TWI492914B - Rubberized concrete made by using waste rubber tires and manufacturing method and system thereof - Google Patents

Rubberized concrete made by using waste rubber tires and manufacturing method and system thereof Download PDF

Info

Publication number
TWI492914B
TWI492914B TW102119094A TW102119094A TWI492914B TW I492914 B TWI492914 B TW I492914B TW 102119094 A TW102119094 A TW 102119094A TW 102119094 A TW102119094 A TW 102119094A TW I492914 B TWI492914 B TW I492914B
Authority
TW
Taiwan
Prior art keywords
rubber
rubber particles
particles
cement
catalyst
Prior art date
Application number
TW102119094A
Other languages
Chinese (zh)
Other versions
TW201414693A (en
Inventor
Kuo Ji Yen
Maw Tien Lee
Shou Ming Lee
Jen Ray Chang
Liang Hsign Chou
Original Assignee
Chun Well Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/632,164 external-priority patent/US8536253B2/en
Application filed by Chun Well Industry Co Ltd filed Critical Chun Well Industry Co Ltd
Publication of TW201414693A publication Critical patent/TW201414693A/en
Application granted granted Critical
Publication of TWI492914B publication Critical patent/TWI492914B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/20Waste materials; Refuse organic from macromolecular compounds
    • C04B18/22Rubber, e.g. ground waste tires
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2319/00Characterised by the use of rubbers not provided for in groups C08J2307/00 - C08J2317/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

利用廢橡膠輪胎製作橡膠混凝土、製法與系統Rubber concrete, manufacturing method and system using waste rubber tire

本發明是有關一種以廢橡膠輪胎製作而成之橡膠混凝土,其中該廢橡膠輪胎製係經過金屬氧化物催化劑進行催化部分氧化之表面處理。使用催化氧化處理的橡膠微粒比之使用非催化氧化處理的橡膠微粒,其優點包括優異的機械強度和排水能力、較低的氧化溫度、較短的氧化時間,和加速水化作用時間。於催化氧化中,合作產生的橡膠油(一種冷凝氣),其作為黏著劑的性能可媲美或優於商用高效塑化劑。The present invention relates to a rubber concrete produced from a waste rubber tire, wherein the waste rubber tire system is subjected to surface treatment by catalytic partial oxidation by a metal oxide catalyst. The use of catalytically oxidized rubber particles compared to the use of non-catalytic oxidation-treated rubber particles has advantages including excellent mechanical strength and drainage capacity, lower oxidation temperature, shorter oxidation time, and accelerated hydration time. In catalytic oxidation, cooperatively produced rubber oil (a type of condensation gas), which acts as an adhesive, is comparable or superior to commercial high-performance plasticizers.

由於廢橡膠輪胎的積累是一個重大環境問題,於是廢輪胎橡膠的回收和利用成為一個一直受到密切研究的主題。Since the accumulation of waste rubber tires is a major environmental problem, the recycling and utilization of waste tire rubber has become a subject that has been closely studied.

西爾維斯特(Sylvester)的美國專利公開號20070249762所描述改良的瀝青水泥複合材料,其中橡膠微粒是經由十二烷基苯磺酸(DBSA)的催化而去硫化。同時,十二烷基苯磺酸(DBSA)也催化去硫化橡膠瀝青的微粒與瀝青所含分子間的反應。A modified asphalt cement composite as described in U.S. Patent Publication No. 20070249762 to Sylvester, wherein the rubber particles are desulfurized via catalysis of dodecylbenzenesulfonic acid (DBSA). At the same time, dodecylbenzenesulfonic acid (DBSA) also catalyzes the reaction between the particles of the desulfurized rubber asphalt and the molecules contained in the asphalt.

橡膠混凝土是廢輪胎回收的橡膠微粒的另一種應用;然而,當疏水性橡膠微粒與親水性水泥混合,其所產生的水泥之機械強度會大幅降低。Rubber concrete is another application of rubber particles recovered from waste tires; however, when hydrophobic rubber particles are mixed with hydrophilic cement, the mechanical strength of the cement produced is greatly reduced.

尚迪(Zandi)等人的美國專利5,456,751、蓋(Guy)的美國專利5,762,702以及彼特(Peter)等人的美國專利公開號20050096412得出結論,混合橡膠微粒與水泥會在橡膠微粒和水泥基質產生相對比較弱的物理鍵,其大幅減弱的橡膠混凝土的機械性能,以致嚴重限制其用途。U.S. Patent No. 5, 456, 751 to Zandi et al., U.S. Patent No. 5,762, 702 to Guy, and U.S. Patent Publication No. 20050096412 to Peter et al., concluded that mixed rubber particles and cement will be in rubber particles and cement matrix. The relatively weak physical bond is produced, which greatly reduces the mechanical properties of the rubber concrete, so that its use is severely limited.

傳統的橡膠混凝土使用高效塑化劑以改善疏水性的橡膠微粒和親水性水泥基質的物理鍵結,以使橡膠混凝土複合材料在選定的用途中可被使用。Conventional rubber concrete uses high-efficiency plasticizers to improve the physical bonding of hydrophobic rubber particles and hydrophilic cement matrix so that rubber concrete composites can be used in selected applications.

為了改善橡膠混凝土的機械性能,已發展出數種表面處理方法來改良輪胎橡膠粉末,以便產生更強的物理/化學鍵結或與周圍的水泥基質大幅產生更強的化學鍵結。In order to improve the mechanical properties of rubber concrete, several surface treatment methods have been developed to improve the tire rubber powder in order to produce stronger physical/chemical bonding or to produce a stronger chemical bond with the surrounding cement matrix.

塞格雷(Segre)等人所公開氫氧化鈉處理法以提高輪胎橡膠微粒對水泥塗劑的黏附性,但是所產生的橡膠混凝土仍比傳統混凝土的抗壓強度少33%。(見塞格雷所著《輪胎橡膠微粒加於水泥漿(cement paste)之使用》水泥及混凝土研究2000,30(9),1421至1425頁)。Segre et al. disclose a sodium hydroxide treatment to improve the adhesion of tire rubber particles to cementitious agents, but the resulting rubber concrete is still 33% less compressive than conventional concrete. (See Segre's "Use of Tire Rubber Particles in Cement Paste", Cement and Concrete Research 2000, 30(9), pp. 1421 to 1425).

華爾斯(Walles)等人的美國專利第5849818號揭露一種處理方法,以含三氧化硫的反應氣體來磺化橡膠微粒的外層。橡膠(聚合物)微粒覆上一層含有高劑量磺酸或磺酸鹽部分體的磺酸鹽層。U.S. Patent No. 5,849,818 to Walls et al. discloses a process for sulfonating the outer layer of rubber particles with a sulfur trioxide-containing reaction gas. The rubber (polymer) particles are coated with a layer of sulfonate containing a high dose of a sulfonic acid or sulfonate moiety.

這些磺化微粒賦予複合材料有益的特性,其用作如聚集體中的水泥、有機樹脂、纖維素塑料等製品;特別是,混凝土可由含上述聚集體的波蘭水泥製成。These sulfonated particles impart beneficial properties to the composite which are used as articles such as cement, organic resins, cellulosic plastics and the like in aggregates; in particular, the concrete may be made of Polish cement containing the above aggregates.

得自危害環境的廢輪胎之橡膠微粒的部分氧化反應,會產生已表面處理的橡膠微粒以及一種冷凝氣,與傳統的橡膠混凝土相比,其作為用以製作具有改進機械強度之橡膠混凝土的摻合料。Partial oxidation of rubber particles from waste tires that are hazardous to the environment produces surface-treated rubber particles and a condensation gas that is used as a rubber concrete for improved mechanical strength compared to conventional rubber concrete. Mixing.

一般而言,部分氧化將含硫橡膠微粒的表面從疏水性改為親水性。經由碸、亞碸以及有機三氧化硫官能基群(R-SOx -R)處理過的橡膠表面會與周圍水泥基質的親水性表面產生更強烈的交互作用,用於改善橡膠混凝土的機械強度。In general, partial oxidation changes the surface of the sulfur-containing rubber particles from hydrophobic to hydrophilic. The surface of the rubber treated with bismuth, arsine and organic sulfur trioxide functional groups (R-SO x -R) will have a stronger interaction with the hydrophilic surface of the surrounding cement matrix and be used to improve the mechanical strength of rubber concrete. .

具親水性、化學上穩定的橡膠表面與周圍的水泥基質的親水性表面起強烈的相互作用。在部分氧化反應器中副產生的冷凝氣主要包括活性硫氧化物(R-SOx -R),作為優良的黏著劑,以進一步提高部分氧化的橡膠微粒與水泥混合時的接合強度。The hydrophilic, chemically stable rubber surface interacts strongly with the hydrophilic surface of the surrounding cement matrix. The co-produced condensation gas in the partial oxidation reactor mainly includes an active sulfur oxide (R-SO x -R) as an excellent adhesive to further improve the joint strength when the partially oxidized rubber particles are mixed with the cement.

機械性能提高的橡膠混凝土比傳統橡膠混凝土更好用。然而,在非催化部分氧化反應的速率是相當慢的,因此,需要200至300度的高反應溫度和45到120分鐘的長停留時間。Rubber concrete with improved mechanical properties is better than conventional rubber concrete. However, the rate of the non-catalytic partial oxidation reaction is rather slow, and therefore, a high reaction temperature of 200 to 300 degrees and a long residence time of 45 to 120 minutes are required.

本發明部分是基於催化金屬氧化物之部分氧化技術的發展,橡膠微粒在顯著較低的溫度和大幅減少處理時間進行表面處理,以提高橡膠微粒的表面性能。The present invention is based, in part, on the development of a partial oxidation technique for catalyzing metal oxides, which are surface treated at significantly lower temperatures and with substantially reduced processing time to enhance the surface properties of the rubber particles.

已經證實此具周圍的水泥基質之經催化部分氧化改良橡膠微粒的顆粒,比非催化氧化的改良橡膠微粒的顆粒明顯展現出較佳的黏著力。It has been confirmed that the particles of the catalytically partially oxidized modified rubber particles of the surrounding cement matrix exhibit a better adhesion than the particles of the non-catalyticly oxidized modified rubber particles.

橡膠微粒的顆粒表面的催化氧化不僅明顯於較低溫度中進行且使用較短時間,並且此過程也會產生更多的親水性活性官能基群於橡膠表面,比以非催化方法,能夠與親水性水泥的交互作用更加強烈。The catalytic oxidation of the particle surface of the rubber particles is not only apparent at lower temperatures but also for a shorter period of time, and this process also produces more hydrophilic reactive functional groups on the rubber surface than with non-catalytic methods. The interaction of cement is more intense.

優先選擇的金屬氧化物催化劑包括,例如,氧化亞鐵(FeO)以及三氧化二鐵(Fe2 O3 )。無須其他的催化劑。此即部分氧化可由含有或基本上含有合適的金屬氧化物之一種或數種催化劑所催化。Preferred metal oxide catalysts include, for example, ferrous oxide (FeO) and ferric oxide (Fe 2 O 3 ). No other catalyst is required. Thus, partial oxidation can be catalyzed by one or more catalysts containing or substantially containing a suitable metal oxide.

在一個優先選擇的實施方式中,採用氧化亞鐵(FeO)或三氧化二鐵(Fe2 O3 )作為催化劑,部分氧化的的橡膠微粒之表面的傅立葉轉換紅外光譜術(FT-IR)分析顯示,要以避免過度氧化的方式,在橡膠微粒表面產生R-SOx -R官能基群的最大數值,要分別以約150度20分鐘以及約200度30分鐘的環境下,在最佳部分氧化條件下達成。In a preferred embodiment, the surface of partially oxidized rubber particles is analyzed by Fourier transform infrared spectroscopy (FT-IR) using ferrous oxide (FeO) or ferric oxide (Fe 2 O 3 ) as a catalyst. It is shown that in order to avoid excessive oxidation, the maximum value of the R-SO x -R functional group is generated on the surface of the rubber particles, in an environment of about 150 degrees and 20 minutes and about 200 degrees and 30 minutes, respectively. Achieved under oxidizing conditions.

工業規模、連續部分氧化優先採用水平管式反應器,其配有一個馬達驅動的多刀片水平式混合機。橡膠微粒和催化劑混合粉劑以受控的速率輸送通過反應器,以供所需的反應時間。氣態氧化流與混合粉劑同時通過反應區。Industrial scale, continuous partial oxidation is preferred with horizontal tubular reactors equipped with a motor driven multi-blade horizontal mixer. The rubber particulate and catalyst mixed powder is delivered through the reactor at a controlled rate for the desired reaction time. The gaseous oxidation stream passes through the reaction zone simultaneously with the mixed powder.

催化部分氧化反應也會產生一種新穎的橡膠微粒和水泥基質的黏著劑。當在催化金屬氧化物之氧化過程中,橡膠微粒的一小部分被轉換成橡膠油(其在冷凝氣的形態),同時會殘留副產物。部分橡膠油滯留於氧化橡膠微粒,使其外觀有些微黏稠。Catalytic partial oxidation also produces a novel adhesive for rubber particles and cement matrix. When oxidizing the metal oxide, a small portion of the rubber particles are converted into rubber oil (which is in the form of a condensed gas) while leaving by-products. Some of the rubber oil stays in the oxidized rubber particles, making it slightly sticky.

此黏著劑性能可媲美或優於商用高效塑化劑。因此,使用催 化部分氧化橡膠微粒製造的橡膠混凝土以及殘留的黏著劑,就不須要昂貴的商用高效塑化劑。This adhesive performance is comparable or superior to commercial high-performance plasticizers. Therefore, use reminders Rubber concrete made from partially oxidized rubber particles and residual adhesives do not require expensive commercial high-efficiency plasticizers.

利用傅立葉轉換紅外光譜術(FT-IR)、X射線繞射(XRD)以及掃描電子顯微術(SEM)等技術,已證明橡膠混凝土的製作使用催化氧化橡膠微粒會優於非催化氧化的橡膠微粒。從橡膠油的FT-IR光譜上來看,R-SOx -R官能基群比部分氧化橡膠微粒的表面顯示出更強烈信號。Using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques, it has been proven that the production of rubber concrete using catalytically oxidized rubber particles is superior to non-catalytic oxidation of rubber. particle. From the FT-IR spectrum of the rubber oil, the R-SO x -R functional group shows a stronger signal than the surface of the partially oxidized rubber particles.

這表示橡膠油主要是由具短鏈R-SOx -R的群組(R-SO-R,R-SO2 -R,and R-SO3 )所製,其可大大提高部分氧化橡膠微粒以及水泥基質之間的黏合強度。This means that the rubber oil is mainly made of a group of short-chain R-SO x -R (R-SO-R, R-SO 2 -R, and R-SO 3 ), which can greatly improve the partial oxidation rubber particles. And the bond strength between the cement substrates.

無論與非催化氧化橡膠和水泥或未經處理的橡膠和水泥相比,以催化氧化橡膠微粒和水泥所製的水化膠泥有一個令人驚奇的特點,即其卓越的防潮能力。Whether it is compared to non-catalytic oxidized rubber and cement or untreated rubber and cement, the hydrated cement made by catalytic oxidation of rubber particles and cement has a surprising feature, namely its excellent moisture resistance.

本發明的橡膠混凝土的疏水性,使其特別適用於屋頂,橋樑基礎,海堤建設及其他海洋應用。The hydrophobic nature of the rubber concrete of the present invention makes it particularly suitable for roofing, bridge foundations, seawall construction and other marine applications.

1‧‧‧反應器容器1‧‧‧reactor vessel

2‧‧‧篩網2‧‧‧ screen

3‧‧‧加熱環3‧‧‧heating ring

4‧‧‧控制器4‧‧‧ Controller

5‧‧‧固定床5‧‧‧fixed bed

6‧‧‧進氣管6‧‧‧Intake pipe

7‧‧‧排氣管7‧‧‧Exhaust pipe

8‧‧‧閥8‧‧‧ valve

9‧‧‧閥9‧‧‧ valve

10‧‧‧空氣源10‧‧‧air source

11‧‧‧氮氣源11‧‧‧Nitrogen source

12‧‧‧閥12‧‧‧ valve

13‧‧‧閥13‧‧‧Valve

14‧‧‧容器14‧‧‧ Container

20‧‧‧反應器20‧‧‧Reactor

21‧‧‧預熱器21‧‧‧Preheater

22‧‧‧閥22‧‧‧ Valve

23‧‧‧管線23‧‧‧ pipeline

24‧‧‧閥24‧‧‧ valve

25‧‧‧管線25‧‧‧ pipeline

26‧‧‧管線26‧‧‧ pipeline

27‧‧‧閥27‧‧‧Valves

28‧‧‧管線28‧‧‧ pipeline

29‧‧‧管線29‧‧‧ pipeline

30‧‧‧管線30‧‧‧ pipeline

31‧‧‧冷卻器31‧‧‧cooler

32‧‧‧管線32‧‧‧ pipeline

42‧‧‧螺旋鑽42‧‧‧Auger

43‧‧‧螺旋葉片43‧‧‧Spiral blades

44‧‧‧軸44‧‧‧Axis

圖1是一連續部分氧化反應器之示意圖;圖2是一實驗分批部分氧化反應器之示意圖;圖3及4是一未經處理的橡膠以及部分氧化橡膠之表面的FT-IR光譜,其是於不同條件下以含以及不含金屬氧化催化劑所製之示意圖;圖5是一張FT-IR面積比的圖表(S=O stretching area/Sp3 C-H stretching area),其相對於部分氧化溫度下之部分氧化的橡膠,其是在不同氧化時間下,以氧化亞鐵(FeO)以及三氧化二鐵(Fe2 O3 )催化所形成的橡膠;圖6是從橡膠微粒的部分氧化產生的橡膠油的FT-IR光譜,在150度20分鐘以及200度30分鐘的環境下,使用氧化亞鐵(FeO)以及三氧化二鐵(Fe2 O3 )催化而成;圖7和圖8是水化膠泥的FT-IR光譜; 圖9-13是水化膠泥的X射線繞射(XRD)光譜;圖14是橡膠混凝土樣品的掃描電子顯微術(SEM);以及圖15是各種水化膠泥樣品的圖像。Figure 1 is a schematic view of a continuous partial oxidation reactor; Figure 2 is a schematic view of an experimental batch partial oxidation reactor; Figures 3 and 4 are FT-IR spectra of the surface of an untreated rubber and a partially oxidized rubber, It is a schematic diagram of the catalyst with and without metal oxidation under different conditions; Figure 5 is a graph of FT-IR area ratio (S = O stretching area / Sp3 CH stretching area), which is relative to the partial oxidation temperature. a partially oxidized rubber which is a rubber formed by oxidizing ferrous oxide (FeO) and ferric oxide (Fe 2 O 3 ) at different oxidation times; FIG. 6 is a rubber produced by partial oxidation of rubber particles. The FT-IR spectrum of the oil is catalyzed by ferrous oxide (FeO) and ferric oxide (Fe 2 O 3 ) in an environment of 150 degrees 20 minutes and 200 degrees 30 minutes; Figure 7 and Figure 8 are water FT-IR spectrum of the cement; Figure 9-13 is the X-ray diffraction (XRD) spectrum of the hydrated cement; Figure 14 is the scanning electron microscopy (SEM) of the rubber concrete sample; and Figure 15 is the various hydration clay An image of the sample.

一個具有成本效益的方法,用以提升橡膠混凝土的機械性能,使用經表面處理過的橡膠微粒,其與周圍的水泥基質,透過較強的物理/化學鍵合或顯著較強的化學鍵合,形成更強的黏著性。A cost-effective way to improve the mechanical properties of rubber concrete by using surface-treated rubber particles that form a stronger physical/chemical bond or a significantly stronger chemical bond with the surrounding cement matrix. Strong adhesion.

透過部分氧化,表面處理包括在橡膠微粒的表面將硫化物官能基群(-S-)轉換成碸基群(-SO2 )或亞碸基群(-S=O)。Through partial oxidation, the surface treatment involves converting a group of sulfide functional groups (-S-) to a sulfhydryl group (-SO 2 ) or an anthracene group (-S=O) on the surface of the rubber particles.

其過程將橡膠微粒的表面由疏水性改為親水性,從而有效促進改良橡膠微粒與親水性水泥的混合;另外,該過程將硫化物官能基群(-S-)的表面轉換成更具活性的碸基群(-SO2 )以及亞碸基群(-S=O),在水化過程中,其與周圍的水泥基質形成較強的化學鍵合。The process changes the surface of the rubber particles from hydrophobic to hydrophilic, thereby effectively promoting the mixing of the modified rubber particles and the hydrophilic cement; in addition, the process converts the surface of the sulfide functional group (-S-) into more active. The sulfhydryl group (-SO 2 ) and the fluorene group (-S=O) form a strong chemical bond with the surrounding cement matrix during hydration.

在受控的條件下,有機硫化合物(R-S-R)可以氧化成有機亞碸(R-SO-R),有機碸(R-SO2 -R)以及有機三氧化物(R-SOx ),而在過度氧化條件下可以氧化成氧化硫氣體(SOx gases)。Under controlled conditions, organic sulfur compounds (RSR) can be oxidized to organic sulfonium (R-SO-R), organic hydrazine (R-SO 2 -R) and organic trioxide (R-SO x ). It can be oxidized to SO x gases under excessive oxidation conditions.

在橡膠微粒中,〝R〞代表連接含硫官能基的橡膠成分。亞碸官能基群(-S=O)比碸基群(-SO2 )更具活性,而碸基群(-SO2 )比硫化物基群(-S-)更具活性。例如,二甲基亞碸的比二甲基碸更具化學活性,其活性也大大高於二甲基硫化物。In the rubber fine particles, 〝R〞 represents a rubber component to which a sulfur-containing functional group is bonded. The anthracene functional group (-S=O) is more active than the sulfhydryl group (-SO 2 ), while the sulfhydryl group (-SO 2 ) is more active than the sulfide group (-S-). For example, dimethylhydrazine is more chemically active than dimethylhydrazine and its activity is much higher than that of dimethyl sulfide.

在本發明中,經由加入催化金屬氧化物之部分氧化的橡膠微粒以及共同生成的冷凝氣至水泥混合料中,以增強橡膠混凝土的抗壓强度、抗折强度、以及抗拉强度。In the present invention, the compressive strength, the flexural strength, and the tensile strength of the rubber concrete are enhanced by adding the partially oxidized rubber particles of the catalytic metal oxide and the co-generated condensation gas to the cement mixture.

傳統的混凝土是一種可硬化的混合料,其由膠凝材料(或水泥混合料)、細聚集體例如沙子、粗聚集體以及水所組成。混凝土複合材料成分中的相對比例各有差異,其取決於所需的固化產物的性能。可參見例如利斯可威提斯等人的美國專利號5,624,491以及尚迪等人的美國專利公開號5,456,751等,其經由引用的方式併入本文參考文獻。Conventional concrete is a hardenable mixture composed of a cementitious material (or cement mix), fine aggregates such as sand, coarse aggregates, and water. The relative proportions in the composition of the concrete composite vary, depending on the desired properties of the cured product. See, for example, U.S. Patent No. 5,624,491 to Liske and et al., and U.S. Patent No. 5,456,751, issued to et al.

本發明的混凝土複合材料一般含0.1~20重量百分比,最好是2~10重量百分比,更好的是3.0到7.5重量百分比的氧化橡膠微粒在。添加時,混凝土複合材料一般含至少為0.1重量百分比,最好是0.1重量~1.0重量百分比的液體黏著劑(冷凝氣)。The concrete composite of the present invention generally contains from 0.1 to 20% by weight, preferably from 2 to 10% by weight, more preferably from 3.0 to 7.5% by weight of oxidized rubber particles. When added, the concrete composite generally contains at least 0.1% by weight, preferably 0.1% to 1.0% by weight, of a liquid adhesive (condensed gas).

因加入氧化橡膠微粒,粗聚集體(aggregates)材料所須需要比例下降。因冷凝氣的使用而展現優越的機械性能,使本發明的橡膠混凝土無需使用高效塑化劑,由部分氧化的橡膠微粒製成的混凝土複合材料展現優越的機械性能。Due to the addition of oxidized rubber particles, the proportion of coarse aggregate materials needs to be reduced. The superior mechanical properties of the rubber concrete of the present invention are exhibited by the use of the condensed gas, and the concrete composite material made of the partially oxidized rubber particles exhibits superior mechanical properties without using a high-efficiency plasticizer.

比較顏等人的美國專利申請號13/078,913之含非催化部分氧化橡膠的橡膠混凝土之機械強度,預計本發明的混凝土複合材料中,由含金屬氧化物催化之部分氧化橡膠以及由滯留在其中的共產黏著劑(冷凝氣),在經過約50天或更長時間固化後,其會有(1)至少40兆帕的抗壓強度(compressive strength),最好40至60兆帕的強度;(2)抗折强度(lexural strength)至少為5.4兆帕,最好5.4兆帕至6.6兆帕的強度;以及(3)至少2.9兆帕的抗拉强度(tensile strength),最好3.1至3.4兆帕的強度。在此催化氧化過程中,這些性能在加入共同產生的額外添加的黏著劑時應會進一步加強。The mechanical strength of rubber concrete containing non-catalytic partial oxidized rubber of U.S. Patent Application Serial No. 13/078,913, the entire disclosure of which is incorporated herein by reference. a co-produced adhesive (condensed gas) which, after curing for about 50 days or more, will have (1) a compressive strength of at least 40 MPa, preferably a strength of 40 to 60 MPa; (2) a lexural strength of at least 5.4 MPa, preferably 5.4 MPa to 6.6 MPa; and (3) a tensile strength of at least 2.9 MPa, preferably 3.1 to 3.4. The intensity of megapascals. During this catalytic oxidation process, these properties should be further enhanced by the addition of co-produced additional added adhesives.

本發明經由添加催化氧化橡膠微粒至水泥混合料,在混凝土固化後僅7天,橡膠混凝土就展現出比一般混凝土更強的機械強度。The present invention exhibits a stronger mechanical strength than ordinary concrete by adding catalytically oxidized rubber particles to the cement mixture, and only 7 days after the concrete is solidified.

此功能經由FT-IR光譜中大幅增強的C-S-H信號在878,670和1000cm-1的波數附近獲得證明。其顯示與非催化氧化相比,主要是由於橡膠微粒在催化氧化之下,形成表面R-SOx -R官能基群的增加。This function was demonstrated by the greatly enhanced CSH signal in the FT-IR spectrum around the wavenumbers of 878, 670 and 1000 cm-1. It is shown to be mainly due to the increase in the formation of surface R-SO x -R functional groups due to the catalytic oxidation of the rubber particles compared to the non-catalytic oxidation.

C3 S(3CaO‧SiO2 or Ca3 SiO5 )和C2 S(2CaO‧SiO2 or Ca2 SiO3 )是水泥的主要成分,在水化過程中形成C-S-H鍵合,這些牢固的黏著力是混凝土的機械特性的基礎。有證據顯示,將催化氧化橡膠微粒加入水泥漿體也會加速橡膠混凝土的水化過程。C 3 S(3CaO‧SiO 2 or Ca 3 SiO 5 ) and C 2 S(2CaO‧SiO 2 or Ca 2 SiO 3 ) are the main components of cement, forming CSH bonds during hydration, and these strong adhesions It is the basis of the mechanical properties of concrete. There is evidence that the addition of catalytic oxidized rubber particles to the cement slurry accelerates the hydration process of the rubber concrete.

相對於使用非催化氧化橡膠微粒以製造橡膠混凝土,使用催化氧化橡膠微粒的好處已在X射線繞射(XRD)分析中得到證實。The benefits of using catalytic oxidized rubber particles have been demonstrated in X-ray diffraction (XRD) analysis relative to the use of non-catalytic oxidized rubber particles to make rubber concrete.

在XRD光譜中,含催化氧化橡膠的橡膠混凝土的 C3 S/C2 S/C-S-H的結晶峰強於含非催化氧化的橡膠的橡膠混凝土的C3 S/C2 S/C-S-H的結晶峰。In the XRD spectrum, C rubber concrete containing the catalytic oxidation of the rubber 3 S / C 2 S / CSH crystalline peak intensity to a rubber containing a non-catalytic oxidation of rubber concrete C 3 S / C 2 S / CSH crystallization peak.

這可能是由於在催化氧化之下,橡膠微粒表面R-SOx -R官能基群的形成增加。增加的C3 S/C2 S/C-S-H的XRD結晶度的信號顯示橡膠混凝土更強的機械強度。This may be due to an increase in the formation of the R-SO x -R functional group on the surface of the rubber particles under catalytic oxidation. The increased XRD crystallinity of the C 3 S/C 2 S/CSH signal shows a stronger mechanical strength of the rubber concrete.

掃描電子顯微術(SEM)也用以觀察含催化或非催化氧化橡膠微粒的混凝土的水化產物的晶體和表面形態。Scanning electron microscopy (SEM) was also used to observe the crystal and surface morphology of the hydration product of concrete containing catalytic or non-catalytic oxidized rubber particles.

催化氧化橡膠和水泥製成的橡膠混凝土樣品的表面形態顯示,精細的針狀結晶表面而沒有明顯的催化氧化橡膠和水泥之間的接口。The surface morphology of the rubber-concrete samples made of catalytically oxidized rubber and cement showed a fine needle-like crystalline surface without significant interface between the oxidized rubber and the cement.

這種表面形態類似水化膠泥的SEM圖像,其包括一般混凝土和高效塑化劑顯示的鈣礬石的針狀結晶表面。This surface morphology is similar to the SEM image of a hydrated cement, which includes the needle-like crystalline surface of ettringite exhibited by general concrete and high-performance plasticizers.

含有殘留冷凝氣的催化氧化橡膠其R-SOx -R官能基群的親水性表面與高效塑化劑中的親水性三氧化硫(SO3 )成分顯然有相同的功能,其形成一個針狀結晶表面,以提高橡膠微粒與水泥的黏著力。The catalytic oxidized rubber containing residual condensed gas has a hydrophilic surface of the R-SO x -R functional group and a hydrophilic sulphur trioxide (SO 3 ) component in the high-efficiency plasticizer, which has a needle-like shape. Crystallize the surface to increase the adhesion of the rubber particles to the cement.

因此,含有滯留冷凝氣的催化氧化橡膠微粒具有高效塑化劑的作用,以提高機械強度以及縮短橡膠混凝土的水化作用時間。Therefore, the catalytic oxidized rubber particles containing the retained condensed gas have a high-efficiency plasticizer to improve the mechanical strength and shorten the hydration time of the rubber concrete.

本發明的另一個令人驚奇的方面是,含催化氧化橡膠微粒和水泥的水化膠泥是疏水性的,因此很容易從表面防水。Another surprising aspect of the present invention is that the hydrated cement containing catalytic oxidized rubber particles and cement is hydrophobic and therefore readily waterproof from the surface.

工業規模的橡膠微粒的部分氧化最好是在一個連續反應器系統中進行,如圖1所示,其控制操作參數是以產品表面產生R-SOx -R官能基群的極大化為目標,同時避免過度氧化,否則會產生過多的冷凝氣和有毒硫氧化物氣體。Partial oxidation of industrial-scale rubber particles is preferably carried out in a continuous reactor system, as shown in Figure 1, which controls the operating parameters to maximize the R-SO x -R functional group on the surface of the product. At the same time avoid excessive oxidation, otherwise it will produce excessive condensation gas and toxic sulfur oxide gas.

管線23的空氣和管線25的氮氣混合入管線26,以保持氣體混合物中的氧氣濃度,調節閥22和24以維持在0.1 x 10-3 至100 x 10-3 (莫耳)的範圍,最好為1.0 x 10-3 至50 x 10-3 (莫耳),更好為5.0 x 10-3 至10 x 10-3 (莫耳)。The air in line 23 and the nitrogen in line 25 are mixed into line 26 to maintain the oxygen concentration in the gas mixture, and valves 22 and 24 are adjusted to maintain a range of 0.1 x 10 -3 to 100 x 10 -3 (mole), most Good for 1.0 x 10 -3 to 50 x 10 -3 (mole), more preferably 5.0 x 10 -3 to 10 x 10 -3 (mole).

氣體混合物流經閥27,在預熱器21加熱至25~300℃預定溫度的範圍,其最好為50~250℃,更好為100~200℃.The gas mixture flows through the valve 27 and is heated in the preheater 21 to a predetermined temperature range of 25 to 300 ° C, preferably 50 to 250 ° C, more preferably 100 to 200 ° C.

預熱的氣體混合物經由管線28供至水平管式反應器20,與橡膠微粒和催化劑混合物一同從管線29進料,最好是與管線28並流。The preheated gas mixture is supplied via line 28 to horizontal tubular reactor 20, fed together with rubber particles and catalyst mixture from line 29, preferably in parallel with line 28.

當微粒被推通過反應器20,配有螺旋形的螺旋葉片43的水平的馬達驅動螺旋鑽42就攪拌和混合橡膠微粒和催化劑粉末的混合物。When the particles are pushed through the reactor 20, the horizontal motor-driven auger 42 equipped with the spiral-shaped spiral blades 43 agitates and mixes the mixture of the rubber particles and the catalyst powder.

軸44的旋轉速度調節以達到所需的反應時間,通常為5~60分鐘,最好為10~45分鐘,更好為15~30分鐘。The rotational speed of the shaft 44 is adjusted to achieve the desired reaction time, typically from 5 to 60 minutes, preferably from 10 to 45 minutes, more preferably from 15 to 30 minutes.

部分氧化橡膠微粒,其粘油狀外觀是由滯留的冷凝氣所造成,其經由管線30離開。氣流經由反應器20移出,有部分凝結在冷卻器31,冷凝氣(橡膠油)經由管線32移出。Part of the oxidized rubber particles, whose viscous appearance is caused by the retained condensation gas, exits via line 30. The gas stream is removed via reactor 20, partially condensed in cooler 31, and the condensed gas (rubber oil) is removed via line 32.

橡膠微粒的主要來源是廢輪胎。將鋼圈、玻璃纖維或非橡膠材料從廢輪胎分離,經由液態氮或其它合適的方式低溫冷凍後回收,然後以機械壓磨並篩選為所需大小之不規則形狀的顆粒。The main source of rubber particles is waste tires. The steel ring, fiberglass or non-rubber material is separated from the waste tire, cryogenically frozen via liquid nitrogen or other suitable means, and then mechanically milled and screened into irregularly shaped particles of the desired size.

它包括天然橡膠,苯乙烯-丁二烯橡膠、丁二烯橡膠、丁基橡膠、異戊二烯橡膠,並有大量有機硫化合物,以進行交聯並加強固化橡膠的強度,添加劑包括氧化鋅、碳黑、碳酸鈣以及抗氧化劑等。It includes natural rubber, styrene-butadiene rubber, butadiene rubber, butyl rubber, isoprene rubber, and a large amount of organic sulfur compounds for crosslinking and strengthening the strength of the cured rubber. The additives include zinc oxide. , carbon black, calcium carbonate and antioxidants.

操作時,橡膠微粒會與金屬氧化催化劑粉末預混,其顆粒大小一般在100-1,000μm(微米),最好在300-600μm範圍內。In operation, the rubber particles are premixed with the metal oxide catalyst powder, and the particle size is generally in the range of 100 to 1,000 μm (micrometer), preferably 300 to 600 μm.

橡膠微粒與催化劑粉末的重量比通常介於1000~0.1,最好為500~0.5,更好為100~1。合適的金屬氧化物催化劑含有鐵、釩、鈦、鉻、錳、鈷、鎳、鋅、銅、鈣、鉀、鈉、鎂等氧化物,和以及它們的混合體的氧化物。最好的金屬氧化物催化劑為氧化亞鐵(FeO)的三氧化二鐵(Fe2 O3 )。The weight ratio of the rubber particles to the catalyst powder is usually from 1,000 to 0.1, preferably from 500 to 0.5, more preferably from 100 to 1. Suitable metal oxide catalysts include oxides of iron, vanadium, titanium, chromium, manganese, cobalt, nickel, zinc, copper, calcium, potassium, sodium, magnesium, and the like, and oxides of mixtures thereof. The most preferred metal oxide catalyst is ferrous oxide (FeO) ferric oxide (Fe 2 O 3 ).

示例Example

製備和分析所收受的橡膠微粒樣品,其以氧化亞鐵(FeO)或三氧化二鐵(Fe2 O3 )的催化劑在不同溫度和反應時間來部分氧化。A sample of the received rubber particles was prepared and analyzed, which was partially oxidized at a different temperature and reaction time with a catalyst of ferrous oxide (FeO) or ferric oxide (Fe 2 O 3 ).

圖2說明在催化或非催化的條件下,批次反應器系統用以部分氧化橡膠微粒。圓柱批次反應器容器1配備有篩網2以支持在反應區域內的橡膠和催化劑混合物的固定床5。(在非催化條件下沒有催化劑)。Figure 2 illustrates the batch reactor system used to partially oxidize rubber particles under catalytic or non-catalytic conditions. The cylindrical batch reactor vessel 1 is equipped with a screen 2 to support a fixed bed 5 of rubber and catalyst mixture in the reaction zone. (No catalyst under non-catalytic conditions).

排氣管7與在閥12由下面的去離子水的容器14受到密封,其在反應器1中保留氣體混合物。進氣管6連接到空氣源10和氮氣源11。氮氣稀釋空氣中的氧氣濃度以緩和氧化速率。The exhaust pipe 7 is sealed from the vessel 14 of the deionized water below the valve 12, which retains the gas mixture in the reactor 1. The intake pipe 6 is connected to the air source 10 and the nitrogen source 11. Nitrogen dilutes the oxygen concentration in the air to moderate the oxidation rate.

閥8、9和13分別調節空氣/氮氣混合物以及氮氣和空氣的流量,在操作期間,氮氣和空氣的混合物被送入反應區,並建立一段足以滿足所需的氧濃度的時間以控制的速率通過多孔的橡膠微粒/催化劑床;其後,關閉閥8,但閥12保持開啟狀態,在反應器中初始氧濃度維持在0.1 x 10-3 至100 x 10-3 莫耳。Valves 8, 9, and 13 adjust the air/nitrogen mixture and the flow of nitrogen and air, respectively, during which a mixture of nitrogen and air is sent to the reaction zone and a rate sufficient to meet the desired oxygen concentration for a controlled rate is established. Passing through the porous rubber particles/catalyst bed; thereafter, valve 8 is closed, but valve 12 remains open, and the initial oxygen concentration in the reactor is maintained between 0.1 x 10 -3 and 100 x 10 -3 moles.

反應器容器1以包裹在容器外圍的電加熱環3加熱;一個熱電偶(未圖示)在反應區中測量溫度,信號並且由此通訊連接到含電子繼電器的溫度控制器4,以調節加熱環3的溫度。The reactor vessel 1 is heated with an electric heating ring 3 wrapped around the periphery of the vessel; a thermocouple (not shown) measures the temperature in the reaction zone, and is thereby communicatively coupled to a temperature controller 4 containing an electronic relay to regulate heating The temperature of the ring 3.

反應器容器被加熱到所需的部分氧化溫度,其溫度範圍通常從攝氏25~300度,在反應器容許冷卻至室溫之前,部分氧化反應會進行一段預定的時間,其時間範圍通常為5~60分鐘。The reactor vessel is heated to the desired partial oxidation temperature, typically in the range of 25 to 300 degrees Celsius, and the partial oxidation reaction is carried out for a predetermined period of time, typically 5 after the reactor is allowed to cool to room temperature. ~60 minutes.

由於金屬氧化物催化劑,如氧化亞鐵(FeO)或三氧化二鐵(Fe2 O3 )對促進橡膠微粒表面上的-S-官能基的氧化是非常有效,與在無催化劑的條件下相比,部分氧化在顯著較低的溫度和較短的反應時間以及在反應器中低得多的初始氧含量下進行。Metal oxide catalysts such as ferrous oxide (FeO) or ferric oxide (Fe 2 O 3 ) are very effective in promoting the oxidation of the -S-functional group on the surface of the rubber particles, and in the absence of a catalyst. In contrast, partial oxidation is carried out at significantly lower temperatures and shorter reaction times as well as at much lower initial oxygen levels in the reactor.

這樣可以防止橡膠微粒表面硫過度氧化,這將導致硫分子從微粒或微粒表面(橡膠去硫化)除去,產生有毒的二氧化硫和三氧化硫氣體以及過量的冷凝氣作為黏著劑,而在橡膠微粒的表面沒有足夠的碸和亞碸官能基群。This prevents excessive oxidation of sulfur on the surface of the rubber particles, which will cause the sulfur molecules to be removed from the surface of the particles or particles (rubber desulfurization), producing toxic sulfur dioxide and sulfur trioxide gas as well as excess condensation gas as an adhesive, while in rubber particles. There are not enough ruthenium and anthraquinone functional groups on the surface.

部分氧化最佳的溫度和反應時間的使用,取決在其他物項,在使用的金屬氧化物的催化活性,以及橡膠微粒與催化劑粉末的重量比。The optimum temperature and reaction time for partial oxidation depends on the other materials, the catalytic activity of the metal oxide used, and the weight ratio of rubber particles to catalyst powder.

例1example 1

將100克廢橡膠輪胎微粒尺寸範圍從300-600μm(微米)與1克氧化亞鐵(FeO)的催化劑粉末進行預混,然後嵌入一個圓柱形批次反應器,如圖2所示,其有一個直徑約8.2公分高度19.5公分的反應區。100 g of waste rubber tire particle size range from 300-600 μm (micron) to 1 g of ferrous oxide (FeO) catalyst powder, and then embedded in a cylindrical batch reactor, as shown in Figure 2, which has A reaction zone with a diameter of approximately 8.2 cm and a height of 19.5 cm.

氧濃度為7.5 X 10-3 (莫耳)的氮和空氣的混合物被送入反應區,並以控制的速率在一段足以建立所需氧濃度時間,通過多孔的橡膠微粒床;其後,進口閥8關閉,出口閥(閥12)保持開放。A mixture of nitrogen and air having an oxygen concentration of 7.5 X 10 -3 (mole) is fed to the reaction zone and at a controlled rate for a period of time sufficient to establish the desired oxygen concentration through the porous bed of rubber particles; thereafter, the inlet Valve 8 is closed and outlet valve (valve 12) remains open.

然後分次進行試驗,將容器以電加熱環加熱至部分氧化溫度150、200、250和300度。部分氧化溫度保持並由中繼控制器調節,如圖2所示。於每一個溫度下,進行分次試驗,在反應器容許冷卻至室溫(RT)之前,分別以20、30以及60分鐘的部分氧化時間進行。The test was then carried out in divided portions and the vessel was heated with an electric heating ring to partial oxidation temperatures of 150, 200, 250 and 300 degrees. The partial oxidation temperature is maintained and regulated by the relay controller as shown in Figure 2. Fractional tests were carried out at each temperature and were carried out at partial oxidation times of 20, 30 and 60 minutes, respectively, before allowing the reactor to cool to room temperature (RT).

部分氧化的橡膠微粒,具有黏油狀外觀,首先從反應器中除去。收集一部分的冷凝氣(少量),以丙酮作為“橡膠油”清洗反應器,而大量的冷凝氣經由多孔的橡膠微粒床進入反應器水容器14的底部,其將水乳化成“硫化水”。Partially oxidized rubber particles have a viscous oily appearance and are first removed from the reactor. A portion of the condensed gas (small amount) was collected, and the reactor was purged with acetone as "rubber oil", and a large amount of condensed gas was introduced into the bottom of the reactor water vessel 14 through the bed of porous rubber particles, which emulsified the water into "sulfurized water".

在所有的分次試驗中,重複以(i)三氧化二鐵(Fe2 O3 )催化劑與(ii)無催化劑分別進行比較。氧化亞鐵(FeO)催化劑的分子重量為71.85,此資料得自日本林純藥工業株式會社(批號J030619025),而三氧化二鐵(Fe2 O3 )催化劑的分子重量為159.69,純度96%,酸不溶性1.5%(最大值)、水1.5%(最大值)以及錳(與二氧化錳同)0.5%,此資料亦得自林純藥工業株式會社(批號。JJB00743)。In all the fractional tests, the comparison was repeated with (i) ferric oxide (Fe 2 O 3 ) catalyst and (ii) no catalyst, respectively. The molecular weight of the ferrous oxide (FeO) catalyst was 71.85. This data was obtained from Nippon Pure Chemical Industries, Ltd. (batch No. J030619025), and the iron oxide (Fe 2 O 3 ) catalyst had a molecular weight of 159.69 and a purity of 96%. , acid insoluble 1.5% (maximum), water 1.5% (maximum) and manganese (same as manganese dioxide) 0.5%, this information is also obtained from Lin Chun Pharmaceutical Co., Ltd. (batch number. JJB00743).

例2Example 2

在例1中經過氧化亞鐵(FeO),三氧化二鐵(Fe2 O3 )和無催化劑部分氧化生產的橡膠樣品,以及收受之非氧化的橡膠樣品,其表面官能基經由FT-IR光譜來分析。從其FT-IR光譜來看,最好的部分氧化來自氧化亞鐵(FeO)或三氧化二鐵(Fe2 O3 )催化劑,在較低溫度從150-200℃以及較短的反應時間從20-30分鐘不等之下進行的。In Example 1, rubber samples produced by ferrous oxide (FeO), ferric oxide (Fe 2 O 3 ) and partial oxidation without catalyst, and non-oxidized rubber samples received, the surface functional groups were subjected to FT-IR spectroscopy. To analyze. From its FT-IR spectrum, the best partial oxidation is derived from ferrous oxide (FeO) or ferric oxide (Fe 2 O 3 ) catalysts at lower temperatures from 150-200 ° C and shorter reaction times. It is carried out under 20-30 minutes.

圖3是以下的FT-IR光譜:(1)未經處理的橡膠微粒以及(2)經處理過的橡膠微粒,在攝氏150度、20分鐘的條件下以無催化劑,氧化亞鐵(FeO)催化劑或三氧化二鐵(Fe2 O3 )催化劑進行氧化處理。其初始氧氣濃度為7.5 x 10-3 莫。Figure 3 is the following FT-IR spectrum: (1) untreated rubber particles and (2) treated rubber particles, with no catalyst, ferrous oxide (FeO) at 150 ° C for 20 minutes The catalyst or the ferric oxide (Fe 2 O 3 ) catalyst is subjected to an oxidation treatment. Its initial oxygen concentration is 7.5 x 10 -3 moles.

所有四條曲線顯示在7個區附近的吸收作用:3,800-3,600cm-1 以O-H(氫-氧)鍵的拉伸,2,700-2,900cm-1 以及850-950cm-1 以C-H(氫 -氧)鍵的拉伸,1,780-1,660cm-1 以C=O(碳=氧)鍵的拉伸,1500cm-1 以C-H(氫-氧)鍵的彎折,1,100-1,000cm-1 以S=O(硫=氧)鍵的拉伸,700-600cm-1 以C-S(碳-硫)鍵的拉伸,以及550-450cm-1 以S-S(硫-硫)鍵的拉伸。All four curves show absorption near 7 zones: 3,800-3,600 cm -1 with OH (hydrogen-oxygen) bond stretching, 2,700-2,900 cm -1 and 850-950 cm -1 with CH (hydrogen-oxygen) Stretching of the bond, stretching of 1,780-1,660 cm -1 with C=O (carbon = oxygen) bond, bending of 1500 cm -1 with CH (hydrogen-oxygen) bond, 1,100-1,000 cm -1 with S=O Stretching of (sulfur = oxygen) bond, stretching of 700-600 cm -1 with CS (carbon-sulfur) bond, and stretching of 550-450 cm -1 with SS (sulfur-sulfur) bond.

圖4是以下的FT-IR光譜:(1)未經處理的橡膠微粒以及(2)經處理過的橡膠微粒,在攝氏200度、30分鐘的條件下以無催化劑,氧化亞鐵(FeO)催化劑或三氧化二鐵(Fe2 O3 )催化劑進行氧化處理。其初始氧氣濃度為7.5 x 10-3 莫。Figure 4 is the following FT-IR spectrum: (1) untreated rubber particles and (2) treated rubber particles, without catalyst, ferrous oxide (FeO) at 200 ° C for 30 minutes The catalyst or the ferric oxide (Fe 2 O 3 ) catalyst is subjected to an oxidation treatment. Its initial oxygen concentration is 7.5 x 10 -3 moles.

圖3和圖4的比較顯示,以氧化亞鐵(FeO)或三氧化二鐵(Fe2 O3 )催化劑氧化的橡膠微粒之所有的表面官能基群,其吸收力比無催化劑氧化處理的或無處理的樣本還強,特別是那些在S=O拉伸、CS的拉伸、SS的拉伸、C-H(碳-氫)的彎曲和CH(碳氫)的拉伸的附近。Figure 3 and Figure 4 show that all of the surface functional groups of rubber particles oxidized with ferrous oxide (FeO) or ferric oxide (Fe 2 O 3 ) catalysts have a lower absorption force than catalyst-free oxidation or Untreated samples are also strong, especially those in the vicinity of S=O stretching, CS stretching, SS stretching, CH (carbon-hydrogen) bending, and CH (hydrocarbon) stretching.

最可能的原因是由氧化亞鐵(FeO)或三氧化二鐵(Fe2 O3 )催化劑促進表面硫分子以較高的轉換率成為亞碸(R-SO-R)以及/或碸(R-SOx -R)的部分體所造成。The most likely cause is that ferrous oxide (FeO) or ferric oxide (Fe 2 O 3 ) catalyst promotes surface sulfur molecules to become sub-arsenic (R-SO-R) and/or rhodium (R) at a higher conversion rate. -SO x -R) caused by part of the body.

例3Example 3

為搜尋最佳處理橡膠微粒的部分氧化條件,sp3 C-H鍵的拉伸吸收力的面積以及SOx (硫氧化物)(包括二氧化硫和氧化硫等)鍵之拉伸吸收力的面積被整合。在使用FeO(Fe2+ )或Fe2 O3 (Fe3+ )催化劑型成部分橡膠微粒樣品下,圖5顯示SOx /sp3 C-H之面積比與部分氧化溫度的關係。該面積比為一個部分氧化指數,用以形成所需的表面SOx (硫氧化物)基群。其中以20、30以及60分鐘氧化反應時間為參數。很明顯地,Fe2+ 催化劑/20分鐘樣品的最大面積比,在攝氏150度條件下是約1.48是最高的;隨著溫度從攝氏200度上升至攝氏300度其面積比也急劇下降;Fe3+ 催化劑/30分鐘樣品的面積比曲線也在攝氏200度上升到另一個高點(約1.52)。In order to search for partial oxidation conditions for optimal treatment of rubber particles, the area of the tensile absorption force of the sp 3 CH bond and the area of the tensile absorption force of the SO x (sulfur oxide) (including sulfur dioxide and sulfur oxide, etc.) bonds are integrated. Under the FeO(Fe 2+ ) or Fe 2 O 3 (Fe 3+ ) catalyst type partial rubber particle sample, FIG. 5 shows the relationship between the area ratio of SO x /sp 3 CH and the partial oxidation temperature. The area ratio of a partial oxidation index for forming the surface of SO x (sulfur oxides) yl group desired. Among them, the oxidation reaction time of 20, 30 and 60 minutes was taken as a parameter. Obviously, the maximum area ratio of the Fe 2+ catalyst/20 minute sample is about 1.48 at 150 degrees Celsius, which is the highest; the area ratio also drops sharply as the temperature rises from 200 degrees Celsius to 300 degrees Celsius; Fe The area ratio curve of the 3+ catalyst/30 minute sample also rose to another high point (about 1.52) at 200 degrees Celsius.

以60分鐘,一個較長的處理時間,無論處理溫度或所用的催化劑,其面積比是在介於1.1和1.2之間的顯著較低的標準。圖5顯示,比之於無催化劑的部分氧化反應,Fe2+ 和Fe3+ 催化劑在大量降低反應 時間和溫度下,促進表面的硫氧化成更理想的橡膠微粒的SOx (硫氧化物)基群表面。At 60 minutes, a longer processing time, regardless of the processing temperature or catalyst used, the area ratio is a significantly lower standard between 1.1 and 1.2. Figure 5 shows that Fe 2+ and Fe 3+ catalysts promote the oxidation of sulfur on the surface to more desirable SO x (sulfur oxide) of rubber particles in a large reduction in reaction time and temperature compared to partial oxidation without catalyst. The surface of the group.

除了有利的催化效果,Fe2+ 或Fe3+ 的存在也明顯導致橡膠微粒表面的硫分子與在催化劑上的鐵(Fe)分子在氣相中競爭可用的氧分子。如圖5所示,在20或30分鐘的反應時間以及降低較長的反應時間(60分鐘)時,其競爭反應率(competing reactions)最高。In addition to the advantageous catalytic effect, the presence of Fe 2+ or Fe 3+ also significantly causes the sulfur molecules on the surface of the rubber particles to compete with the iron (Fe) molecules on the catalyst for the available oxygen molecules in the gas phase. As shown in Figure 5, the competition reactions were highest at 20 or 30 minutes of reaction time and a longer reaction time (60 minutes).

換句話說,競爭反應的作用顯著降低氧化的表面硫化合物(R-S)的溫度,以使轉換成表面碸(RSO2 )或亞碸(RSO),從而減少了開裂的可能性,而變成較輕的碸或亞碸,以致在較高的溫度下成為冷凝氣的一部分。In other words, the effect of the competitive reaction significantly reduces the temperature of the oxidized surface sulfur compound (RS) to convert it to surface enthalpy (RSO 2 ) or yttrium (RSO), thereby reducing the likelihood of cracking and becoming lighter. The sputum or alum, so that it becomes part of the condensate at higher temperatures.

根據自氧化還原放熱反應,已知氧化鐵(FeO)在加熱下(低於攝氏576度)根據下式容易分解,,:4 FeO→Fe+Fe3 O4 (1)According to the exothermic reaction of oxidation reduction, it is known that iron oxide (FeO) is easily decomposed according to the following formula under heating (less than 576 degrees Celsius), : 4 FeO→Fe+Fe 3 O 4 (1)

該反應會放熱,其在還原反應溫度和時間上,用以促進橡膠表面上的硫化合物的部分氧化。The reaction exotherms and promotes partial oxidation of the sulfur compound on the rubber surface at the temperature and time of the reduction reaction.

使用氧化鐵(FeO)催化劑處理橡膠微粒最好的溫度和時間分別為150℃和20分鐘,另一方面,在高溫下,氧化亞鐵(三氧化二鐵Fe2 O3 )與在橡膠微粒表面的碳分子在經由的還原吸熱反應:2 Fe2 O3 +3C→4Fe+3CO2 (2)The best temperature and time for treating rubber particles using iron oxide (FeO) catalyst are 150 ° C and 20 minutes, respectively. On the other hand, at high temperatures, ferrous oxide (Fe 2 O 3 ) and the surface of rubber particles The endothermic reaction of the carbon molecule in the reduction: 2 Fe 2 O 3 + 3C → 4Fe + 3CO 2 (2)

該反應吸收反應器中熱量,從而導致要以比氧化鐵(FeO)更高的溫度和更長的處理時間,在橡膠微粒表面的硫化合物部分氧化。The reaction absorbs heat from the reactor, resulting in partial oxidation of the sulfur compound on the surface of the rubber particles at a higher temperature and longer processing time than iron oxide (FeO).

使用三氧化二鐵(Fe2 O3 )催化劑處理橡膠微粒最好的溫度和時間分別為200℃和30分鐘。顯然,其比無催化劑處理處於更溫和的條件下,無催化劑處理必須用較高的溫度(250℃)和較長的反應時間(一小時)。The best temperature and time for treating the rubber particles using a ferric oxide (Fe 2 O 3 ) catalyst were 200 ° C and 30 minutes, respectively. Obviously, it is subjected to milder conditions than the catalyst-free treatment, and the catalyst-free treatment requires a higher temperature (250 ° C) and a longer reaction time (one hour).

例4Example 4

收集實驗所得的橡膠油樣品,分別在150、200、250和300℃的反應溫度以及20、30和60分鐘的反應時間,使用氧化亞鐵(FeO)或三氧化二鐵(Fe2 O3 )為催化劑,以丙酮在反應器容器中清洗冷凝氣, 並從樣品中蒸發丙酮的方式濃縮。接著以FT-IR分析濃縮的橡膠油樣品。The rubber oil samples obtained from the experiment were collected at a reaction temperature of 150, 200, 250 and 300 ° C and a reaction time of 20, 30 and 60 minutes, using ferrous oxide (FeO) or ferric oxide (Fe 2 O 3 ). As a catalyst, the condensation gas was purged in a reactor vessel with acetone and concentrated by evaporating acetone from the sample. The concentrated rubber oil sample was then analyzed by FT-IR.

圖6展示出橡膠微粒部分氧化所產生的橡膠油之FT-IR光譜,在150℃的反應溫度以及20分鐘的反應時間,使用氧化亞鐵(FeO)或三氧化二鐵(Fe2 O3 )為催化劑。此不足為奇,橡膠油以C-H鍵拉伸和彎曲以及以S=O鍵拉伸的吸收力明顯強過那些部分氧化的橡膠微粒(見圖3)的表面。這是因為橡膠油主要是由短鏈R-SOx -R組件(R-SO-R,R-SO2 -R,and R-SO3 )所組成。Figure 6 shows the FT-IR spectrum of the rubber oil produced by partial oxidation of rubber particles. At a reaction temperature of 150 ° C and a reaction time of 20 minutes, ferrous oxide (FeO) or ferric oxide (Fe 2 O 3 ) is used. As a catalyst. It is not surprising that the rubber oil is stretched and bent with the CH bond and the absorption with the S=O bond is significantly stronger than the surface of the partially oxidized rubber particles (see Figure 3). This is because the rubber oil is mainly composed of short-chain R-SO x -R components (R-SO-R, R-SO 2 -R, and R-SO 3 ).

圖6還指出由三氧化二鐵(Fe2 O3 )催化劑所產生的橡膠油的吸收峰明顯比由氧化亞鐵(FeO)催化劑所產生的要大,這表示三氧化二鐵(Fe2 O3 )催化劑會導致較高量的橡膠微粒過度氧化,在此更多的硫分子從橡膠微粒的表面被驅動,以形成氣態的R-SOx -R,其被冷凝為橡膠油的一部分。Figure 6 also indicates that the absorption peak of the rubber oil produced by the ferric oxide (Fe 2 O 3 ) catalyst is significantly larger than that produced by the ferrous oxide (FeO) catalyst, which means that ferric oxide (Fe 2 O) 3 ) The catalyst causes a relatively high amount of rubber particles to be excessively oxidized, where more sulfur molecules are driven from the surface of the rubber particles to form a gaseous R-SO x -R which is condensed into a portion of the rubber oil.

使用三氧化二鐵(Fe2 O3 )催化劑所導致的較高的過度氧化,最有可能是由在反應器中需額外產生的熱量所產生,其局部是由三氧化二鐵(Fe2 O3 )的吸熱還原反應所要求的,如上所述。The higher over-oxidation caused by the use of ferric oxide (Fe 2 O 3 ) catalysts is most likely due to the additional heat generated in the reactor, which is locally derived from ferric oxide (Fe 2 O). 3 ) required for the endothermic reduction reaction, as described above.

從廢輪胎的橡膠所產生的橡膠油,是經由金屬氧化物催化部分氧化而成,可以作為黏著劑使用,其特性可媲美或優於傳統高效塑化劑,用以提升部分氧化的橡膠微粒以及周圍水泥基質的接合強度。The rubber oil produced from the rubber of waste tires is catalyzed by partial oxidation of metal oxides and can be used as an adhesive. Its characteristics are comparable or superior to conventional high-efficiency plasticizers to enhance partially oxidized rubber particles and Bonding strength of the surrounding cement matrix.

在所有的實驗中,均質乳化硫化物水的產生是經由截獲大量冷凝氣,進入反應器底部出口的密封水。冷凝氣中主要官能基群大部分是親水性的和水溶性的碸、亞碸以及有機三氧化硫。In all experiments, homogeneous emulsion sulphide water was produced by intercepting a large amount of condensed gas into the sealed water at the outlet of the bottom of the reactor. The majority of the major functional groups in the condensing gas are hydrophilic and water-soluble cerium, cerium and organic sulfur trioxide.

除了橡膠油,該硫化物水可以用作橡膠混凝土的水化作用的水,以進一步改善其機械強度,作為橡膠與周圍的水泥微粒的黏著劑。In addition to rubber oil, the sulfide water can be used as water for hydration of rubber concrete to further improve its mechanical strength as an adhesive for rubber and surrounding cement particles.

例5Example 5

以氧化亞鐵作為催化劑在150℃ 20分鐘的環境下,並以三氧化二鐵為催化劑,在200℃ 30分鐘的環境下產生的部分氧化的橡膠微粒所製的橡膠水泥,來與以在相應的條件下無催化劑的橡膠微粒所製的橡膠水泥相比,為測試以下水化膠泥(hydrated mortar)須製備:A rubber cement made of partially oxidized rubber particles produced by using ferrous oxide as a catalyst at 150 ° C for 20 minutes and with ferric oxide as a catalyst at 200 ° C for 30 minutes. In the case of rubber cement made of catalyst-free rubber particles, the following hydrated mortar must be prepared:

1. RT水泥/砂複合材料(paste)為一種水泥/砂複合材料,製備水泥/砂和6wt%所收受(未處理)橡膠微粒。1. RT cement/sand composite is a cement/sand composite that produces cement/sand and 6 wt% of accepted (untreated) rubber particles.

2. 150℃的橡膠水泥/砂複合材料為一種水泥/砂複合材料,製備水泥/砂和6wt%的部分氧化的橡膠微粒,在150℃,20分鐘的環境,無催化劑。2. The rubber cement/sand composite of 150 °C is a cement/sand composite material, which is prepared with cement/sand and 6 wt% of partially oxidized rubber particles, and has no catalyst at 150 ° C for 20 minutes.

3. Fe2+ +150℃橡膠水泥/砂複合材料為一種水泥/砂複合材料,製備水泥/砂和6wt%的部分氧化的橡膠微粒,在150℃,20分鐘的環境,有氧化亞鐵催化劑。3. Fe 2+ +150 °C rubber cement / sand composite material is a cement / sand composite material, prepared cement / sand and 6wt% of partially oxidized rubber particles, at 150 ° C, 20 minutes environment, there is ferrous oxide catalyst .

4. 200℃橡膠水泥/砂複合材料為一種水泥/砂複合材料,製備水泥/砂和6wt%的部分氧化的橡膠微粒,在200℃,30分鐘的環境,無催化劑。4. 200 °C rubber cement / sand composite material is a cement / sand composite material, prepared cement / sand and 6wt% of partially oxidized rubber particles, at 200 ° C, 30 minutes of environment, no catalyst.

5. Fe3+ +200℃橡膠水泥/砂複合材料為一種水泥/砂複合材料,製備水泥/砂和6wt%的部分氧化的橡膠微粒,在200℃,30分鐘的環境,有三氧化二鐵催化劑。5. Fe 3+ +200°C rubber cement/sand composite is a cement/sand composite material, which prepares cement/sand and 6wt% of partially oxidized rubber particles. At 200°C for 30 minutes, there is a ferric oxide catalyst. .

6. 純水泥/砂複合材料為一種水泥/砂複合材料,只須製備水泥/砂。6. Pure cement/sand composite is a cement/sand composite that requires only cement/sand to be prepared.

將水加入混合物,其重量比為0.62:1,為水化作用製備水泥/砂複合材料樣品,其允許在測試前固化7天。Water was added to the mixture at a weight ratio of 0.62:1 to prepare a cement/sand composite sample for hydration which allowed cure for 7 days prior to testing.

例6Example 6

FT-IR光譜術分析由例5備製的水化膠泥樣品,確認得自催化氧化橡膠微粒的橡膠混凝土的優異性能。如圖7所示,與在878,670和1000cm-1 波數的附近的純水泥/砂複合材料(普通水泥/砂複合材料)相比,Fe2+ +150℃橡膠水泥/砂複合材料的FT-IR光譜顯著地展現更強的C-S-H信號。The hydrated cement sample prepared in Example 5 was analyzed by FT-IR spectroscopy, and the excellent properties of the rubber concrete obtained by catalytically oxidizing the rubber particles were confirmed. As shown in Figure 7, the FT- of the Fe 2+ +150 °C rubber cement/sand composite is compared to the pure cement/sand composite (normal cement/sand composite) near 878, 670 and 1000 cm -1 wavenumber. The IR spectrum significantly exhibits a stronger CSH signal.

如前述,C3 S和C2 S為水泥的主要成分,其在水化作用中產生C-S-H,作為主要的化合物,賦予水泥/砂複合材料自己的機械強度。RT水泥/砂複合材料的FT-IR光譜以及150℃的橡膠水泥/砂複合材料顯示無顯著的C-S-H信號,這表示無處理橡膠微粒表面無R-SOx -R官能基,並且表示在150℃,20分鐘無催化劑的環境下,只有少數在橡膠 微粒表面的R-SOx -R官能基群構造。As mentioned above, C 3 S and C 2 S are the main components of cement, which produce CSH in hydration, as a main compound, giving the cement/sand composite its own mechanical strength. The FT-IR spectrum of the RT cement/sand composite and the rubber cement/sand composite at 150 °C showed no significant CSH signal, indicating that the surface of the untreated rubber particles had no R-SO x -R functional groups and was expressed at 150 ° C. In the absence of a catalyst for 20 minutes, there are only a few R-SO x -R functional group structures on the surface of the rubber particles.

與純水泥/砂複合材料(普通水泥/砂複合材料)相比,圖8中展示的Fe3+ +200℃橡膠水泥/砂複合材料的FT-IR光譜在878,670和1000cm-1 波數的附近的也顯著地展現更強的C-S-H信號。RT水泥/砂複合材料的FT-IR光譜以及200℃無催化劑的橡膠水泥/砂複合材料顯示無顯著的C-S-H信號,因此,展現相對較弱的機械強度。Compared to pure cement/sand composites (common cement/sand composites), the FT-IR spectra of the Fe 3+ +200 °C rubber cement/sand composites shown in Figure 8 are near 878, 670 and 1000 cm -1 wavenumbers. It also significantly shows a stronger CSH signal. The FT-IR spectrum of the RT cement/sand composite and the 200 °C catalyst-free rubber cement/sand composite show no significant CSH signal and therefore exhibit relatively weak mechanical strength.

例7Example 7

為了進一步證明採用催化氧化橡膠微粒相對於非催化氧化橡膠微粒在橡膠混凝土製作上的好處,在例5中有些水化膠泥樣本,以X射線繞射(XRD)光譜術進行分析。示於圖9的純水泥/砂複合材料(普通水泥/砂複合材料)的XRD光譜展示作為基礎案例的C3 S/C2 S/C-S-H結晶峰。To further demonstrate the benefits of using catalytic oxidized rubber particles relative to non-catalytic oxidized rubber particles in rubber concrete fabrication, some of the hydrated cement samples in Example 5 were analyzed by X-ray diffraction (XRD) spectroscopy. The XRD spectrum of the pure cement/sand composite (normal cement/sand composite) shown in Fig. 9 shows the C 3 S/C 2 S/CSH crystallization peak as a base case.

在XRD光譜中,該結晶峰顯著分別低於150℃和200℃的橡膠水泥/砂複合材料,的X射線衍射光譜中,如圖10和11所示,該橡膠混凝土的機械強度比一般混凝土的較弱。In the XRD spectrum, the crystallization peaks are significantly lower than the rubber cement/sand composites of 150 ° C and 200 ° C, respectively, in the X-ray diffraction spectrum, as shown in Figures 10 and 11, the mechanical strength of the rubber concrete is higher than that of ordinary concrete. Weak.

然而,如圖12和13所示,C3 S/C2 S/C-S-H結晶峰的在Fe2+ +150℃橡膠水泥/砂複合材料以及Fe3+ +200℃橡膠水泥/砂複合材料的XRD光譜中,是相似甚或大於純水泥/砂複合材料(普通水泥/砂複合材料)的XRD光譜。這個例子進一步證實,在較低溫度和較短處理時間,以金屬氧化物催化橡膠微粒部分氧化,確實可提高含有該氧化橡膠微粒的橡膠混凝土的強度。However, as shown in Figures 12 and 13, the X 3RD of the C 3 S/C 2 S/CSH crystallization peak in the Fe 2+ +150 °C rubber cement/sand composite and the Fe 3+ +200 °C rubber cement/sand composite In the spectrum, it is similar or even greater than the XRD spectrum of a pure cement/sand composite (common cement/sand composite). This example further demonstrates that partial oxidation of rubber particles by metal oxide at lower temperatures and shorter processing times does increase the strength of rubber concrete containing the oxidized rubber particles.

例8Example 8

掃描電子顯微術(SEM)被用來比較橡膠混凝土的樣品的水化產物的晶體和表面形態,其包括催化氧化和非催化氧化的橡膠微粒。Scanning electron microscopy (SEM) was used to compare the crystal and surface morphology of the hydration product of a sample of rubber concrete, including catalytically oxidized and non-catalyzed oxidized rubber particles.

如圖14所示,由Fe2+ +150℃橡膠水泥/砂複合材料所製的橡膠混凝土樣品的表面形態顯示一針狀結晶表面,但沒有明顯的催化氧化橡膠和水泥之間的接口。As shown in Fig. 14, the surface morphology of the rubber concrete sample made of Fe 2+ + 150 °C rubber cement/sand composite showed a needle-like crystal surface, but there was no obvious interface between the catalytic oxidized rubber and the cement.

該表面形態類似水化膠泥的掃描電子顯微術(SEM)的圖像,包括顯示出鈣礬石的針狀結晶表面的普通水泥/砂複合材料和高效塑化 劑,該例的結果表明,催化氧化的橡膠微粒是一個極好的高效塑化劑,用以改善機械強度以及縮短橡膠混凝土的水化作用時間。This surface is similar to scanning electron microscopy (SEM) images of hydrated cement, including common cement/sand composites showing the acicular crystal surface of ettringite and high-efficiency plasticization. The results of this example show that the catalytically oxidized rubber particles are an excellent high-efficiency plasticizer for improving mechanical strength and shortening the hydration time of rubber concrete.

例9Example 9

與普通水泥/砂複合材料比較,橡膠水泥/砂複合材料提高疏水性表面性能,由於疏水的橡膠微粒和親水性的水泥之間的相容性差,當橡膠水化膠泥是以水泥和(i)未經處理的橡膠微粒或(ii)來自無催化劑所製的部分氧化橡膠微粒,改善空間相當有限。Compared with ordinary cement/sand composites, rubber cement/sand composites improve hydrophobic surface properties due to poor compatibility between hydrophobic rubber particles and hydrophilic cement, when rubber hydrated cement is cement and (i) The untreated rubber particles or (ii) the partially oxidized rubber particles from the catalyst-free, the space for improvement is rather limited.

令人驚訝的是,由水泥和催化氧化橡膠微粒所製的橡膠水化膠泥已大幅提高排水能力。圖15為純水泥/砂複合材料的28天的水化膠泥圖像、150℃橡膠水泥/砂複合材料、200℃橡膠水泥/砂複合材料、Fe2+ +150℃橡膠水泥/砂複合材料以及Fe3+ +200℃橡膠水泥/砂複合材料。Surprisingly, rubber hydrated cement made from cement and catalytically oxidized rubber particles has greatly improved drainage. Figure 15 is a 28-day hydration clay image of pure cement/sand composite, 150 °C rubber cement/sand composite, 200 °C rubber cement/sand composite, Fe 2+ +150 °C rubber cement/sand composite and Fe 3+ +200 °C rubber cement / sand composite.

Fe2+ +150℃橡膠水泥/砂複合材料以及Fe3+ +200℃橡膠水泥/砂複合材料的防水性能明顯優於純水泥/砂複合材料和那些含非催化氧化橡膠的其他水泥/砂複合材料。The waterproof performance of Fe 2+ +150°C rubber cement/sand composite and Fe 3+ +200°C rubber cement/sand composite is better than that of pure cement/sand composite and other cement/sand composites containing non-catalytic oxidized rubber. material.

上述內容已描述了本發明的原理、較佳實施例以及操作模式。然而,本發明不應被理解成受限於討論過的特定實施例。相反地,以上所描述的實施例應該被視為例示而非限制,並且應該要體認為在不脫離以下申請專利範圍所定義的本發明範圍的情況之下,所屬技術領域中具有通常知識者可對這些實施例做出變化。The foregoing has described the principles, preferred embodiments, and modes of operation of the invention. However, the invention should not be construed as being limited to the specific embodiments discussed. Rather, the above-described embodiments are to be considered as illustrative and not restrictive, and the scope of the invention as defined by the following claims Changes are made to these embodiments.

1‧‧‧反應器容器1‧‧‧reactor vessel

2‧‧‧篩網2‧‧‧ screen

3‧‧‧加熱環3‧‧‧heating ring

4‧‧‧控制器4‧‧‧ Controller

5‧‧‧固定床5‧‧‧fixed bed

6‧‧‧進氣管6‧‧‧Intake pipe

7‧‧‧排氣管7‧‧‧Exhaust pipe

8‧‧‧閥8‧‧‧ valve

9‧‧‧閥9‧‧‧ valve

10‧‧‧空氣源10‧‧‧air source

11‧‧‧氮氣源11‧‧‧Nitrogen source

12‧‧‧閥12‧‧‧ valve

13‧‧‧閥13‧‧‧Valve

14‧‧‧容器14‧‧‧ Container

Claims (20)

一種氧化橡膠微粒以生產部分氧化橡膠的方法,其包括:在足以選擇性地氧化橡膠微粒的條件下,使該橡膠微粒與存在一催化劑的一氧化劑氣體接觸,該橡膠微粒包括與有機硫化合物交聯的聚合物,使得在該橡膠微粒的表面上的有機硫化合物轉化成一官能基群,該官能基群選自一群組,該群組包含亞碸(R-SO-R),碸(R-SO2 -R),三氧化硫(R-SO3 )的該基群以及其混合物,其中R代表在橡膠微粒聚合物中的碳氫化合物,以及其中該催化劑含一金屬氧化物。A method of producing a partially oxidized rubber by oxidizing rubber particles, comprising: contacting the rubber particles with an oxidant gas in the presence of a catalyst under conditions sufficient to selectively oxidize rubber particles, the rubber particles comprising an organic sulfur compound a polymer such that the organosulfur compound on the surface of the rubber particle is converted into a functional group selected from the group consisting of an anthracene (R-SO-R), 碸 (R) -SO 2 -R), the group of sulfur trioxide (R-SO 3 ) and mixtures thereof, wherein R represents a hydrocarbon in the rubber particulate polymer, and wherein the catalyst contains a metal oxide. 如申請專利範圍第1項所述的氧化橡膠微粒以生產部分氧化橡膠的方法,其中該橡膠微粒暴露在介於25~300℃ 5~60分鐘的環境下的該氧化劑氣體中。 The method of producing an oxidized rubber particle according to claim 1, wherein the rubber particle is exposed to the oxidant gas in an environment of 25 to 300 ° C for 5 to 60 minutes. 如申請專利範圍第1項所述的氧化橡膠微粒以生產部分氧化橡膠的方法,其中該橡膠微粒暴露在介於50~250℃ 10~45分鐘的環境下的該氧化劑氣體中。 The method of producing oxidized rubber particles according to claim 1, wherein the rubber particles are exposed to the oxidant gas in an environment of 50 to 250 ° C for 10 to 45 minutes. 如申請專利範圍第1項所述的氧化橡膠微粒以生產部分氧化橡膠的方法,其中該橡膠微粒的選擇性氧化反應,產生一冷凝氣,其適合作為一黏著劑。 The method of producing an oxidized rubber particle according to the first aspect of the invention, wherein the selective oxidation reaction of the rubber particle produces a condensation gas which is suitable as an adhesive. 如申請專利範圍第1項所述的氧化橡膠微粒以生產部分氧化橡膠的方法,其中金屬氧化物選自一群組,該群組包含鐵、釩、鈦、鉻、錳、鈷、鎳、鋅、銅、鈣、鉀、鈉、鎂及其混合物。 The method of producing oxidized rubber particles according to claim 1, wherein the metal oxide is selected from the group consisting of iron, vanadium, titanium, chromium, manganese, cobalt, nickel, zinc. , copper, calcium, potassium, sodium, magnesium and mixtures thereof. 如申請專利範圍第1項所述的氧化橡膠微粒以生產部分氧化橡膠的方法,其中該金屬氧化物包括氧化亞鐵(FeO)、三氧化二鐵(Fe2 O3 )以及其混合物。A method of producing a partially oxidized rubber according to the oxidized rubber particles of claim 1, wherein the metal oxide comprises ferrous oxide (FeO), ferric oxide (Fe 2 O 3 ), and a mixture thereof. 如申請專利範圍第1項所述的氧化橡膠微粒以生產部分氧化橡膠的方法,其中該橡膠微粒是從廢輪胎回收。 A method of producing a partially oxidized rubber according to the oxidized rubber particles of claim 1, wherein the rubber particles are recovered from waste tires. 一種持續催化反應器系統,用於選擇性地氧化橡膠微粒,其包括:一催化反應器,其具有一橡膠微粒入口以及一橡膠微粒出口,進 入的橡膠微粒,在一氧化劑的環境下,與一金屬氧化物催化劑接觸;一手段用以連續引入橡膠微粒通過該橡膠微粒入口進入該催化反應器;以及一手段用以回收部分氧化的橡膠微粒以及冷凝氣。 A continuous catalytic reactor system for selectively oxidizing rubber particles, comprising: a catalytic reactor having a rubber particle inlet and a rubber particle outlet, The rubber particles are contacted with a metal oxide catalyst in an oxidant environment; a means for continuously introducing rubber particles through the rubber particle inlet into the catalytic reactor; and a means for recovering partially oxidized rubber particles And condensation gas. 如申請專利範圍第8項所述的持續催化反應器系統,其中該手段用以連續引入該橡膠微粒,包括當該橡膠微粒前進通過該反應器朝向該橡膠微粒出口時,用以混合該金屬氧化物催化劑以及該橡膠微粒。 The continuous catalytic reactor system of claim 8, wherein the means for continuously introducing the rubber particles comprises mixing the metal particles as the rubber particles advance through the reactor toward the rubber particle outlet Catalyst and the rubber particles. 如申請專利範圍第8項所述的持續催化反應器系統,更包括一手段,用以將預熱的氧氣引入該催化反應器。 The continuous catalytic reactor system of claim 8, further comprising a means for introducing preheated oxygen into the catalytic reactor. 如申請專利範圍第10項所述的持續催化反應器系統,其中該催化反應器具有一加長的反應區,且氧氣同向與該橡膠微粒流過該反應區。 The continuous catalytic reactor system of claim 10, wherein the catalytic reactor has an elongated reaction zone, and oxygen flows in the same direction as the rubber particles flow through the reaction zone. 如申請專利範圍第8項所述的持續催化反應器系統,其中該橡膠微粒得自回收廢輪胎,以機械研磨以及篩選成所需大小之不規則的微粒,其體積範圍介於100-1000μ m(微米)。The continuous catalytic reactor system of claim 8, wherein the rubber particles are obtained from recycled waste tires, mechanically ground and screened into irregular particles of a desired size, and the volume ranges from 100 to 1000 μ. m (micron). 一種混凝土複合材料,其包含一水泥和表面處理過的一橡膠微粒,該橡膠微粒包括與一有機硫化合物交聯的一聚合物,表面處理過的該橡膠微粒被部分氧化,且具有含硫的親水性的反應性官能基群,其對存於該水泥之基質以及一液體黏著劑的親水性基群作反應,其中該液體黏著劑包括至少0.1wt%的該混凝土複合材料,其中經該表面處理過的該橡膠微粒以及該黏著劑的製備製程包括:氧化該橡膠微粒用以生產部分氧化的橡膠,其包括在足以選擇性地氧化該橡膠微粒的條件下,使該橡膠微粒與存在一催化劑情況下的一氧化劑氣體接觸,該橡膠微粒包括與一有機硫化合物交聯的聚合物,使得該有機硫化合物在該橡膠微粒表面上的被轉化成一官能基群,該官能基群係選自含亞碸(R-SO-R)、碸 (R-SO2 -R)、三氧化硫(R-SO3 )及其混合物之其中之一,其中R代表該橡膠微粒聚合物中的碳氫化合物,以及其中該催化劑含一金屬氧化物。A concrete composite comprising a cement and a surface treated rubber particle comprising a polymer crosslinked with an organosulfur compound, the surface treated rubber particle is partially oxidized, and has sulfur content a hydrophilic reactive functional group reactive with a matrix of the cement and a hydrophilic group of a liquid adhesive, wherein the liquid adhesive comprises at least 0.1% by weight of the concrete composite through which the surface The processed rubber particles and the preparation process of the adhesive include: oxidizing the rubber particles to produce a partially oxidized rubber, comprising: reacting the rubber particles with a catalyst under conditions sufficient to selectively oxidize the rubber particles In the case of contact with an oxidant gas, the rubber particles comprise a polymer crosslinked with an organosulfur compound such that the organosulfur compound is converted on the surface of the rubber particle into a functional group selected from the group consisting of sulfoxide (R-SO-R), sulfone (R-SO 2 -R), wherein one of sulfur trioxide (R-SO 3), and mixtures, wherein R represents the micro rubber Hydrocarbon polymers, and wherein the catalyst comprising a metal oxide. 如申請專利範圍第13項所述的該混凝土複合材料,其固化後具有一抗壓強度,該抗壓強度超過傳統非橡膠混凝土。 The concrete composite material according to claim 13 of the patent application, which has a compressive strength after curing, which exceeds the conventional non-rubber concrete. 如申請專利範圍第13項所述的該混凝土複合材料,其固化後具有一抗折強度,該抗折強度超過傳統非橡膠混凝土。 The concrete composite material according to claim 13 of the patent application, which has a flexural strength after curing, which exceeds the conventional non-rubber concrete. 如申請專利範圍第13項所述的該混凝土複合材料,其固化後具有一抗拉強度,該抗拉強度超過傳統非橡膠混凝土。 The concrete composite material according to claim 13 of the patent application, which has a tensile strength after curing, which exceeds the conventional non-rubber concrete. 如申請專利範圍第13項所述的該混凝土複合材料,不包括一種高效塑化劑。 The concrete composite material as described in claim 13 does not include a high-efficiency plasticizer. 如申請專利範圍第13項所述的該混凝土複合材料,其中該催化劑是該金屬氧化物,其選自鐵、釩、鈦、鉻、錳、鈷、鎳、鋅、銅、鈣、鉀、鈉、鎂及其混合物中其中之一的金屬氧化物。 The concrete composite according to claim 13, wherein the catalyst is the metal oxide selected from the group consisting of iron, vanadium, titanium, chromium, manganese, cobalt, nickel, zinc, copper, calcium, potassium, sodium. a metal oxide of one of magnesium, magnesium and mixtures thereof. 如申請專利範圍第13項所述的該混凝土複合材料,其中該金屬氧化物包含氧化亞鐵(FeO)、三氧化二鐵(Fe2 O3 )及其混合物。The concrete composite according to claim 13, wherein the metal oxide comprises ferrous oxide (FeO), ferric oxide (Fe 2 O 3 ), and a mixture thereof. 如申請專利範圍第13項所述的該混凝土複合材料,其中該橡膠微粒是得自廢輪胎之回收。 The concrete composite of claim 13, wherein the rubber particles are recovered from waste tires.
TW102119094A 2012-10-01 2013-05-30 Rubberized concrete made by using waste rubber tires and manufacturing method and system thereof TWI492914B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/632,164 US8536253B2 (en) 2011-04-01 2012-10-01 Method for producing rubberized concrete using waste rubber tires

Publications (2)

Publication Number Publication Date
TW201414693A TW201414693A (en) 2014-04-16
TWI492914B true TWI492914B (en) 2015-07-21

Family

ID=48096207

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102119094A TWI492914B (en) 2012-10-01 2013-05-30 Rubberized concrete made by using waste rubber tires and manufacturing method and system thereof

Country Status (2)

Country Link
TW (1) TWI492914B (en)
WO (1) WO2014055129A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103769032A (en) * 2014-01-10 2014-05-07 安徽省化工设计院 Novel tubular reactor
TWI774789B (en) * 2018-06-15 2022-08-21 勝一化工股份有限公司 concrete

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762700A (en) * 1997-08-01 1998-06-09 The United States Of America As Represented By The Secretary Of Transportation Catalytic process for producing free radicals on crumb rubber
CN101638465A (en) * 2009-09-01 2010-02-03 河南理工大学 Method for modifying rubber powder for cement-based material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338506B2 (en) * 2011-04-01 2012-12-25 Chun Well Industry Co., Ltd. Method for producing improved rubberized concrete using waste rubber tires

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762700A (en) * 1997-08-01 1998-06-09 The United States Of America As Represented By The Secretary Of Transportation Catalytic process for producing free radicals on crumb rubber
CN101638465A (en) * 2009-09-01 2010-02-03 河南理工大学 Method for modifying rubber powder for cement-based material

Also Published As

Publication number Publication date
WO2014055129A1 (en) 2014-04-10
TW201414693A (en) 2014-04-16

Similar Documents

Publication Publication Date Title
TWI599552B (en) Method for producing improved rubberized concrete using waste rubber tires
EP1595864B1 (en) Polycyclic aromatic hydrocarbon based solid strong acid
Xu et al. Design of healable epoxy composite based on β-hydroxyl esters crosslinked networks by using carboxylated cellulose nanocrystals as crosslinker
TWI492914B (en) Rubberized concrete made by using waste rubber tires and manufacturing method and system thereof
KR102213892B1 (en) Fabricating method of sulfur concrete using Bio sulfur and Sulfur concrete of the same
US8536253B2 (en) Method for producing rubberized concrete using waste rubber tires
CN111185232A (en) Preparation method of melamine-heteropolyacid salt catalyst and application of melamine-heteropolyacid salt catalyst in catalytic oxidation desulfurization
JPH08192046A (en) Alumina base catalyst for processing sulfur compound-containing gas,use of these catalysts for processing said gas and method for processing said gas
CN1623982A (en) Method for preparing 4,4'-dichloride diphenyl sulfone
Sembiring et al. Effect of amorphous rice husk silica addition on the structure of asphalt composite
RU2310602C1 (en) Method of production of the high-structured carbon-mineral composites produced out of the high-ash biomass
US8536239B1 (en) Method for producing improved rubberized concrete using waste rubber tires
FR2840295A1 (en) PRODUCT FOR REMOVING SULFUR FROM A FILLER CONTAINING HYDROGEN SULFIDE AND BENZENE, TOLUENE AND / OR XYLENES
Zhang et al. Synthesize ordered macroporous MnO 2 and their application as curing agent for polysulfide polymers
WO2008040750A1 (en) A process for treating elemental sulphur for smell improvement
Sembiring et al. Effect of calcination temperature on silica-asphalt composite properties using amorphous rice husk silica
Behniafar et al. PTMG-Modified MWCNT/PTMG-based polyurethane nanocomposites: Strong interaction and homogeneous dispersion
RU2176156C2 (en) Catalyst for production of sulfur by claus process and method of its production
CN115709983B (en) Nano porous carbon material, preparation method thereof and application thereof in rubber
JPH02196733A (en) Production of ethylbenzene and styrene
WO2024003278A1 (en) A method of capturing carbon dioxide
CN101735350A (en) Method for preparing chlorosulfonated polyethylene with high viscosity and high filling property based on gas-solid phase method
RU2188707C1 (en) Catalyst for deep oxidation of organic compounds and carbon monoxide in gaseous effluents and method of catalyst production (versions)
Nijpanich et al. Hydroxyl-Terminated Saponified Natural Rubber Based on the H2O2/P25-TiO2 Powder/UVC-Irradiation System. Polymers 2021, 13, 1319
JP2003062469A (en) Photocatalyst particle and manufacturing method therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees