TWI494561B - Method of mapping coordinates for inspecting a wafer - Google Patents

Method of mapping coordinates for inspecting a wafer Download PDF

Info

Publication number
TWI494561B
TWI494561B TW102147190A TW102147190A TWI494561B TW I494561 B TWI494561 B TW I494561B TW 102147190 A TW102147190 A TW 102147190A TW 102147190 A TW102147190 A TW 102147190A TW I494561 B TWI494561 B TW I494561B
Authority
TW
Taiwan
Prior art keywords
dies
reticle
blank
die
coordinates
Prior art date
Application number
TW102147190A
Other languages
Chinese (zh)
Other versions
TW201525452A (en
Inventor
Iyung Jiang
Yuchao Lin
Wenchi Lo
Chaohuang Lin
Yukai Lan
Original Assignee
Chroma Ate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chroma Ate Inc filed Critical Chroma Ate Inc
Priority to TW102147190A priority Critical patent/TWI494561B/en
Publication of TW201525452A publication Critical patent/TW201525452A/en
Application granted granted Critical
Publication of TWI494561B publication Critical patent/TWI494561B/en

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

用於檢測晶圓之比對座標之方法Method for detecting alignment coordinates of wafers

本發明是有關一種比對座標之方法,且特別是有關一種用於檢測晶圓之比對座標之方法。The present invention relates to a method of aligning coordinates, and more particularly to a method for detecting aligned coordinates of a wafer.

習知以自動光學檢測裝置(Automated Optical Inspection;AOI)檢測晶圓之晶粒時,需以光罩檔提供的光罩晶粒位置比對晶圓之空白晶粒位置。然而,晶圓在檢測前的製程難免會發生破片或來料不良的情形,導致晶圓之空白晶粒的數量變多,使得光罩晶粒的位置與晶圓之空白晶粒的位置比對失敗。Conventionally, when an automatic optical inspection device (AOI) is used to detect a die of a wafer, the position of the mask die provided by the mask file is compared with the position of the blank die of the wafer. However, in the process before the wafer is inspected, it is inevitable that fragmentation or poor material feeding will occur, resulting in a large number of blank crystal grains of the wafer, so that the position of the mask crystal grains is compared with the position of the blank crystal grains of the wafer. failure.

因此,技術人員需以手動的方式指定空白晶粒的位置,才能讓有問題之晶圓(例如部分破片的晶圓)在檢測後繼續施以後續的製程。然而,以人工的方式指定空白晶粒的位置容易發生指定錯誤的情形,不僅會耗費大量的檢測時間,還會導致良率難以提升。Therefore, the technician needs to manually specify the position of the blank die in order to allow the problematic wafer (eg, a partially fragmented wafer) to continue to be subjected to subsequent processes after inspection. However, manually specifying the position of the blank die is prone to a specified error, which not only consumes a large amount of detection time, but also causes the yield to be difficult to increase.

本發明之一技術態樣為一種用於檢測晶圓之比對座標之方法。One aspect of the present invention is a method for detecting alignment coordinates of a wafer.

根據本發明一實施方式,一種用於檢測晶圓之比對座標之方法,包含下列步驟:(a)取得對應晶圓之複數個光罩晶粒的座標。(b)利用光罩晶粒的座標計算光罩晶粒任一者到其他光罩晶粒的複數個第一距離。(c)根據掃瞄晶圓之位置資料,找到複數個空白晶粒。(d)根據第一距離比對空白晶粒與光罩晶粒,以得到複數個比對符合次數。(e)當比對符合次數之最高者產生時,利用光罩晶粒的座標取得空白晶粒的座標。(f)計算空白晶粒之一者的座標與參考座標間的第二距離。(g)根據第二距離調整參考座標以對應光罩晶粒的座標。According to an embodiment of the invention, a method for detecting a pair of coordinates of a wafer includes the steps of: (a) obtaining coordinates of a plurality of mask dies corresponding to the wafer. (b) Using the coordinates of the reticle die to calculate a plurality of first distances from either of the reticle dies to the other reticle dies. (c) Find a plurality of blank dies based on the location of the scanned wafer. (d) Comparing the blank dies and the reticle grains according to the first distance to obtain a plurality of alignment coincidence times. (e) When the highest match is generated, the coordinates of the blank die are obtained using the coordinates of the mask die. (f) Calculating a second distance between the coordinates of one of the blank dies and the reference coordinate. (g) adjusting the reference coordinates according to the second distance to correspond to the coordinates of the reticle die.

在本發明一實施方式中,上述步驟(c)包含:從點測程序取得掃瞄晶圓之位置資料。In an embodiment of the invention, the step (c) includes: obtaining a position data of the scan wafer from the spot test program.

在本發明一實施方式中,上述步驟(d)包含:移動光罩晶粒至空白晶粒,使光罩晶粒的至少一者與空白晶粒之一者重疊。In an embodiment of the invention, the step (d) includes moving the reticle die to the blank dies to overlap at least one of the reticle grains and one of the blank dies.

在本發明一實施方式中,上述步驟(e)包含:排序比對符合次數。In an embodiment of the invention, the step (e) includes: sorting the matching times.

在本發明一實施方式中,上述步驟(e)包含:紀錄比對符合次數之最高者產生時光罩晶粒與空白晶粒的位置狀態。In an embodiment of the invention, the step (e) includes: recording a position state of the mask dies and the blank dies when the highest one of the matching times is generated.

在本發明一實施方式中,上述步驟(c)包含:使用自動光學檢測裝置掃瞄晶圓。In an embodiment of the invention, the step (c) comprises: scanning the wafer using an automatic optical detecting device.

在本發明一實施方式中,上述步驟(g)包含:自動光學檢測裝置的感光元件根據參考座標移動到晶圓的原點晶粒。In an embodiment of the invention, the step (g) comprises: moving the photosensitive element of the automatic optical detecting device to the origin die of the wafer according to the reference coordinate.

在本發明一實施方式中,上述步驟(b)包含:紀錄光罩晶粒任一者到其他光罩晶粒的第一距離。In an embodiment of the invention, the step (b) includes: recording a first distance from the reticle die to the other reticle die.

在本發明一實施方式中,在上述步驟(c)中,空白晶粒的數量與光罩晶粒的數量相同。In an embodiment of the invention, in the above step (c), the number of blank dies is the same as the number of reticle grains.

在本發明一實施方式中,在上述步驟(e)中,比對符合次數之最高者等於空白晶粒之數量。In an embodiment of the invention, in the above step (e), the highest of the matching times is equal to the number of blank dies.

在本發明上述實施方式中,由於光罩晶粒的座標能計算出光罩晶粒任一者到其他光罩晶粒的第一距離,而第一距離可用來比對空白晶粒與光罩晶粒,當比對符合次數之最高者產生時,表示空白晶粒與光罩晶粒的位置對應,因此能利用光罩晶粒的座標取得空白晶粒的座標。如此一來,空白晶粒的座標與參考座標間的第二距離可被計算出,且參考座標可根據第二距離調整以符合該些光罩晶粒的座標。本發明之比對座標的方法可由光罩晶粒的座標取得空白晶粒的座標,且能以自動的方式得到空白晶粒的座標,讓晶圓在檢測後可取得參考座標供後續的製程採用。In the above embodiment of the present invention, since the coordinates of the reticle die can calculate the first distance from the reticle die to the other reticle die, the first distance can be used to compare the blank die and the mask crystal. The grain, when the highest match is produced, indicates that the blank die corresponds to the position of the mask die, so that the coordinates of the blank die can be obtained by the coordinates of the mask die. In this way, the second distance between the coordinates of the blank die and the reference coordinate can be calculated, and the reference coordinate can be adjusted according to the second distance to conform to the coordinates of the mask dies. The method for comparing coordinates of the present invention can obtain the coordinates of the blank crystal grains from the coordinates of the mask die, and can obtain the coordinates of the blank crystal grains in an automatic manner, so that the wafer can obtain the reference coordinates after the detection for subsequent processes. .

因此,可節省檢測時間並提升晶圓的良率。Therefore, the detection time can be saved and the yield of the wafer can be improved.

110‧‧‧晶圓110‧‧‧ wafer

112a‧‧‧空白晶粒112a‧‧‧ Blank crystal

112b‧‧‧空白晶粒112b‧‧‧ blank grain

112c‧‧‧空白晶粒112c‧‧‧ blank grain

112d‧‧‧空白晶粒112d‧‧‧ blank grain

120‧‧‧光罩120‧‧‧Photomask

122a‧‧‧光罩晶粒122a‧‧‧Photomask grain

122b‧‧‧光罩晶粒122b‧‧‧Photomask grain

122c‧‧‧光罩晶粒122c‧‧‧mask grain

122d‧‧‧光罩晶粒122d‧‧‧Photomask grain

132‧‧‧參考座標132‧‧‧Reference coordinates

D1‧‧‧第二距離D1‧‧‧Second distance

D2‧‧‧第二距離D2‧‧‧Second distance

D3‧‧‧第二距離D3‧‧‧Second distance

D4‧‧‧第二距離D4‧‧‧Second distance

d1~d12‧‧‧第一距離D1~d12‧‧‧first distance

S1‧‧‧步驟S1‧‧‧ steps

S2‧‧‧步驟S2‧‧‧ steps

S3‧‧‧步驟S3‧‧‧ steps

S4‧‧‧步驟S4‧‧‧ steps

S5‧‧‧步驟S5‧‧ steps

S6‧‧‧步驟S6‧‧ steps

S7‧‧‧步驟S7‧‧ steps

第1圖繪示根據本發明一實施方式之比對座標之方法 的流程圖。FIG. 1 illustrates a method of comparing coordinates according to an embodiment of the present invention Flow chart.

第2圖繪示根據本發明一實施方式之晶圓的俯視圖。2 is a top plan view of a wafer in accordance with an embodiment of the present invention.

第3圖繪示根據本發明一實施方式之光罩的俯視圖。3 is a top plan view of a reticle in accordance with an embodiment of the present invention.

第4圖繪示第3圖之光罩晶粒之一者到其他光罩晶粒的第一距離的示意圖。Figure 4 is a schematic diagram showing the first distance from one of the reticle dies of Figure 3 to the other reticle dies.

第5圖繪示第3圖之光罩晶粒之另一者到其他光罩晶粒的第一距離的示意圖。Figure 5 is a schematic illustration of the first distance from the other of the reticle dies of Figure 3 to the other reticle dies.

第6圖繪示第3圖之光罩晶粒之又一者到其他光罩晶粒的第一距離的示意圖。Figure 6 is a schematic view showing the first distance from the reticle of the reticle of Figure 3 to the other reticle dies.

第7圖繪示第2圖之空白晶粒與第3圖之光罩晶粒比對時的示意圖。FIG. 7 is a schematic view showing a case where the blank crystal grains of FIG. 2 are aligned with the photomask crystal grains of FIG. 3.

第8圖繪示第2圖之空白晶粒與第3圖之光罩晶粒比對時的示意圖。FIG. 8 is a schematic view showing a case where the blank crystal grains of FIG. 2 are aligned with the photomask crystal grains of FIG. 3.

第9圖繪示第2圖之空白晶粒與第3圖之光罩晶粒比對時的示意圖。FIG. 9 is a schematic view showing a case where the blank crystal grains of FIG. 2 are aligned with the photomask crystal grains of FIG. 3.

第10圖繪示第9圖之空白晶粒與參考座標間的第二距離計算時的示意圖。Figure 10 is a schematic diagram showing the calculation of the second distance between the blank die and the reference coordinate of Figure 9.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣 用的結構與元件在圖式中將以簡單示意的方式繪示之。The embodiments of the present invention are disclosed in the following drawings, and the details of However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventions used to simplify the schema The structures and elements used in the drawings will be illustrated in a simplified schematic manner.

第1圖繪示根據本發明一實施方式之比對座標之方法的流程圖。如圖所示,用於檢測晶圓之比對座標之方法,包含下列步驟:首先在步驟S1中,取得對應晶圓之複數個光罩晶粒的座標。接著在步驟S2中,利用光罩晶粒的座標計算光罩晶粒任一者到其他光罩晶粒的複數個第一距離。之後在步驟S3中,根據掃瞄晶圓之位置資料,找到複數個空白晶粒。接著在步驟S4中,根據第一距離比對空白晶粒與光罩晶粒,以得到複數個比對符合次數。之後在步驟S5中,當比對符合次數之最高者產生時,利用光罩晶粒的座標取得空白晶粒的座標。接著在步驟S6中,計算空白晶粒之一者的座標與參考座標間的第二距離。最後在步驟S7中,根據第二距離調整參考座標以對應(符合)光罩晶粒的座標。目前部分破片的晶圓無法自動化作業,是因為部分破片與完整片會有對錯點的疑慮,必須由人工確認,經由本發明之技術可以克服此問題,使所有產品(含完整片和破片)自動化作業。1 is a flow chart showing a method of comparing coordinates according to an embodiment of the present invention. As shown in the figure, the method for detecting the alignment coordinates of the wafer includes the following steps: First, in step S1, coordinates of a plurality of mask dies corresponding to the wafer are obtained. Next, in step S2, a plurality of first distances from the reticle die to the other reticle dies are calculated using the coordinates of the reticle die. Then in step S3, a plurality of blank dies are found based on the position information of the scanned wafer. Next, in step S4, the blank die and the mask die are compared according to the first distance to obtain a plurality of alignment match times. Then, in step S5, when the highest match is generated, the coordinates of the blank die are obtained using the coordinates of the mask die. Next, in step S6, a second distance between the coordinates of one of the blank dies and the reference coordinate is calculated. Finally, in step S7, the reference coordinates are adjusted according to the second distance to correspond to (conform to) the coordinates of the reticle die. At present, some of the fragmented wafers cannot be automated because some fragments and complete films have doubts about the wrong points and must be manually confirmed. This technology can be overcome by the technique of the present invention to make all products (including intact pieces and fragments). Automated work.

在以下敘述中,將具體說明上述各步驟。In the following description, each of the above steps will be specifically described.

第2圖繪示根據本發明一實施方式之晶圓110的俯視圖。第3圖繪示根據本發明一實施方式之光罩120的俯視圖。同時參閱第2圖與第3圖,晶圓110具有複數個空白晶粒112a、112b、112c、112d。空白晶粒112a、112b、112c、112d可例如為空洞區或破片區。光罩120具有複數個光罩晶粒122a、122b、122c、122d。在第1圖步驟S1 中,可先取得對應晶圓110之光罩120的光罩晶粒122a、122b、122c、122d座標。其中,光罩晶粒122a、122b、122c、122d的座標可由晶圓110廠商提供的光罩檔取得,或是由晶圓110的點測檔取得。2 is a top plan view of a wafer 110 in accordance with an embodiment of the present invention. 3 is a top plan view of a reticle 120 in accordance with an embodiment of the present invention. Referring also to Figures 2 and 3, wafer 110 has a plurality of blank dies 112a, 112b, 112c, 112d. The blank grains 112a, 112b, 112c, 112d may be, for example, a void region or a fragment region. The mask 120 has a plurality of mask dies 122a, 122b, 122c, 122d. In the first step, step S1 The coordinates of the mask dies 122a, 122b, 122c, and 122d corresponding to the mask 120 of the wafer 110 may be obtained first. The coordinates of the reticle dies 122a, 122b, 122c, and 122d may be obtained by the reticle file provided by the wafer 110 manufacturer or by the spot measurement file of the wafer 110.

接著在第1圖步驟S2中,可利用光罩晶粒122a的座標計算光罩晶粒122a到其他光罩晶粒122b、122c、122d的複數個第一距離d1、d2、d3。其中,第一距離d1為光罩晶粒122a與光罩晶粒122b之間的距離,第一距離d2為光罩晶粒122a與光罩晶粒122c之間的距離,第一距離d3為光罩晶粒122a與光罩晶粒122d之間的距離。Next, in step S2 of Fig. 1, a plurality of first distances d1, d2, d3 of the mask die 122a to the other mask dies 122b, 122c, 122d can be calculated using the coordinates of the mask die 122a. The first distance d1 is the distance between the reticle die 122a and the reticle die 122b. The first distance d2 is the distance between the reticle die 122a and the reticle die 122c. The first distance d3 is light. The distance between the mask die 122a and the mask die 122d.

第4圖繪示第3圖之光罩晶粒122b到其他光罩晶粒122a、122c、122d的第一距離d4、d5、d6的示意圖。相似地,可利用光罩晶粒122b的座標計算光罩晶粒122b到其他光罩晶粒122a、122c、122d的複數個第一距離d4、d5、d6。其中,第一距離d4為光罩晶粒122b與光罩晶粒122a之間的距離,第一距離d5為光罩晶粒122b與光罩晶粒122c之間的距離,第一距離d6為光罩晶粒122b與光罩晶粒122d之間的距離。4 is a schematic view showing the first distances d4, d5, and d6 of the reticle die 122b of FIG. 3 to the other reticle dies 122a, 122c, and 122d. Similarly, a plurality of first distances d4, d5, d6 of the reticle die 122b to the other reticle dies 122a, 122c, 122d can be calculated using the coordinates of the reticle die 122b. The first distance d4 is the distance between the reticle die 122b and the reticle die 122a. The first distance d5 is the distance between the reticle die 122b and the reticle die 122c. The first distance d6 is light. The distance between the mask die 122b and the mask die 122d.

第5圖繪示第3圖之光罩晶粒122c到其他光罩晶粒122a、122b、122d的第一距離d7、d8、d9的示意圖。相似地,可利用光罩晶粒122c的座標計算光罩晶粒122c到其他光罩晶粒122a、122b、122d的複數個第一距離d7、d8、d9。其中,第一距離d7為光罩晶粒122c與光罩晶粒122a之間的距離,第一距離d8為光罩晶粒122c與光罩晶 粒122b之間的距離,第一距離d9為光罩晶粒122c與光罩晶粒122d之間的距離。FIG. 5 is a schematic view showing the first distances d7, d8, and d9 of the reticle die 122c of FIG. 3 to the other reticle dies 122a, 122b, and 122d. Similarly, a plurality of first distances d7, d8, d9 of the reticle die 122c to the other reticle dies 122a, 122b, 122d can be calculated using the coordinates of the reticle die 122c. The first distance d7 is the distance between the reticle die 122c and the reticle die 122a, and the first distance d8 is the reticle die 122c and the mask crystal. The distance between the particles 122b, the first distance d9 is the distance between the mask die 122c and the mask die 122d.

第6圖繪示第3圖之光罩晶粒122d到其他光罩晶粒122a、122b、122c的第一距離d10、d11、d12的示意圖。相似地,可利用光罩晶粒122d的座標計算光罩晶粒122d到其他光罩晶粒122a、122b、122c的複數個第一距離d10、d11、d12。其中,第一距離d10為光罩晶粒122d與光罩晶粒122a之間的距離,第一距離d11為光罩晶粒122d與光罩晶粒122b之間的距離,第一距離d12為光罩晶粒122d與光罩晶粒122c之間的距離。FIG. 6 is a schematic diagram showing the first distances d10, d11, and d12 of the reticle die 122d of FIG. 3 to the other reticle dies 122a, 122b, and 122c. Similarly, a plurality of first distances d10, d11, d12 of the reticle die 122d to the other reticle dies 122a, 122b, 122c can be calculated using the coordinates of the reticle die 122d. The first distance d10 is the distance between the reticle die 122d and the reticle die 122a. The first distance d11 is the distance between the reticle die 122d and the reticle die 122b. The first distance d12 is light. The distance between the mask die 122d and the mask die 122c.

第3圖至第6圖所繪示的第一距離d1~d12,均可被紀錄。The first distances d1 to d12 shown in Figures 3 to 6 can be recorded.

參閱第2圖,接著在第1圖步驟S3中,可根據掃瞄晶圓110之位置資料,找到空白晶粒112a、112b、112c、112d。在此步驟中,可使用自動光學檢測裝置(Automated Optical Inspection;AOI)掃瞄晶圓110,並從點測程序取得掃瞄晶圓110之位置資料。在本實施方式中,晶圓110之空白晶粒112a、112b、112c、112d的數量與第3圖之光罩120之光罩晶粒122a、122b、122c、122d的數量相同,均為四顆,但並不用以限制本發明。Referring to FIG. 2, then in step S3 of FIG. 1, blank crystal grains 112a, 112b, 112c, and 112d can be found based on the positional data of the scanning wafer 110. In this step, the wafer 110 can be scanned using an Automated Optical Inspection (AOI), and the position data of the scan wafer 110 can be obtained from the spot test program. In the present embodiment, the number of the blank dies 112a, 112b, 112c, and 112d of the wafer 110 is the same as the number of the reticle dies 122a, 122b, 122c, and 122d of the reticle 120 of FIG. However, it is not intended to limit the invention.

第7圖繪示第2圖之空白晶粒112a、112b、112c、112d與第3圖之光罩晶粒122a、122b、122c、122d比對時的示意圖。接著在第1圖步驟S4中,便可根據第一距離d1~d12比對空白晶粒112a、112b、112c、112d與光罩晶粒 122a、122b、122c、122d,以得到複數個比對符合次數。當比對空白晶粒112a、112b、112c、112d與光罩晶粒122a、122b、122c、122d時,光罩晶粒122a、122b、122c、122d可移動至空白晶粒112a、112b、112c、112d,使光罩晶粒122a、122b、122c、122d的至少一者與空白晶粒112a、112b、112c、112d之一者重疊。FIG. 7 is a schematic view showing the blank crystal grains 112a, 112b, 112c, and 112d of FIG. 2 aligned with the mask crystal grains 122a, 122b, 122c, and 122d of FIG. Then, in step S4 of FIG. 1, the blank crystal grains 112a, 112b, 112c, 112d and the mask crystal grains can be aligned according to the first distances d1 to d12. 122a, 122b, 122c, 122d to obtain a plurality of alignment matches. When the blank dies 112a, 112b, 112c, 112d and the reticle dies 122a, 122b, 122c, 122d are aligned, the reticle dies 122a, 122b, 122c, 122d can be moved to the blank dies 112a, 112b, 112c, 112d, at least one of the mask dies 122a, 122b, 122c, 122d is overlapped with one of the blank dies 112a, 112b, 112c, 112d.

在本實施方式中,光罩晶粒122d與空白晶粒112a重疊,其餘光罩晶粒122a、122b、122c未與空白晶粒112b、112c、112d重疊,因此比對符合次數為1。In the present embodiment, the mask crystal grains 122d overlap the blank crystal grains 112a, and the remaining mask crystal grains 122a, 122b, and 122c are not overlapped with the blank crystal grains 112b, 112c, and 112d, and therefore the number of coincidences is 1.

第8圖繪示第2圖之空白晶粒112a、112b、112c、112d與第3圖之光罩晶粒122a、122b、122c、122d比對時的示意圖。在本實施方式中,光罩晶粒122b與空白晶粒112a重疊,且光罩晶粒122d與空白晶粒112c重疊。其餘光罩晶粒122a、122c未與空白晶粒112b、112d重疊,因此比對符合次數為2。FIG. 8 is a schematic view showing the blank crystal grains 112a, 112b, 112c, and 112d of FIG. 2 aligned with the mask crystal grains 122a, 122b, 122c, and 122d of FIG. In the present embodiment, the mask die 122b overlaps the blank die 112a, and the mask die 122d overlaps the blank die 112c. The remaining mask dies 122a, 122c are not overlapped with the blank dies 112b, 112d, so the alignment match is two.

第9圖繪示第2圖之空白晶粒112a、112b、112c、112d與第3圖之光罩晶粒122a、122b、122c、122d比對時的示意圖。在本實施方式中,光罩晶粒122a與空白晶粒112a重疊,光罩晶粒122b與空白晶粒112b重疊,光罩晶粒122c與空白晶粒112c重疊,且光罩晶粒122d與空白晶粒112d重疊。因此,比對符合次數為4。FIG. 9 is a schematic view showing the blank crystal grains 112a, 112b, 112c, and 112d of FIG. 2 aligned with the mask crystal grains 122a, 122b, 122c, and 122d of FIG. In the present embodiment, the mask die 122a overlaps the blank die 112a, the mask die 122b overlaps the blank die 112b, the mask die 122c overlaps the blank die 112c, and the mask die 122d and the blank The crystal grains 112d overlap. Therefore, the match count is 4.

由於空白晶粒112a、112b、112c、112d的數量與光罩120之光罩晶粒122a、122b、122c、122d的數量均為四顆,因此比對符合次數可能包含1次(如第7圖所示)、2 次(如第8圖所示)與4次(如第9圖所示)等狀況,而這些狀況可以被排序。在第1圖步驟S5中,當比對符合次數之最高者產生時,便可利用光罩晶粒122a、122b、122c、122d的座標取得空白晶粒112a、112b、112c、112d的座標,以紀錄比對符合次數之最高者產生時光罩晶粒122a、122b、122c、122d與空白晶粒112a、112b、112c、112d的位置狀態。當比對符合次數之最高者產生時,表示空白晶粒112a、112b、112c、112d與光罩晶粒122a、122b、122c、122d的位置對應。在本實施方式中,比對符合次數最高者為4,會等於空白晶粒112a、112b、112c、112d之數量。Since the number of blank dies 112a, 112b, 112c, 112d and the number of reticle dies 122a, 122b, 122c, 122d of the reticle 120 are both four, the number of coincidences may be included once (as shown in Fig. 7). Shown), 2 Conditions (as shown in Figure 8) and 4 times (as shown in Figure 9), and these conditions can be sorted. In step S5 of the first step, when the highest one of the matching coincidence times is generated, the coordinates of the blank crystal grains 112a, 112b, 112c, and 112d can be obtained by the coordinates of the mask crystal grains 122a, 122b, 122c, and 122d. The positional state of the mask dies 122a, 122b, 122c, 122d and the blank dies 112a, 112b, 112c, 112d at the time of the highest number of coincidences is recorded. When the highest match is generated, it indicates that the blank dies 112a, 112b, 112c, 112d correspond to the positions of the reticle dies 122a, 122b, 122c, 122d. In the present embodiment, the highest match ratio is 4, which is equal to the number of blank dies 112a, 112b, 112c, 112d.

第10圖繪示第9圖之空白晶粒112a、112b、112c、112d與參考座標132間的第二距離D1、D2、D3、D4計算時的示意圖。待取得空白晶粒112a、112b、112c、112d的座標後,在第1圖步驟S6中,便可計算空白晶粒112a的座標與晶圓110之參考座標132間的第二距離D1、計算空白晶粒112b的座標與晶圓110之參考座標132間的第二距離D2、計算空白晶粒112c的座標與晶圓110之參考座標132間的第二距離D3與計算空白晶粒112d的座標與晶圓110之參考座標132間的第二距離D4。FIG. 10 is a schematic diagram showing the calculation of the second distances D1, D2, D3, and D4 between the blank crystal grains 112a, 112b, 112c, and 112d and the reference coordinates 132 in FIG. After the coordinates of the blank dies 112a, 112b, 112c, and 112d are obtained, in the first step S6, the second distance D1 between the coordinates of the blank dies 112a and the reference coordinates 132 of the wafer 110 can be calculated. A second distance D2 between the coordinates of the die 112b and the reference coordinate 132 of the wafer 110, a second distance D3 between the coordinates of the blank die 112c and the reference coordinate 132 of the wafer 110, and the coordinates of the blank die 112d are calculated. A second distance D4 between the reference coordinates 132 of the wafer 110.

最後在第1圖步驟S7中,便可根據第二距離D1、D2、D3、D4調整參考座標132,以對應(符合)光罩晶粒122a、122b、122c、122d的座標,並指定參考座標132為原點晶粒。如此一來,自動光學檢測裝置的感光元件便可根據參考座標132移動到晶圓110的原點晶粒。Finally, in step S7 of FIG. 1, the reference coordinates 132 can be adjusted according to the second distances D1, D2, D3, and D4 to correspond to (conform) the coordinates of the mask dies 122a, 122b, 122c, and 122d, and specify the reference coordinates. 132 is the origin grain. In this way, the photosensitive element of the automatic optical detecting device can move to the origin die of the wafer 110 according to the reference coordinate 132.

本發明用於檢測晶圓之比對座標之方法與習知技術相較,由於光罩晶粒的座標能計算出光罩晶粒任一者到其他光罩晶粒的第一距離,而第一距離可用來比對空白晶粒與光罩晶粒,當比對符合次數之最高者產生時,表示空白晶粒與光罩晶粒的位置對應,因此能利用光罩晶粒的座標取得空白晶粒的座標。如此一來,空白晶粒的座標與參考座標間的第二距離可被計算出,且參考座標可根據第二距離調整以符合該些光罩晶粒的座標。比對座標的方法可由光罩晶粒的座標取得空白晶粒的座標,且能以自動化作業的方式得到空白晶粒的座標,讓晶圓在檢測後可得到參考座標供後續的製程採用。因此,可節省檢測時間並提升晶圓的良率。The method for detecting the coordinate of the wafer is compared with the prior art. Since the coordinates of the reticle die can calculate the first distance from the reticle die to the other reticle die, the first The distance can be used to compare the blank die and the mask die. When the highest match is generated, it indicates that the blank die corresponds to the position of the mask die, so the blank crystal can be obtained by using the coordinates of the mask die. The coordinates of the grain. In this way, the second distance between the coordinates of the blank die and the reference coordinate can be calculated, and the reference coordinate can be adjusted according to the second distance to conform to the coordinates of the mask dies. The method of comparing the coordinates can obtain the coordinates of the blank die from the coordinates of the mask die, and the coordinates of the blank die can be obtained by automated operation, so that the reference mark can be obtained after the wafer is used for subsequent processes. Therefore, the detection time can be saved and the yield of the wafer can be improved.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

S1‧‧‧步驟S1‧‧‧ steps

S2‧‧‧步驟S2‧‧‧ steps

S3‧‧‧步驟S3‧‧‧ steps

S4‧‧‧步驟S4‧‧‧ steps

S5‧‧‧步驟S5‧‧ steps

S6‧‧‧步驟S6‧‧ steps

S7‧‧‧步驟S7‧‧ steps

Claims (10)

一種用於檢測晶圓之比對座標之方法,包含下列步驟:(a)取得對應一晶圓之複數個光罩晶粒的座標;(b)利用該些光罩晶粒的座標計算該些光罩晶粒任一者到其他該些光罩晶粒的複數個第一距離;(c)根據掃瞄該晶圓之位置資料,找到複數個空白晶粒;(d)根據該些第一距離比對該些空白晶粒與該些光罩晶粒,以得到複數個比對符合次數;(e)當該些比對符合次數之最高者產生時,利用該些光罩晶粒的座標取得該些空白晶粒的座標;(f)計算該些空白晶粒之一者的座標與一參考座標間的一第二距離;以及(g)根據該第二距離調整該參考座標以符合該些光罩晶粒的座標。A method for detecting alignment coordinates of a wafer, comprising the steps of: (a) obtaining coordinates of a plurality of reticle grains corresponding to a wafer; and (b) calculating coordinates of the reticle grains a plurality of first distances from the mask die to the other of the mask dies; (c) finding a plurality of blank dies according to the position of the wafer; (d) according to the first Comparing the blank dies with the reticle dies to obtain a plurality of alignment matches; (e) utilizing the coordinates of the reticle grains when the highest number of alignment matches is generated Obtaining coordinates of the blank crystal grains; (f) calculating a second distance between a coordinate of one of the blank crystal grains and a reference coordinate; and (g) adjusting the reference coordinate according to the second distance to conform to the The coordinates of the reticle grains. 如請求項1所述之方法,其中該步驟(c)包含:從一點測程序取得掃瞄該晶圓之位置資料。The method of claim 1, wherein the step (c) comprises: obtaining a location data of the wafer from the one-point test program. 如請求項1所述之方法,其中該步驟(d)包含:移動該些光罩晶粒至該些空白晶粒,使該些光罩晶粒的至少一者與該些空白晶粒之一者重疊。The method of claim 1, wherein the step (d) comprises: moving the mask dies to the blank dies, at least one of the reticle dies and one of the blank dies Overlapping. 如請求項1所述之方法,其中該步驟(e)包含:排序該些比對符合次數。The method of claim 1, wherein the step (e) comprises: sorting the alignment matches. 如請求項1所述之方法,其中該步驟(e)包含:紀錄該些比對符合次數之最高者產生時該些光罩晶粒與該些空白晶粒的位置狀態。The method of claim 1, wherein the step (e) comprises: recording a position state of the mask dies and the blank dies when the highest one of the comparison matches is generated. 如請求項1所述之方法,其中該步驟(c)包含:使用一自動光學檢測裝置掃瞄該晶圓。The method of claim 1, wherein the step (c) comprises: scanning the wafer using an automated optical inspection device. 如請求項6所述之方法,其中該步驟(g)包含:該自動光學檢測裝置的一感光元件根據該參考座標移動到該晶圓的一原點晶粒。The method of claim 6, wherein the step (g) comprises: moving a photosensitive element of the automatic optical detecting device to an origin die of the wafer according to the reference coordinate. 如請求項1所述之方法,其中該步驟(b)包含:紀錄該些光罩晶粒任一者到其他該些光罩晶粒的該些第一距離。The method of claim 1, wherein the step (b) comprises: recording the first distances of the reticle dies to other of the reticle dies. 如請求項1所述之方法,其中在該步驟(c)中,該些空白晶粒的數量與該些光罩晶粒的數量相同。The method of claim 1, wherein in the step (c), the number of the blank dies is the same as the number of the reticle dies. 如請求項1所述之方法,其中在該步驟(e)中,該 些比對符合次數之最高者等於該些空白晶粒之數量。The method of claim 1, wherein in the step (e), the The highest number of comparisons is equal to the number of blank dies.
TW102147190A 2013-12-19 2013-12-19 Method of mapping coordinates for inspecting a wafer TWI494561B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102147190A TWI494561B (en) 2013-12-19 2013-12-19 Method of mapping coordinates for inspecting a wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102147190A TWI494561B (en) 2013-12-19 2013-12-19 Method of mapping coordinates for inspecting a wafer

Publications (2)

Publication Number Publication Date
TW201525452A TW201525452A (en) 2015-07-01
TWI494561B true TWI494561B (en) 2015-08-01

Family

ID=54197560

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102147190A TWI494561B (en) 2013-12-19 2013-12-19 Method of mapping coordinates for inspecting a wafer

Country Status (1)

Country Link
TW (1) TWI494561B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201027645A (en) * 2009-01-09 2010-07-16 Qing-Biao Lin A wafer packaging detection method with little or no ink dot
CN102376599A (en) * 2010-08-10 2012-03-14 中芯国际集成电路制造(上海)有限公司 Generation method and device of qualified crystal grain distribution pattern
WO2012132273A1 (en) * 2011-03-25 2012-10-04 東レエンジニアリング株式会社 Exterior inspection method and device for same
CN103065012A (en) * 2012-12-31 2013-04-24 中国电子科技集团公司第四十五研究所 Wafer Map display model and use method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201027645A (en) * 2009-01-09 2010-07-16 Qing-Biao Lin A wafer packaging detection method with little or no ink dot
CN102376599A (en) * 2010-08-10 2012-03-14 中芯国际集成电路制造(上海)有限公司 Generation method and device of qualified crystal grain distribution pattern
WO2012132273A1 (en) * 2011-03-25 2012-10-04 東レエンジニアリング株式会社 Exterior inspection method and device for same
CN103065012A (en) * 2012-12-31 2013-04-24 中国电子科技集团公司第四十五研究所 Wafer Map display model and use method thereof

Also Published As

Publication number Publication date
TW201525452A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
TWI686718B (en) Determining coordinates for an area of interest on a specimen
USRE44221E1 (en) Method for verifying mask pattern of semiconductor device
JP2008128651A (en) Pattern alignment method, and pattern inspecting device and system
US8090192B2 (en) Pattern misalignment measurement method, program, and semiconductor device manufacturing method
US20210296392A1 (en) Flat Panel Array with the Alignment Marks in Active Area
TWI534646B (en) Method and system for intelligent weak pattern diagnosis, and non-transitory computer-readable storage medium
TWI745821B (en) In-die metrology methods and systems for process control
TW201925761A (en) Method of defect review
WO2011040223A1 (en) Surface-defect inspection device
TWI732657B (en) Method for semiconductor wafer inspection and system thereof
US10269111B2 (en) Method of inspecting semiconductor wafer, an inspection system for performing the same, and a method of fabricating semiconductor device using the same
US20100021046A1 (en) Pattern inspection apparatus, pattern inspection method and computer readable recording medium
US20090226078A1 (en) Method and apparatus for aligning a substrate and for inspecting a pattern on a substrate
JP2008014700A (en) Workpiece inspection method and workpiece inspection device
KR102399860B1 (en) workpiece processing device and workpiece conveying system
TWI494561B (en) Method of mapping coordinates for inspecting a wafer
CN116581106A (en) Method for detecting integrity of crystal grain
US20180188185A1 (en) Semiconductor structure and method for reviewing defects
TW201727789A (en) Self directed metrology and pattern classification
US11201074B2 (en) System and method for semiconductor device print check alignment
CN108681205B (en) OPC verification method for grid region
CN111106025B (en) Edge defect inspection method
US20130106000A1 (en) Alignment accuracy mark
KR101154003B1 (en) Method of inspecting a semiconductor device
CN104733335B (en) For detecting the comparison seat calibration method of wafer