TWI493779B - Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density - Google Patents

Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density

Info

Publication number
TWI493779B
TWI493779B TW099128478A TW99128478A TWI493779B TW I493779 B TWI493779 B TW I493779B TW 099128478 A TW099128478 A TW 099128478A TW 99128478 A TW99128478 A TW 99128478A TW I493779 B TWI493779 B TW I493779B
Authority
TW
Taiwan
Prior art keywords
positive electrode
amount
electrode material
lithium
energy density
Prior art date
Application number
TW099128478A
Other languages
Chinese (zh)
Other versions
TW201210116A (en
Inventor
Larry W Beck
Chuanjing Xu
Young-Il Jang
Original Assignee
A123 Systems Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A123 Systems Llc filed Critical A123 Systems Llc
Priority to TW099128478A priority Critical patent/TWI493779B/en
Publication of TW201210116A publication Critical patent/TW201210116A/en
Application granted granted Critical
Publication of TWI493779B publication Critical patent/TWI493779B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

具有改良式比電容與能量密度之鋰離子電池用的混合金屬橄欖石電極材料Mixed metal olivine electrode material for lithium ion battery with improved specific capacitance and energy density 【以引用方式併入】[incorporated by reference]

本文中引用之所有專利、專利申請案及公開案以引用方式全文藉此併入,以便更充分地描述熟習此項技術者已知的本文中描述之本發明迄今為止之先前技術。All of the patents, patent applications, and publications cited herein are hereby incorporated by reference in their entirety in their entirety herein in theties in the the the the the

【相關申請案之交叉參考】[Cross-Reference to Related Applications]

本申請案主張於2009年8月25日申請之美國專利申請案第61/236,862號之較早申請日期的權利,所述申請案之內容以引用方式全文藉此併入本文中。The present application claims the benefit of the earlier filing date of the U.S. Patent Application Serial No. 61/236,862, filed on Aug.

本發明是關於電池技術(battery technology)。The present invention relates to battery technology.

電池自電化學反應(electrochemical reaction)產生能量。電池通常包含:正電極及負電極;離子電解質溶液(ionic electrolyte solution),其支援離子在所述兩個電極之間來回移動;及多孔隔板(porous separator),其確保所述兩個電極不觸碰,但允許離子在所述電極之間來回行進。The battery generates energy from an electrochemical reaction. A battery generally includes: a positive electrode and a negative electrode; an ionic electrolyte solution that supports ions moving back and forth between the two electrodes; and a porous separator that ensures that the two electrodes are not Touch, but allow ions to travel back and forth between the electrodes.

當代之攜帶型電子器具大多數專門依賴於可再充電鋰(Li)離子電池作為電力源。此情形促使繼續努力增加其能量儲存能力、功率能力、使用壽命及安全特性,且降低其成本。鋰離子電池指代一種可再充電電池,其具有能夠儲存鋰化學勢(chemical potential)高於鋰金屬之化學勢的大量鋰的負電極。在鋰離子電池充電時,鋰離子自正電極行進至負電極。在放電時,此等離子返回至正電極,在 所述過程中釋放能量。Most of the contemporary portable electronic appliances rely exclusively on rechargeable lithium (Li) ion batteries as a power source. This situation has prompted continued efforts to increase its energy storage capacity, power capability, service life and safety characteristics, and reduce its cost. A lithium ion battery refers to a rechargeable battery having a negative electrode capable of storing a large amount of lithium whose lithium chemical potential is higher than the chemical potential of lithium metal. When the lithium ion battery is being charged, lithium ions travel from the positive electrode to the negative electrode. When discharging, the plasma returns to the positive electrode, at Energy is released during the process.

在典型Li離子電池中,電池包含用於正電極(或陰極)之金屬氧化物、用於負電極(或陽極)之碳/石墨,及有機溶劑中用於電解質之鋰鹽。最近,已將鋰金屬磷酸鹽用作陰極電活性材料(cathode electroactive material)。In a typical Li-ion battery, the battery contains a metal oxide for a positive electrode (or cathode), carbon/graphite for a negative electrode (or anode), and a lithium salt for an electrolyte in an organic solvent. Recently, lithium metal phosphate has been used as a cathode electroactive material.

使用基於磷酸鋰鐵(lithium iron phosphate,LFP)之陰極材料的此等Li離子電池可用於各種不同應用中。在某些應用(諸如,經由在車輛煞車時收集之能量對電池充電的混合式電動車輛)中,展現出高比電容(specific capacity)(或比功率(specific power))之電池為所要的,因為此等電池之快速再充電速率及放電速率為重要的。在其他應用(諸如,車輛可行駛之距離是視電池中可儲存之電能的總量而定的插入式電動車輛(plug-in electric vehicle))中,高能量密度(或比能量(specific energy))為所要的。因此,針對可想像到之特定應用來最佳化用於Li離子電池之材料。These Li-ion batteries using lithium iron phosphate (LFP) based cathode materials can be used in a variety of different applications. In certain applications, such as hybrid electric vehicles that charge a battery via energy collected while the vehicle is braking, a battery that exhibits a high specific capacity (or specific power) is desirable, Because of the fast recharge rate and discharge rate of such batteries are important. In other applications, such as plug-in electric vehicles where the distance traveled by the vehicle is based on the total amount of electrical energy that can be stored in the battery, high energy density (or specific energy) ) is what you want. Therefore, materials for Li-ion batteries are optimized for the specific applications that are conceivable.

在一態樣中,提供一種正電極材料,其中能量密度及比電容均經最佳化以同時達成高能量密度以及高比電容。In one aspect, a positive electrode material is provided in which both energy density and specific capacitance are optimized to achieve both high energy density and high specific capacitance.

在一態樣中,提供一種正電極材料,其中能量密度在20C放電速率下為至少340mWh/g。在另一態樣中,提供一種正電極材料,其中比電容在20C放電速率下為至少110mAh/g。功率密度(亦即,每單位時間能量密度)在20C放電速率下為至少6,800mW/g。In one aspect, a positive electrode material is provided wherein the energy density is at least 340 mWh/g at a 20 C discharge rate. In another aspect, a positive electrode material is provided wherein the specific capacitance is at least 110 mAh/g at a 20 C discharge rate. The power density (i.e., energy density per unit time) is at least 6,800 mW/g at a 20 C discharge rate.

在另一態樣中,提供一種正電極材料,其中能量密度及比電容均經最佳化以同時達成高能量密度以及高比電容。在一實施例中,在20C放電速率下,能量密度為至少340mWh/g,且比電容為至少110mAh/g。功率密度(亦即,每單位時間能量密度)在20C放電速率下為至少6,800mW/g。In another aspect, a positive electrode material is provided in which both energy density and specific capacitance are optimized to achieve both high energy density and high specific capacitance. In one embodiment, the energy density is at least 340 mWh/g at a 20 C discharge rate and the specific capacitance is at least 110 mAh/g. The power density (i.e., energy density per unit time) is at least 6,800 mW/g at a 20 C discharge rate.

在一態樣中,提供一種具有橄欖石結構之基於磷酸鋰鐵錳(LFMP)的正電極材料,其更摻雜有一或多種摻雜元素。在一實施例中,摻雜元素是作為橄欖石結構之晶格結構的一部分來摻雜。在某些實施例中,摻雜元素可包含鈷(Co)、鎳(Ni)、釩(V)、鈮(Nb)、氟(F),或其混合物。In one aspect, a lithium iron iron manganese (LFMP) based positive electrode material having an olivine structure is provided which is more doped with one or more doping elements. In an embodiment, the doping element is doped as part of a lattice structure of the olivine structure. In certain embodiments, the doping element may comprise cobalt (Co), nickel (Ni), vanadium (V), niobium (Nb), fluorine (F), or a mixture thereof.

在一或多個實施例中,提供一種正電極材料,其包括電活性材料。電活性材料包括鋰(Li)、鐵(Fe)、錳(Mn)、一或多種摻雜劑(D)及磷酸鹽(PO4 ),其中Fe+Mn+D之量為1.0;Li:(Fe+Mn+D)之量的比是約1.0至約1.05;PO4 :(Fe+Mn+D)之量的比是約1.0至約1.025;D為選自由以下各者組成之群的一或多種摻雜劑:鈷(Co)、鎳(Ni)、釩(V)、鈮(Nb)及其混合物;Mn之量是0.35至0.60;D之量是約0.001至約0.10;且電活性材料包括具有橄欖石結構之至少一個相,所述橄欖石結構包括所述Li、Fe、Mn、D及磷酸鹽中之至少一些。In one or more embodiments, a positive electrode material is provided that includes an electroactive material. Electroactive materials include lithium (Li), iron (Fe), manganese (Mn), one or more dopants (D), and phosphate (PO 4 ), wherein the amount of Fe + Mn + D is 1.0; Li: ( The ratio of the amount of Fe + Mn + D) is from about 1.0 to about 1.05; the ratio of the amount of PO 4 : (Fe + Mn + D) is from about 1.0 to about 1.025; and D is one selected from the group consisting of: Or a plurality of dopants: cobalt (Co), nickel (Ni), vanadium (V), niobium (Nb) and mixtures thereof; the amount of Mn is 0.35 to 0.60; the amount of D is from about 0.001 to about 0.10; and electroactive The material includes at least one phase having an olivine structure including at least some of the Li, Fe, Mn, D, and phosphate.

在某些實施例中,摻雜金屬可選自由以下各者組成之群:Co、V、Nb及其混合物。在某些實施例中,摻雜金屬 可選自Co與V之混合物。In certain embodiments, the doping metal may be selected from the group consisting of Co, V, Nb, and mixtures thereof. In some embodiments, doped metal It may be selected from a mixture of Co and V.

在某些實施例中,電活性材料可更包含氟。In certain embodiments, the electroactive material may further comprise fluorine.

在一些實施例中,組合物包括高達約0.1莫耳1%、0.5莫耳%、1莫耳%、1.5莫耳%、2莫耳%、2.5莫耳%、3莫耳%、3.5莫耳%、4莫耳%、4.5莫耳%、5莫耳%、6莫耳%、7莫耳%、8莫耳%、9莫耳%或10莫耳%之所述一或多種摻雜金屬。在某些實施例中,組合物包括高達0.1莫耳%、0.5莫耳%、1莫耳%、1.5莫耳%、2莫耳%、2.5莫耳%、3莫耳%、3.5莫耳%、4莫耳%、4.5莫耳%或5莫耳%之Co。在某些實施例中,組合物包括高達0.1莫耳%、0.5莫耳%、1莫耳%、1.5莫耳%、2莫耳%、2.5莫耳%、3莫耳%、3.5莫耳%、4莫耳%、4.5莫耳%或5莫耳%之Ni。在某些實施例中,組合物包括高達0.1莫耳%、0.5莫耳%、1莫耳%、1.5莫耳%、2莫耳%、2.5莫耳%、3莫耳%、3.5莫耳%、4莫耳%、4.5莫耳%或5莫耳%之V。在某些實施例中,組合物包括高達0.1莫耳%、0.5莫耳%、1莫耳%、1.5莫耳%、2莫耳%、2.5莫耳%、3莫耳%、3.5莫耳%、4莫耳%、4.5莫耳%或5莫耳%之F。In some embodiments, the composition comprises up to about 0.1 mole 1%, 0.5 mole%, 1 mole%, 1.5 mole%, 2 mole%, 2.5 mole%, 3 mole%, 3.5 moles %, 4 mole %, 4.5 mole %, 5 mole %, 6 mole %, 7 mole %, 8 mole %, 9 mole % or 10 mole % of the one or more doped metals . In certain embodiments, the composition comprises up to 0.1 mol%, 0.5 mol%, 1 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 3.5 mol% 4 mol%, 4.5 mol% or 5 mol% Co. In certain embodiments, the composition comprises up to 0.1 mol%, 0.5 mol%, 1 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 3.5 mol% 4 mol%, 4.5 mol% or 5 mol% Ni. In certain embodiments, the composition comprises up to 0.1 mol%, 0.5 mol%, 1 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 3.5 mol% , 4 mole %, 4.5 mole % or 5 mole % of V. In certain embodiments, the composition comprises up to 0.1 mol%, 0.5 mol%, 1 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 3.5 mol% , 4 mole %, 4.5 mole % or 5 mole % F.

在一或多個實施例中,所述一或多種摻雜金屬可代入橄欖石結構之Li、Fe或Mn之一或多個晶格位置中。在某些實施例中,F可代入橄欖石結構之一或多個磷酸鹽晶格位置中。In one or more embodiments, the one or more dopant metals may be substituted into one or more lattice locations of Li, Fe, or Mn of the olivine structure. In certain embodiments, F can be substituted into one or more phosphate lattice locations of the olivine structure.

在一或多個實施例中,電活性材料可主要以橄欖石相形式存在。在一或多個實施例中,電活性材料可更包含少 量之富摻雜金屬次生相。In one or more embodiments, the electroactive material can be present primarily in the form of an olivine phase. In one or more embodiments, the electroactive material may contain less The amount of doped metal secondary phase.

在一或多個實施例中,提供一種正電極,其包含本文中描述之正電極材料。In one or more embodiments, a positive electrode is provided that includes a positive electrode material as described herein.

在一或多個實施例中,提供一種鋰二次電池,其包含:正電極,其與正電極電流收集器電子接觸,所述電流收集器與外部電路電連接;負電極,其與負電極電流收集器電子接觸,所述電流收集器與外部電路電連接;隔板,其位於陰極與陽極之間且與陰極及陽極離子接觸;及電解質,其與所述正電極及所述負電極離子接觸;其中所述正電極包含本文中描述之正電極材料。In one or more embodiments, a lithium secondary battery is provided, comprising: a positive electrode in electrical contact with a positive electrode current collector, the current collector being electrically coupled to an external circuit; a negative electrode, and a negative electrode a current collector electrically contacting, the current collector being electrically coupled to an external circuit; a separator positioned between the cathode and the anode and in contact with the cathode and the anode; and an electrolyte interposed with the positive electrode and the negative electrode Contact; wherein the positive electrode comprises a positive electrode material as described herein.

在一或多個實施例中,鋰二次電池之負電極包含鋰夾層化合物或鋰金屬合金。在一態樣中,負電極包括碳。在另一態樣中,負電極包括石墨碳。在再一態樣中,碳是選自由以下各者組成之群:石墨、球狀石墨、介穩相碳微珠及碳纖維。In one or more embodiments, the negative electrode of the lithium secondary battery comprises a lithium interlayer compound or a lithium metal alloy. In one aspect, the negative electrode comprises carbon. In another aspect, the negative electrode comprises graphitic carbon. In still another aspect, the carbon is selected from the group consisting of graphite, spheroidal graphite, metastable phase carbon microbeads, and carbon fibers.

在一或多個實施例中,正電極更包含黏合劑及導電材料。In one or more embodiments, the positive electrode further comprises a binder and a conductive material.

應認識到,儘管個別地描述了電活性材料之特徵或實施例,但電活性材料、正電極材料、正電極或鋰二次電池可具有本文中描述之一或多個特徵(以任何組合之方式)。It will be appreciated that although features or embodiments of electroactive materials are individually described, electroactive materials, positive electrode materials, positive electrodes or lithium secondary batteries may have one or more of the features described herein (in any combination) the way).

定義definition

如本文中所使用,「摻雜金屬(dopant metal)」指代可 摻雜至正電極之電活性材料中(或取代其元素)或摻雜至電活性材料之晶格位置(lattice site)中的金屬。在某些實施例中,摻雜金屬以小濃度(相對於電活性金屬之濃度)存在,或具有明顯不同於電活性金屬之氧化還原電位(redox potential),使得摻雜金屬並未顯著有助於電化電池中之電儲存電容。As used herein, "dopant metal" refers to A metal doped into (or substituted for) an electroactive material of a positive electrode or doped into a lattice site of an electroactive material. In certain embodiments, the doping metal is present at a small concentration (relative to the concentration of the electroactive metal) or has a redox potential that is significantly different from the electroactive metal, such that the doping metal is not significantly helpful Electrical storage capacitor in an electrochemical battery.

如本文中所使用,「橄欖石結構(olivine structure)」指代基於化學式(M1,M2)2 AO4 之化合物。橄欖石結構是由隔離四面體AO4 陰離子基團及由六個氧離子環繞之M1及M2陽離子組成。大體上,橄欖石結構展現出斜方晶(orthorhombic)2mmm晶體對稱性,且具有由曲折鏈(zigzag chain)及直鏈界定之多個平面。M1陽離子通常佔據八面體座(octahedral site)之曲折鏈,且M2陽離子通常佔據所述八面體座之交替平面的線性鏈。晶格位置可摻雜有其他摻雜金屬,但仍維持橄欖石結構。As used herein, "olivine structure" refers to a compound based on the formula (M1, M2) 2 AO 4 . The olivine structure consists of an isolating tetrahedral AO 4 anion group and M1 and M2 cations surrounded by six oxygen ions. In general, the olivine structure exhibits orthorhombic 2mmm crystal symmetry and has a plurality of planes defined by zigzag chains and straight chains. The M1 cation typically occupies a tortuous chain of octahedral sites, and the M2 cation typically occupies a linear chain of alternating planes of the octahedral seat. The lattice position can be doped with other doped metals, but still maintain the olivine structure.

如本文中所使用,「橄欖石相(olivinic phase)」為具有橄欖石結構之任何結晶相。橄欖石相可包含代入橄欖石結構之晶格結構中的一或多種摻雜金屬。舉例而言,橄欖石相可基於具有以下橄欖石結構之磷酸鋰鐵錳(lithium-iron-manganese-phosphate,LFMP),所述橄欖石結構在橄欖石結構之晶格位置中摻雜有一或多種摻雜金屬。As used herein, an "olivine phase" is any crystalline phase having an olivine structure. The olivine phase may comprise one or more doping metals substituted into the lattice structure of the olivine structure. For example, the olivine phase may be based on lithium-iron-manganese-phosphate (LFMP) having the following olivine structure doped with one or more of the lattice positions of the olivine structure Doped with metal.

如本文中所使用,「橄欖石化合物」指代具有橄欖石結構之材料。As used herein, "olivine compound" refers to a material having an olivine structure.

如本文中所使用,「化學計量橄欖石化合物(stoichiometric olivine compound)」指代材料中之鋰及/或磷相對於其他金屬之量。舉例而言,若橄欖石化合物為LiFePO4 ,則Li:Fe:PO4 之比為1:1:1以形成化學計量橄欖石化合物。若橄欖石化合物為Li-Fe-Mn-Co-Ni-V-PO4 ,則比Li:Fe+Mn+Co+Ni+V:PO4 為1:1:1以形成化學計量橄欖石化合物。As used herein, "stoichiometric olivine compound" refers to the amount of lithium and/or phosphorus relative to other metals in the material. For example, if the olivine compound is LiFePO 4 , the ratio of Li:Fe:PO 4 is 1:1:1 to form a stoichiometric olivine compound. If the olivine compound is Li-Fe-Mn-Co-Ni-V-PO 4 , the ratio of Li:Fe+Mn+Co+Ni+V:PO 4 is 1:1:1 to form a stoichiometric olivine compound.

如本文中所使用,「過量鋰」或「富鋰(lithium rich)」指代總組成中鋰之量超過形成化學計量橄欖石化合物所需之量。As used herein, "excess lithium" or "lithium rich" refers to the amount of lithium in the total composition that exceeds the amount required to form a stoichiometric olivine compound.

如本文中所使用,「過量磷」或「富磷」指代總組成中磷之量超過形成化學計量橄欖石化合物所需之量。As used herein, "excess phosphorus" or "phosphorus-rich" refers to the amount of phosphorus in the total composition that exceeds the amount required to form a stoichiometric olivine compound.

如本文中所使用,「固溶體(solid solution)」指代自身排列成單晶格結構(諸如,橄欖石結構)之不同原子陽離子及陰離子的混合物。舉例而言,共同以橄欖石相形式存在之橄欖石化合物(諸如,LFMP及摻雜金屬)可被稱作固溶體。As used herein, "solid solution" refers to a mixture of different atomic cations and anions that are themselves arranged in a single crystal lattice structure, such as an olivine structure. For example, olivine compounds (such as LFMP and doped metals) that are present together in the form of an olivine phase may be referred to as solid solutions.

如本文中所使用,術語「比電容」指代正電極中電活性材料之每單位質量的電容,且具有毫安-小時/克(mAh/g)之單位。As used herein, the term "specific capacitance" refers to a capacitance per unit mass of an electroactive material in a positive electrode and has a unit of milliamp-hours per gram (mAh/g).

如本文中所使用,術語「能量密度」指代電池所具有之與其大小有關的能量之量。能量密度為針對指定之放電速率的電池在正電極中每電活性材料量可儲存之能量的總量(以Wh為單位)。As used herein, the term "energy density" refers to the amount of energy that a battery has in relation to its size. The energy density is the total amount of energy (in Wh) that can be stored per electroactive material amount in the positive electrode of a battery for a specified discharge rate.

設計及獲得改良式電池材料為極度困難之任務。在設計改良式電池材料過程中必須考量許多不同可變因素,諸如電池在其中起作用之應用、電池之穩定性/壽命、成本及其類似者。傳統上,已基於所要應用將電池設計成展現出高能量密度或高比電容的。在傳統上已歸因於在排除並克服現存之各種設計可變因素過程中面臨之困難而作出此設計選擇。請注意,使能量密度最大化未必致使比電容最大化,且反之亦然。Designing and obtaining improved battery materials is an extremely difficult task. Many different variables must be considered in designing an improved battery material, such as the application in which the battery functions, the stability/lifetime of the battery, cost, and the like. Traditionally, batteries have been designed to exhibit high energy density or high specific capacitance based on the desired application. This design choice has traditionally been attributed to the difficulties faced in eliminating and overcoming the various design variables that exist. Note that maximizing the energy density does not necessarily maximize the specific capacitance, and vice versa.

不論怎樣努力,皆極難以達成將致能高能量密度及/或高比電容之電池材料。儘管取得了一些進展,但仍需要繼續改良能量及/或比電容,且已為此作出許多嘗試。此等嘗試及隨後之結果大體上對何種材料組合將達成能量及比電容之更進一步增加提供極少之指導。Regardless of how hard it is, it is extremely difficult to achieve a battery material that will enable high energy density and/or high specific capacitance. Despite some progress, there is still a need to continue to improve energy and/or specific capacitance, and many attempts have been made to this end. These attempts and subsequent results provide little guidance as to which combination of materials will achieve energy and further increase in capacitance.

一個一般預期為,由於橄欖石結構中Mn之氧化還原電位(相對於Li為約4.0V)比Fe之氧化還原電位(相對於Li為3.5V)高約0.5V,因此富Mn之磷酸Li-Fe-Mn(LFMP)材料將達成改良之性質,諸如能量密度及比電容。事實上,其他人已關注了此等富Mn磷酸鹽材料。然而,令人驚訝地且與傳統智慧相反,本發明獲得正電極LFMP材料之改良性質(諸如,能量密度及比電容),所述正電極LFMP材料具有較低含量之Mn且(例如)Mn在LFMP中之莫耳量(molar amount)小於60%、55%、50%、45%或40%。It is generally expected that the Mn-rich phosphoric acid Li- is oxidized and reduced (about 4.0 V with respect to Li) in the olivine structure to be about 0.5 V higher than the redox potential of Fe (3.5 V vs. Li). Fe-Mn (LFMP) materials will achieve improved properties such as energy density and specific capacitance. In fact, others have focused on these Mn-rich phosphate materials. Surprisingly, and contrary to conventional wisdom, the present invention achieves improved properties (such as energy density and specific capacitance) of a positive electrode LFMP material having a lower content of Mn and, for example, Mn at The molar amount in LFMP is less than 60%, 55%, 50%, 45% or 40%.

此外,不希望受理論所限制,多數摻雜金屬具有穩定 之氧化態,其僅在明顯不同於Fe及/或Mn之氧化還原電位之電位下才可改變。因此,不預期此等摻雜金屬直接有助於材料之電儲存電容。舉例而言,由於Co及Ni之氧化還原電位比錳之氧化還原電位高約至少0.5V且比鐵之氧化還原電位高至少1.0V,因此此等摻雜金屬通常將不會將顯著之電儲存電容貢獻給在Fe2+ →Fe3+ 之氧化還原平線區(redox plateau)處或附近操作之電池。Moreover, without wishing to be bound by theory, most doped metals have a stable oxidation state that can only be altered at a potential that is significantly different from the redox potential of Fe and/or Mn. Therefore, these doped metals are not expected to directly contribute to the electrical storage capacitance of the material. For example, since the redox potential of Co and Ni is at least about 0.5 V higher than the redox potential of manganese and at least 1.0 V higher than the redox potential of iron, such doped metals will generally not have significant electrical storage. The capacitor contributes to the battery operating at or near the redox plateau of Fe 2+ →Fe 3+ .

然而,與傳統智慧相反,某些摻雜金屬可有助於增加電池之能量密度及/或比電容。However, contrary to traditional wisdom, certain doping metals can help increase the energy density and/or specific capacitance of the battery.

在某些實施例中,本發明提供具有至少一個橄欖石相之摻雜LFMP材料,所述橄欖石相包括鋰(Li)、鐵(Fe)、錳(Mn)、一或多種摻雜劑(D)及磷酸鹽(PO4 ),其中總組成包含Fe+Mn+D=1.0,Li:(Fe+Mn+D)之量的比是約1.0至約1.05,PO4 :(Fe+Mn+D)之量的比是約1.0至約1.025,D是選自由以下各者組成之群的一或多種金屬:鈷(Co)、鎳(Ni)、釩(V)、鈮(Nb)及其混合物,且Mn之範圍是0.350至小於0.600,或0.400至小於0.600,或0.400至0.550,或0.450至0.550,或0.450至0.500。在某些實施例中,D是選自由以下各者組成之群的一或多種金屬:鈷(Co)、釩(V)或其混合物。在某些實施例中,正電極材料可更摻雜有氟(F)。In certain embodiments, the present invention provides a doped LFMP material having at least one olivine phase comprising lithium (Li), iron (Fe), manganese (Mn), one or more dopants ( D) and phosphate (PO 4 ), wherein the total composition comprises Fe + Mn + D = 1.0, and the ratio of the amount of Li: (Fe + Mn + D) is from about 1.0 to about 1.05, and PO 4 : (Fe + Mn + The ratio of the amount of D) is from about 1.0 to about 1.025, and D is one or more metals selected from the group consisting of cobalt (Co), nickel (Ni), vanadium (V), niobium (Nb), and The mixture, and the range of Mn is from 0.350 to less than 0.600, or from 0.400 to less than 0.600, or from 0.400 to 0.550, or from 0.450 to 0.550, or from 0.450 to 0.500. In certain embodiments, D is one or more metals selected from the group consisting of cobalt (Co), vanadium (V), or mixtures thereof. In certain embodiments, the positive electrode material may be more doped with fluorine (F).

在一些實施例中,組合物包括高達約0.1莫耳1%、0.5莫耳%、1莫耳%、1.5莫耳%、2莫耳%、2.5莫耳%、3莫耳%、3.5莫耳%、4莫耳%、4.5莫耳%、5莫耳%、6莫耳 %、7莫耳%、8莫耳%、9莫耳%或10莫耳%之所述一或多種摻雜金屬。在某些實施例中,組合物包括高達0.1莫耳%、0.5莫耳%、1莫耳%、1.5莫耳%、2莫耳%、2.5莫耳%、3莫耳%、3.5莫耳%、4莫耳%、4.5莫耳%或5莫耳%之Co。在某些實施例中,組合物包括高達0.1莫耳%、0.5莫耳%、1莫耳%、1.5莫耳%、2莫耳%、2.5莫耳%、3莫耳%、3.5莫耳%、4莫耳%、4.5莫耳%或5莫耳%之Ni。在某些實施例中,組合物包括高達0.1莫耳%、0.5莫耳%、1莫耳%、1.5莫耳%、2莫耳%、2.5莫耳%、3莫耳%、3.5莫耳%、4莫耳%、4.5莫耳%或5莫耳%之V。在某些實施例中,組合物包括高達0.1莫耳%、0.5莫耳%、1莫耳%、1.5莫耳%、2莫耳%、2.5莫耳%、3莫耳%、3.5莫耳%、4莫耳%、4.5莫耳%或5莫耳%之F。In some embodiments, the composition comprises up to about 0.1 mole 1%, 0.5 mole%, 1 mole%, 1.5 mole%, 2 mole%, 2.5 mole%, 3 mole%, 3.5 moles %, 4 mole %, 4.5 mole %, 5 mole %, 6 moles %, 7 mole %, 8 mole %, 9 mole % or 10 mole % of the one or more dopant metals. In certain embodiments, the composition comprises up to 0.1 mol%, 0.5 mol%, 1 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 3.5 mol% 4 mol%, 4.5 mol% or 5 mol% Co. In certain embodiments, the composition comprises up to 0.1 mol%, 0.5 mol%, 1 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 3.5 mol% 4 mol%, 4.5 mol% or 5 mol% Ni. In certain embodiments, the composition comprises up to 0.1 mol%, 0.5 mol%, 1 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 3.5 mol% , 4 mole %, 4.5 mole % or 5 mole % of V. In certain embodiments, the composition comprises up to 0.1 mol%, 0.5 mol%, 1 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 3.5 mol% , 4 mole %, 4.5 mole % or 5 mole % F.

在一或多個實施例中,提供一種正電極材料,其包含電活性材料。所述電活性材料至少包括橄欖石相,所述橄欖石相包括鋰(Li)、鐵(Fe)、錳(Mn)、一或多種摻雜劑(D)及磷酸鹽(PO4 ),其中總組成具有約1.000至約1.050之Li:(Fe+Mn+D)之比,約1.000至約1.025之(PO4 ):(Fe+Mn+D)之比,且D是選自由以下各者組成之群的一或多種金屬:鈷(Co)、鎳(Ni)、釩(V)、鈮(Nb)及其混合物。在某些實施例中,D是選自由以下各者組成之群的一或多種金屬:鈷(Co)、釩(V)或其混合物。在某些實施例中,正電極材料可更摻雜有氟(F)。In one or more embodiments, a positive electrode material is provided that includes an electroactive material. The electroactive material includes at least an olivine phase, and the olivine phase includes lithium (Li), iron (Fe), manganese (Mn), one or more dopants (D), and phosphate (PO 4 ), wherein The total composition has a ratio of Li:(Fe+Mn+D) of from about 1.000 to about 1.050, a ratio of (PO 4 ):(Fe+Mn+D) of from about 1.000 to about 1.025, and D is selected from the following One or more of the constituent metals: cobalt (Co), nickel (Ni), vanadium (V), niobium (Nb), and mixtures thereof. In certain embodiments, D is one or more metals selected from the group consisting of cobalt (Co), vanadium (V), or mixtures thereof. In certain embodiments, the positive electrode material may be more doped with fluorine (F).

在一或多個實施例中,提供一種正電極材料,其包含 鋰及/或磷酸鹽化學計量電活性材料,所述材料具有一或多個相,所述相包括鋰(Li)、鐵(Fe)、錳(Mn)、一或多種摻雜劑(D)及磷酸鹽(PO4 ),其中總組成具有約1.000之Li:(Fe+Mn+D)之比,約1.000之(PO4 ):(Fe+Mn+D)之比,且D是選自由以下各者組成之群的一或多種金屬:鈷(Co)、鎳(Ni)、釩(V)、鈮(Nb)及其混合物。在某些實施例中,D是選自由以下各者組成之群的一或多種金屬:鈷(Co)、釩(V)或其混合物。在某些實施例中,D是選自由以下各者組成之群的一或多種金屬:鈷(Co)、釩(V)、鈮(Nb)或其混合物。不希望受理論所限制,Nb之存在可增加電活性材料之導電性。在某些實施例中,正電極材料可更摻雜有氟(F)。In one or more embodiments, a positive electrode material is provided comprising a lithium and/or phosphate stoichiometric electroactive material having one or more phases including lithium (Li), iron ( Fe), manganese (Mn), one or more dopants (D) and phosphate (PO 4 ), wherein the total composition has a ratio of Li:(Fe+Mn+D) of about 1.000, about 1.000 (PO 4 ) a ratio of (Fe + Mn + D), and D is one or more metals selected from the group consisting of cobalt (Co), nickel (Ni), vanadium (V), niobium (Nb) and mixture. In certain embodiments, D is one or more metals selected from the group consisting of cobalt (Co), vanadium (V), or mixtures thereof. In certain embodiments, D is one or more metals selected from the group consisting of cobalt (Co), vanadium (V), niobium (Nb), or mixtures thereof. Without wishing to be bound by theory, the presence of Nb may increase the conductivity of the electroactive material. In certain embodiments, the positive electrode material may be more doped with fluorine (F).

在一或多個實施例中,提供一種正電極材料,其包含富鋰及/或富磷酸鹽之電活性材料。所述電活性材料至少包括橄欖石相,所述橄欖石相包括鋰(Li)、鐵(Fe)、錳(Mn)、一或多種摻雜劑(D)及磷酸鹽(PO4 ),其中總組成具有約大於1.000至約1.050之Li:(Fe+Mn+D)之比,約大於1.000至約1.025之(PO4 ):(Fe+Mn+D)之比,且D是選自由以下各者組成之群的一或多種金屬:鈷(Co)、鎳(Ni)、釩(V)、鈮(Nb)及其混合物。在某些實施例中,D是選自由以下各者組成之群的一或多種金屬:鈷(Co)、釩(V)或其混合物。在某些實施例中,正電極材料可更摻雜有氟(F)。In one or more embodiments, a positive electrode material is provided that comprises a lithium-rich and/or phosphate-rich electroactive material. The electroactive material includes at least an olivine phase, and the olivine phase includes lithium (Li), iron (Fe), manganese (Mn), one or more dopants (D), and phosphate (PO 4 ), wherein The total composition has a ratio of Li:(Fe+Mn+D) of from about 1.000 to about 1.050, a ratio of (PO 4 ):(Fe+Mn+D) of from about 1.000 to about 1.025, and D is selected from the following One or more metals of each group consisting of cobalt (Co), nickel (Ni), vanadium (V), niobium (Nb), and mixtures thereof. In certain embodiments, D is one or more metals selected from the group consisting of cobalt (Co), vanadium (V), or mixtures thereof. In certain embodiments, the positive electrode material may be more doped with fluorine (F).

總組成中之過量鋰及過量磷酸鹽無需以單橄欖石結 構或單橄欖石相提供非化學計量橄欖石化合物。相反,過量之鋰及/或磷酸鹽可(例如)以與橄欖石相結合之次生相(secondary phase)及其類似者之形式存在。Excess lithium and excess phosphate in the total composition do not need to be monolithite The mono-olivine phase provides a non-stoichiometric olivine compound. Conversely, excess lithium and/or phosphate may be present, for example, in the form of a secondary phase in combination with olivine and the like.

通常,摻雜劑(諸如,Co、Ni、V、Nb及/或F)是摻雜至橄欖石結構之晶格位置中並駐留於橄欖石結構之晶格位置上以形成橄欖石相。然而,在展現出Li離子電池效能之降級之前,可容許少量之富摻雜劑之次生相。Typically, a dopant such as Co, Ni, V, Nb, and/or F is doped into the lattice location of the olivine structure and resides at the lattice location of the olivine structure to form an olivine phase. However, a small amount of a dopant-rich secondary phase can be tolerated before exhibiting a degradation in Li-ion battery performance.

根據一或多個實施例之陰極電活性材料在高放電速率下展現出高能量密度及/或高比電容,所述高放電速率諸如比對應於在1小時內對電池進行一次完全放電之速率快10倍(10C-意謂完全放電發生在六分鐘內或一小時之十分之一內)及比對應於在1小時內對電池進行一次完全放電之速率快20倍(20C-意謂完全放電發生在3分鐘內或一小時之二十分之一內)。舉例而言,正電極材料達成在20C之放電速率下為至少200mWh/g、250mWh/g、300mWh/g、340mWh/g、350mWh/g、360mWh/g或370mWh/g、380mWh/g、390mWh/g或400mWh/g的能量密度。在另一態樣中,提供所述正電極材料,其中比電容在20C之放電速率下為至少90mAh/g或100mAh/g或110mAh/g或115mAh/g或120mAh/g或125mAh/g。比功率密度在20C之放電速率下為至少6,800mW/g、7,000mW/g、7,200mW/g、7,400mW/g、7600mW/g、7,800mW/g或8,000mW/g。A cathodic electroactive material according to one or more embodiments exhibits a high energy density and/or a high specific capacitance at a high discharge rate, such as a rate corresponding to a complete discharge of the battery within one hour. 10 times faster (10C - meaning complete discharge occurs within six minutes or one tenth of an hour) and 20 times faster than the rate corresponding to a complete discharge of the battery within 1 hour (20C - meaning complete The discharge occurs within 3 minutes or within one-twentieth of an hour). For example, the positive electrode material achieves at least 200 mWh/g, 250 mWh/g, 300 mWh/g, 340 mWh/g, 350 mWh/g, 360 mWh/g or 370 mWh/g, 380 mWh/g, 390 mWh/ at a discharge rate of 20C. g or energy density of 400 mWh/g. In another aspect, the positive electrode material is provided wherein the specific capacitance is at least 90 mAh/g or 100 mAh/g or 110 mAh/g or 115 mAh/g or 120 mAh/g or 125 mAh/g at a discharge rate of 20C. The specific power density is at least 6,800 mW/g, 7,000 mW/g, 7,200 mW/g, 7,400 mW/g, 7600 mW/g, 7,800 mW/g or 8,000 mW/g at a discharge rate of 20C.

請注意,為了使鋰二次電池為廣範圍之電動車輛或大 型能量柵應用(large format energy grid application)廣泛地接受,電池必須具有高能量儲存密度(Wh/kg)及可用之高功率密度(W/kg)。功率密度可簡單地被視為電池系統的可在某個單位時間期間使用(或儲存)之能量容量。舉例而言,在本文中說明之特定材料中,報告能量密度(以mWh/g計),其中僅考慮活性陰極材料之重量(而非考慮總電池系統重量),所述報告將包含陽極、電流收集器、隔板、電解質及封裝材料之選擇。此外,吾人報告在20C之顯著高之放電速率下(或完全放掉能量花費1小時之1/20,180秒)之能量密度。藉由關注此相對高之放電速率,所報告之材料不僅可滿足能量密度要求且亦可滿足高功率密度應用(如同機動車輛之電氣化及即時能量柵穩定化)。Please note that in order to make the lithium secondary battery a wide range of electric vehicles or large A large format energy grid application is widely accepted, and the battery must have a high energy storage density (Wh/kg) and a usable high power density (W/kg). Power density can simply be viewed as the energy capacity of a battery system that can be used (or stored) during a certain unit time. For example, in the particular materials described herein, the energy density (in mWh/g) is reported, where only the weight of the active cathode material is considered (rather than considering the total cell system weight), the report will contain the anode, current Selection of collectors, separators, electrolytes and packaging materials. In addition, we report the energy density at a significantly higher discharge rate of 20C (or 1/20, 180 seconds of 1 hour of complete energy loss). By focusing on this relatively high discharge rate, the reported materials not only meet energy density requirements but also high power density applications (like electrification of motor vehicles and instant energy grid stabilization).

可提供改良式能量密度及功率密度之一些合適之例示性組合物包含但不限於以下各者:Li1.025 Mn0.400 Fe0.580 Co0.020 (PO4 )1.000 Some suitable exemplary compositions that provide improved energy density and power density include, but are not limited to, Li 1.025 Mn 0.400 Fe 0.580 Co 0.020 (PO 4 ) 1.000

Li1.025 Mn0.450 Fe0.530 Co0.020 (PO4 )1.000 Li 1.025 Mn 0.450 Fe 0.530 Co 0.020 (PO 4 ) 1.000

Li1.025 Mn0.500 Fe0.480 Co0.010 Ni0.010 (PO4 )1.000 Li 1.025 Mn 0.500 Fe 0.480 Co 0.010 Ni 0.010 (PO 4 ) 1.000

Li1.050 Mn0.450 Fe0.500 Co0.010 Ni0.010 V0.030 (PO4 )1.025 Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.025

Li1.040 Mn0.400 Fe0.560 Co0.010 Ni0.010 V0.020 (PO4 )1.015 Li 1.040 Mn 0.400 Fe 0.560 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015

Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.020 (PO4 )1.015 Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015

Li1.030 Mn0.450 Fe0.520 Co0.010 Ni0.010 V0.010 (PO4 )1.005 Li 1.030 Mn 0.450 Fe 0.520 Co 0.010 Ni 0.010 V 0.010 (PO 4 ) 1.005

Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.030 (PO4 )1.010 F0.015 Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.010 F 0.015

Li1.050 Mn0.450 Fe0.510 Co0.0100 Ni0.005 V0.025 (PO4 )1.020 Li 1.050 Mn 0.450 Fe 0.510 Co 0.0100 Ni 0.005 V 0.025 (PO 4 ) 1.020

Li1.000 Mn0.500 Fe0.460 Co0.040 PO4 Li 1.000 Mn 0.500 Fe 0.460 Co 0.040 PO 4

Li1.000 Mn0.450 Fe0.530 Co0.010 Ni0.010 PO4 Li 1.000 Mn 0.450 Fe 0.530 Co 0.010 Ni 0.010 PO 4

Li1.025 Mn0.500 Fe0.480 Co0.010 Nb0.010 (PO4 )1.000 Li 1.025 Mn 0.500 Fe 0.480 Co 0.010 Nb 0.010 (PO 4 ) 1.000

Li1.050 Mn0.450 Fe0.500 Co0.010 Nb0.010 V0.030 (PO4 )1.025 Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Nb 0.010 V 0.030 (PO 4 ) 1.025

Li1.040 Mn0.400 Fe0.560 Co0.010 Nb0.010 V0.020 (PO4 )1.015 Li 1.040 Mn 0.400 Fe 0.560 Co 0.010 Nb 0.010 V 0.020 (PO 4 ) 1.015

Li1.040 Mn0.450 Fe0.510 Co0.010 Nb0.010 V0.020 (PO4 )1.015 Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Nb 0.010 V 0.020 (PO 4 ) 1.015

Li1.030 Mn0.450 Fe0.520 Co0.010 Nb0.010 V0.010 (PO4 )1.005 Li 1.030 Mn 0.450 Fe 0.520 Co 0.010 Nb 0.010 V 0.010 (PO 4 ) 1.005

Li1.040 Mn0.450 Fe0.510 Co0.010 Nb0.010 V0.030 (PO4 )1.010 F0.015 ,或Li1.050 Mn0.450 Fe0.510 Co0.0100 Nb0.005 V0.025 (PO4 )1.020 .Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Nb 0.010 V 0.030 (PO 4 ) 1.010 F 0.015 , or Li 1.050 Mn 0.450 Fe 0.510 Co 0.0100 Nb 0.005 V 0.025 (PO 4 ) 1.020 .

另外,控制主要橄欖石晶體大小使之<100nm尺寸可有益於增強本發明之LFMP材料的鋰輸送動力學及傳導率。關於此等類似化合物(磷酸鋰-鐵材料)之組合物及製備的更多細節在美國公開申請案2004/0005265(現在為美國專利第7,338,734號)中找到,所述申請案以引用方式全文併入本文中。In addition, controlling the size of the major olivine crystals to a size of <100 nm can be beneficial to enhance the lithium transport kinetics and conductivity of the LFMP materials of the present invention. Further details regarding the composition and preparation of such similar compounds (lithium phosphate-iron materials) are found in U.S. Published Application No. 2004/0005, 265, which is hereby incorporated by reference. Into this article.

摻雜有超價(hypervalent)過渡金屬(諸如,Nb或V)可更有助於所得橄欖石材料對可再充電鋰離子電池應用之有利應用。摻雜劑之有利作用可為若干倍,且包含橄欖石粉末的增加之電子傳導率,且可限制橄欖石奈米磷酸鹽粒子之燒結(sintering)以允許在電池之快速充電/放電期間充分利用鋰電容。Doping with a hypervalent transition metal such as Nb or V may be more beneficial to the advantageous application of the resulting olivine material to rechargeable lithium ion battery applications. The beneficial effect of the dopant can be several times and includes increased electron conductivity of the olivine powder and can limit the sintering of the olivine nanophosphate particles to allow for full utilization during rapid charge/discharge of the battery. Lithium capacitor.

正電活性材料可以許多種不同方式來製備。大體上,過程涉及製備含有鋰、鐵、錳及鈷來源以及額外摻雜金屬 來源之起始材料的混合物。例示性鋰來源包含碳酸鋰及磷酸二氫鋰。例示性鐵來源包含磷酸鐵、草酸亞鐵、碳酸鐵及其類似者。例示性錳來源包含碳酸錳、磷酸錳。例示性摻雜金屬來源包含草酸鈷、草酸鎳、氧化釩、偏釩酸銨、氟化銨及其類似者。起始材料可視情況地呈水合形式或用作乾燥之粉末混合物。起始材料可視情況地更包含其他組份,諸如磷酸銨、可溶於水聚合物(例如,可溶於水之基於乙烯基之共聚物),或其他前.驅體(例如,糖前驅體)。Positively electroactive materials can be prepared in a number of different ways. In general, the process involves the preparation of sources containing lithium, iron, manganese and cobalt as well as additional doping metals. A mixture of starting materials from the source. An exemplary lithium source comprises lithium carbonate and lithium dihydrogen phosphate. Exemplary sources of iron include iron phosphate, ferrous oxalate, iron carbonate, and the like. Exemplary manganese sources include manganese carbonate and manganese phosphate. Exemplary dopant metal sources include cobalt oxalate, nickel oxalate, vanadium oxide, ammonium metavanadate, ammonium fluoride, and the like. The starting material can optionally be in hydrated form or used as a dry powder mixture. The starting material may optionally further comprise other components such as ammonium phosphate, a water soluble polymer (eg, a water-soluble vinyl-based copolymer), or other precursors (eg, a sugar precursor). ).

在某些實施例中,包含摻雜橄欖石電活性化合物之正電活性材料可由鋰鹽、鐵化合物及磷鹽之起始材料製備,所述起始材料包含但不限於已(諸如)使用草酸鈷、草酸鎳、氧化釩及/或氟化銨來添加額外低濃度之摻雜金屬(諸如,Co、Ni、V及/或F)的碳酸鋰、草酸亞鐵或碳酸鐵、碳酸錳及磷酸銨。在300℃至900℃之溫度下且(例如)在約600℃至700℃之溫度下在低氧(例如,惰性)環境下加熱乾燥之粉末混合物。關於此等化合物之組合物及製備的更多細節在美國公開申請案2004/0005265、US 2009/01238134及US 2009/0186277中找到,所述各案皆以引用方式全文併入本文中。In certain embodiments, a positively-active material comprising a doped olivine electroactive compound can be prepared from a starting material of a lithium salt, an iron compound, and a phosphorus salt, including but not limited to, having used, for example, oxalic acid. Cobalt, nickel oxalate, vanadium oxide and/or ammonium fluoride to add additional low concentrations of doped metals (such as Co, Ni, V and/or F) to lithium carbonate, ferrous oxalate or iron carbonate, manganese carbonate and phosphoric acid Ammonium. The dried powder mixture is heated in a low oxygen (e.g., inert) environment at a temperature of from 300 ° C to 900 ° C and, for example, at a temperature of from about 600 ° C to 700 ° C. Further details regarding the compositions and preparations of such compounds are found in U.S. Published Application Nos. 2004/0005265, US 2009/01238134, and US 2009/0186277, each of which is incorporated herein in its entirety by reference.

在其他實施例中,用於鋰電活性金屬磷酸鹽之合成的製程包含在還原氣氛下研磨及加熱包含以下各者之材料的混合物:鋰來源、磷酸鐵及一或多種額外摻雜金屬來源。例示性起始材料包含(但不限於)碳酸鋰、磷酸鐵及氧化釩。在還原氣氛下在大氣壓力下加熱所述混合物至約 550℃至700℃之溫度,繼之以通常在惰性氣氛下冷卻至室溫。關於此等化合物之組合物及製備的更多細節在美國專利第7,282,301號中找到,所述專利以引用方式全文併入本文中。In other embodiments, the process for the synthesis of lithium electroactive metal phosphates comprises milling and heating a mixture comprising materials of lithium source, iron phosphate, and one or more additional dopant metal sources under a reducing atmosphere. Exemplary starting materials include, but are not limited to, lithium carbonate, iron phosphate, and vanadium oxide. Heating the mixture under atmospheric pressure under a reducing atmosphere to about The temperature is from 550 ° C to 700 ° C, followed by cooling to room temperature, usually under an inert atmosphere. Further details regarding the compositions and preparation of such compounds are found in U.S. Patent No. 7,282,301, which is incorporated herein in its entirety by reference.

在其他實施例中,用於鋰電活性金屬磷酸鹽之合成的製程包含基於水之研磨製程,其中將起始材料(諸如,碳酸鋰、水合磷酸鐵、水合磷酸錳、磷酸二氫鋰、水合草酸鈷、水合草酸鎳及偏釩酸銨)與可溶於水之基於乙烯基的共聚物或糖前驅體混合以進行研磨及隨後烘乾。在烘乾後,可在高達約700℃之所要溫度上升條件下加熱粉末,且隨後冷卻至室溫。In other embodiments, the process for the synthesis of lithium electroactive metal phosphate comprises a water-based polishing process in which a starting material (such as lithium carbonate, hydrated iron phosphate, hydrated manganese phosphate, lithium dihydrogen phosphate, hydrated oxalic acid). Cobalt, hydrated nickel oxalate and ammonium metavanadate are mixed with a water-soluble vinyl-based copolymer or sugar precursor for grinding and subsequent drying. After drying, the powder can be heated at a desired temperature rise of up to about 700 ° C and then cooled to room temperature.

正電極(陰極)是藉由將半液體糊狀物塗覆至電流收集器箔或柵之兩側且烘乾所塗覆之正電極組合物來製造,所述半液體糊狀物含有均質地分散於適當鑄造溶劑中之聚合物黏合劑之溶液中的陰極活性化合物及傳導添加劑。將諸如鋁箔或膨脹金屬柵之金屬基板用作電流收集器。為改良活性層至電流收集器之黏著,可施加黏著層(例如,薄碳聚合物中間塗層(intercoating))。對所述乾燥層壓延以提供具有均一厚度及密度之層。電極中所使用之黏合劑可為用作非水電解質電池之黏合劑的任何合適黏合劑。A positive electrode (cathode) is produced by applying a semi-liquid paste to both sides of a current collector foil or grid and drying the applied positive electrode composition, said semi-liquid paste containing homogeneously A cathode active compound and a conductive additive dispersed in a solution of a polymer binder in a suitable casting solvent. A metal substrate such as an aluminum foil or an expanded metal grid is used as the current collector. To improve adhesion of the active layer to the current collector, an adhesive layer (eg, a thin carbon polymer intercoating) can be applied. The dry lamination is extended to provide a layer having a uniform thickness and density. The binder used in the electrode may be any suitable binder used as a binder for the nonaqueous electrolyte battery.

在裝配鋰離子電池之過程中,負電極活性材料可為能夠可逆地吸收鋰的任何材料。在一實施例中,負活性材料為含碳材料。所述含碳材料可為非石墨或石墨。小粒徑、石墨化之天然或合成碳可用作負活性材料。儘管可使用非 石墨碳材料或石墨碳材料,但較佳使用石墨材料,諸如天然石墨、球狀天然石墨、介穩相碳微珠(mesocarbon microbead)及碳纖維(諸如,中間相碳纖維)。In the process of assembling a lithium ion battery, the negative electrode active material may be any material capable of reversibly absorbing lithium. In an embodiment, the negative active material is a carbonaceous material. The carbonaceous material can be non-graphite or graphite. Small particle size, graphitized natural or synthetic carbon can be used as the negative active material. Although non-useable Graphite carbon material or graphite carbon material, but graphite materials such as natural graphite, spherical natural graphite, mesocarbon microbead, and carbon fiber (such as mesocarbon fiber) are preferably used.

使用非水電解質,且所述非水電解質包含溶解於非水溶劑中之適當鋰鹽。電解質可灌入至將正電極與負電極隔開之多孔隔板中。在一或多個實施例中,使用微孔電絕緣隔板。A nonaqueous electrolyte is used, and the nonaqueous electrolyte contains a suitable lithium salt dissolved in a nonaqueous solvent. The electrolyte can be poured into a porous separator that separates the positive electrode from the negative electrode. In one or more embodiments, a microporous electrically insulating separator is used.

正電極活性材料可併入至任何電池形狀中。實際上,可使用各種不同形狀及大小,諸如圓柱形(果凍卷)、正方形、矩形(棱形)硬幣型、按鈕型或其類似者。The positive electrode active material can be incorporated into any battery shape. In fact, a variety of different shapes and sizes can be used, such as a cylindrical (jelly roll), a square, a rectangular (prism) coin type, a button type, or the like.

實例1:摻雜有鈷之化學計量LFMP材料Example 1: Stoichiometric LFMP material doped with cobalt

為製備LiMnx Fey Coz PO4 (x+y+z=1),將碳酸鋰、碳酸錳、草酸亞鐵、草酸鈷及磷酸二氫銨在含有氧化鋯研磨介質(grinding media)及丙酮之塑膠研磨瓶中混合達三天,且接著使用旋轉式汽化器(rotary evaporator)來烘乾。To prepare LiMn x Fe y Co z PO 4 (x+y+z=1), lithium carbonate, manganese carbonate, ferrous oxalate, cobalt oxalate and ammonium dihydrogen phosphate are contained in zirconia grinding media and acetone. The plastic grinding bottle was mixed for three days and then dried using a rotary evaporator.

製備各種樣本,其中Mn、Fe及Co之相對量如下變化:0.300x0.650,0.300y0.680,且0z0.100。基於由感應耦合電漿原子發射光譜儀(inductively coupled plasma-atomic emission spectroscopy,ICP-AES)進行之金屬化驗來判定原料之量以在最終產品中提供目標莫耳%之每一金屬。Various samples were prepared in which the relative amounts of Mn, Fe and Co were changed as follows: 0.300 x 0.650, 0.300 y 0.680, and 0 z 0.100. The amount of the raw material is determined based on a metal test conducted by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) to provide each metal of the target mole % in the final product.

舉例而言,為合成LiMn0.500 Fe0.460 Co0.040 PO4 ,將7.463g之碳酸鋰、12.048g之碳酸錳、16.901g之草酸亞鐵、1.451g之草酸鈷及22.775g之磷酸二氫銨在含有1000g之氧化 鋯研磨介質及400ml之丙酮的塑膠研磨瓶中混合。For example, to synthesize LiMn 0.500 Fe 0.460 Co 0.040 PO 4 , 7.463 g of lithium carbonate, 12.08 g of manganese carbonate, 16.901 g of ferrous oxalate, 1.451 g of cobalt oxalate and 22.775 g of ammonium dihydrogen phosphate are contained. Mix 1000g of zirconia grinding media and 400ml of acetone in a plastic grinding bottle.

在管形爐(tube furnace)中於氮氣中加熱乾燥之粉末。加熱曲線(heating profile)是在5小時內自25℃爬升至350℃,隨後保持在350℃下達5小時,隨後在1小時內自350℃爬升至700℃,隨後保持在700℃下達5小時,隨後冷卻至25℃。研磨所完成之產品且接著在無水環境下將其儲存。The dried powder was heated in a tube furnace under nitrogen. The heating profile was ramped from 25 ° C to 350 ° C in 5 hours, then held at 350 ° C for 5 hours, then climbed from 350 ° C to 700 ° C in 1 hour, then held at 700 ° C for 5 hours, It was then cooled to 25 °C. The finished product is ground and then stored in an anhydrous environment.

正電極研磨漿是藉由將作為Kynar® 2801市售的0.0225g之PVDF-HFP共聚物溶解於1.496g之丙酮中且將如上文所描述般製備的0.1612g之LiMnx Fey Coz PO4 (x+y+z=1)與0.0204g之導電碳(超級P)之乾混合物分散於所得溶液中來製備。使用模鑄裝置在鋁箔電流收集器之一側上在小瓶中使用Wig-L-Bug鑄件使糊狀物均質化,在室溫下烘乾以移除鑄造溶劑,且接著使用壓延裝置來密化。A positive electrode slurry by as Kynar ® PVDF-HFP copolymer 2801 commercially available 0.0225g 1.496g dissolved in the acetone and the like prepared as hereinbefore described 0.1612g of LiMn x Fe y Co z PO 4 A dry mixture of (x+y+z=1) and 0.0204 g of conductive carbon (super P) was dispersed in the resulting solution to prepare. The paste was homogenized using a Wig-L-Bug casting in a vial on one side of the aluminum foil current collector using a die casting apparatus, dried at room temperature to remove the casting solvent, and then densified using a calendering device .

將正電極及作為負電極之鋰箔切割至適當尺寸且插入有玻璃纖維隔板(來自Whatman)以抵靠鋰箔形成接頭套管型(Swagelok type)之半電池(half cell)。第一充電電容(first charge capacity,FCC)以及電容及能量是在以下速率下加以量測的:C/5、C/2、1C、2C、5C、10C、20C、35C及50C。The positive electrode and the lithium foil as the negative electrode were cut to an appropriate size and a glass fiber separator (from Whatman) was inserted to form a half-cell of a Swagelok type against the lithium foil. The first charge capacity (FCC) and capacitance and energy were measured at the following rates: C/5, C/2, 1C, 2C, 5C, 10C, 20C, 35C, and 50C.

各種量測之結果繪示於下表1中: The results of various measurements are shown in Table 1 below:

圖1是針對具有作為正電極之LiMnx Fey Coz PO4 (x+y+z=1)活性材料及作為負電極之鋰箔的電池的具有各種組合物之LiMnx Fey Coz PO4 (x+y+z=1)在20C速率下的比能量的等高線圖(contour plot)。所述等高線圖之邊界條件為0.300x0.650、0.300y0.680及0z0.100。在所述等高線圖中,具有相同Co含量(z)之組合物位於與水平軸平行之線上。z值由所述線在垂直軸上之交點來指示。舉例而言,圖1中之水平虛線上存在之所有組合物具有相同Co含量(z=0.04)。具有相同Mn含量(x)之組合物位於斜向於水平軸之線上。x值由所述線在水平軸上之交點來指示。舉例而言,圖1中之斜虛線上存在之所有組合物具有相同Mn含量(x=0.350)。1 is for having a LiMn positive electrodes x Fe y Co z PO 4 ( x + y + z = 1) active material and a negative battery lithium foil electrodes of LiMn x Fe y having various compositions of Co z PO 4 (x+y+z=1) Contour plot of specific energy at 20C rate. The boundary condition of the contour map is 0.300 x 0.650, 0.300 y 0.680 and 0 z 0.100. In the contour plot, the composition having the same Co content (z) is on a line parallel to the horizontal axis. The z value is indicated by the intersection of the lines on the vertical axis. For example, all compositions present on the horizontal dashed line in Figure 1 have the same Co content (z = 0.04). Compositions having the same Mn content (x) are located on a line oblique to the horizontal axis. The value of x is indicated by the intersection of the lines on the horizontal axis. For example, all of the compositions present on the slanted dashed line in Figure 1 have the same Mn content (x = 0.350).

等高線圖中之組合物點之Co含量(z)為穿過所述點之水平線與垂直軸之交點。等高線圖中之組合物點的Mn含量(x)為穿過所述點之與圖1中所繪示之斜虛線(標記為Mn=0.350)平行的線與水平軸之交點。在判定了Co及Mn含量時,自等式x+y+z=1判定組合物點之Fe含量(y)。The Co content (z) of the composition point in the contour map is the intersection of the horizontal line passing through the point and the vertical axis. The Mn content (x) of the composition point in the contour plot is the intersection of the line passing through the point parallel to the oblique dashed line (labeled Mn = 0.350) depicted in Figure 1 and the horizontal axis. When the Co and Mn contents were determined, the Fe content (y) of the composition point was determined from the equation x + y + z = 1.

請注意,LiMn0.500 Fe0.460 Co0.040 PO4 組合物在20C之放電速率下顯現出最高比能量(334mWh/g)。Note that the LiMn 0.500 Fe 0.460 Co 0.040 PO 4 composition exhibited the highest specific energy (334 mWh/g) at a discharge rate of 20C.

實例2:摻雜有鈷鎳之化學計量LFMP材料Example 2: Stoichiometric LFMP material doped with cobalt nickel

為製備LiMnx Fey Coz/2 Niz/2 PO4 (x+y+z=1),其中0.300x0.650、0.300y0.630且0z0.120,將碳酸鋰、碳酸錳、草酸亞鐵、草酸鈷、草酸鎳及磷酸二氫銨在含有氧化鋯研磨介質及丙酮之塑膠研磨瓶中混合達三天,且接 著使用旋轉式汽化器來烘乾。To prepare LiMn x Fe y Co z/2 Ni z/2 PO 4 (x+y+z=1), of which 0.300 x 0.650, 0.300 y 0.630 and 0 z 0.120, lithium carbonate, manganese carbonate, ferrous oxalate, cobalt oxalate, nickel oxalate and ammonium dihydrogen phosphate were mixed in a plastic grinding flask containing zirconia grinding media and acetone for three days, and then dried using a rotary evaporator.

基於由ICP-AES(感應耦合電漿原子發射光譜儀)進行之金屬化驗來判定原料之量以在最終產品中提供目標莫耳%之每一金屬。舉例而言,為合成LiMn0.450 Fe0.530 Co0.010 Ni0.010 PO4 ,將7.463g之碳酸鋰、10.843g之碳酸錳、19.473g之草酸亞鐵、0.363g之草酸鈷、0.425g之草酸鎳及22.775g之磷酸二氫銨在含有1000g之氧化鋯研磨介質及400ml之丙酮的塑膠研磨瓶中混合。The amount of the raw material is determined based on a metal test by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer) to provide each metal of the target mole % in the final product. For example, to synthesize LiMn 0.450 Fe 0.530 Co 0.010 Ni 0.010 PO 4 , 7.463 g of lithium carbonate, 10.843 g of manganese carbonate, 19.473 g of ferrous oxalate, 0.363 g of cobalt oxalate, 0.425 g of nickel oxalate and 22.775. The ammonium dihydrogen phosphate was mixed in a plastic grinding flask containing 1000 g of zirconia grinding medium and 400 ml of acetone.

在管形爐中於氮氣中加熱乾燥之粉末。加熱曲線是在5小時內自25℃爬升至350℃,隨後保持在350℃下達5小時,隨後在1小時內自350℃爬升至700℃,隨後保持在700℃下達5小時,隨後冷卻至25℃。研磨所完成之產品且接著在無水環境下將其儲存。The dried powder was heated in a tubular furnace under nitrogen. The heating curve was ramped from 25 ° C to 350 ° C in 5 hours, then held at 350 ° C for 5 hours, then climbed from 350 ° C to 700 ° C in 1 hour, then held at 700 ° C for 5 hours, then cooled to 25 °C. The finished product is ground and then stored in an anhydrous environment.

正電極研磨漿是藉由將作為Kynar® 2801市售的0.0225g之PVDF-HFP共聚物溶解於1.496g之丙酮中且將如上文所描述般製備的0.1612g之LiMnx Fey Coz/2 Niz/2 PO4 (x+y+z=1)與0.0204g之導電碳(超級P)之乾混合物分散於所得溶液中來製備。使用模鑄裝置在鋁箔電流收集器之一側上在小瓶中使用Wig-L-Bug鑄件使糊狀物均質化,在室溫下烘乾以移除鑄造溶劑,且接著使用壓延裝置來密化。A positive electrode slurry by as Kynar ® PVDF-HFP copolymer 2801 commercially available 0.0225g 1.496g dissolved in the acetone and the like prepared as hereinbefore described 0.1612g of LiMn x Fe y Co z / 2 A dry mixture of Ni z/2 PO 4 (x+y+z=1) and 0.0204 g of conductive carbon (super P) was dispersed in the resulting solution to prepare. The paste was homogenized using a Wig-L-Bug casting in a vial on one side of the aluminum foil current collector using a die casting apparatus, dried at room temperature to remove the casting solvent, and then densified using a calendering device .

將正電極及作為負電極之鋰箔切割至適當尺寸且插入有玻璃纖維隔板(來自Whatman)以抵靠鋰箔形成接頭 套管型之半電池。第一充電電容(FCC)以及電容及能量是在以下速率下加以量測的:C/5、C/2、1C、2C、5C、10C、20C、35C及50C。The positive electrode and the lithium foil as the negative electrode are cut to an appropriate size and inserted with a glass fiber separator (from Whatman) to form a joint against the lithium foil Casing type half battery. The first charging capacitor (FCC) and the capacitance and energy are measured at the following rates: C/5, C/2, 1C, 2C, 5C, 10C, 20C, 35C, and 50C.

各種量測之結果繪示於下表2中: The results of various measurements are shown in Table 2 below:

圖2是針對具有作為正電極之LiMnx Fey Coz/2 Niz/2 PO4 (x+y+z=1)活性材料及作為負電極之鋰箔的電池的具有各種組合物之LiMnx Fey Coz/2 Niz/2 PO4 (x+y+z=1)在20C速率下的比能量的等高線圖。所述等高線圖之邊界條件為0.300x0.650、0.300y0.630且0z0.120。鈷含量與鎳含量相同,各自由z/2指示。在所述等高線圖中,具有相同「Co加Ni」含量(z)之組合物位於與水平軸平行之線上。z值由所述線在垂直軸上之交點來指示。舉例而言,圖2中之水平虛線上存在之所有組合物具有相同「Co加Ni」含量(z=0.040),且Co及Ni含量各自為0.020。具有相同Mn含量(x)之組合物位於斜向於水平軸之線上。x值由所述線在水平軸上之交點來指示。舉例而言,圖2中之斜虛線上存在之所有組合物具有相同Mn含量(x=0.350)。2 is a LiMn having various compositions for a battery having a LiMn x Fe y Co z/2 Ni z/2 PO 4 (x+y+z=1) active material as a positive electrode and a lithium foil as a negative electrode x Fe y Co z/2 Ni z/2 PO 4 (x+y+z=1) is a contour plot of specific energy at a 20C rate. The boundary condition of the contour map is 0.300 x 0.650, 0.300 y 0.630 and 0 z 0.120. The cobalt content is the same as the nickel content, each indicated by z/2. In the contour plot, the composition having the same "Co plus Ni" content (z) is located on a line parallel to the horizontal axis. The z value is indicated by the intersection of the lines on the vertical axis. For example, all of the compositions present on the horizontal dashed line in Figure 2 have the same "Co plus Ni" content (z = 0.040) and the Co and Ni contents are each 0.020. Compositions having the same Mn content (x) are located on a line oblique to the horizontal axis. The value of x is indicated by the intersection of the lines on the horizontal axis. For example, all of the compositions present on the slanted dashed line in Figure 2 have the same Mn content (x = 0.350).

等高線圖中之組合物點之「Co加Ni」含量(z)為穿過所述點之水平線與垂直軸之交點。等高線圖中之組合物點的Mn含量(x)為穿過所述點之與圖2中所繪示之斜虛 線(標記為Mn=0.350)平行的線與水平軸之交點。在判定了「Co加Ni」及Mn含量時,自等式x+y+z=1判定組合物點之Fe含量(y)。The "Co plus Ni" content (z) of the composition point in the contour map is the intersection of the horizontal line passing through the point and the vertical axis. The Mn content (x) of the composition point in the contour map is the oblique imaginary of the point passing through the point The line (marked as Mn = 0.350) is the intersection of the parallel line and the horizontal axis. When "Co plus Ni" and Mn content were determined, the Fe content (y) of the composition point was determined from the equation x + y + z = 1.

請注意,LiMn0.450 Fe0.530 Co0.010 Ni0.010 PO4 之組合物在20C之放電速率下顯現出最高比能量(318mWh/g)。Note that the composition of LiMn 0.450 Fe 0.530 Co 0.010 Ni 0.010 PO 4 exhibited the highest specific energy (318 mWh/g) at a discharge rate of 20C.

實例3:摻雜有鈷之非化學計量LFMP材料Example 3: Non-stoichiometric LFMP material doped with cobalt

在配製摻雜有鈷之富鋰LFMP材料時,觀測到額外改良。在此研究過程中,使用2.5莫耳%之過量Li,且Mn、Fe及Co之量可變,如由Li1.025 Mnx Fey Coz PO4 表示,其中0.35x0.65、x+y+z=1且0.00z0.08。Additional improvements were observed in the preparation of lithium-rich LFMP materials doped with cobalt. During this study, 2.5 mol% excess Li was used, and the amounts of Mn, Fe, and Co were variable, as represented by Li 1.025 Mn x Fe y Co z PO 4 , where 0.35 x 0.65, x+y+z=1 and 0.00 z 0.08.

為製備Co摻雜之LFMP,將Li2 CO3 、FePO4 .xH2 O、Mn3 (PO4 )2 .H2 O、LiH2 PO4 、CoC2 O4 .2H2 O及可溶於酒精之基於乙烯基的共聚物前驅體在含有YTZ氧化鋯研磨介質及IPA之塑膠研磨瓶中混合達三天,且接著使用旋轉式汽化器來烘乾。基於在由製造商提供之分析證書中之金屬化驗來選擇材料以在最終產品中提供目標莫耳%之每一金屬。To prepare Co-doped LFMP, Li 2 CO 3 , FePO 4 .xH 2 O, Mn 3 (PO 4 ) 2 .H 2 O, LiH 2 PO 4 , CoC 2 O 4 .2H 2 O and soluble The vinyl-based copolymer precursor of alcohol was mixed in a plastic grinding bottle containing YTZ zirconia grinding media and IPA for three days and then dried using a rotary evaporator. The material is selected based on the metal assay in the analytical certificate provided by the manufacturer to provide each metal of the target mole % in the final product.

舉例而言,為製備0.1M(16g)之Li1.025 Mn0.450 Fe0.530 Co0.020 PO4 ,使用3.265g之Li2 CO3 、10.242g之FePO4 .xH2 O、6.267g之Mn3 (PO4 )2 .xH2 O、1.576g之LiH2 PO4 、0.366g之CoC2 O4 .2H2 O及0.947g之可溶於酒精之基於乙烯基的共聚物。For example, to prepare 0.1M ( 16G) The Li 1.025 Mn 0.450 Fe 0.530 Co 0.020 PO 4, Li 3.265g use of 2 CO 3, 10.242g of FePO 4 .xH 2 O, 6.267g of Mn 3 (PO 4) 2 .xH 2 O, 1.576g LiH 2 PO 4 , 0.366 g of CoC 2 O 4 .2H 2 O and 0.947 g of an alcohol-based vinyl-based copolymer.

在管形爐中於惰性氣氛下用程式升溫反應(temperature programmed reaction,TPR)法來加熱乾燥之 粉末。加熱曲線是在0.5小時內自25℃爬升至350℃,隨後保持在350℃下達0.5小時,隨後在0.5小時內自350℃爬升至700℃,隨後保持在700℃下達1小時,隨後冷卻至25℃。研磨所完成之產品且接著在無水環境下將其儲存。Heated and dried in a tubular furnace under an inert atmosphere by a temperature programmed reaction (TPR) method. powder. The heating curve was ramped from 25 ° C to 350 ° C in 0.5 hours, then held at 350 ° C for 0.5 hours, then climbed from 350 ° C to 700 ° C in 0.5 hours, then held at 700 ° C for 1 hour, then cooled to 25 °C. The finished product is ground and then stored in an anhydrous environment.

正電極研磨漿是藉由將來自AtoFina的作為Kynar® 2801市售的0.0225g之PVDF-HFP共聚物溶解於1.496g之丙酮中且將如上文所描述般製備的0.1612g之摻雜LFMP與0.0204g之導電碳(超級P或Ensaco)之乾混合物分散於所得溶液中來製備。使用模鑄裝置在鋁箔電流收集器之一側上在小瓶中使用Wig-L-Bug鑄件使糊狀物均質化,在烘箱中烘乾以移除鑄造溶劑,且使用壓延裝置來密化。The positive electrode slurry is from AtoFina by as Kynar ® PVDF-HFP copolymer 2801 commercially available 0.0225g 1.496g dissolved in the acetone and the like as hereinbefore described is prepared with 0.0204 0.1612g of doping LFMP A dry mixture of conductive carbon (super P or Ensaco) of g is dispersed in the resulting solution to prepare. The paste was homogenized using a Wig-L-Bug casting in a vial on one side of the aluminum foil current collector using a die casting apparatus, dried in an oven to remove the casting solvent, and densified using a calendering apparatus.

將正電極及作為負電極之鋰箔切割至適當尺寸且插入有玻璃纖維隔板以抵靠鋰箔形成接頭套管型之半電池。第一充電電容(FCC)以及電容及能量是在以下速率下加以量測的:C/5、C/2、1C、2C、5C、10C、20C、30C及50C。The positive electrode and the lithium foil as the negative electrode were cut into a half-cell of a suitable size and inserted with a glass fiber separator to form a joint sleeve type against the lithium foil. The first charging capacitor (FCC) and the capacitance and energy are measured at the following rates: C/5, C/2, 1C, 2C, 5C, 10C, 20C, 30C, and 50C.

各種量測之結果繪示於下表3中: The results of various measurements are shown in Table 3 below:

圖3是針對包含作為正電極的實例3之各種樣本及作為負電極之鋰箔的電池的20C放電能量對Mn含量及摻雜劑(Co)含量的線圖。3 is a line graph of 20 C discharge energy versus Mn content and dopant (Co) content for a battery including various samples of Example 3 as a positive electrode and a lithium foil as a negative electrode.

請注意,來自圖3之最高20C能量效能組合物為Li1.025 Mn0.400 Fe0.580 Co0.020 PO4 (382mWh/g)。Note that the highest 20C energy performance composition from Figure 3 is Li 1.025 Mn 0.400 Fe 0.580 Co 0.020 PO 4 (382 mWh/g).

實例4:摻雜有鈷及鎳之非化學計量LFMP材料Example 4: Non-stoichiometric LFMP material doped with cobalt and nickel

在配製摻雜有鈷及鎳之富鋰LFMP材料時,觀測到額外改良。在此研究過程中,使用2.5莫耳%之過量Li,且Mn、Fe、Co及Ni之量可變,如由Li1.025 Mnx Fey Coz Niz PO4 表示,其中0.350x0.650、x+y+2z=1且0.00z0.035。Additional improvements were observed in the preparation of lithium-rich LFMP materials doped with cobalt and nickel. During this study, 2.5 mol% excess Li was used, and the amounts of Mn, Fe, Co, and Ni were variable, as represented by Li 1.025 Mn x Fe y Co z Ni z PO 4 , where 0.350 x 0.650, x+y+2z=1 and 0.00 z 0.035.

為製備摻雜Co及Ni之LMFP,將Li2 CO3 、FePO4 .xH2 O、Mn3 (PO4 )2 .H2 O、LiH2 PO4 、CoC2 O4 .2H2 O、NiC2 O4 .2H2 O及可溶於酒精之基於乙烯基的共聚物前驅體在含有YTZ氧化鋯研磨介質及IPA之塑膠研磨瓶中混合達三天,且接著使用旋轉式汽化器來烘乾。基於在由製造商提供之分析證書中之金屬化驗來選擇材料以在最終產品中提供目標莫耳%之每一金屬。To prepare LMFP doped with Co and Ni, Li 2 CO 3 , FePO 4 .xH 2 O, Mn 3 (PO 4 ) 2 .H 2 O, LiH 2 PO 4 , CoC 2 O 4 .2H 2 O, NiC 2 O 4 .2H 2 O and an alcohol-soluble vinyl-based copolymer precursor were mixed in a plastic grinding bottle containing YTZ zirconia grinding media and IPA for three days, and then dried using a rotary evaporator. The material is selected based on the metal assay in the analytical certificate provided by the manufacturer to provide each metal of the target mole % in the final product.

舉例而言,為製備0.1M(16g)之Li1.025 Mn0.500 Fe0.480 Co0.010 Ni0.010 PO4 ,使用3.195g之Li2 CO3 、9.276g之FePO4 .xH2 O、6.963g之Mn3 (PO4 )2 .xH2 O、1.774g之LiH2 PO4 、0.183g之CoC2 O4 .2H2 O、0.183g之NiC2 O4 .2H2 O及0.947g之可溶於酒精之基於乙烯基的共聚物。For example, to prepare 0.1M ( 16 g) of Li 1.025 Mn 0.500 Fe 0.480 Co 0.010 Ni 0.010 PO 4 , using 3.195 g of Li 2 CO 3 , 9.276 g of FePO 4 .xH 2 O, 6.963 g of Mn 3 (PO 4 ) 2 .xH 2 O, 1.774 g of LiH 2 PO 4 , 0.183 g of CoC 2 O 4 .2H 2 O, 0.183 g of NiC 2 O 4 .2H 2 O and 0.947 g of an alcohol-soluble vinyl-based copolymer.

在管形爐中於惰性氣氛下用TPR(程式升溫反應)法來加熱乾燥之粉末。加熱曲線是在0.5小時內自25℃爬升至350℃,隨後保持在350℃下達0.5小時,隨後在0.5小時內自350℃爬升至700℃,隨後保持在700℃下達1小時,隨後冷卻至25℃。研磨所完成之產品且接著在無水環境下將其儲存。The dried powder was heated in a tubular furnace under a inert atmosphere using a TPR (twin temperature reaction) method. The heating curve was ramped from 25 ° C to 350 ° C in 0.5 hours, then held at 350 ° C for 0.5 hours, then climbed from 350 ° C to 700 ° C in 0.5 hours, then held at 700 ° C for 1 hour, then cooled to 25 °C. The finished product is ground and then stored in an anhydrous environment.

正電極研磨漿是藉由將來自AtoFina的作為Kynar® 2801市售的0.0225g之PVDF-HFP共聚物溶解於1.496g之丙酮中且將如上文所描述般製備的0.1612g之摻雜LFMP與0.0204g之導電碳(超級P或Ensaco)之乾混合物分散於所得溶液中來製備。使用模鑄裝置在鋁箔電流收集器之一側上在小瓶中使用Wig-L-Bug鑄件使糊狀物均質化,在烘箱中烘乾以移除鑄造溶劑,且使用壓延裝置來密化。The positive electrode slurry is from AtoFina by as Kynar ® PVDF-HFP copolymer 2801 commercially available 0.0225g 1.496g dissolved in the acetone and the like as hereinbefore described is prepared with 0.0204 0.1612g of doping LFMP A dry mixture of conductive carbon (super P or Ensaco) of g is dispersed in the resulting solution to prepare. The paste was homogenized using a Wig-L-Bug casting in a vial on one side of the aluminum foil current collector using a die casting apparatus, dried in an oven to remove the casting solvent, and densified using a calendering apparatus.

將正電極及作為負電極之鋰箔切割至適當尺寸且插入有玻璃纖維隔板以靠在鋰箔上形成接頭套管型之半電池。第一充電電容(FCC)以及電容及能量是在以下速率下加以量測的:C/5、C/2、1C、2C、5C、10C、20C、30C及50C。The positive electrode and the lithium foil as the negative electrode were cut to an appropriate size and a glass fiber separator was inserted to form a jointed sleeve type half cell against the lithium foil. The first charging capacitor (FCC) and the capacitance and energy are measured at the following rates: C/5, C/2, 1C, 2C, 5C, 10C, 20C, 30C, and 50C.

各種量測之結果繪示於下表4中: The results of various measurements are shown in Table 4 below:

圖4是針對包含作為正電極的實例4之各種樣本及作為負電極之鋰箔的電池的20C放電能量對Mn含量及摻雜劑(Co+Ni)含量的線圖。4 is a line graph of 20 C discharge energy versus Mn content and dopant (Co+Ni) content for a battery including various samples of Example 4 as a positive electrode and a lithium foil as a negative electrode.

請注意,來自圖4之最高20C能量效能組合物為Li1.025 Mn0.500 Fe0.480 Co0.010 Ni0.010 PO4 (415mWh/g)。Note that the highest 20C energy performance composition from Figure 4 is Li 1.025 Mn 0.500 Fe 0.480 Co 0.010 Ni 0.010 PO 4 (415 mWh/g).

實例5:摻雜有鈷、鎳及釩之非化學計量LFMP材料Example 5: Non-stoichiometric LFMP material doped with cobalt, nickel and vanadium

在配製摻雜有鈷、鎳及釩之富鋰LFMP材料時,觀測到額外改良。探查五個不同群之參數空間。Additional improvements were observed in the preparation of lithium-rich LFMP materials doped with cobalt, nickel and vanadium. Explore the parameter space of five different groups.

在群A中,使用5莫耳%之過量Li及2.5莫耳%之過量PO4 ,摻雜有3莫耳%之V。Mn、Fe、Co及Ni之量可 變,如由Li1.050 Mnx Fey Coz Niz V0.03 (PO4 )1.025 表示,其中0.350x0.650、x+y+2z=0.970且0.00z0.035。In Group A, 5 mole % excess Li and 2.5 mole % excess PO 4 were used , doped with 3 mole % of V. The amount of Mn, Fe, Co, and Ni is variable, as represented by Li 1.050 Mn x Fe y Co z Ni z V 0.03 (PO 4 ) 1.025 , of which 0.350 x 0.650, x+y+2z=0.970 and 0.00 z 0.035.

在群B中,樣本是由Li1.040 Mnx Fey Coz Niz V0.020 (PO4 )1.015 表示,其中0.400x0.600、x+y+2z=0.980且0.00z0.0350。In group B, the sample is represented by Li 1.040 Mn x Fe y Co z Ni z V 0.020 (PO 4 ) 1.015 , of which 0.400 x 0.600, x+y+2z=0.980 and 0.00 z 0.0350.

在群C中,樣本是由Li1.030 Mnx Fey Coz Niz V0.010 (PO4 )1.005 表示,其中0.400x0.600、x+y+2z=0.990且0.00z0.035。In group C, the sample is represented by Li 1.030 Mn x Fe y Co z Ni z V 0.010 (PO 4 ) 1.005 , of which 0.400 x 0.600, x+y+2z=0.990 and 0.00 z 0.035.

在群D中,樣本是由Li1.020+z Mnx Fey Co0.010 Ni0.010 Vz (PO4 )0.995+z 表示,其中x=0.450、x+y+z=0.980且0.00z0.050。In group D, the sample is represented by Li 1.020+z Mn x Fe y Co 0.010 Ni 0.010 V z (PO 4 ) 0.995+z , where x=0.450, x+y+z=0.980 and 0.00 z 0.050.

在群E中,樣本是由Li1.040 Mnx Fey Coz Niw V0.020 (PO4 )1.015 表示,其中x=0.45、x+y+z+w=0.98、0.00z0.030且0.00w0.030。In group E, the sample is represented by Li 1.040 Mn x Fe y Co z Ni w V 0.020 (PO 4 ) 1.015 , where x = 0.45, x + y + z + w = 0.98, 0.00 z 0.030 and 0.00 w 0.030.

為製備在群A至E中指出的Co、Ni及V摻雜之LFMP材料,將Li2 CO3 、FePO4 .xH2 O、Mn3 (PO4 )2 .H2 O、LiH2 PO4 、CoC2 O4 .2H2 O、NiC2 O4 .2H2 O、V2 O5 及可溶於酒精之基於乙烯基的共聚物前驅體在含有YTZ氧化鋯研磨介質及IPA之塑膠研磨瓶中混合達三天,且接著使用旋轉式汽化器來烘乾。基於在由製造商提供之分析證書中之金屬化驗來選擇材料以在最終產品中提供目標莫耳%之每一金屬。To prepare the Co, Ni and V doped LFMP materials indicated in Groups A through E, Li 2 CO 3 , FePO 4 .xH 2 O, Mn 3 (PO 4 ) 2 .H 2 O, LiH 2 PO 4 , CoC 2 O 4 .2H 2 O , NiC 2 O 4 .2H 2 O, V 2 O 5 and based on the alcohol-soluble plastic bottle containing YTZ milling zirconia grinding media and IPA precursors of the vinyl copolymer Mix in for three days and then use a rotary evaporator to dry. The material is selected based on the metal assay in the analytical certificate provided by the manufacturer to provide each metal of the target mole % in the final product.

舉例而言,為製備0.1M(16g)之Li1.050 Mn0.450 Fe0.500 Co0.010 Ni0.010 V0.030 (PO4 )1.025 ,使用3.149g之Li2 CO3 、9.663g之FePO4 .xH2 O、6.267g之Mn3 (PO4 )2 .xH2 O、2.166g之LiH2 PO4 、0.183g之 CoC2 O4 .2H2 O、0.183g之NiC2 O4 .2H2 O、0.273g之V2 O5 及0.947g之可溶於酒精之基於乙烯基的共聚物。For example, to prepare 0.1M ( 16g) Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.025 , using 3.149 g of Li 2 CO 3 , 9.663 g of FePO 4 .xH 2 O, 6.267 g of Mn 3 (PO 4 ) 2 .xH 2 O, LiH 2.166g of 2 PO CoC 4, 0.183g of 2 O 4 .2H 2 O, 0.183g of NiC 2 O 4 .2H 2 O, 0.273g of V 2 O 5 and 0.947g of soluble A vinyl-based copolymer of alcohol.

在管形爐中於惰性氣氛下用TPR(程式升溫反應)法來加熱乾燥之粉末。加熱曲線是在0.5小時內自25℃爬升至350℃,隨後保持在350℃下達0.5小時,隨後在0.5小時內自350℃爬升至700℃,隨後保持在700℃下達1小時,隨後冷卻至25℃。研磨所完成之產品且接著在無水環境下將其儲存。The dried powder was heated in a tubular furnace under a inert atmosphere using a TPR (twin temperature reaction) method. The heating curve was ramped from 25 ° C to 350 ° C in 0.5 hours, then held at 350 ° C for 0.5 hours, then climbed from 350 ° C to 700 ° C in 0.5 hours, then held at 700 ° C for 1 hour, then cooled to 25 °C. The finished product is ground and then stored in an anhydrous environment.

正電極研磨漿是藉由將來自AtoFina的作為Kynar® 2801市售的0.0225g之PVDF-HFP共聚物溶解於1.496g之丙酮中且將如上文所描述般製備的0.1612g之摻雜LFMP與0.0204g之導電碳(超級P或Ensaco)之乾混合物分散於所得溶液中來製備。使用模鑄裝置在鋁箔電流收集器之一側上在小瓶中使用Wig-L-Bug鑄件使糊狀物均質化,在烘箱中烘乾以移除鑄造溶劑,且使用壓延裝置來密化。The positive electrode slurry is from AtoFina by as Kynar ® PVDF-HFP copolymer 2801 commercially available 0.0225g 1.496g dissolved in the acetone and the like as hereinbefore described is prepared with 0.0204 0.1612g of doping LFMP A dry mixture of conductive carbon (super P or Ensaco) of g is dispersed in the resulting solution to prepare. The paste was homogenized using a Wig-L-Bug casting in a vial on one side of the aluminum foil current collector using a die casting apparatus, dried in an oven to remove the casting solvent, and densified using a calendering apparatus.

將正電極及作為負電極之鋰箔切割至適當尺寸且插入有玻璃纖維隔板以抵靠鋰箔形成接頭套管型之半電池。第一充電電容(FCC)以及電容及能量是在以下速率下加以量測的:C/5、C/2、1C、2C、5C、10C、20C、30C及50C。The positive electrode and the lithium foil as the negative electrode were cut into a half-cell of a suitable size and inserted with a glass fiber separator to form a joint sleeve type against the lithium foil. The first charging capacitor (FCC) and the capacitance and energy are measured at the following rates: C/5, C/2, 1C, 2C, 5C, 10C, 20C, 30C, and 50C.

來自群A之各種量測之結果繪示於下表5A中: 表5AThe results of various measurements from Group A are shown in Table 5A below: Table 5A

圖5A是針對包含作為正電極的群A之各種樣本及作為負電極之鋰箔的電池的20C放電能量對Mn含量及摻雜劑(Co+Ni+V)含量的線圖。5A is a line graph of 20 C discharge energy versus Mn content and dopant (Co+Ni+V) content for a battery including various samples of group A as a positive electrode and a lithium foil as a negative electrode.

請注意,來自表5A之最高20C能量效能組合物為Li1.050 Mn0.450 Fe0.500 Co0.010 Ni0.010 V0.030 (PO4 )1.025 (424mWh/g)。Note that the highest 20C energy performance composition from Table 5A is Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.025 (424 mWh/g).

來自群B之各種量測之結果繪示於下表5B中: The results of various measurements from Group B are shown in Table 5B below:

圖5B是針對包含作為正電極的群B之各種樣本及作為負電極之鋰箔的電池的20C放電能量對Mn含量及摻雜劑(Co+Ni+V)含量的線圖。5B is a line graph of 20 C discharge energy versus Mn content and dopant (Co+Ni+V) content for a battery including various samples of group B as a positive electrode and a lithium foil as a negative electrode.

請注意,來自表5B之最高20C能量效能組合物為Li1.040 Mn0.400 Fe0.560 Co0.010 Ni0.010 V0.020 (PO4 )1.015 (426mWh/g)及Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.020 (PO4 )1.015 (425mWh/g)。Note that the highest 20C energy performance composition from Table 5B is Li 1.040 Mn 0.400 Fe 0.560 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015 (426 mWh/g) and Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.020 ( PO 4 ) 1.015 (425 mWh/g).

來自群C之各種量測之結果繪示於下表5C中: The results of various measurements from Group C are shown in Table 5C below:

圖5C是針對包含作為正電極的群C之各種樣本及作為負電極之鋰箔的電池的20C放電能量對Mn含量及摻雜劑(Co+Ni+V)含量的線圖。5C is a line graph of 20 C discharge energy versus Mn content and dopant (Co+Ni+V) content for a battery including a plurality of samples of the group C as a positive electrode and a lithium foil as a negative electrode.

請注意,來自表5C之最高20C能量效能組合物為Li1.030 Mn0.450 Fe0.520 Co0.010 Ni0.010 V0.010 (PO4 )1.005 (386mWh/g)。Note that the highest 20C energy performance composition from Table 5C is Li 1.030 Mn 0.450 Fe 0.520 Co 0.010 Ni 0.010 V 0.010 (PO 4 ) 1.005 (386 mWh/g).

來自群D之各種量測之結果繪示於下表5D中: The results of various measurements from Group D are shown in Table 5D below:

請注意,來自表5D之最高20C能量效能組合物為Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.020 (PO4 )1.015 (425mWh/g)及Li1.050 Mn0.450 Fe0.500 Co0.010 Ni0.010 V0.030 (PO4 )1.025 (424mWh/g)。Note that the highest 20C energy performance composition from Table 5D is Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015 (425 mWh/g) and Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Ni 0.010 V 0.030 ( PO 4 ) 1.025 (424 mWh/g).

來自群E之各種量測之結果繪示於下表5E中: The results of various measurements from Group E are shown in Table 5E below:

請注意,來自表5E之最高20C能量效能組合物為Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.020 (PO4 )1.015 (425mWh/g)。Note that the highest 20C energy performance composition from Table 5E is Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015 (425 mWh/g).

因此,在實例5中,群A、B、D及E皆論證了使用Co、Ni及V摻雜之LFMP材料(例如,Li1.050 Mn0.450 Fe0.500 Co0.010 Ni0.010 V0.030 (PO4 )1.025 及Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.020 (PO4 )1.015 )可達成高達約425mWh/g之能量密度。Thus, in Example 5, Groups A, B, D, and E demonstrate the use of Co, Ni, and V doped LFMP materials (eg, Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.025 and Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015 ) An energy density of up to about 425 mWh/g can be achieved.

實例6:摻雜有鈷、鎳、釩及氟之非化學計量LFMP材料Example 6: Non-stoichiometric LFMP material doped with cobalt, nickel, vanadium and fluorine

在配製摻雜有鈷、鎳、釩及氟之富鋰LFMP材料時,觀測到額外改良。在此研究過程中,製備由Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.020 (PO4 )1.015-x/3 Fx 表示之材料,其中0.00x0.060。Additional improvements were observed in the preparation of lithium-rich LFMP materials doped with cobalt, nickel, vanadium and fluorine. During this study, a material represented by Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015-x/3 F x was prepared , of which 0.00 x 0.060.

為製備上文指出的Co、Ni、V及F摻雜之LFMP材料,將Li2 CO3 、FePO4 .xH2 O、Mn3 (PO4 )2 .H2 O、LiH2 PO4 、CoC2 O4 .2H2 O、NiC2 O4 .2H2 O、NH4 F及可溶於酒精之基於乙烯基的共聚物前驅體在含有YTZ氧化鋯研磨介質及IPA之塑膠研磨瓶中混合達三天,且接著使用旋轉式汽化器來烘乾。基於在由製造商提供之分析證書中之金屬化驗來選擇材料以在最終產品中提供目標莫耳%之每一金屬。To prepare the Co, Ni, V and F doped LFMP materials indicated above, Li 2 CO 3 , FePO 4 .xH 2 O, Mn 3 (PO 4 ) 2 .H 2 O, LiH 2 PO 4 , CoC 2 O 4 .2H 2 O, NiC 2 O 4 .2H 2 O, NH 4 F and alcohol-soluble copolymer of vinyl-based precursor in the mixing flask containing YTZ milling zirconia grinding media and the plastic of three IPA Days, and then use a rotary evaporator to dry. The material is selected based on the metal assay in the analytical certificate provided by the manufacturer to provide each metal of the target mole % in the final product.

舉例而言,為製備0.1M(16g)之Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.020 (PO4 )1.010 F0.015 ,使用3.266g之Li2 CO3 、9.856g之FePO4 .xH2 O、6.267g之Mn3 (PO4 )2 .xH2 O、1.732g之LiH2 PO4 、0.170g之NH4 CoPO4 、0.238g之Ni3 (PO4 )2 .xH2 O、0.182g之V2 O5 、0.069g之NH4 F及0.947g之可溶於酒精之基於乙烯基的共聚物。For example, to prepare 0.1M ( 16g) Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.010 F 0.015 , using 3.266 g of Li 2 CO 3 , 9.856 g of FePO 4 .xH 2 O, 6.267 g of Mn 3 (PO 4 2 .xH 2 O, 1.732 g of LiH 2 PO 4 , 0.170 g of NH 4 CoPO 4 , 0.238 g of Ni 3 (PO 4 ) 2 .xH 2 O, 0.182 g of V 2 O 5 , 0.069 g of NH 4 F and 0.947 g of a vinyl-based copolymer soluble in alcohol.

在管形爐中於惰性氣氛下用TPR(程式升溫反應)法來加熱乾燥之粉末。加熱曲線是在0.5小時內自25℃爬升至350℃,隨後保持在350℃下達0.5小時,隨後在0.5小時內自350℃爬升至700℃,隨後保持在700℃下達1小時,隨後冷卻至25℃。研磨所完成之產品且接著在無水環境下將其儲存。The dried powder was heated in a tubular furnace under a inert atmosphere using a TPR (twin temperature reaction) method. The heating curve was ramped from 25 ° C to 350 ° C in 0.5 hours, then held at 350 ° C for 0.5 hours, then climbed from 350 ° C to 700 ° C in 0.5 hours, then held at 700 ° C for 1 hour, then cooled to 25 °C. The finished product is ground and then stored in an anhydrous environment.

正電極研磨漿是藉由將來自AtoFina的作為Kynar® 2801市售的0.0225g之PVDF-HFP共聚物溶解於1.496g之丙酮中且將如上文所描述般製備的0.1612g之摻雜LFMP與0.0204g之導電碳(超級P或Ensaco)之乾混合物分散於所得溶液中來製備。使用模鑄裝置在鋁箔電流收集器之一側上在小瓶中使用Wig-L-Bug鑄件使糊狀物均質化,在烘箱中烘乾以移除鑄造溶劑,且使用壓延裝置來密化。The positive electrode slurry is from AtoFina by as Kynar ® PVDF-HFP copolymer 2801 commercially available 0.0225g 1.496g dissolved in the acetone and the like as hereinbefore described is prepared with 0.0204 0.1612g of doping LFMP A dry mixture of conductive carbon (super P or Ensaco) of g is dispersed in the resulting solution to prepare. The paste was homogenized using a Wig-L-Bug casting in a vial on one side of the aluminum foil current collector using a die casting apparatus, dried in an oven to remove the casting solvent, and densified using a calendering apparatus.

將正電極及作為負電極之鋰箔切割至適當尺寸且插入有玻璃纖維隔板以抵靠鋰箔形成接頭套管型之半電池。第一充電電容(FCC)以及電容及能量是在以下速率下加以量測的:C/5、C/2、1C、2C、5C、10C、20C、30C及50C。The positive electrode and the lithium foil as the negative electrode were cut into a half-cell of a suitable size and inserted with a glass fiber separator to form a joint sleeve type against the lithium foil. The first charging capacitor (FCC) and the capacitance and energy are measured at the following rates: C/5, C/2, 1C, 2C, 5C, 10C, 20C, 30C, and 50C.

來自Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.030 (PO4 )1.010 F0.015 以及來自上述實例5之Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.020 (PO4 )1.015 的各種量測之結果繪示於下表6中: Results of various measurements from Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.010 F 0.015 and Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015 from Example 5 above Shown in Table 6 below:

如所繪示,Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.030 (PO4 )1.010 F0.015 (453mWh/g)之20C能量效能比針對Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.020 (PO4 )1.015 (425mWh/g)在實例5中觀測到的20C能量效能好約6.7%。As shown, Li 2040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.010 F 0.015 (453 mWh/g) 20C energy efficiency ratio for Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.020 (PO 4 1.015 (425 mWh/g) The 20C energy performance observed in Example 5 was about 6.7%.

實例7:LiExample 7: Li i.030I.030 FeFe 0.9700.970 VV 0.0300.030 POPO 44 與LiWith Li 1.0501.050 MnMn 0.4500.450 FeFe 0.5000.500 CoCo 0.0100.010 NiNi 0.0100.010 VV 0.0300.030 (PO(PO 44 )) 1.0251.025 之比較Comparison

將Li1.03 Fe0.97 V0.03 PO4 之能量密度(其可在US 2009/0186277之實例2中找到)與Li1.050 Mn0.450 Fe0.500 Co0.010 Ni0.010 V0.030 (PO4 )1.025 之能量密度進行比較。如下文在表7及圖6中所繪示,在所有放電速率下能量密度皆有實質增加。舉例而言,Li1.050 Mn0.450 Fe0.500 Co0.010 Ni0.010 V0.030 (PO4 )1.025 組合物(識別為表7中之「Co-Ni-V M1x」及圖6中之「Co-Ni-V LMFP M1x」)能夠在20C下達成約424mWh/g,而Li1.030 Fe0.970 V0.030 PO4 組合物(識別為表7中之「V M1」及圖6中之「V LFP M1」)顯現出331mWh/g。The energy density of Li 1.03 Fe 0.97 V 0.03 PO 4 (which can be found in Example 2 of US 2009/0186277) was compared to the energy density of Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.025 . As shown in Tables 7 and 6 below, there is a substantial increase in energy density at all discharge rates. For example, Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.025 composition (identified as "Co-Ni-V M1x" in Table 7 and "Co-Ni-V LMFP in Fig. 6"M1x") can achieve about 424 mWh/g at 20 C, while Li 1.030 Fe 0.970 V 0.030 PO 4 composition (identified as "V M1" in Table 7 and "V LFP M1" in Fig. 6) shows 331 mWh/ g.

實驗8:用STEM進行之元素分析Experiment 8: Elemental analysis with STEM

使用裝備有牛津儀器之X射線偵測器及用於x射線微 量分析之INCA分析儀的JEOL 2010 EEG TEM,藉由掃描透射電子顯微鏡(scanning transmission electron microscopy,STEM)來執行各種Co及Ni摻雜之LFMP奈米粒子的元素分析。Use an X-ray detector equipped with an Oxford instrument and use it for x-ray micro The JEOL 2010 EEG TEM of the INCA analyzer of the quantitative analysis performed elemental analysis of various Co and Ni doped LFMP nanoparticles by scanning transmission electron microscopy (STEM).

圖7繪示樣本CX8-086(Li1.050 Mn0.450 Fe0.500 Co0.010 Ni0.010 V0.030 (PO4 )1.025 )之奈米粒子的STEM影像,且圖8、圖9、圖10、圖11、圖12分別繪示Fe、Mn、Co、Ni及V之相應能量色散X射線(EDX)面分佈圖(mapping)。Fe、Mn、Co及V看似均一地散佈於所有粒子上。然而,有些區富集Ni,指示存在富Ni次生相。高解析度X射線能量譜分析亦確認了富Ni區之存在。自樣本CX8-071(Li1.025 Mn0.450 Fe0.530 Co0.010 Ni0.010 PO4 )獲得類似結果,即,Fe、Mn、Co均一地散佈於所有粒子上且存在富Ni區。對於樣本CX8-067(Li1.025 Mn0.450 Fe0.510 Co0.040 PO4 )而言,Fe及Mn均一地散佈於所有粒子上,但有些區富集Co,指示存在富Co次生相。高解析度X射線能量譜分析亦確認了CX8-067樣本中富Co區之存在。7 is a STEM image of a sample of sample CX8-086 (Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.025 ), and FIG. 8, FIG. 9, FIG. 10, FIG. Corresponding energy dispersive X-ray (EDX) surface distribution maps of Fe, Mn, Co, Ni and V are respectively shown. Fe, Mn, Co, and V appear to be uniformly dispersed on all particles. However, some areas are enriched in Ni, indicating the presence of a Ni-rich secondary phase. High resolution X-ray energy spectrum analysis also confirmed the presence of a Ni-rich region. A similar result was obtained from the sample CX8-071 (Li 1.025 Mn 0.450 Fe 0.530 Co 0.010 Ni 0.010 PO 4 ), that is, Fe, Mn, Co were uniformly dispersed on all the particles and a Ni-rich region was present. For the sample CX8-067 (Li 1.025 Mn 0.450 Fe 0.510 Co 0.040 PO 4 ), Fe and Mn were uniformly dispersed on all the particles, but some regions were enriched in Co, indicating the presence of a Co-rich secondary phase. High-resolution X-ray energy spectrum analysis also confirmed the presence of the Co-rich region in the CX8-067 sample.

所述結果指示Co是以固溶體之形式存在於橄欖石結構中,且溶解度大於1莫耳%但小於4莫耳%。Ni比Co稍較不可溶,且溶解度小於1莫耳%。The results indicate that Co is present in the olivine structure in the form of a solid solution with a solubility greater than 1 mol% but less than 4 mol%. Ni is slightly less soluble than Co and has a solubility of less than 1 mol%.

不希望受理論所限制,觀測到展現出最高能量密度之樣本是以固溶體之形式存在,而富Co及富Ni之次生相在顯現出較低能量密度之樣本中找到。Without wishing to be bound by theory, it was observed that the sample exhibiting the highest energy density exists in the form of a solid solution, while the secondary phase rich in Co and Ni-rich is found in samples exhibiting lower energy density.

實例9:摻雜有鈷、鎳及釩的基於水之非化學計量LFMP材料Example 9: Water-based non-stoichiometric LFMP material doped with cobalt, nickel and vanadium

基於水之LFMP材料合成路線為環保的且具有較低成本之另一優點。摻雜有鈷、鎳及釩之富鋰LFMP材料亦藉由基於水之研磨製程來合成。如與上文論述之結果相比,對藉由基於水之研磨製程合成的LFMP材料觀測到類似之電容及能量效能。The water-based LFMP material synthesis route is environmentally friendly and has the additional advantage of lower cost. Lithium-rich LFMP materials doped with cobalt, nickel and vanadium are also synthesized by a water-based polishing process. Similar capacitance and energy performance were observed for LFMP materials synthesized by a water based grinding process as compared to the results discussed above.

藉由基於水之研磨製程合成的LFMP材料之配方為Li1.050 Mn0.450 Fe0.510 Co0.010 Ni0.005 V0.025 (PO4 )1.020The formulation of the LFMP material synthesized by the water-based polishing process was Li 1.050 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.005 V 0.025 (PO 4 ) 1.020 .

為製備基於水的Co、Ni及V摻雜之LFMP材料,將Li2 CO3 、FePO4 .xH2 O、Mn3 (PO4 )2 .H2 O、LiH2 PO4 、CoC2 O4 .2H2 O、NiC2 O4 .2H2 O、NH4 VO3 、可溶於水之基於乙烯基的共聚物或糖前驅體以及水在塑膠瓶中用Silverson混合器在5,000RPM下混合達30分鐘,且水研磨漿接著在MicroCer HEM(高能研磨機)中在3,000RPM下研磨達30分鐘。藉由B-290迷你噴霧乾燥器(Mini Spray Dryer)將研磨漿噴霧乾燥成粉末。To prepare water-based Co, Ni and V doped LFMP materials, Li 2 CO 3 , FePO 4 .xH 2 O, Mn 3 (PO 4 ) 2 .H 2 O, LiH 2 PO 4 , CoC 2 O 4 .2H 2 O, NiC 2 O 4 .2H 2 O, NH 4 VO 3, water-soluble vinyl-based copolymers or sugar precursor, and water with a Silverson mixer at 5,000RPM mixing up the plastic bottle For 30 minutes, the water slurry was then ground in a MicroCer HEM (High Energy Mill) at 3,000 RPM for 30 minutes. The slurry was spray dried into a powder by a B-290 Mini Spray Dryer.

基於在由製造商提供之分析證書中之金屬化驗來選擇材料以在最終產品中提供目標莫耳%之每一金屬。舉例而言,為製備0.5M(80g)之Li1.050 Mn0.450 Fe0.510 Co0.010 Ni0.005 V0.025 (PO4 )1.020 ,使用16.034g之Li2 CO3 、49.245g之FePO4 .xH2 O、31.318g之Mn3 (PO4 )2 .xH2 O、10.015g之LiH2 PO4 、0.915g之CoC2 O4 .2H2 O、0.457g之NiC2 O4 .2H2 O、1.462g NH4 VO3 及 7.099g之糖。The material is selected based on the metal assay in the analytical certificate provided by the manufacturer to provide each metal of the target mole % in the final product. For example, to prepare 0.5M ( 80 g) of Li 1.050 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.005 V 0.025 (PO 4 ) 1.020 using 16.034 g of Li 2 CO 3 , 49.245 g of FePO 4 .xH 2 O, 31.318 g of Mn 3 (PO 4 ) 2 .xH 2 O, 10.015 g of LiH 2 PO 4 , 0.915 g of CoC 2 O 4 .2H 2 O, 0.457 g of NiC 2 O 4 .2H 2 O, 1.462 g of NH 4 VO 3 and 7.099 g of sugar.

在管形爐中於惰性氣氛下用TPR(程式升溫反應)法來加熱乾燥之粉末。加熱曲線是在0.5小時內自25℃爬升至350℃,隨後保持在350℃下達0.5小時,隨後在0.5小時內自350℃爬升至700℃,隨後保持在700℃下達1小時,隨後冷卻至25℃。研磨所完成之產品且接著在無水環境下將其儲存。The dried powder was heated in a tubular furnace under a inert atmosphere using a TPR (twin temperature reaction) method. The heating curve was ramped from 25 ° C to 350 ° C in 0.5 hours, then held at 350 ° C for 0.5 hours, then climbed from 350 ° C to 700 ° C in 0.5 hours, then held at 700 ° C for 1 hour, then cooled to 25 °C. The finished product is ground and then stored in an anhydrous environment.

正電極研磨漿是藉由將來自AtoFina的作為Kynar® 2801市售的0.0225g之PVDF-HFP共聚物溶解於1.496g之丙酮中且將如上文所描述般製備的0.1612g之摻雜LFMP與0.0204g之導電碳(超級P或Ensaco)之乾混合物分散於所得溶液中來製備。使用模鑄裝置在鋁箔電流收集器之一側上在小瓶中使用Wig-L-Bug鑄件使糊狀物均質化,在烘箱中烘乾以移除鑄造溶劑,且使用壓延裝置來密化。The positive electrode slurry is from AtoFina by as Kynar ® PVDF-HFP copolymer 2801 commercially available 0.0225g 1.496g dissolved in the acetone and the like as hereinbefore described is prepared with 0.0204 0.1612g of doping LFMP A dry mixture of conductive carbon (super P or Ensaco) of g is dispersed in the resulting solution to prepare. The paste was homogenized using a Wig-L-Bug casting in a vial on one side of the aluminum foil current collector using a die casting apparatus, dried in an oven to remove the casting solvent, and densified using a calendering apparatus.

將正電極及作為負電極之鋰箔切割至適當尺寸且插入有玻璃纖維隔板以抵靠鋰箔形成接頭套管型之半電池。第一充電電容(FCC)以及電容及能量是在以下速率下加以量測的:C/5、C/2、1C、2C、5C、10C、20C、30C及50C。The positive electrode and the lithium foil as the negative electrode were cut into a half-cell of a suitable size and inserted with a glass fiber separator to form a joint sleeve type against the lithium foil. The first charging capacitor (FCC) and the capacitance and energy are measured at the following rates: C/5, C/2, 1C, 2C, 5C, 10C, 20C, 30C, and 50C.

亦根據實例6中所描述之製程(亦即,使用IPA)來製備Li1.050 Mn0.45 Fe0.51 Co0.010 Ni0.005 V0.025 (PO4 )1.020 。來自基於水及基於IPA之LFMP材料的各種量測之結果繪示於下表8中: Li 1.050 Mn 0.45 Fe 0.51 Co 0.010 Ni 0.005 V 0.025 (PO 4 ) 1.020 was also prepared according to the procedure described in Example 6 (i.e., using IPA). The results of various measurements from water-based and IPA-based LFMP materials are shown in Table 8 below:

請注意,基於水之LFMP材料的電容及能量效能極類似於基於IPA之LFMP材料的電容及能量效能,且基於水之LFMP材料的20C放電能量為423mWh/g。Note that the capacitance and energy performance of water-based LFMP materials is very similar to the capacitance and energy performance of IPA-based LFMP materials, and the 20C discharge energy of water-based LFMP materials is 423 mWh/g.

在審閱完上述之描述及實施例後,熟習此項技術者將理解,在不脫離本發明之本質的情況下,在施行本發明方面可執行修改及等效取代。因此,本發明不意欲受上文明確描述之實施例所限制。After reviewing the above description and examples, those skilled in the art will understand that modifications and equivalent substitutions can be made in the practice of the invention without departing from the spirit of the invention. Therefore, the present invention is not intended to be limited by the embodiments specifically described above.

將藉由參考結合以下圖式考慮之以上詳細描述來更全面地瞭解本發明且理解其許多優點,圖式是僅為達成說明目的而呈現且不意欲限制所附申請專利範圍之範疇,且圖式中:圖1是能量密度隨摻雜有Co之化學計量LFMP材料的組合物而變的等高線圖,其中垂直軸指示組合物LiMnx Fey Coz PO4 之Co含量,且水平軸指示Mn含量;且 其中等高線圖中之組合物點LiMnx Fey Coz PO4 的Co含量(z)為穿過所述點之水平線與垂直軸之交點;等高線圖中之組合物點的Mn含量(x)為穿過所述點之與所述圖中所繪示之斜虛線(標記為Mn=0.350)平行的線與水平軸之交點;且所述組合物點之Fe含量(y)是藉由滿足等式x+y+z=1來判定。The present invention will be more fully understood and appreciated by the description of the appended claims. Where: Figure 1 is a contour plot of energy density as a function of a composition of a stoichiometric LFMP material doped with Co, wherein the vertical axis indicates the Co content of the composition LiMn x Fe y Co z PO 4 and the horizontal axis indicates Mn Content; and wherein the Co content (z) of the composition point LiMn x Fe y Co z PO 4 in the contour map is the intersection of the horizontal line passing through the point and the vertical axis; the Mn content of the composition point in the contour map ( x) is the intersection of the line passing through the point parallel to the oblique dashed line (labeled Mn=0.350) depicted in the figure, and the horizontal axis; and the Fe content (y) of the composition point is borrowed It is determined by satisfying the equation x+y+z=1.

圖2是能量密度隨摻雜有Co及Ni之化學計量LFMP材料的組合物而變的等高線圖,其中垂直軸指示組合物LiMnx Fey Coz/2 Niz/2 PO4 之Co加上Ni之含量,且水平軸指示Mn含量;且其中等高線圖中之組合物點LiMnx Fey Coz/2 Niz/2 PO4 的Co加上Ni之含量(z)為穿過所述點之水平線與垂直軸之交點;等高線圖中之組合物點的Mn含量(x)為穿過所述點之與所述圖中所繪示之斜虛線(標記為Mn=0.350)平行的線與水平軸之交點;且所述組合物點之Fe含量(y)是藉由滿足等式x+y+z=1來判定。2 is a contour plot of energy density as a function of a composition of a stoichiometric LFMP material doped with Co and Ni, wherein the vertical axis indicates the Co addition of the composition LiMn x Fe y Co z/2 Ni z/2 PO 4 The content of Ni, and the horizontal axis indicates the Mn content; and the content of the Co plus Ni (z) of the composition point LiMn x Fe y Co z/2 Ni z/2 PO 4 in the contour map is through the point The intersection of the horizontal line and the vertical axis; the Mn content (x) of the composition point in the contour map is a line passing through the point parallel to the oblique dotted line (labeled Mn=0.350) depicted in the figure. The intersection of the horizontal axes; and the Fe content (y) of the composition point is determined by satisfying the equation x+y+z=1.

圖3是能量密度隨摻雜有Co之非化學計量LFMP材料中之Co摻雜劑含量及Mn含量而變的等高線圖。Figure 3 is a contour plot of energy density as a function of Co dopant content and Mn content in a non-stoichiometric LFMP material doped with Co.

圖4是能量密度隨摻雜有Co及/或Ni之非化學計量LFMP材料中之Co、Ni摻雜劑含量及Mn含量而變的等高線圖。4 is a contour plot of energy density as a function of Co, Ni dopant content, and Mn content in a non-stoichiometric LFMP material doped with Co and/or Ni.

圖5A是能量密度隨摻雜有Co、Ni及/或V之非化學計量LFMP材料中之Co、Ni摻雜劑含量及Mn含量而變的等高線圖,其中V是保持恆定於0.030且Co、Ni可變。5A is a contour plot of energy density as a function of Co, Ni dopant content, and Mn content in a non-stoichiometric LFMP material doped with Co, Ni, and/or V, wherein V is constant at 0.030 and Co, Ni is variable.

圖5B是能量密度隨摻雜有Co、Ni及/或V之非化學 計量LFMP材料中之Co、Ni摻雜劑含量及Mn含量而變的等高線圖,其中V是保持恆定於0.020且Co、Ni可變。Figure 5B is a non-chemical energy density with Co, Ni and/or V doped A contour plot of the Co, Ni dopant content and Mn content in the LFMP material, wherein V is kept constant at 0.020 and Co, Ni is variable.

圖5C是能量密度隨摻雜有Co、Ni及/或V之非化學計量LFMP材料中之Co、Ni摻雜劑含量及Mn含量而變的等高線圖,其中V是保持恆定於0.010且Co、Ni可變。5C is a contour plot of energy density as a function of Co, Ni dopant content, and Mn content in a non-stoichiometric LFMP material doped with Co, Ni, and/or V, where V is constant at 0.010 and Co, Ni is variable.

圖6是比較Li1.030 Fe0.970 V0.030 PO4 與Li1.050 Mn0.450 Fe0.500 Co0.010 Ni0.010 V0.030 (PO4 )1.025 之隨C速率而變的比能量之線圖。Figure 6 is a graph comparing specific energy as a function of C rate for Li 1.030 Fe 0.970 V 0.030 PO 4 and Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.025 .

圖7繪示具有Mn 45%、Fe 50%、Co 1%、Ni 1%、V3%之樣本的奈米粒子之STEM影像。7 is a STEM image of a nanoparticle having a sample of Mn 45%, Fe 50%, Co 1%, Ni 1%, V3%.

圖8繪示圖7之樣本的關於Fe之相應能量色散X射線(EDX)面分佈圖(energy-dispersive X-ray(EDX)mapping)。8 is a graph showing the corresponding energy dispersive X-ray (EDX) mapping of the sample of FIG. 7 with respect to Fe.

圖9繪示圖7之樣本的關於Mn之相應能量色散X射線(EDX)面分佈圖。Figure 9 is a graph showing the corresponding energy dispersive X-ray (EDX) surface distribution of Mn of the sample of Figure 7.

圖10繪示圖7之樣本的關於Co之相應能量色散X射線(EDX)面分佈圖。Figure 10 is a graph showing the corresponding energy dispersive X-ray (EDX) surface distribution of Co of the sample of Figure 7.

圖11繪示圖7之樣本的關於Ni之相應能量色散X射線(EDX)面分佈圖。Figure 11 is a graph showing the corresponding energy dispersive X-ray (EDX) surface distribution of Ni of the sample of Figure 7.

圖12繪示圖7之樣本的關於V之相應能量色散X射線(EDX)面分佈圖。Figure 12 is a diagram showing the corresponding energy dispersive X-ray (EDX) surface distribution of V for the sample of Figure 7.

Claims (27)

一種正電極材料,其包括:電活性材料,具有包括以下各者之總組成:鋰(Li)、鐵(Fe)、錳(Mn)、一或多種摻雜劑(D)及磷酸鹽(PO4 ),其中Fe+Mn+D之量為1.0;Li:(Fe+Mn+D)之量的比是大於1.0至1.05;PO4 :(Fe+Mn+D)之量的比是大於1.0至1.025;D是選自由以下各者組成之群的一或多種摻雜劑:鈷(Co)、鎳(Ni)、釩(V)、及鈮(Nb);Mn之量是0.35至0.60;D之量是0.001至0.10;且所述電活性材料包括具有橄欖石結構之至少一個相,所述橄欖石結構包括所述Li、所述Fe、所述Mn、所述D及所述磷酸鹽,且其中所述正電極材料在電池中操作期間在20C放電速率下,所述過量鋰以及Mn之所述量的結合具有至少250mWh/g的能量密度以及至少100mAh/g的比電容。A positive electrode material comprising: an electroactive material having a total composition comprising: lithium (Li), iron (Fe), manganese (Mn), one or more dopants (D), and phosphate (PO) 4 ), wherein the amount of Fe + Mn + D is 1.0; the ratio of the amount of Li: (Fe + Mn + D) is greater than 1.0 to 1.05; the ratio of the amount of PO 4 : (Fe + Mn + D) is greater than 1.0 To 1.025; D is one or more dopants selected from the group consisting of cobalt (Co), nickel (Ni), vanadium (V), and niobium (Nb); the amount of Mn is 0.35 to 0.60; The amount of D is 0.001 to 0.10; and the electroactive material includes at least one phase having an olivine structure including the Li, the Fe, the Mn, the D, and the phosphate And wherein the combination of the excess lithium and the amount of Mn has an energy density of at least 250 mWh/g and a specific capacitance of at least 100 mAh/g at a 20 C discharge rate during operation of the positive electrode material in the cell. 如申請專利範圍第1項所述之正電極材料,其中所述正電極材料在電池中操作期間在20C放電速率下提供至少340mWh/g之能量密度。 The positive electrode material of claim 1, wherein the positive electrode material provides an energy density of at least 340 mWh/g at a 20 C discharge rate during operation in the battery. 如申請專利範圍第1項所述之正電極材料,所述電活性材料更包括在磷酸鹽晶格位置處取代之氟。 The positive electrode material of claim 1, wherein the electroactive material further comprises fluorine substituted at a phosphate lattice position. 如申請專利範圍第1項所述之正電極材料,其中D 包括高達0.05之量的Co。 The positive electrode material as described in claim 1 of the patent scope, wherein D Includes Co in an amount up to 0.05. 如申請專利範圍第1項所述之正電極材料,其中D包括高達0.03之量的Co。 The positive electrode material of claim 1, wherein D comprises Co in an amount of up to 0.03. 如申請專利範圍第1項所述之正電極材料,其中D包括高達0.05之量的Co及高達0.035之量的Ni。 The positive electrode material of claim 1, wherein D comprises Co in an amount of up to 0.05 and Ni in an amount of up to 0.035. 如申請專利範圍第1項所述之正電極材料,其中D包括高達0.02之量的Co及高達0.02之量的Ni。 The positive electrode material of claim 1, wherein D comprises Co in an amount of up to 0.02 and Ni in an amount of up to 0.02. 如申請專利範圍第1項所述之正電極材料,其中D包括高達0.05之量的Co、高達0.035之量的Ni,及高達0.05之量的V。 The positive electrode material of claim 1, wherein D comprises Co in an amount of up to 0.05, Ni in an amount of up to 0.035, and V in an amount of up to 0.05. 如申請專利範圍第1項所述之正電極材料,其中D包括高達0.02之量的Co、高達0.02之量的Ni,及高達0.04之量的V。 The positive electrode material of claim 1, wherein D comprises Co in an amount of up to 0.02, Ni in an amount of up to 0.02, and V in an amount of up to 0.04. 如申請專利範圍第1項所述之正電極材料,其中所述電活性材料包括高達0.05之量的Co、高達0.035之量的Ni、高達0.05之量的V,及高達0.06之量的F。 The positive electrode material of claim 1, wherein the electroactive material comprises Co in an amount of up to 0.05, Ni in an amount of up to 0.035, V in an amount of up to 0.05, and F in an amount of up to 0.06. 如申請專利範圍第1項所述之正電極材料,其中所述電活性材料包括高達0.02之量的Co、高達0.02之量的Ni、高達0.04之量的V,及高達0.025之量的F。 The positive electrode material of claim 1, wherein the electroactive material comprises Co in an amount of up to 0.02, Ni in an amount of up to 0.02, V in an amount of up to 0.04, and F in an amount of up to 0.025. 如申請專利範圍第1項所述之正電極材料,其中所述電活性材料為選自由以下各者組成之群的一或多種電活性材料:Li1.050 Mn0.450 Fe0.500 Co0.010 Ni0.010 V0.030 (PO4 )1.025 、Li1.040 Mn0.400 Fe0.560 Co0.010 Ni0.010 V0.020 (PO4 )1.015 、 Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.020 (PO4 )1.015 、Li1.030 Mn0.450 Fe0.520 Co0.010 Ni0.010 V0.010 (PO4 )1.005 、Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.030 (PO4 )1.010 F0.015 、Li1.050 Mn0.450 Fe0.510 Co0.0100 Ni0.005 V0.025 (PO4 )1.020 、Li1.050 Mn0.450 Fe0.500 Co0.010 Nb0.010 V0.030 (PO4 )1.025 、Li1.040 Mn0.400 Fe0.560 Co0.010 Nb0.010 V0.020 (PO4 )1.015 、Li1.040 Mn0.450 Fe0.510 Co0.010 Nb0.010 V0.020 (PO4 )1.015 、Li1.030 Mn0.450 Fe0.520 Co0.010 Nb0.010 V0.010 (PO4 )1.005 、Li1.040 Mn0.450 Fe0.510 Co0.010 Nb0.010 V0.030 (PO4 )1.010 F0.015 ,以及Li1.050 Mn0.450 Fe0.510 Co0.0100 Nb0.005 V0.025 (PO4 )1.020The positive electrode material according to claim 1, wherein the electroactive material is one or more electroactive materials selected from the group consisting of Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Ni 0.010 V 0.030 ( PO 4 ) 1.025 , Li 1.040 Mn 0.400 Fe 0.560 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015 , Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015 , Li 1.030 Mn 0.450 Fe 0.520 Co 0.010 Ni 0.010 V 0.010 (PO 4 ) 1.005 , Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.010 F 0.015 , Li 1.050 Mn 0.450 Fe 0.510 Co 0.0100 Ni 0.005 V 0.025 (PO 4 ) 1.020 , Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Nb 0.010 V 0.030 (PO 4 ) 1.025 , Li 1.040 Mn 0.400 Fe 0.560 Co 0.010 Nb 0.010 V 0.020 (PO 4 ) 1.015 , Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Nb 0.010 V 0.020 (PO 4 ) 1.015 Li 1.030 Mn 0.450 Fe 0.520 Co 0.010 Nb 0.010 V 0.010 (PO 4 ) 1.005 , Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Nb 0.010 V 0.030 (PO 4 ) 1.010 F 0.015 , and Li 1.050 Mn 0.450 Fe 0.510 Co 0.0100 Nb 0.005 V 0.025 ( PO 4 ) 1.020 . 如申請專利範圍第1項所述之正電極材料,其中所述正電極材料為選自由以下各者組成之群的一或多種電活性材料:Li1.050 Mn0.450 Fe0.500 Co0.010 Ni0.010 V0.030 (PO4 )1.025 、Li1.040 Mn0.400 Fe0.560 Co0.010 Ni0.010 V0.020 (PO4 )1.015 、Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.020 (PO4 )1.015 、Li1.040 Mn0.450 Fe0.510 Co0.010 Ni0.010 V0.030 (PO4 )1.010 F0.015 、Li1.050 Mn0.450 Fe0.510 Co0.010 Ni0.005 V0.025 (PO4 )1.020 、Li1.050 Mn0.450 Fe0.500 Co0.010 Nb0.010 V0.030 (PO4 )1.025 、Li1.040 Mn0.400 Fe0.560 Co0.010 Nb0.010 V0.020 (PO4 )1.015 、Li1.040 Mn0.450 Fe0.510 Co0.010 Nb0.010 V0.020 (PO4 )1.015 、Li1.040 Mn0.450 Fe0.510 Co0.010 Nb0.010 V0.030 (PO4 )1.010 F0.015 ,以及 Li1.050 Mn0.450 Fe0.510 Co0.010 Nb0.005 V0.025 (PO4 )1.020The positive electrode material according to claim 1, wherein the positive electrode material is one or more electroactive materials selected from the group consisting of Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Ni 0.010 V 0.030 ( PO 4 ) 1.025 , Li 1.040 Mn 0.400 Fe 0.560 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015 , Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.020 (PO 4 ) 1.015 , Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.010 V 0.030 (PO 4 ) 1.010 F 0.015 , Li 1.050 Mn 0.450 Fe 0.510 Co 0.010 Ni 0.005 V 0.025 (PO 4 ) 1.020 , Li 1.050 Mn 0.450 Fe 0.500 Co 0.010 Nb 0.010 V 0.030 (PO 4 ) 1.025 , Li 1.040 Mn 0.400 Fe 0.560 Co 0.010 Nb 0.010 V 0.020 (PO 4 ) 1.015 , Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Nb 0.010 V 0.020 (PO 4 ) 1.015 , Li 1.040 Mn 0.450 Fe 0.510 Co 0.010 Nb 0.010 V 0.030 (PO 4 ) 1.010 F 0.015 , and Li 1.050 Mn 0.450 Fe 0.510 Co 0.010 Nb 0.005 V 0.025 (PO 4 ) 1.020 . 如申請專利範圍第1項所述之正電極材料,其中所述正電極材料基本上由橄欖石相組成。 The positive electrode material of claim 1, wherein the positive electrode material consists essentially of an olivine phase. 如申請專利範圍第1項所述之正電極材料,其中所述正電極材料基本上由橄欖石相及富摻雜劑次生相組成。 The positive electrode material of claim 1, wherein the positive electrode material consists essentially of an olivine phase and a dopant-rich secondary phase. 如申請專利範圍第1項所述之正電極材料,其中所述正電極材料在電池中操作期間在20C放電速率下提供至少340mWh/g之能量密度及至少110mAh/g之比電容。 The positive electrode material of claim 1, wherein the positive electrode material provides an energy density of at least 340 mWh/g and a specific capacitance of at least 110 mAh/g at a 20 C discharge rate during operation in the battery. 如申請專利範圍第1項所述之正電極材料,其中所述正電極材料在電池中操作期間在20C放電速率下提供至少400mWh/g之能量密度及至少125mAh/g之比電容。 The positive electrode material of claim 1, wherein the positive electrode material provides an energy density of at least 400 mWh/g and a specific capacitance of at least 125 mAh/g at a 20 C discharge rate during operation in the battery. 如申請專利範圍第1項所述之正電極材料,其中D是選自由以下各者組成之群的一或多種摻雜劑:鈷(Co)、釩(V)及鈮(Nb)。 The positive electrode material of claim 1, wherein D is one or more dopants selected from the group consisting of cobalt (Co), vanadium (V), and niobium (Nb). 如申請專利範圍第1項所述之正電極材料,其中D是選自由以下各者組成之群的一或多種摻雜劑:鈷(Co)及釩(V)。 The positive electrode material of claim 1, wherein D is one or more dopants selected from the group consisting of cobalt (Co) and vanadium (V). 一種正電極,其包括如申請專利範圍第1項所述之正電極材料。 A positive electrode comprising the positive electrode material as described in claim 1 of the patent application. 如申請專利範圍第20項所述之正電極,其更包括氟。 The positive electrode of claim 20, which further comprises fluorine. 如申請專利範圍第20項所述之正電極,其中所述正電極材料在電池中操作期間在20C放電速率下提供至少 340mWh/g之能量密度及至少110mAh/g之比電容。 The positive electrode of claim 20, wherein the positive electrode material provides at least a discharge rate of 20 C during operation in the battery. An energy density of 340 mWh/g and a specific capacitance of at least 110 mAh/g. 如申請專利範圍第20項所述之正電極,其中D是選自由以下各者組成之群的一或多種摻雜劑:鈷(Co)、釩(V)及鈮(Nb)。 The positive electrode of claim 20, wherein D is one or more dopants selected from the group consisting of cobalt (Co), vanadium (V), and niobium (Nb). 如申請專利範圍第20項所述之正電極,其中D是選自由以下各者組成之群的一或多種摻雜劑:鈷(Co)及釩(V)。 The positive electrode of claim 20, wherein D is one or more dopants selected from the group consisting of cobalt (Co) and vanadium (V). 一種鋰二次電池,其包括:正電極,其與正電極電流收集器電接觸,所述電流收集器與外部電路電連接;負電極,其與負電極電流收集器電接觸,所述電流收集器與所述外部電路電連接;隔板,其位於陰極與陽極之間且與所述陰極及所述陽極離子接觸;電解質,其與所述正電極及所述負電極離子接觸;其中所述正電極包括如申請專利範圍第1項所述之正電極材料;其中所述正電極更包括氟作為摻雜劑材料;以及其中所述正電極材料在電池中操作期間在20C放電速率下,提供至少340mWh/g之能量密度及至少110mAh/g之比電容。 A lithium secondary battery comprising: a positive electrode in electrical contact with a positive electrode current collector, the current collector being electrically coupled to an external circuit; a negative electrode in electrical contact with a negative electrode current collector, the current collection Electrically connected to the external circuit; a separator between the cathode and the anode and in ionic contact with the cathode and the anode; an electrolyte in ionic contact with the positive electrode and the negative electrode; The positive electrode includes the positive electrode material as described in claim 1; wherein the positive electrode further comprises fluorine as a dopant material; and wherein the positive electrode material is provided at a 20 C discharge rate during operation in the battery An energy density of at least 340 mWh/g and a specific capacitance of at least 110 mAh/g. 如申請專利範圍第25項所述之鋰二次電池,其中D是選自由以下各者組成之群的一或多種摻雜劑:鈷 (Co)、釩(V)及鈮(Nb)。 A lithium secondary battery according to claim 25, wherein D is one or more dopants selected from the group consisting of: cobalt (Co), vanadium (V) and niobium (Nb). 如申請專利範圍第25項所述之鋰二次電池,其中D是選自由以下各者組成之群的一或多種摻雜劑:鈷(Co)及釩(V)。 A lithium secondary battery according to claim 25, wherein D is one or more dopants selected from the group consisting of cobalt (Co) and vanadium (V).
TW099128478A 2010-08-25 2010-08-25 Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density TWI493779B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099128478A TWI493779B (en) 2010-08-25 2010-08-25 Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099128478A TWI493779B (en) 2010-08-25 2010-08-25 Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density

Publications (2)

Publication Number Publication Date
TW201210116A TW201210116A (en) 2012-03-01
TWI493779B true TWI493779B (en) 2015-07-21

Family

ID=46763871

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099128478A TWI493779B (en) 2010-08-25 2010-08-25 Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density

Country Status (1)

Country Link
TW (1) TWI493779B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775541B1 (en) * 2012-05-23 2017-09-06 삼성에스디아이 주식회사 Cathode active material and lithium secondary battery including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040005265A1 (en) * 2001-12-21 2004-01-08 Massachusetts Institute Of Technology Conductive lithium storage electrode
TW200915640A (en) * 2007-07-12 2009-04-01 A123 Systems Inc Multifunctional mixed metal olivines for lithium ion batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040005265A1 (en) * 2001-12-21 2004-01-08 Massachusetts Institute Of Technology Conductive lithium storage electrode
TW200915640A (en) * 2007-07-12 2009-04-01 A123 Systems Inc Multifunctional mixed metal olivines for lithium ion batteries

Also Published As

Publication number Publication date
TW201210116A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
Cai et al. High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries
US9178215B2 (en) Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
Deng et al. Recent advances of Mn‐Rich LiFe1‐yMnyPO4 (0.5≤ y< 1.0) cathode materials for high energy density lithium ion batteries
EP2238637B1 (en) Mixed metal olivine electrode materials for lithium ion batteries
JP6157563B2 (en) Lithium ion battery positive electrode material, production method and application thereof
EP2203948B1 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
ES2927465T3 (en) LMFP cathode materials with improved electrochemical performance
Ding et al. Synthesis of high rate performance LiFe1− xMnxPO4/C composites for lithium-ion batteries
JP6008024B2 (en) Method for producing olivine type lithium transition metal oxide
Xiang et al. Improving the electrochemical kinetics of lithium manganese phosphate via co-substitution with iron and cobalt
Lee et al. Key design considerations for synthesis of mesoporous α-Li3V2 (PO4) 3/C for high power lithium batteries
Chen et al. Relevance of LiPF6 as etching agent of LiMnPO4 colloidal nanocrystals for high rate performing Li-ion battery cathodes
Yu et al. Optimization of high potential cathode materials and lithium conducting hybrid solid electrolyte for high-voltage all-solid-state batteries
Bakenov et al. LiMnPO4 olivine as a cathode for lithium batteries
Akhtar et al. High-Power and Long-Life Na3V2O2 (PO4) 2F–Na3V2 (PO4) 3@ C/AC Bimaterial Electrodes for Hybrid Battery–Capacitor Energy Storage Devices
KR20140082635A (en) Lithiated manganese phosphate and composite material comprising same
TWI493779B (en) Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
Chang et al. Targeted partial surface modification with nano-SiO2@ Li2CoPO4F as high-voltage cathode material for LIBs
Yu et al. Rheological phase reaction method synthesis and characterizations of x LiMn 0.5 Fe 0.5 PO 4–y Li 3 V 2 (PO 4) 3/C composites as cathode materials for lithium ion batteries
Penumaka Synthesis of lithium manganese phosphate by controlled sol-gel method and design of all solid state lithium ion batteries
Sapra et al. Improved electrochemical performance of NASICON type Na $ _ {3} $ V $ _ {2-x} $ Co $ _x $(PO $ _ {4} $) $ _ {3} $/C ($ x= $0--0.15) cathode for high rate and stable sodium-ion batteries
Wang et al. PEG-combined liquid phase synthesis and electrochemical properties of carbon-coated Li3V2 (PO4) 3
Galeyeva et al. Synthesis, structure and electrochemical performance of Eldfellite, NaFe (SO4) 2, doped with SeO4, HPO4 and PO3F
Shen et al. Powering Electric Vehicles with Ultrafast Dischargeable Vanadium Doped Lifepo4/C Cathode: The Experimental and Theoretical Investigations

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees