sequentially disposed on the substrate. The second support layer, the second insulating layer and the third support layer have a first opening, and the first support layer and the first insulating layer have a second opening therein, and the width of the second opening in the first insulating layer is greater than The width of an opening. The lower electrode, the dielectric layer and the upper electrode are sequentially disposed in the second opening and the first opening.
本發明又提供一種堆疊式電容器,包括基底、第一支撐層、第一絕緣層、第二支撐層、第三支撐層、下電極、介電層及上電極。第一支撐層、第二支撐層及第三支撐層依序配置在基底上,第一支撐層、第二支撐層及第三支撐層彼此分開,其中第二支撐層及第三支撐層中具有第一開口,第一支撐層中具有第二開口,且第一開口與第二開口相通。下電極配置在第二開口的內側及底部上及第一開口的內側上。介電層配置在第二開口中之下電極的內側及底部上以及配置在第一開口中之下電極的內側與外側上。上電極配置在第二開口中之下電極的內側及底部之介電層上以及配置在第一開口中之下電極的內側與外側之介電層上。The present invention further provides a stacked capacitor comprising a substrate, a first support layer, a first insulating layer, a second supporting layer, a third supporting layer, a lower electrode, a dielectric layer and an upper electrode. The first support layer, the second support layer and the third support layer are sequentially disposed on the substrate, and the first support layer, the second support layer and the third support layer are separated from each other, wherein the second support layer and the third support layer have The first opening has a second opening in the first supporting layer, and the first opening is in communication with the second opening. The lower electrodes are disposed on the inner side and the bottom of the second opening and on the inner side of the first opening. The dielectric layer is disposed on the inner side and the bottom of the lower electrode in the second opening and on the inner side and the outer side of the lower electrode disposed in the first opening. The upper electrode is disposed on the dielectric layer on the inner side and the bottom of the lower electrode in the second opening and on the inner and outer dielectric layers of the lower electrode in the first opening.
基於上述,本發明利用第一支撐層(底支撐層)、第二支撐層(中支撐層)及第三支撐層(上支撐層)組成的強化結構來增加堆疊式電容器的機械強度,以避免電容結構變形甚至傾倒的現象。此外,藉由第二支撐層(中支撐層)的設置,本發明之堆疊式電容器可以較習知之堆疊式電容器具有更高的高度(亦即,更大的電容值),且可藉由第一絕緣層及第二絕緣層的高度來控制所要的電容值。另外,藉由本發明之後退製程及脫模步驟可以大幅增加電容器之表面積,進而增加電容量。Based on the above, the present invention utilizes a reinforcing structure composed of a first supporting layer (bottom supporting layer), a second supporting layer (middle supporting layer) and a third supporting layer (upper supporting layer) to increase the mechanical strength of the stacked capacitor to avoid The phenomenon that the capacitor structure is deformed or even dumped. In addition, the stacked capacitor of the present invention can have a higher height (that is, a larger capacitance value) than the conventional stacked capacitor by the arrangement of the second supporting layer (the middle supporting layer), and can be The height of an insulating layer and a second insulating layer controls the desired capacitance value. In addition, the surface area of the capacitor can be greatly increased by the back-off process and the demolding step of the present invention, thereby increasing the capacitance.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
圖1A至1F為依據本發明一實施例所繪示之堆疊式電容器的製造方法的剖面示意圖。1A to 1F are schematic cross-sectional views showing a method of fabricating a stacked capacitor according to an embodiment of the invention.
請參照圖1A,於基底100上依序形成第一支撐層102、第一絕緣層104、第二支撐層106、第二絕緣層108、第三支撐層110及硬罩幕層112。基底100例如是矽基底。第一支撐層102、第二支撐層106及第三支撐層110的材料各自包括氮化矽。第一絕緣層104及第二絕緣層108的材料各自包括氧化矽。硬罩幕層112包括氮化矽罩幕層112a以及配置於氮化矽罩幕層112a上的碳罩幕層112b。形成上述疊層的方法包括進行化學氣相沈積(CVD)製程。Referring to FIG. 1A, a first support layer 102, a first insulating layer 104, a second support layer 106, a second insulating layer 108, a third supporting layer 110, and a hard mask layer 112 are sequentially formed on the substrate 100. The substrate 100 is, for example, a crucible substrate. The materials of the first support layer 102, the second support layer 106, and the third support layer 110 each include tantalum nitride. The materials of the first insulating layer 104 and the second insulating layer 108 each include yttrium oxide. The hard mask layer 112 includes a tantalum nitride mask layer 112a and a carbon mask layer 112b disposed on the tantalum nitride mask layer 112a. The method of forming the above laminate includes performing a chemical vapor deposition (CVD) process.
然後,於第二支撐層106、第二絕緣層108、第三支撐層110及硬罩幕層112中形成至少一第一開口114。第一開口114具有寬度W1。形成第一開口114的方法例如是先於碳罩幕層112b上形成圖案化光阻層(未繪示),然後,以形成圖案化光阻層為罩幕,進行一乾蝕刻製程。此外,於形成第一開口114的步驟中,同時移除硬罩幕層112中的部分碳罩幕層112b並殘留部分第二支撐層106於第一開口114底部。而剩餘之碳罩幕層112b及圖案化光阻層會於後續之灰化步驟中同時完全被移除。Then, at least one first opening 114 is formed in the second supporting layer 106, the second insulating layer 108, the third supporting layer 110, and the hard mask layer 112. The first opening 114 has a width W1. The method of forming the first opening 114 is, for example, forming a patterned photoresist layer (not shown) on the carbon mask layer 112b, and then forming a patterned photoresist layer as a mask to perform a dry etching process. Further, in the step of forming the first opening 114, a portion of the carbon mask layer 112b in the hard mask layer 112 is simultaneously removed and a portion of the second support layer 106 remains at the bottom of the first opening 114. The remaining carbon mask layer 112b and the patterned photoresist layer are simultaneously completely removed during the subsequent ashing step.
接著,於第一開口114的側壁上形成間隙壁116。形成間隙壁116的方法例如是先於氮化矽罩幕層112a上及第一開口114的側壁與底部上順應性地形成間隙壁材料層(未繪示)。間隙壁材料層例如是氮化鈦(TiN)層,且其形成方法例如是進行化學氣相沈積製程或原子層沈積(ALD)製程。然後,移除氮化矽罩幕層112a上及第一開口114底部上的間隙壁材料層。上述移除步驟例如是以第一開口114底部殘留的第二支撐層106為蝕刻中止層,進行一非等向性蝕刻製程。Next, a spacer 116 is formed on the sidewall of the first opening 114. The method of forming the spacers 116 is, for example, a layer of spacer material (not shown) is formed conformally on the sidewalls and the bottom of the first opening 114 on the tantalum nitride mask layer 112a. The spacer material layer is, for example, a titanium nitride (TiN) layer, and is formed by, for example, a chemical vapor deposition process or an atomic layer deposition (ALD) process. Then, a layer of spacer material on the tantalum nitride mask layer 112a and on the bottom of the first opening 114 is removed. The removing step is performed by, for example, using the second supporting layer 106 remaining at the bottom of the first opening 114 as an etch stop layer to perform an anisotropic etching process.
之後,請參照圖1B,以間隙壁116為罩幕,於第一支撐層102及第一絕緣層104中形成第二開口118。形成第二開口118的方法例如是以氮化矽罩幕層112a及間隙壁116為罩幕,進行一乾蝕刻製程。此外,於形成第二開口118的步驟中,同時移除部分硬罩幕層112中的氮化矽罩幕層112a以及殘留於第一開口114底部的第二支撐層106。當然,位於氮化矽罩幕層112a側壁的部分間隙壁116也會同時被移除掉。Thereafter, referring to FIG. 1B , the second opening 118 is formed in the first supporting layer 102 and the first insulating layer 104 with the spacers 116 as a mask. The method of forming the second opening 118 is performed by, for example, using a tantalum nitride mask layer 112a and a spacer 116 as a mask to perform a dry etching process. Further, in the step of forming the second opening 118, the tantalum nitride mask layer 112a in the partial hard mask layer 112 and the second support layer 106 remaining in the bottom of the first opening 114 are simultaneously removed. Of course, a portion of the spacers 116 on the sidewalls of the tantalum nitride mask layer 112a are also removed at the same time.
特別要注意的是,於形成第一開口114及第二開口118的步驟中,可以分別移除碳罩幕層112b及氮化矽罩幕層112a,而不需進行額外的步驟來移除硬罩幕層112。因此,可節省製程成本。It is particularly noted that in the step of forming the first opening 114 and the second opening 118, the carbon mask layer 112b and the tantalum nitride mask layer 112a may be separately removed without additional steps to remove the hard Mask layer 112. Therefore, process costs can be saved.
繼之,請參照圖1C,進行一後退製程,以加大第二開口118於第一絕緣層104中的寬度。後退製程包括濕蝕刻製程,例如是使用蝕刻緩衝液(buffer oxide etchant,BOE)、稀釋的氫氟酸(diluted hydrogen fluoride,DHF)或緩衝氫氟酸(BHF)等。具體言之,第二開口118包括第一支撐層102中的下部開口118a與第一絕緣層104中的上部開口118b。下部開口118a的寬度W3小於上部開口118b的寬度W2。下部開口118a的寬度W2實質上大於或等於第一開口114的寬度W1。此外,下部開口118a的寬度W3小於第一開口114的寬度W1。特別要注意的是,圖1C的後退製程可以增加後續形成之下電極120的表面積,進而增加電容量。另外,後退製程使得上部開口118b的寬度加大至W2,亦可增加製程裕度(process window)。Then, referring to FIG. 1C, a rewinding process is performed to increase the width of the second opening 118 in the first insulating layer 104. The back-off process includes a wet etching process, such as using buffer oxide etchant (BOE), diluted hydrogen fluoride (DHF), or buffered hydrofluoric acid (BHF). In particular, the second opening 118 includes a lower opening 118a in the first support layer 102 and an upper opening 118b in the first insulating layer 104. The width W3 of the lower opening 118a is smaller than the width W2 of the upper opening 118b. The width W2 of the lower opening 118a is substantially greater than or equal to the width W1 of the first opening 114. Further, the width W3 of the lower opening 118a is smaller than the width W1 of the first opening 114. It is particularly noted that the back-off process of FIG. 1C can increase the surface area of the electrode 120 that is subsequently formed, thereby increasing the capacitance. In addition, the back-up process increases the width of the upper opening 118b to W2, and also increases the process window.
接著,請參照圖1D,移除間隙壁116。移除間隙壁116的方法例如是進行濕蝕刻製程,可以使用雙氧水及硫酸的混合液。然後,於第二開口118及第一開口114中順應性地形成下電極120。下電極120配置於第二開口118之內側及底面上以及第一開口114之內側上。亦即,下電極120為類似中空的圓柱形狀。下電極120的材料例如是氮化鈦。形成下電極120的方法例如是進行化學氣相沈積製程。Next, referring to FIG. 1D, the spacers 116 are removed. The method of removing the spacers 116 is, for example, a wet etching process, and a mixture of hydrogen peroxide and sulfuric acid can be used. Then, the lower electrode 120 is conformally formed in the second opening 118 and the first opening 114. The lower electrode 120 is disposed on the inner side and the bottom surface of the second opening 118 and on the inner side of the first opening 114. That is, the lower electrode 120 has a hollow cylindrical shape. The material of the lower electrode 120 is, for example, titanium nitride. The method of forming the lower electrode 120 is, for example, a chemical vapor deposition process.
之後,請參照圖1E,進行一脫模(mold strip)步驟,以移除第二絕緣層108並暴露出部分下電極120。脫模步驟將參照圖2的上視圖與圖1E的剖面圖詳細說明之。圖2繪示多個堆疊式電容器的示意圖,其中(例如但不限於)配置有多個第一開口114以及一個第三開口122。首先,於第二絕緣層108與第三支撐層110中形成至少一第三開口122(如圖2所示)。以圖2的上視圖來看,第三開口122與部分第一開口114重疊。形成第三開口122的方法例如是先於基底100上形成圖案化光阻層(未繪示),然後,以圖案化光阻層為罩幕以及第二支撐層106為蝕刻中止層,進行一乾蝕刻製程。接著,進行濕蝕刻製程,從第三開口122灌入蝕刻液,以移除第二絕緣層108並暴露出部分下電極120(即曝露出第一開口114中之下電極120的外側)。此時,於完全移除第二絕緣層108之後,形成一個上部鏤空的中間結構,以第三支撐層110、第二支撐層106、第一絕緣層104與下電極120支托整個架構。Thereafter, referring to FIG. 1E, a mold stripping step is performed to remove the second insulating layer 108 and expose a portion of the lower electrode 120. The demolding step will be described in detail with reference to the upper view of Fig. 2 and the cross-sectional view of Fig. 1E. 2 illustrates a schematic diagram of a plurality of stacked capacitors, such as, but not limited to, a plurality of first openings 114 and a third opening 122. First, at least a third opening 122 (shown in FIG. 2) is formed in the second insulating layer 108 and the third supporting layer 110. Viewed from the top view of FIG. 2, the third opening 122 overlaps with a portion of the first opening 114. The method for forming the third opening 122 is, for example, forming a patterned photoresist layer (not shown) on the substrate 100, and then performing a pattern by using the patterned photoresist layer as a mask and the second supporting layer 106 as an etch stop layer. Etching process. Next, a wet etching process is performed to inject an etchant from the third opening 122 to remove the second insulating layer 108 and expose a portion of the lower electrode 120 (ie, expose the outside of the lower electrode 120 in the first opening 114). At this time, after the second insulating layer 108 is completely removed, an upper hollow intermediate structure is formed, and the third support layer 110, the second support layer 106, the first insulating layer 104 and the lower electrode 120 support the entire structure.
繼之,請參照圖1F,於下電極120上順應性地形成介電層124及上電極126。介電層124及上電極126更覆蓋第三支撐層110之頂部。介電層124為高介電常數層,其材料例如為氧化鉿(HfO)、氧化鋯(ZrO)、氧化鋁(AlO)、氮化鋁(AlN)、氧化鈦(TiO)、氧化鑭(LaO)、氧化釔(YO)、氧化釓(GdO)、氧化鉭(TaO)或其組合。上電極126的材料例如是氮化鈦。形成介電層124及上電極126的方法包括進行原子層沈積(ALD)製程。Next, referring to FIG. 1F, the dielectric layer 124 and the upper electrode 126 are conformally formed on the lower electrode 120. The dielectric layer 124 and the upper electrode 126 further cover the top of the third support layer 110. The dielectric layer 124 is a high dielectric constant layer, and the material thereof is, for example, hafnium oxide (HfO), zirconium oxide (ZrO), aluminum oxide (AlO), aluminum nitride (AlN), titanium oxide (TiO), or lanthanum oxide (LaO). ), yttrium oxide (YO), yttrium oxide (GdO), yttrium oxide (TaO) or a combination thereof. The material of the upper electrode 126 is, for example, titanium nitride. The method of forming the dielectric layer 124 and the upper electrode 126 includes performing an atomic layer deposition (ALD) process.
特別要說明的是,在不進行脫模步驟的情況下,由於第二絕緣層108的存在,因此介電層124僅可以形成於第二開口118中之下電極120的內側及底部上以及形成於第一開口114中之下電極120的內側上。而在進行脫模步驟的情況下,由於已移除第二絕緣層108,因此介電層124可以更形成於第一開口114中之下電極120的外側上。In particular, the dielectric layer 124 can be formed only on the inner side and the bottom of the lower electrode 120 in the second opening 118 and formed by the presence of the second insulating layer 108 without performing the demolding step. On the inner side of the lower electrode 120 in the first opening 114. In the case where the demolding step is performed, since the second insulating layer 108 has been removed, the dielectric layer 124 may be formed on the outer side of the lower electrode 120 in the first opening 114.
類似地,在不進行脫模步驟的情況下,上電極120僅可以形成於第二開口118中之下電極120的內側及底部之介電層124上以及形成於第一開口114中之下電極120的內側之介電層124上。而在進行脫模步驟的情況下,上電極120可以更形成於第一開口114中之下電極120的外側之介電層124上。Similarly, the upper electrode 120 can be formed only on the dielectric layer 124 on the inner and bottom sides of the lower electrode 120 in the second opening 118 and on the lower electrode in the first opening 114 without performing the demolding step. On the inner dielectric layer 124 of 120. In the case where the demolding step is performed, the upper electrode 120 may be formed on the dielectric layer 124 on the outer side of the lower electrode 120 in the first opening 114.
換言之,在進行圖1E的脫模步驟之後,介電層124及上電極126可以更形成於脫模步驟中所曝露的下電極120上,以增加電容器之表面積,進而增加電容量。至此,完成本發明之堆疊式電容器的製作。In other words, after performing the demolding step of FIG. 1E, the dielectric layer 124 and the upper electrode 126 may be further formed on the lower electrode 120 exposed in the demolding step to increase the surface area of the capacitor, thereby increasing the capacitance. So far, the fabrication of the stacked capacitor of the present invention has been completed.
接下來,可以於上電極126上形成鎢層(未繪示),以將多個堆疊式電容器的頂部密封。然後,於鎢層上形成保護層(未繪示)。保護層的材料例如是氮氧化矽,且其形成方法例如是進行化學氣相沈積製程。Next, a tungsten layer (not shown) may be formed on the upper electrode 126 to seal the tops of the plurality of stacked capacitors. Then, a protective layer (not shown) is formed on the tungsten layer. The material of the protective layer is, for example, bismuth oxynitride, and the formation method thereof is, for example, a chemical vapor deposition process.
以下,將說明本發明之堆疊式電容器的結構。在不進行圖1E之脫模步驟的情況下,堆疊式電容器包括基底100、第一支撐層102、第一絕緣層104、第二支撐層106、第二絕緣層108、第三支撐層110、下電極120、介電層124及上電極126。第一支撐層102、第一絕緣層104、第二支撐層106、第二絕緣層108及第三支撐層110依序配置在基底100上。第二支撐層106、第二絕緣層108及第三支撐層110中具有第一開口114,且第一支撐層102及第一絕緣層104中具有第二開口118,且第二開口118於第一絕緣層104中的寬度W2大於第一開口的寬度W1(如圖1C所示)。下電極120、介電層124及上電極126依序配置在第二開口118及第一開口114中。第一開口114具有第一高度H1,第二開口118具有第二高度H2,且第一高度H1可大於、等於或小於第二高度H2。Hereinafter, the structure of the stacked capacitor of the present invention will be explained. The stacked capacitor includes a substrate 100, a first supporting layer 102, a first insulating layer 104, a second supporting layer 106, a second insulating layer 108, a third supporting layer 110, without performing the demolding step of FIG. 1E. Lower electrode 120, dielectric layer 124 and upper electrode 126. The first supporting layer 102, the first insulating layer 104, the second supporting layer 106, the second insulating layer 108, and the third supporting layer 110 are sequentially disposed on the substrate 100. The first support layer 106, the second insulating layer 108, and the third support layer 110 have a first opening 114 therein, and the first support layer 102 and the first insulating layer 104 have a second opening 118 therein, and the second opening 118 is in the first The width W2 in an insulating layer 104 is greater than the width W1 of the first opening (as shown in FIG. 1C). The lower electrode 120, the dielectric layer 124, and the upper electrode 126 are sequentially disposed in the second opening 118 and the first opening 114. The first opening 114 has a first height H1, the second opening 118 has a second height H2, and the first height H1 may be greater than, equal to, or less than the second height H2.
另一方面,在進行圖1E之脫模步驟的情況下,如圖1F所示,堆疊式電容器包括基底100、第一支撐層102、第一絕緣層104、第二支撐層106、第三支撐層110、下電極120、介電層124及上電極126。第一支撐層102、第二支撐層106及第三支撐層110依序配置在基底100上,第一支撐層102、第二支撐層106及第三支撐層110彼此分開,其中第二支撐層106及第三支撐層110中具有第一開口114,第一支撐層102中具有第二開口118,且第一開口114與第二開口118相通。下電極120配置在第二開口118的內側及底部上及第一開口114的內側上。介電層124配置在第二開口118中之下電極120的內側及底部上以及配置在第一開口118中之下電極120的內側與外側上。上電極126配置在第二開口118中之下電極120的內側及底部之介電層124上以及配置在第一開口114中之下電極120的內側與外側之介電層124上。此外,第一絕緣層104配置於第一支撐層102與第二支撐層106之間。第二開口118於第一絕緣層104中的寬度W2大於第一開口114的寬度W1(如圖1C所示)。第一開口114具有第一高度H1,第二開口118具有第二高度H2,且第一高度H1可大於、等於或小於第二高度H2。On the other hand, in the case where the demolding step of FIG. 1E is performed, as shown in FIG. 1F, the stacked capacitor includes a substrate 100, a first supporting layer 102, a first insulating layer 104, a second supporting layer 106, and a third support. Layer 110, lower electrode 120, dielectric layer 124, and upper electrode 126. The first support layer 102, the second support layer 106, and the third support layer 110 are sequentially disposed on the substrate 100. The first support layer 102, the second support layer 106, and the third support layer 110 are separated from each other, wherein the second support layer The first support layer 102 has a first opening 114 therein, and the first support layer 102 has a second opening 118 therein, and the first opening 114 communicates with the second opening 118. The lower electrode 120 is disposed on the inner side and the bottom of the second opening 118 and on the inner side of the first opening 114. The dielectric layer 124 is disposed on the inner side and the bottom of the lower electrode 120 in the second opening 118 and on the inner side and the outer side of the lower electrode 120 in the first opening 118. The upper electrode 126 is disposed on the inner and bottom dielectric layers 124 of the lower electrode 120 in the second opening 118 and on the inner and outer dielectric layers 124 of the lower electrode 120 in the first opening 114. In addition, the first insulating layer 104 is disposed between the first support layer 102 and the second support layer 106 . The width W2 of the second opening 118 in the first insulating layer 104 is greater than the width W1 of the first opening 114 (as shown in FIG. 1C). The first opening 114 has a first height H1, the second opening 118 has a second height H2, and the first height H1 may be greater than, equal to, or less than the second height H2.
綜上所述,本發明利用第一支撐層(底支撐層)、第二支撐層(中支撐層)及第三支撐層(上支撐層)組成的強化結構來增加堆疊式電容器的機械強度,以避免電容結構變形甚至傾倒的現象。此外,藉由第二支撐層(中支撐層)的設置,本發明之堆疊式電容器可以較習知之堆疊式電容器具有更高的高度(亦即,更大的電容值),且可藉由第一絕緣層及第二絕緣層的高度來控制所要的電容值。另外,藉由本發明之後退製程(圖1C)及脫模步驟(圖1E)可以大幅增加電容器之表面積,進而增加電容量。In summary, the present invention utilizes a reinforcing structure composed of a first supporting layer (bottom support layer), a second supporting layer (middle supporting layer), and a third supporting layer (upper supporting layer) to increase the mechanical strength of the stacked capacitor. To avoid deformation or even dumping of the capacitor structure. In addition, the stacked capacitor of the present invention can have a higher height (that is, a larger capacitance value) than the conventional stacked capacitor by the arrangement of the second supporting layer (the middle supporting layer), and can be The height of an insulating layer and a second insulating layer controls the desired capacitance value. In addition, the surface area of the capacitor can be greatly increased by the back-off process (Fig. 1C) and the demolding step (Fig. 1E) of the present invention, thereby increasing the capacitance.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100...基底100. . . Base
102...第一支撐層102. . . First support layer
104...第一絕緣層104. . . First insulating layer
106...第二支撐層106. . . Second support layer
108...第二絕緣層108. . . Second insulating layer
110...第三支撐層110. . . Third support layer
112...硬罩幕層112. . . Hard mask layer
112a...氮化矽罩幕層112a. . . Tantalum nitride mask layer
112b...碳罩幕層112b. . . Carbon mask
114...第一開口114. . . First opening
116...間隙壁116. . . Clearance wall
118...第二開口118. . . Second opening
120...下電極120. . . Lower electrode
122...第三開口122. . . Third opening
124...介電層124. . . Dielectric layer
126...上電極126. . . Upper electrode
W1、W2、W3...寬度W1, W2, W3. . . width
H1、H2...高度H1, H2. . . height
圖1A至1F為依據本發明一實施例所繪示之堆疊式電容器的製造方法的剖面示意圖。1A to 1F are schematic cross-sectional views showing a method of fabricating a stacked capacitor according to an embodiment of the invention.
圖2為依據本發明一實施例所繪示之進行脫模步驟的上視示意圖。2 is a top plan view showing a demolding step according to an embodiment of the invention.
100...基底100. . . Base
102...第一支撐層102. . . First support layer
104...第一絕緣層104. . . First insulating layer
106...第二支撐層106. . . Second support layer
110...第三支撐層110. . . Third support layer
114...第一開口114. . . First opening
118...第二開口118. . . Second opening
120...下電極120. . . Lower electrode
124...介電層124. . . Dielectric layer
126...上電極126. . . Upper electrode
H1、H2...高度H1, H2. . . height
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100142253A TWI495045B (en) | 2011-11-18 | 2011-11-18 | Stack capacitor and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100142253A TWI495045B (en) | 2011-11-18 | 2011-11-18 | Stack capacitor and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201322373A TW201322373A (en) | 2013-06-01 |
TWI495045B true TWI495045B (en) | 2015-08-01 |
Family
ID=49032483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100142253A TWI495045B (en) | 2011-11-18 | 2011-11-18 | Stack capacitor and method of forming the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI495045B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI795025B (en) * | 2021-10-12 | 2023-03-01 | 華邦電子股份有限公司 | Memory device and method of forming the same |
US11974424B2 (en) | 2021-11-30 | 2024-04-30 | Winbond Electronics Corp. | Memory device and method of forming the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW432594B (en) * | 1999-07-31 | 2001-05-01 | Taiwan Semiconductor Mfg | Manufacturing method for shallow trench isolation |
US7439125B2 (en) * | 2005-05-31 | 2008-10-21 | Infineon Technologies Ag | Contact structure for a stack DRAM storage capacitor |
TW201120999A (en) * | 2009-12-03 | 2011-06-16 | Winbond Electronics Corp | Buried wordline DRAM with stacked capacitor structures and fabrication methods for stacked capacitor structures |
-
2011
- 2011-11-18 TW TW100142253A patent/TWI495045B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW432594B (en) * | 1999-07-31 | 2001-05-01 | Taiwan Semiconductor Mfg | Manufacturing method for shallow trench isolation |
US7439125B2 (en) * | 2005-05-31 | 2008-10-21 | Infineon Technologies Ag | Contact structure for a stack DRAM storage capacitor |
TW201120999A (en) * | 2009-12-03 | 2011-06-16 | Winbond Electronics Corp | Buried wordline DRAM with stacked capacitor structures and fabrication methods for stacked capacitor structures |
Also Published As
Publication number | Publication date |
---|---|
TW201322373A (en) | 2013-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210035983A1 (en) | Semiconductor memory device and method of manufacturing the same | |
CN101937837B (en) | Semiconductor device having a high aspect cylindrical capacitor and method for fabricating the same | |
CN103151244B (en) | Stackable capacitor and manufacturing method thereof | |
TWI654767B (en) | Capacitor structure and method of manufacturing the same | |
US10566415B2 (en) | Capacitor structure and method of manufacturing the same | |
US8623738B2 (en) | Capacitor structure and fabrication method thereof | |
CN108962824B (en) | Semiconductor element and preparation method thereof | |
TW201803029A (en) | Three-dimensional non-volatile memory and manufacturing method thereof | |
KR20210085699A (en) | Semiconductor device including a storage node electrode having a step and manufacturing method the same | |
WO2021175154A1 (en) | Capacitor and forming method therefor, and dram and forming method therefor | |
KR101725222B1 (en) | Method of manufacturing semiconductor device | |
TWI495045B (en) | Stack capacitor and method of forming the same | |
TWI564996B (en) | Semiconductor device and manufacturing method thereof | |
US8183614B2 (en) | Stack capacitor of memory device and fabrication method thereof | |
CN107039266B (en) | Method for manufacturing semiconductor device | |
US7049205B2 (en) | Stacked capacitor and method for preparing the same | |
US20070231998A1 (en) | Method for preparing a capacitor structure of a semiconductor memory | |
US11974424B2 (en) | Memory device and method of forming the same | |
US20070284643A1 (en) | Capacitor structure of semiconductor memory and method for preparing the same | |
TWI553886B (en) | Memory device and method of fabricating the same | |
TWI506735B (en) | Method of manufacturing non-volatile memory | |
TWI795025B (en) | Memory device and method of forming the same | |
US11997845B2 (en) | Method for manufacturing semiconductor structure and semiconductor structure | |
US20230262962A1 (en) | Integrated circuit device | |
KR20080098895A (en) | Method for fabricating capacitor having storage electrode mixed concave and cylinder |