TWI492658B - Can be selected at different time and place to simulate the sun and the moon and cloud scene lighting system - Google Patents

Can be selected at different time and place to simulate the sun and the moon and cloud scene lighting system Download PDF

Info

Publication number
TWI492658B
TWI492658B TW101133165A TW101133165A TWI492658B TW I492658 B TWI492658 B TW I492658B TW 101133165 A TW101133165 A TW 101133165A TW 101133165 A TW101133165 A TW 101133165A TW I492658 B TWI492658 B TW I492658B
Authority
TW
Taiwan
Prior art keywords
light
time
emitting elements
cloud
sun
Prior art date
Application number
TW101133165A
Other languages
Chinese (zh)
Other versions
TW201412183A (en
Inventor
Ke Chun Lin
Original Assignee
Ke Chun Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ke Chun Lin filed Critical Ke Chun Lin
Priority to TW101133165A priority Critical patent/TWI492658B/en
Publication of TW201412183A publication Critical patent/TW201412183A/en
Application granted granted Critical
Publication of TWI492658B publication Critical patent/TWI492658B/en

Links

Description

可選定不同時間地點之模仿日月及雲彩之情境照明系統I can choose the mood lighting system that simulates the sun, the moon and the cloud at different time and place.

本發明係有關一種可選定不同時間地點之模仿日月及雲彩之情境照明系統,尤指一種可以模擬特定時空之日出、日落或月亮之情境與具有局部有雲模式更逼真等功效之可選定不同時間地點之模仿日月及雲彩之情境照明系統。The invention relates to a situational lighting system which can select sun, moon and cloud in different time and place, especially a kind of environment which can simulate the sunrise, sunset or moon of a specific time and space and the more realistic effect of having a local cloud mode. Imitate the mood lighting system of the sun, the moon and the clouds at different time and place.

參閱第一圖,其係為中華民國發明公開號201207322(申請號099125660)之「隨時間變化可呈現日出日落過程之仿太陽光之燈具」一案,係揭露一種隨時間變化可呈現日出日落過程之仿太陽光之燈具,其包含一座體910、複數個第一發光元件920、複數個第二發光元件930及一微電腦控制單元940。其中各該第一發光元件920係呈現一圓形排列設置在該座體910上。各該第二發光元件930是平均交錯配置分佈設置於該座體910上之該第一發光元件920所圍繞形成的圓形區域內。該微電腦控制單元940設置於該座體910內,且連接於各該第一發光元件920及各該第二發光元件930,並藉由該微電腦控制單元940控制各該發光元件920、930的發光模式。藉以達到讓燈具發出逼真的仿夕陽光源或朝陽光源的目的,同時可隨著時間變換發光的色度,讓使用者有如置身真實夕陽西下或旭日東升的情境。Referring to the first picture, it is the case of the Republic of China Invention Publication No. 201207322 (Application No. 099125660), which is a "lighting device that can show the sunlight and sunlight during the sunrise and sunset process". It reveals a sunrise that can be presented over time. The sunlight-like luminaire of the sunset process includes a body 910, a plurality of first illuminating elements 920, a plurality of second illuminating elements 930, and a microcomputer control unit 940. Each of the first light-emitting elements 920 is disposed on the base 910 in a circular arrangement. Each of the second light-emitting elements 930 is disposed in a circular area surrounded by the first light-emitting elements 920 disposed on the base 910 in an average staggered arrangement. The microcomputer control unit 940 is disposed in the base 910 and is connected to each of the first light-emitting elements 920 and the second light-emitting elements 930, and controls the light-emitting elements 920 and 930 to emit light by the microcomputer control unit 940. mode. In order to achieve the purpose of letting the lamps emit a realistic sunset light source or toward the sun source, and at the same time, the chromaticity of the light can be changed over time, so that the user is like a real sunset or a rising sun.

然而,這種設計仍有以下缺點:However, this design still has the following disadvantages:

[1]世界各地之朝陽與夕陽美景很多,而且在不同的月份及日期之景觀也會不同,然而前述之習知技術只有某一地點某一日期之朝陽與夕陽,選擇性太少。[1] There are many sunrises and sunsets around the world, and the landscapes of different months and dates will be different. However, the above-mentioned conventional technology has only a certain date and the sun and the sunset, and the selectivity is too small.

[2]在真實環境中,雲霧也會影響朝陽、夕陽與月亮,但前述之習知技術無法模擬因雲霧遮擋而遮蓋一部份之效果。[2] In the real environment, clouds also affect the sun, the setting sun and the moon, but the above-mentioned conventional techniques cannot simulate the effect of covering a part by the cloud.

有鑑於此,必需研發出可解決上述習用缺點之技術。In view of this, it is necessary to develop a technique that can solve the above disadvantages.

本發明之目的,在於提供一種可選定不同時間地點之模仿日月及雲彩之情境照明系統,其兼具最接近情境模式之發光顏色、具多種顯示模式、可以模擬特定時空之日出、日落或月亮之情境與具有局部有雲模式更逼真之優點。特別是,本發明所欲解決之問題係在於,無法呈現不同時間地點之太陽與月亮的照明美感,且無法呈現雲霧遮住光線之特殊景況等問題。The object of the present invention is to provide a situational illumination system that can simulate the sun, the moon and the cloud at different time and place, and has the illumination color closest to the situation mode, has multiple display modes, can simulate a specific time and space sunrise, sunset or The situation of the moon is more realistic with the local cloud mode. In particular, the problem to be solved by the present invention is that the illumination of the sun and the moon at different time and place cannot be presented, and the problem that the cloud covers the special situation of the light cannot be presented.

解決上述問題之技術手段係提供一種可選定不同時間地點之模仿日月及雲彩之情境照明系統,其包括:一照明裝置,係具有:複數組發光裝置,係分佈成一邊緣區圍繞一中心區而概呈M *N 之矩形區域;該中心區呈圓形而用以模擬日月形狀;該邊緣區用以模擬雲彩形狀;每一組發光裝置具有複數個發光元件,該每一發光元件分別可發出不同波長及不同RGB值之光線,該複數個發光元件之波長係介於585~1100nm之間;以不同波長及不同RGB之該複數個發光元件組合發光,使該每組發光裝置發出不同RGB值之組合光線;該發光元件之發光組合變化如下:該複數個發光元件係依編號設計,波長愈長者編號愈大;λ k <λ k +1 ;一擴散片,係用以使光線柔和均勻;一輸入單元,係用以讀入一第一選項值、一第二選項值及一第三選項值;該第一選項值係選自複數個特定時空模式其中之一;該第二選項值係選自一夕陽模式、一朝陽模式、一月亮模式其中之一;該第三選項值係選自一無雲模式、一局部有雲模式、一雲破模式與一彩霞半掩模式的其中之一;除雲破與彩霞半掩模式,日出模式時啟亮之該複數個發光元件編號由大而小,整體數量由少而多;日落模式時啟亮之該 複數個發光元件編號由小而大,整體數量由多而少;日出模式時m >n;日落模式時n >m;其中:n 為在時間t 時發光元件開啟的總個數;m 為在時間t +1時發光元件開啟的總個數;為在時間t 時發光元件整體平均波長;為在時間t +1時發光元件整體平均波長;該複數個發光元件係任意組合發光,除雲破模式與彩霞半掩模式外:日落時;在日出時;其中:I it 為第i 個發光元件在時間t 時的亮度;其中,I i (t +1) 為第i 個發光元件在時間t +1時的亮度;n 為在時間t 時發光元件開啟的總個數;m 為在時間t +1時發光元件開啟的總個數;一資料庫,係具有複數筆之特定時空資料,該每筆特定時空資料皆包括預先對一特定時間及地點之情境過程進行連續拍攝而得到之複數個影像,該每一影像皆具有J *K 個像素,其與概呈M *N 之矩形區域相對應;該每一像素皆具有一RGB值;該每一情境過程皆選自該第一、該第二、該第三選項值的至少其中之一;其中,JKMN 係為正整數;一處理裝置,係預先擷取各組合光線其RGB值,並經下列公式:X =A 11 R +A 12 G +A 13 BY =A 21 R +A 22 G +A 23 BZ =A 31 R +A 32 G +A 33 Bx =X /(X +Y +Z );y =Y /(X +Y +Z );計算該情境過程在第i個時間點之影像其像素的RGB值對應於CIE色度圖之軌跡點(x ,y ),其被定義為P i =(xp i ,yp i );依此類推,將該複數筆特定時空資料預先轉換為複數筆之特定時空CIE資料,並儲存於該資料庫;其中:R.G.B為三種顏色的光量在某點素的灰階值,在CIE色彩空間中顏色的三色刺激值為X、Y和Z,可以上列數學式對應於紅色、綠色和藍色之間的關係;A ij 為與攝影機有關的參數,相關設定為:A 11 +A 12 +A 13 =1,A 21 +A 22 +A 23 =1,A 31 +A 32 +A 33 =1;藉此,當選擇該任一筆特定時空資料,該處理裝置係即時計算該發光裝置在第i個時間點之各組合光線其RGB值對應於CIE色度圖之複數個軌跡點(x ',y '),其被定義為Q i =(xq i ,yq i );再經下列公式:為點對點之距離;,定義出各組合光線其軌跡點(x ',y ')之逐點累計誤差Δ1j ;並經下列公式:Δ opt =min[Δ1112 ,.....Δ1j ];運算比對出相對應之該發光元件組合。The technical means for solving the above problems is to provide a situational illumination system that can simulate the sun, the moon and the cloud at different time and place, and includes: a lighting device having: a complex array of light-emitting devices distributed in an edge region surrounding a central region; a rectangular area of M * N ; the central area is circular to simulate a shape of the sun and the moon; the edge area is used to simulate a cloud shape; each group of light-emitting devices has a plurality of light-emitting elements, and each of the light-emitting elements can be respectively Lights of different wavelengths and different RGB values are emitted, and the wavelengths of the plurality of light-emitting elements are between 585 and 1100 nm; and the plurality of light-emitting elements of different wavelengths and different RGB light are combined to emit light, so that each group of light-emitting devices emits different RGB The combined light of the value; the illumination combination of the light-emitting element changes as follows: the plurality of light-emitting elements are designed according to the number, and the longer the wavelength is, the larger the number is; λ k < λ k +1 ; a diffusion sheet is used to make the light soft and uniform An input unit is configured to read in a first option value, a second option value, and a third option value; the first option value is selected from a plurality of specific time and space One of the modes; the second option value is selected from one of a sunset mode, a sun-sun mode, and a moon mode; the third option value is selected from a cloudless mode, a partial cloud mode, and a cloud break. One of the modes and one color half-mask type; except for the cloud break and the color half mask, the number of the plurality of light-emitting elements that are illuminated in the sunrise mode is large and small, and the overall number is small and small; The number of the plurality of light-emitting elements that are bright is small and large, and the overall number is large and small; in sunrise mode, m > n and ; sunset mode n > m and ; Wherein: the total number n of the light emitting element is turned on at time t; m is the total number of the light emitting element is turned on at time t +1; and The average wavelength of the entire light-emitting element at time t ; The average wavelength of the light-emitting element at time t +1; the plurality of light-emitting elements are arbitrarily combined to emit light, except for the cloud breaking mode and the color half-mask type: at sunset At sunrise Where: I it is the luminance of the i- th illuminating element at time t ; wherein I i ( t +1) is the luminance of the i- th illuminating element at time t +1; n is the illuminating element at time t The total number of open; m is the total number of light-emitting elements turned on at time t +1; a database has specific time and space data of a plurality of pens, each of which includes a specific time and place in advance The contextual process is a plurality of images obtained by continuous shooting, each image having J * K pixels corresponding to a rectangular region of the general M * N ; each pixel having an RGB value; a context process is selected from at least one of the first, the second, and the third option values; wherein, J , K , M , and N are positive integers; and a processing device pre-captures each combined light Its RGB value is given by the following formula: X = A 11 R + A 12 G + A 13 B ; Y = A 21 R + A 22 G + A 23 B ; Z = A 31 R + A 32 G + A 33 B x = X / ( X + Y + Z ); y = Y / ( X + Y + Z ); Calculate the RGB value of the pixel of the scene at the ith time point corresponding to CIE a trajectory point ( x , y ) of a chromaticity diagram, which is defined as P i =( xp i , yp i ); and so on, the plurality of specific spatio-temporal data is pre-converted into specific time-space CIE data of the plurality of pens, and Stored in the database; where: RGB is the grayscale value of the light of three colors at a certain point, and the three-color stimulus values of the color in the CIE color space are X, Y, and Z, and the mathematical formula corresponding to the red color, The relationship between green and blue; A ij is a camera-related parameter, and the relevant settings are: A 11 + A 12 + A 13 =1, A 21 + A 22 + A 23 =1, A 31 + A 32 + A 33 =1; thereby, when any one of the specific spatio-temporal data is selected, the processing device calculates the combined ray values of the illuminating device at the i-th time point and the RGB values corresponding to the plurality of trajectory points of the CIE chromaticity diagram ( x ', y '), which is defined as Q i =( xq i , yq i ); , The distance to the point; , defining the point-by-point cumulative error Δ 1 j of the trajectory points ( x ', y ') of each combined ray; and by the following formula: Δ opt =min[Δ 11 , Δ 12 , .....Δ 1 j ] The operation compares the corresponding combination of the light-emitting elements.

本發明之上述目的與優點,不難從下述所選用實施例之詳細說明與附圖中,獲得深入瞭解。The above objects and advantages of the present invention will be readily understood from the following detailed description of the preferred embodiments illustrated herein.

茲以下列實施例並配合圖式詳細說明本發明於後:The invention will be described in detail in the following examples in conjunction with the drawings:

參閱第二、第三A及第四圖,本發明係一種可選定不同時間地點之模仿日月及雲彩之情境照明系統,其包括:一照明裝置10,係具有: 複數組發光裝置11,係分佈成一邊緣區P2圍繞一中心區P1(參閱第七A圖)而概呈M *N 之矩形區域;該中心區P1呈圓形而用以模擬日月形狀;該邊緣區P2用以模擬雲彩形狀;該每組發光裝置11具有複數個發光元件(參閱第四及第七A圖,包括11A、11B、11C、11D、11E、11F、11G),該每一發光元件(11A、11B、11C、11D、11E、11F、11G)分別可發出不同波長及不同RGB值之光線,該複數個發光元件(11A、11B、11C、11D、11E、11F、11G)之波長係介於585~1100nm之間;以不同波長及不同RGB之該複數個發光元件(11A、11B、11C、11D、11E、11F、11G)組合發光,使該每組發光裝置11發出不同RGB值之組合光線;一擴散片12,係用以使組合光線柔和均勻;一輸入單元20,係用以讀入一第一選項值21、一第二選項值22及一第三選項值23;該第一選項值21係選自複數個特定時空模式其中之一;該第二選項值22係選自一夕陽模式、一朝陽模式、一月亮模式其中之一;該第三選項值23係選自一無雲模式及一局部有雲模式其中之一;一資料庫30,係具有複數筆之特定時空資料31,該每筆特定時空資料31皆包括預先對一特定時間及地點之情境過程進行連續拍攝而得到之複數個影像(此部分為預先拍攝作業,未揭露於圖面,合先陳明),該每一影像皆具有J *K 個像素,其與概呈M *N 之矩形區域相對應;該每一像素皆具有一RGB值;該每一情境過程皆選自該第一、該第二、該第三選項值的至少其中之一;其中,JKMN 係為正整數;一處理裝置40,係預先擷取各組合光線其RGB值,並經下列公式:X =A 11 R +A 12 G +A 13 BY =A 21 R +A 22 G +A 23 BZ =A 31 R +A 32 G +A 33 Bx =X /(X +Y +Z );y =Y /(X +Y +Z );計算該情境過程在第i個時間點之影像其像素的RGB值對應於CIE色度圖之軌跡點(以第六E圖為例,亦即座標值)(x ,y ),其被定義為P i =(xp i ,yp i );依此類推,將該複數筆特定時空資料31預先轉換為複數筆之特定時空CIE資料31A,並儲存於該資料庫30;藉此,當選擇該任一筆特定時空資料31時,該處理裝置40係即時計算該發光裝置11在第i個時間點之各組合光線其RGB值對應於CIE色度圖之複數個軌跡點(亦即座標座)(x ',y '),其被定義為Q i =(xq i ,yq i );再經下列公式:,定義出各組合光線其軌跡點(x ',y ')之逐點累計誤差Δ1j ;並經下列公式:Δ opt =min[Δ1112 ,.....Δ1j ];運算比對出相對應之該發光元件組合。Referring to the second, third, and fourth figures, the present invention is a situational lighting system that can simulate day, month, and cloud at different time and place, and includes: a lighting device 10 having: a complex array of light emitting devices 11 A rectangular region of M * N is distributed around a central region P1 (see FIG. 7A); the central region P1 is circular to simulate a sun and moon shape; the edge region P2 is used to simulate a cloud a shape; each of the light-emitting devices 11 has a plurality of light-emitting elements (see FIGS. 4 and 7A, including 11A, 11B, 11C, 11D, 11E, 11F, 11G), each of the light-emitting elements (11A, 11B, 11C) , 11D, 11E, 11F, 11G) respectively emit light of different wavelengths and different RGB values, and the wavelengths of the plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) are between 585 and 1100 nm. The plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) of different wavelengths and different RGB are combined to emit light, so that each group of light-emitting devices 11 emits combined light of different RGB values; a diffusion sheet 12, is used to make the combined light soft and uniform; an input unit 20 is used to read in a first option value 21, a second option value 22, and a third option value 23; the first option value 21 is selected from one of a plurality of specific space-time modes; the second option value 22 is selected from a sunset One of a mode, a sun-sun mode, and a moon mode; the third option value 23 is selected from one of a cloudless mode and a partial cloud mode; a database 30 having a plurality of specific time and space data 31 Each of the specific time and space data 31 includes a plurality of images obtained by continuously shooting a situational process at a specific time and place in advance (this part is a pre-shooting operation, which is not disclosed in the drawing, and is first and foremost). Each image has J * K pixels corresponding to a rectangular region of the general M * N ; each pixel has an RGB value; each context process is selected from the first, the second, At least one of the third option values; wherein, J , K , M , and N are positive integers; and a processing device 40 pre-captures the RGB values of the respective combined rays by the following formula: X = A 11 R + A 12 G + A 13 B ; Y = A 21 R + A 22 G + A 23 B ; Z = A 31 R + A 32 G + A 33 B ; x = X / ( X + Y + Z ); y = Y / ( X + Y + Z ); Calculate the image of the scene at the ith time point of the pixel The RGB value corresponds to the track point of the CIE chromaticity diagram (take the sixth E picture as an example, that is, the coordinate value) ( x , y ), which is defined as P i =( xp i , yp i ); and so on, The plurality of specific spatio-temporal data 31 is pre-converted into a specific space-time CIE data 31A of the plurality of pens, and stored in the database 30; thereby, when any of the specific spatio-temporal data 31 is selected, the processing device 40 calculates the instant The RGB value of each combined ray of the illuminating device 11 at the i-th time point corresponds to a plurality of trajectory points (ie, coordinate seats) ( x ', y ') of the CIE chromaticity diagram, which is defined as Q i =( xq i , yq i ); followed by the following formula: , defining the point-by-point cumulative error Δ 1 j of the trajectory points ( x ', y ') of each combined ray; and by the following formula: Δ opt =min[Δ 11 , Δ 12 , .....Δ 1 j ] The operation compares the corresponding combination of the light-emitting elements.

實務上,該複數個發光元件(11A、11B、11C、11D、11E、11F、11G)可為LED結構,且其數量可依實際需求作增減(例如改為6個或是8個)。In practice, the plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) may be LED structures, and the number thereof may be increased or decreased according to actual needs (for example, changed to 6 or 8).

該複數組發光裝置11可視為矩形面積之燈具結構,並以交錯方式排列。The complex array illumination device 11 can be viewed as a rectangular area of luminaire structure and arranged in a staggered manner.

該複數個發光元件(11A、11B、11C、11D、11E、11F、11G)可依不同波長分散排列。The plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) may be dispersedly arranged at different wavelengths.

該複數個發光元件(11A、11B、11C、11D、11E、11F、11G)可採矩陣式驅動。The plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) can be driven in a matrix.

該複數個發光元件(11A、11B、11C、11D、11E、11F、11G)之發光組合變化可依編號設計,波長愈長者編號愈大(可能不符11A、11B、11C、11D、11E、11F、11G之順序);λ k <λ k +1The change of the illumination combination of the plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) can be designed according to the number, and the longer the wavelength, the larger the number (may not be 11A, 11B, 11C, 11D, 11E, 11F, 11G order); λ k < λ k +1 .

除雲破與彩霞半掩模式,日出模式時啟亮之該複數個發光元件(亦可能不符11A、11B、11C、11D、11E、11F、11G之順 序)編號由大而小,整體數量由少而多。日落模式時啟亮之該複數個發光元件(可能不符11A、11B、11C、11D、11E、11F、11G之順序)編號由小而大,整體數量由多而少。In addition to the cloud break and Caixia half-mask type, the plurality of light-emitting elements that are illuminated during the sunrise mode (may not conform to 11A, 11B, 11C, 11D, 11E, 11F, 11G) The number is from large to small, and the overall number is small and numerous. The number of the plurality of light-emitting elements (which may not be in the order of 11A, 11B, 11C, 11D, 11E, 11F, and 11G) that are illuminated in the sunset mode is small and large, and the overall number is large and small.

日出模式時m >n;日落模式時n >m;其中:n 為在時間t 時發光元件開啟的總個數。 m > n in sunrise mode ; sunset mode n > m and Where: n is the total number of light-emitting elements turned on at time t .

m 為在時間t +1時發光元件開啟的總個數。 m is the total number of light-emitting elements turned on at time t +1.

為在時間t 時發光元件整體平均波長。 The average wavelength of the entire light-emitting element at time t .

為在時間t +1時發光元件整體平均波長。 The average wavelength of the entire light-emitting element at time t +1.

該複數個發光元件(11A、11B、11C、11D、11E、11F、11G)係任意組合發光,除了雲破與彩霞半掩模式,過程中該照明裝置10之整體亮度不可忽大忽小,而應循序漸進。The plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) are arbitrarily combined to emit light, and the overall brightness of the illumination device 10 is not negligible except for the cloud break and the color half-mask type. It should be gradual.

在日落時;在日出時;其中:I it 為第i 個發光元件在時間t 時的亮度。At sunset At sunrise Where: I it is the brightness of the i- th illuminating element at time t .

其中,I i (t +1) 為第i 個發光元件在時間t +1時的亮度。Where I i ( t +1) is the luminance of the i- th light-emitting element at time t +1 .

n 為在時間t 時發光元件開啟的總個數。 n is the total number of light-emitting elements turned on at time t .

m 為在時間t +1時發光元件開啟的總個數。 m is the total number of light-emitting elements turned on at time t +1.

該輸入單元20可為觸控螢幕。當然,也可改由一般之按鍵輸入、滑鼠點選輸入等現有技術來達成。The input unit 20 can be a touch screen. Of course, it can also be achieved by the prior art such as general key input, mouse click input, and the like.

該複數個特定時空模式可包括:特定時空1:代表「2011年立秋之淡水河出海口之落日」;特定時空2:代表「2011年立秋之黃河(蘭州市)之落日」;特定時空3:代表「2011年1月1日阿爾卑斯山的日出」;特定時空4:代表「2011年1月1日嘉義阿里山之日出」; 特定時空5:代表「2011年中秋節之澎湖之月亮」。The plurality of specific time and space modes may include: a specific time and space 1: representing "the sunset of the Danshui River estuary in the autumn of 2011"; a specific time and space 2: representing "the sunset of the Yellow River (Lanzhou City) in the autumn of 2011"; specific time and space 3: representative "Sunrise of the Alps on January 1, 2011"; specific time and space 4: represents "Sunrise of Alishan in Chiayi on January 1, 2011"; Specific time and space 5: Represents the "Moon of the Penghu in the Mid-Autumn Festival of 2011."

茲舉實際案例來說明本案之動作過程:The actual case will be used to illustrate the action process of this case:

首先,在第一實施例中,該複數個發光元件(11A、11B、11C、11D、11E、11F、11G)可分別為紅光(假設為發光元件11A與11B)、白光(假設為發光元件11C與11D)、黃光(假設為發光元件11E與11F)與紅外線(假設為發光元件11G)。First, in the first embodiment, the plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) may be red light (assumed to be light-emitting elements 11A and 11B), white light (assumed to be light-emitting elements) 11C and 11D), yellow light (assumed to be light-emitting elements 11E and 11F) and infrared light (assumed to be light-emitting element 11G).

關於該每筆特定時空資料31之特定時間及地點之情境過程:The contextual process for the specific time and place of each specific time-space data 31:

以特定時空1代表「2011年立秋之淡水河出海口之落日」為例,此即架起相機對著夕陽,拍攝2011年立秋之淡水河出海口落日前十分鐘的景況,假設每隔十秒鐘拍一張,可得到六十張之該影像以供觀察落日(即夕陽)的顏色(當然此時間及張數可增減)。該每一影像之圓形區域(即日或月,對應該照明裝置10之該中心區P1)可以算出平均之RGB值。Take the specific time and space 1 for the "Sunset of the Danshui River estuary in the autumn of 2011". This is to set up the camera against the setting sun. Take a picture of the tenth minute before the sunset of the Tamsui River estuary in 2011, assuming every ten seconds. One, you can get 60 images of this to observe the color of the sunset (the sunset) (of course, this time and the number of sheets can be increased or decreased). The circular area of each image (i.e., day or month, corresponding to the central area P1 of the illumination device 10) can calculate an average RGB value.

關於每組發光裝置11之複數個發光元件(11A、11B、11C、11D、11E、11F、11G)可具有如下表一之組合: The plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) for each group of light-emitting devices 11 may have a combination of the following Table 1:

當然,表一之組合只是舉例,實際上由不同波長及不同 RGB之該複數個發光元件(11A、11B、11C、11D、11E、11F、11G)構成之任意組合數多不予備載,唯每種組合均產生不同RGB值之組合光線。Of course, the combination of Table 1 is only an example, actually different wavelengths and different Any combination of the plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) of RGB is not required to be loaded, and each combination produces a combined light of different RGB values.

亦即,當選擇該任一筆特定時空資料31時,該處理裝置40即啟動該複數組發光裝置11,並依該情境變化過程之每一時間點對應於CIE色度圖之複數個軌跡點(x ,y ),即時計算比對各組合光線其RGB值對應於CIE色度圖之複數個軌跡點(x ',y '),而得到與該軌跡點(x ,y )間逐點累計誤差為最小距離之該軌跡點(x ',y '),並啟亮與該軌跡點(x ',y ')相對應之該發光元件組合,如此達到最佳仿不同時間地點之模仿日月及雲彩之情境照明效果。That is, when any of the specific spatio-temporal data 31 is selected, the processing device 40 activates the complex array illumination device 11 and corresponds to a plurality of track points of the CIE chromaticity diagram at each time point of the context change process ( x , y ), the instantaneous calculation of the RGB values of each combined ray corresponds to a plurality of trajectory points ( x ', y ') of the CIE chromaticity diagram, and obtains a point-by-point cumulative error from the trajectory point ( x , y ) The track point ( x ', y ') of the minimum distance, and the combination of the light-emitting elements corresponding to the track point ( x ', y ') is illuminated, so as to achieve the best imitation of the date and time of the different time and place The contextual lighting effect of the cloud.

依此類推,藉前述比對過程,該處理裝置40可針對該複數筆之特定時空CIE資料31A,預先建立相對應之複數筆的組合光線CIE資料31B,並儲存於該資料庫30(參閱第三B圖)。By the foregoing comparison process, the processing device 40 may pre-establish a corresponding plurality of combined light CIE data 31B for the specific space-time CIE data 31A of the plurality of pens, and store the data in the database 30 (see the Three B pictures).

另外,在此要特別說明的部分,是關於彩色的視訊影像色彩訊息描述方面,有各式各樣的彩色座標系統能供使用,CIE(Commission Internationale de l’clairage)是一個國際性的組織,專門為設定光度及彩色的標準,C.I.E.在1960年提出UVW均色式等比例(UCS)彩色座標系統,其最大之特色在彩色座標中其色彩變化比例幾乎相等。此外三色係數(Trichromatic Coefficient)之定義,CIE制定紅光波長是R(λ)=700nm,綠光波長是G(λ)=546.1nm,藍光波長是B(λ)=435.8nm,R.G.B為三種顏色的光量在某點素的灰階值,在CIE色彩空間中顏色的三色刺激值為X、Y和Z,可以下列數學式對應於紅色、綠色和藍色之間的關係,也就是:X=A 11 R +A 12 G +A 13 BY =A 21 R +A 22 G +A 23 BZ =A 31 R +A 32 G +A 33 Bx =X /(X +Y +Z );y =Y /(X +Y +Z ); 其中,A ij 為與攝影機有關的參數,相關設定為:A 11 +A 12 +A 13 =1,A 21 +A 22 +A 23 =1,A 31 +A 32 +A 33 =1。In addition, the part to be specifically described here is about the color information description of color video images. There are various color coordinate systems available for use. CIE (Commission Internationale de l'clairage) is an international organization. Specifically designed to set the standard of luminosity and color, CIE proposed the UVW homochromatic proportional (UCS) color coordinate system in 1960. Its biggest feature is that the color change ratio is almost equal in color coordinates. In addition to the definition of Trichromatic Coefficient, CIE defines the red wavelength as R(λ)=700nm, the green wavelength is G(λ)=546.1nm, the blue wavelength is B(λ)=435.8nm, and RGB is three. The amount of light in the grayscale value of a point, the tristimulus values of the color in the CIE color space are X, Y, and Z, which can correspond to the relationship between red, green, and blue, that is: X = A 11 R + A 12 G + A 13 B ; Y = A 21 R + A 22 G + A 23 B ; Z = A 31 R + A 32 G + A 33 B ; x = X / ( X + Y + Z ); y = Y /( X + Y + Z ); where A ij is a parameter related to the camera, and the relevant settings are: A 11 + A 12 + A 13 =1, A 21 + A 22 + A 23 =1, A 31 + A 32 + A 33 =1.

而關於影像(在此泛指擷取該複數個發光裝置11之影像或是連續拍攝而得到之該複數個影像)的RGB及CIE座標比對結果,可舉如下之轉換值為例作說明:X =0.619R +0.177G +0.204B Y =0.299R +0.586G +0.115B Z =0.000R +0.056G +0.944B x =X /(X +Y +Z )y =Y /(X +Y +Z )For the RGB and CIE coordinate comparison results of the image (in this case, the image of the plurality of light-emitting devices 11 or the plurality of images obtained by continuous shooting), the following conversion values are exemplified: X = 0.619 R +0.177 G +0.204 B Y =0.299 R +0.586 G +0.115 B Z =0.000 R +0.056 G +0.944 B x = X /( X + Y + Z ) y = Y /( X + Y + Z )

測量出仿朝陽與夕陽之該複數個發光元件(11A、11B、11C、11D、11E、11F、11G)之顏色R =255、G =255、B =57,其對應之CIE色度座標值(亦即軌跡點)計算如下:R =255,X =214.608;G =255,Y =232.23;B =57,Z =68.088;x =0.416774449;y =0.450996842;測量出下山前1分鐘夕陽光之顏色R =235、G =200、B =35,其對應之CIE色度座標值計算如下:R =235,X =188.005;G =200,Y =191.49;B =35,Z =44.24;x =0.443685;y =0.45191;測量出下山前5分鐘夕陽光顏色R =255、G =239、B =74,其對應之CIE色度座標值計算如下:R =255,X =215.244;G =239,Y =224.809;B =74,Z =83.24;x =0.411326;y =0.429604。Measuring the color of the plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) which are like the sun and the setting sun, R = 255, G = 255, B = 57, corresponding to the CIE chromaticity coordinates ( The trajectory point is calculated as follows: R = 255, X = 214.608; G = 255, Y = 232.23; B = 57, Z = 68.088; x = 0.416774449; y = 0.450996842; measure the color of the sunset light 1 minute before going down the mountain R = 235, G = 200, B = 35, and the corresponding CIE chromaticity coordinates are calculated as follows: R = 235, X = 188.005; G = 200, Y = 191.49; B = 35, Z = 44.24; x = 0.443685 ; y = 0.45191; measure the sunset light color R = 255, G = 239, B = 74 before the downhill, and the corresponding CIE chromaticity coordinates are calculated as follows: R = 255, X = 215.244; G = 239, Y =224.809; B = 74, Z = 83.24; x = 0.411326; y =0.429604.

前述係舉例說明影像之RGB與CIE色度圖座標之轉換實例(其餘依此類推,恕不贅述)。The foregoing is an example of the conversion of the RGB and CIE chromaticity coordinates of the image (the rest and so on, and will not be described).

藉此轉換過程可得到CIE色度圖座標之(x ,y )(或(x ',y '))值,即可標出一點,該60張影像可轉換成在CIE座標中X*Y平面上之60個點,形成一條曲線,如第六E圖所示,P i =(xp i ,yp i )是某筆特定時空CIE資料31A(真實的朝陽與夕陽,亦即本發明之特定時間及地點之情境過程)於第i個時間點在CIE色度圖裡的軌跡點。Q i =(xq i ,yq i )是某組發光裝置11在第i個時間點於CIE色度圖裡的軌跡點。則為點對點之距離。By this conversion process, the ( x , y ) (or ( x ', y ')) values of the CIE chromaticity diagram coordinates can be obtained, and one point can be marked, and the 60 images can be converted into X*Y planes in the CIE coordinates. 60 points above, forming a curve, as shown in Figure 6E, P i = ( xp i , yp i ) is a specific time and space CIE data 31A (real sun and sunset, that is, the specific time of the present invention And the situational process of the location) at the i-th time point in the CIE chromaticity diagram of the trajectory. Q i =( xq i , yq i ) is the trajectory point of a certain group of illuminating devices 11 in the CIE chromaticity diagram at the i-th time point. then , The distance to the point.

經該複數個發光元件(11A、11B、11C、11D、11E、11F、11G)任意組合,定義第j個發光元件(11A、11B、11C、11D、11E、11F、11G)組合之逐點累計誤差Δ1j 如下: Any combination of the plurality of light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) defines a point-by-point accumulation of the j-th light-emitting elements (11A, 11B, 11C, 11D, 11E, 11F, 11G) The error Δ 1 j is as follows:

舉例來講,參閱第六A圖,假設以軌跡點Q 11 為例,經公式計算與軌跡點P i 間之距離為D1。同理,參閱第六B圖,軌跡點Q 12 與軌跡點P i 間之距離為D2。再如第六C圖所示,軌跡點Q 13 與軌跡點P i 間之距離為D3。依此類推得到如第六D圖(為免圖面紊亂,各軌跡點間之距離省略未示,合先陳明。)所示之結果。For example, referring to FIG. 6A, assuming that the track point Q 11 is taken as an example, the distance between the track point P i and the track point P i is calculated by the formula to be D1. Similarly, referring to the sixth B diagram, the distance between the track point Q 12 and the track point P i is D2. Further, as shown in the sixth C diagram, the distance between the track point Q 13 and the track point P i is D3. And so on, as shown in the sixth D picture (to avoid the surface disorder, the distance between the track points is omitted, not shown, combined with the first.).

當情境照明發光顏色變換的時間間隔依照原來的實際朝陽與夕陽顏色換比例時,以該發光元件組合之逐點累計誤差最 小為最佳設計,亦即:Δ opt =min[Δ1112 ,……Δ1j ];(參閱第六D圖,假設以Q 11Q 12Q 13Q 14Q 15Q 16Q 17Q i 軌跡點作比對為例作說明,則對應Q i 之發光元件發出之組合光線最符合情境照明顏色標準);Δ opt 為最佳設計時情境照明發光顏色變換與實際朝陽(或夕陽)顏色變換之誤差量。When the time interval of the mood illumination color conversion is converted according to the original actual sun and sunset colors, the point-by-point cumulative error of the combination of the light-emitting elements is the best design, that is, Δ opt =min[Δ 11 , Δ 12 , Δ Δ 1 j ]; (Refer to the sixth D diagram, assuming that the tracking points of Q 11 , Q 12 , Q 13 , Q 14 , Q 15 , Q 16 , Q 17 , Q i are taken as an example, The combined light emitted by the light-emitting element corresponding to Q i is most in line with the ambient lighting color standard); Δ opt is the error amount of the ambient lighting color change and the actual sun (or sunset) color change in the optimal design.

本發明至少可有以下二種執行模式:The invention can have at least the following two modes of execution:

[a]即時比對模式:以選擇特定時空1為例,處理裝置40擷取相對應之該特定時空CIE資料31A,啟動該複數組發光裝置11,並依該情境變化過程之每一時間點對應於CIE色度圖之每一軌跡點(x ,y ),即時計算比對各組合光線其RGB值對應於CIE色度圖之複數個軌跡點(x ',y '),而得到與該軌跡點(x ,y )間逐點累計誤差為最小距離之該軌跡點(x ',y '),再啟亮相對應之發光元件組合(參閱第七A圖,假設啟亮發光元件11A與11B)。依此類推,發光元件組合如第七B圖(假設啟亮發光元件11B與11C)‧‧‧,最後發光元件組合如第七C圖(假設啟亮發光元件11G)。在此要先說明的部分,是該處理裝置40之運算速度極快,且每次只比對(x ',y ')兩軸,故可進行即時運算比對。[a] Instant comparison mode: taking a specific time and space 1 as an example, the processing device 40 retrieves the corresponding space-time CIE data 31A, activates the complex array light-emitting device 11, and changes each time point according to the situation change process. Corresponding to each track point ( x , y ) of the CIE chromaticity diagram, the instantaneous calculation of the RGB values of each combined ray corresponds to a plurality of track points ( x ', y ') of the CIE chromaticity diagram, and obtains The point-by-point cumulative error between the track points ( x , y ) is the minimum distance of the track point ( x ', y '), and the corresponding light-emitting element combination is re-lighted (refer to Figure 7A, assuming that the light-emitting elements 11A and 11B are turned on) ). By analogy, the illuminating element combination is as shown in the seventh B (assuming that the illuminating elements 11B and 11C are turned on), and the final illuminating element is combined as shown in the seventh C (assuming that the illuminating element 11G is turned on). The part to be explained here is that the processing device 40 has an extremely fast operation speed and only has two axes ( x ', y ') at a time, so that an immediate operation comparison can be performed.

[b]預先比對模式:預先依前述比對過程,以該複數筆之特定時空CIE資料31A,預先建立相對應之複數筆的組合光線CIE資料31B(例如表二之發光元件組合資料,此應用例該發光元件可為8個),將時間分成t1、t2、t3、t4、t5、t6、t7、t8共8段,在t1時先亮代號0之該發光元件,在t2時只亮代號1及2之發光元件組合,依此參閱表二之記載,最後在t8時,只亮代號7之該發光元件。[b] Pre-comparison mode: pre-establishing the corresponding combined light CIE data 31B of the plurality of pens according to the foregoing comparison process, using the specific time-space CIE data 31A of the plurality of pens (for example, the light-emitting component combination data of Table 2, In the application example, the light-emitting elements can be eight), and the time is divided into eight segments of t1, t2, t3, t4, t5, t6, t7, and t8, and the light-emitting element that lights up the code 0 first at t1 is only bright at t2. The combination of the light-emitting elements of codes 1 and 2 is referred to the description of Table 2, and finally, at t8, only the light-emitting element of code 7 is illuminated.

同理,與特定時空2「2011年立秋之黃河(蘭州市)之落日」(第二實施例)相對應之該筆特定時空資料31,亦可預先轉換為該特定時空CIE資料31A,並由本案之發光元件組合依序發亮來達到模擬實際落日過程之顏色變化。如下面之表三所示,亦將時間分成t1、t2、t3、t4、t5、t6、t7、t8共8段,在t1時先亮代號0之該發光元件,在t2時同時亮代號1、2及3之發光元件組合,在t3時同時亮代號2、3及4之發光元件組合,其餘依此參閱表三之記載,最後在t8時,只亮代號7之該發光元件。Similarly, the specific spatio-temporal data 31 corresponding to the specific time and space 2 "the sunset of the Yellow River (Lanzhou City) in the autumn of 2011 (the second embodiment)) may also be converted into the specific time and space CIE data 31A in advance, and The combination of the light-emitting elements of the present case is sequentially illuminated to achieve a color change that simulates the actual sunset. As shown in Table 3 below, the time is also divided into 8 segments of t1, t2, t3, t4, t5, t6, t7, and t8. The light-emitting component with the code 0 is first illuminated at t1, and the code 1 is illuminated at t2. For the combination of the light-emitting elements of 2, 3, the combination of the light-emitting elements of the codes 2, 3 and 4 is simultaneously illuminated at t3, and the rest is referred to the description of Table 3, and finally, at t8, only the light-emitting element of code 7 is illuminated.

前數之時序可為10分鐘內之8個時序,或者修改增減時間長短亦可。The timing of the first number can be 8 timings within 10 minutes, or the length of the increase or decrease can be modified.

關於本創作之第三實施例,硬體方面複數個發光元件仍為8個,如表三所示。之後,改變輸入之條件:該第一選項值21為「不輸入」;該第二選項值22為「夕陽模式」;該第三選項值23選擇為「局部有雲模式」。Regarding the third embodiment of the present invention, the plurality of light-emitting elements in the hardware aspect are still eight, as shown in Table 3. Thereafter, the input condition is changed: the first option value 21 is "no input"; the second option value 22 is "sunset mode"; and the third option value 23 is selected as "local cloud mode".

則發光元件組合可被定義為:先關閉發出紅外線之發光元件(11G),再啟動發出紅色之發光元件(11A與11B)和發出黃色之發光元件(11E與11F),使紅光慢慢變暗而黃光則慢慢變強,之後再啟動可發出白光之發光元件(11C與11D)。Then, the combination of the light-emitting elements can be defined as: first turning off the light-emitting element (11G) that emits infrared light, then starting the light-emitting element (11A and 11B) that emits red light, and emitting the light-emitting elements (11E and 11F) that emit yellow, causing the red light to slowly change. The dark and yellow light gradually becomes stronger, and then the light-emitting elements (11C and 11D) that emit white light are activated.

至於「局部有雲模式」係視覺上為遮住中心區P1之一部份。實際上係將代表被遮住(被遮住的範圍係內建,但可內建數十種模式,並由裝置隨機讀取,而能得到無法預知的新奇感。)之中心區P1(參閱第八A或第八B圖之斜線部份)的發光元件其發亮之亮度減半(或減成1/4或甚至完全減至0)即可。如第五圖所示,該每一發光元件係被一可變電阻112(可再增設一輔助電阻113,用以輔助微調發光元件之發光幅度,且凡可改變該發光元件發光之裝置皆不脫本案保護之範圍)控制發光亮度,該複數個可變電阻112係被該處理裝置40所控制。The "local cloud mode" is visually obscured as part of the central area P1. In fact, the representative will be covered (the hidden range is built-in, but dozens of modes can be built in, and the device can read randomly, and can get unpredictable novelty.) The central area P1 (see The light-emitting element of the oblique line portion of the eighth or eighth B diagram may be halved (or reduced to 1/4 or even completely reduced to zero) by the brightness of the light-emitting element. As shown in the fifth figure, each of the light-emitting elements is a variable resistor 112 (an auxiliary resistor 113 may be further added to assist in fine-tuning the light-emitting amplitude of the light-emitting element, and any device that can change the light-emitting element is not The range of protection from the present case) controls the brightness of the light, and the plurality of variable resistors 112 are controlled by the processing device 40.

亦即,當為局部有雲模式時,位於該中心區P1之一部份之複數個發光元件之發光亮度被減弱,而能夠模擬產生類似雲層把夕陽、朝陽、月亮之一部份擋掉的效果。That is, when the local cloud mode is used, the brightness of the plurality of light-emitting elements located in a part of the central area P1 is weakened, and the simulation can generate a cloud-like layer that blocks the sunset, the sun, and the moon. effect.

另外,關於月亮模式,月亮的頻譜可以視為5000度K的黑體輻射,像一塊圓石頭反射太陽光線的結果,由於雲層的影響,而呈現淡白黃色或黃色的光線。又,當模仿月亮圓缺變化的時候同樣讓某些發光元件亮度減弱或熄滅,即可造成月亮圓缺變化的視覺效果。In addition, with regard to the moon mode, the spectrum of the moon can be regarded as black body radiation of 5000 degrees K, as a result of reflecting a sun light by a round stone, showing a pale yellow or yellow light due to the influence of the cloud layer. Moreover, when imitating the change of the moon's roundness, the brightness of some of the light-emitting elements is also weakened or extinguished, which can cause the visual effect of the moon's roundness change.

綜上所述,本發明之優點及功效可歸納為:In summary, the advantages and effects of the present invention can be summarized as follows:

[1]可模擬出最接近情境模式之發光顏色。當選擇任一筆特定時空資料時,本創作可擷取其情境變化過程之每一時間點對應於CIE色度圖之每一軌跡點(x ,y ),並找出各組合光線其RGB值對應於CIE色度圖上,與該軌跡點(x ,y )間逐點累計誤差為最小距離之軌跡點(x ',y '),再啟亮與該軌跡點(x ',y ')相對應之該發光元件組合,其發出之組合光線即最接近情境模式之發光顏色。故,可模擬出最接近情境模式之發光顏色。[1] simulates the luminescent color closest to the situation mode. When selecting any specific spatio-temporal data, the creation can capture each trajectory point ( x , y ) of the CIE chromaticity diagram at each time point of the context change process, and find out the corresponding RGB values of each combined ray. On the CIE chromaticity diagram, the point-by-point cumulative error between the trajectory points ( x , y ) is the minimum distance trajectory point ( x ', y '), and then re-illuminated with the trajectory point ( x ', y ') Corresponding to the combination of the illuminating elements, the combined ray emitted is the illuminating color closest to the situation mode. Therefore, the illuminating color closest to the situation mode can be simulated.

[2]具多種顯示模式。本創作可以各組合光線之RGB值即時運算比對出逐點累計誤差為最小距離之CIE圖座標值,其為即時比對模式。亦可以即時比對模式得到之資料,預先建立相對應之複數筆的組合光線CIE資料,其為預先比對模式,可依設定自由選擇。故,具多種顯示模式。[2] has multiple display modes. This creation can calculate the coordinate value of the CIE graph with the minimum point-by-point cumulative error as the minimum distance by the RGB value of each combined light, which is the instant comparison mode. It is also possible to pre-establish the corresponding combined light CIE data of the plurality of pens by the data obtained by the instant comparison mode, which is a pre-comparison mode, and can be freely selected according to the setting. Therefore, there are multiple display modes.

[3]可以模擬特定時空之日出、日落或月亮之情境。本案除能模擬一般之日出及日落之外,還能由選定特定日期及地點之日出、日落或月亮之情境,例如『2011年1月1日阿爾卑斯山的日出』之類的情境,使本案之選擇性更多。[3] can simulate the situation of sunrise, sunset or moon in a specific time and space. In addition to simulating the general sunrise and sunset, the case can also be selected from the context of sunrise, sunset or moon at a specific date and location, such as the "Sunrise of the Alps on January 1, 2011". Make the case more selective.

[4]具有局部有雲模式更逼真。在實際之日出、日落或月亮發光之過程中,常有雲霧之干擾,本案也設有獨特之局部有雲模式來進行更逼真之模擬。[4] It is more realistic to have a local cloud mode. In the process of actual sunrise, sunset or moon light, there is often cloud interference, and this case also has a unique local cloud mode for more realistic simulation.

以上僅是藉由較佳實施例詳細說明本發明,對於該實施例所做的任何簡單修改與變化,皆不脫離本發明之精神與範圍。The present invention has been described in detail with reference to the preferred embodiments of the present invention, without departing from the spirit and scope of the invention.

10‧‧‧照明裝置10‧‧‧Lighting device

11‧‧‧發光裝置11‧‧‧Lighting device

11A、11B、11C、11D、11E、11F、11G‧‧‧發光元件11A, 11B, 11C, 11D, 11E, 11F, 11G‧‧‧Lighting elements

112‧‧‧可變電阻112‧‧‧Variable resistor

113‧‧‧輔助電阻113‧‧‧Auxiliary resistor

12‧‧‧擴散片12‧‧‧Diffuser

20‧‧‧輸入單元20‧‧‧ input unit

21‧‧‧第一選項值21‧‧‧First option value

22‧‧‧第二選項值22‧‧‧second option value

23‧‧‧第三選項值23‧‧‧ third option value

30‧‧‧資料庫30‧‧‧Database

31‧‧‧特定時空資料31‧‧‧Specific time and space data

31A‧‧‧特定時空CIE資料31A‧‧‧Specific Time and Space CIE Information

31B‧‧‧組合光線CIE資料31B‧‧‧Combined light CIE data

40‧‧‧處理裝置40‧‧‧Processing device

910‧‧‧座體910‧‧‧ body

920‧‧‧第一發光元件920‧‧‧First light-emitting element

930‧‧‧第二發光元件930‧‧‧Second light-emitting element

940‧‧‧微電腦控制單元940‧‧‧Microcomputer Control Unit

P1‧‧‧中心區P1‧‧‧ Central District

P2‧‧‧邊緣區P2‧‧‧ Marginal Area

PiQ 11Q 12Q 13Q 14Q 15Q 16Q 17Q i ‧‧‧軌跡點 Pi , Q 11 , Q 12 , Q 13 , Q 14 , Q 15 , Q 16 , Q 17 , Q i ‧‧‧ track points

PQ ‧‧‧曲線 P , Q ‧‧‧ Curve

D1、D2、D3‧‧‧距離D1, D2, D3‧‧‧ distance

第一圖係傳統裝置之示意圖The first picture is a schematic diagram of a conventional device

第二圖係本發明之示意圖The second figure is a schematic view of the present invention

第三A圖係本發明之第一實施例之示意圖Third A is a schematic view of a first embodiment of the present invention

第三B圖係本發明之第二實施例之示意圖Third B is a schematic view of a second embodiment of the present invention

第四圖係本發明之照明裝置之分解之示意圖The fourth figure is a schematic diagram of the decomposition of the lighting device of the present invention.

第五圖係本發明之電路之示意圖Figure 5 is a schematic diagram of the circuit of the present invention

第六A圖係本發明之特定時空CIE資料之軌跡點與組合光線CIE資料於CIE色度圖之軌跡點之累計誤差之示意圖Figure 6A is a schematic diagram of the cumulative error of the track point of the specific space-time CIE data of the present invention and the combined ray CIE data at the track point of the CIE chromaticity diagram.

第六B圖係本發明之特定時空CIE資料之軌跡點與組合光線CIE資料於CIE色度圖之軌跡點之累計誤差之示意圖Figure 6B is a schematic diagram of the cumulative error of the track point of the specific space-time CIE data of the present invention and the combined ray CIE data at the track point of the CIE chromaticity diagram.

第六C圖係本發明之特定時空CIE資料之軌跡點與組合光線CIE資料於CIE色度圖之軌跡點之累計誤差之示意圖The sixth C diagram is a schematic diagram of the cumulative error of the track point of the specific space-time CIE data of the present invention and the combined ray CIE data at the track point of the CIE chromaticity diagram.

第六D圖係本發明之特定時空CIE資料之軌跡點與組合光線CIE資料於CIE色度圖之複數個軌跡點之逐點累計誤差之示意圖The sixth D diagram is a schematic diagram of the point-by-point cumulative error of the track point of the specific space-time CIE data of the present invention and the complex ray CIE data in the plurality of track points of the CIE chromaticity diagram.

第六E圖係本發明之組合光線對應特定時空CIE資料之CIE色度圖座標之曲線圖The sixth E diagram is a graph of the CIE chromaticity diagram coordinate of the combined light of the present invention corresponding to a specific space-time CIE data.

第七A、第七B及第七C圖係分別為本發明之不同發光元件組合之發光順序之示意圖7A, 7B, and 7C are schematic diagrams showing the order of illumination of different combinations of light-emitting elements of the present invention, respectively.

第八A及第八B圖係分別為本發明之部分發光元件之不同區域部分變暗之示意圖8A and 8B are respectively schematic diagrams showing darkening of different regions of a part of the light-emitting elements of the present invention.

10‧‧‧照明裝置10‧‧‧Lighting device

12‧‧‧擴散片12‧‧‧Diffuser

20‧‧‧輸入單元20‧‧‧ input unit

30‧‧‧資料庫30‧‧‧Database

40‧‧‧處理裝置40‧‧‧Processing device

Claims (6)

一種可選定不同時間地點之模仿日月及雲彩之情境照明系統,係包括:一照明裝置,係具有:複數組發光裝置,係分佈成一邊緣區圍繞一中心區而概呈M *N 之矩形區域;該中心區呈圓形而用以模擬日月形狀;該邊緣區用以模擬雲彩形狀;每一組發光裝置具有複數個發光元件,該每一發光元件分別可發出不同波長及不同RGB值之光線,該複數個發光元件之波長係介於585~1100nm之間;以不同波長及不同RGB之該複數個發光元件組合發光,使該每組發光裝置發出不同RGB值之組合光線;該發光元件之發光組合變化如下:該複數個發光元件係依編號設計,波長愈長者編號愈大;λ k <λ k +1 ;一擴散片,係用以使組合光線柔和均勻;一輸入單元,係用以讀入一第一選項值、一第二選項值及一第三選項值;該第一選項值係選自複數個特定時空模式其中之一;該第二選項值係選自一夕陽模式、一朝陽模式、一月亮模式其中之一;該第三選項值係選自一無雲模式、一局部有雲模式、一雲破模式與一彩霞半掩模式的其中之一;除雲破與彩霞半掩模式,日出模式時啟亮之該複數個發光元件編號由大而小,整體數量由少而多;日落模式時啟亮之該複數個發光元件編號由小而大,整體數量由多而少;日出模式時m >n;日落模式時n >m;其中:n 為在時間t 時發光元件開啟的總個數;m 為在時間t +1時發光元件開啟的總個數;為在時間t 時發光元件整體平均波長;為在時間t +1時發光元件整體平均波長;該複數個發光元件係任意組合發光,除雲破模式與彩半掩模式外:日落時;在日出時;其中:I it 為第i 個發光元件在時間t 時的亮度;其中,I i (t +1) 為第i 個發光元件在時間t +1時的亮度;n 為在時間t 時發光元件開啟的總個數;m 為在時間t +1時發光元件開啟的總個數;一資料庫,係具有複數筆之特定時空資料,該每筆特定時空資料皆包括預先對一特定時間及地點之情境過程進行連續拍攝而得到之複數個影像,該每一影像皆具有J *K 個像素,其與概呈M *N 之矩形區域相對應;該每一像素皆具有一RGB值;該每一情境過程皆選自該第一、該第二、該第三選項值的至少其中之一;其中,JKMN 係為正整數;一處理裝置,係預先擷取各組合光線其RGB值,並經下列公式:X =A 11 R +A 12 G +A 13 BY =A 21 R +A 22 G +A 23 BZ =A 31 R +A 32 G +A 33 Bx =X /(X +Y +Z );y =Y /(X +Y +Z );計算該情境過程在第i個時間點之影像其像素的RGB值對應於CIE色度圖之軌跡點(x ,y ),其被定義為P i =(xp i ,yp i );依此類推,將該複數筆特定時空資料預先轉換 為複數筆之特定時空CIE資料,並儲存於該資料庫;其中:R.G.B為三種顏色的光量在某點素的灰階值,在CIE色彩空間中顏色的三色刺激值為X、Y和Z,可以上列數學式對應於紅色、綠色和藍色之間的關係;A ij 為與攝影機有關的參數,相關設定為:A 11 +A 12 +A 13 =1,A 21 +A 22 +A 23 =1,A 31 +A 32 +A 33 =1;藉此,當選擇該任一筆特定時空資料,該處理裝置係即時計算該發光裝置在第i個時間點之各組合光線其RGB值對應於CIE色度圖之複數個軌跡點(x ',y '),其被定義為Q i =(xq i ,yq i );再經下列公式:為點對點之距離;,定義出各組合光線其軌跡點(x ',y ')之逐點累計誤差Δ1j ;並經下列公式:Δ opt =min[Δ1112 ,.....Δ1j ];運算比對出相對應之該發光元件組合。A situational lighting system capable of selecting sun, moon and cloud at different time and place, comprising: a lighting device having: a complex array of light-emitting devices distributed in a rectangular region of an edge region surrounding a central region and representing an M * N The central area is circular to simulate the shape of the sun and the moon; the edge area is used to simulate the shape of the cloud; each group of light-emitting devices has a plurality of light-emitting elements, each of which can emit different wavelengths and different RGB values. Light, the plurality of light-emitting elements have a wavelength between 585 and 1100 nm; and the plurality of light-emitting elements of different wavelengths and different RGB are combined to emit light, so that each group of light-emitting devices emits combined light of different RGB values; the light-emitting element The combination of illumination changes is as follows: the plurality of illumination elements are designed according to the number, and the longer the wavelength is, the larger the number is; λ k < λ k +1 ; a diffusion sheet is used to make the combined light soft and uniform; an input unit is used Reading a first option value, a second option value, and a third option value; the first option value is selected from one of a plurality of specific space-time modes; the second option The value is selected from one of a sunset mode, a sun-sun mode, and a moon mode; the third option value is selected from the group consisting of a cloudless mode, a partial cloud mode, a cloud breaking mode, and a color cloud half masking type. One; in addition to the cloud breaking and Caixia half-mask type, the number of the plurality of light-emitting elements that are illuminated in the sunrise mode is large and small, and the overall number is small and small; the plurality of light-emitting elements are illuminated by the sunset mode. Small and large, the overall number is much more and less; in sunrise mode, m > n and ; sunset mode n > m and ; Wherein: the total number n of the light emitting element is turned on at time t; m is the total number of the light emitting element is turned on at time t +1; and The average wavelength of the entire light-emitting element at time t ; The average wavelength of the light-emitting elements at time t +1; the plurality of light-emitting elements are arbitrarily combined to emit light, except for the cloud breaking mode and the color half-mask type: at sunset At sunrise Where: I it is the luminance of the i- th illuminating element at time t ; wherein I i ( t +1) is the luminance of the i- th illuminating element at time t +1; n is the illuminating element at time t The total number of open; m is the total number of light-emitting elements turned on at time t +1; a database has specific time and space data of a plurality of pens, each of which includes a specific time and place in advance The contextual process is a plurality of images obtained by continuous shooting, each image having J * K pixels corresponding to a rectangular region of the general M * N ; each pixel having an RGB value; a context process is selected from at least one of the first, the second, and the third option values; wherein, J , K , M , and N are positive integers; and a processing device pre-captures each combined light Its RGB value is given by the following formula: X = A 11 R + A 12 G + A 13 B ; Y = A 21 R + A 22 G + A 23 B ; Z = A 31 R + A 32 G + A 33 B x = X / ( X + Y + Z ); y = Y / ( X + Y + Z ); Calculate the RGB value of the pixel of the scene at the ith time point corresponding to CIE a trajectory point ( x , y ) of a chromaticity diagram, which is defined as P i =( xp i , yp i ); and so on, the plurality of specific spatio-temporal data is pre-converted into specific time-space CIE data of the plurality of pens, and Stored in the database; where: RGB is the grayscale value of the light of three colors at a certain point, and the three-color stimulus values of the color in the CIE color space are X, Y, and Z, and the mathematical formula corresponding to the red color, The relationship between green and blue; A ij is a camera-related parameter, and the relevant settings are: A 11 + A 12 + A 13 =1, A 21 + A 22 + A 23 =1, A 31 + A 32 + A 33 =1; thereby, when any one of the specific spatio-temporal data is selected, the processing device calculates the combined ray values of the illuminating device at the i-th time point and the RGB values corresponding to the plurality of trajectory points of the CIE chromaticity diagram ( x ', y '), which is defined as Q i =( xq i , yq i ); , The distance to the point; , defining the point-by-point cumulative error Δ 1 j of the trajectory points ( x ', y ') of each combined ray; and by the following formula: Δ opt =min[Δ 11 , Δ 12 , .....Δ 1 j ] The operation compares the corresponding combination of the light-emitting elements. 如申請專利範圍第1項所述之可選定不同時間地點之模仿日月及雲彩之情境照明系統,其中,該處理裝置係依即時計算該發光裝置在第i個時間點之各組合光線其RGB值對應於CIE色度圖之複數個軌跡點(x ',y '),配合該複數筆之特定時空CIE資料,預先建立相對應之複數筆的組合光線CIE資料,並儲存於該資料庫。The context lighting system for simulating the sun, the moon and the cloud can be selected at different time and place as described in claim 1, wherein the processing device calculates the RGB of each combined light of the illuminating device at the i-th time point according to the instant calculation. The value corresponds to a plurality of track points ( x ', y ') of the CIE chromaticity diagram, and the combined ray CIE data of the corresponding plurality of pens is pre-established in association with the specific space-time CIE data of the plurality of pens, and stored in the database. 如申請專利範圍第1項所述之可選定不同時間地點之模仿日月及雲彩之情境照明系統,其中:該複數個發光元件係為LED結構;該複數個發光元件係依不同波長、交錯排列呈矩形區域;該複數個發光元件係採矩陣式驅動。 As described in claim 1, the scenario lighting system for simulating the sun and the moon and the cloud can be selected at different time and place, wherein: the plurality of light-emitting elements are LED structures; the plurality of light-emitting elements are arranged at different wavelengths and staggered A rectangular area; the plurality of light-emitting elements are driven by a matrix. 如申請專利範圍第1項所述之可選定不同時間地點之模仿日月及雲彩之情境照明系統,其中,該輸入單元係選自觸控螢幕、按鍵、滑鼠的其中之一種。 For example, the context lighting system for simulating the sun, the moon and the cloud may be selected at different time and place as described in claim 1 of the patent application, wherein the input unit is selected from the group consisting of a touch screen, a button, and a mouse. 如申請專利範圍第1項所述之可選定不同時間地點之模仿日月及雲彩之情境照明系統,其中,該組發光裝置又包括:至少一可變電阻,用以調整相對應之該發光元件之發光亮度。 The illuminating device for simulating the sun and the moon and the cloud according to the first aspect of the patent application, wherein the illuminating device further comprises: at least one variable resistor for adjusting the corresponding illuminating component The brightness of the light. 如申請專利範圍第5項所述之可選定不同時間地點之模仿日月之情境照明系統,其中,該組發光裝置又包括:至少一輔助電阻,用以微調相對應之該發光元件之發光亮度。The illuminating device for simulating the sun and the moon in different time and place as described in claim 5, wherein the group of illuminating devices further comprises: at least one auxiliary resistor for finely adjusting the brightness of the corresponding illuminating element .
TW101133165A 2012-09-11 2012-09-11 Can be selected at different time and place to simulate the sun and the moon and cloud scene lighting system TWI492658B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101133165A TWI492658B (en) 2012-09-11 2012-09-11 Can be selected at different time and place to simulate the sun and the moon and cloud scene lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101133165A TWI492658B (en) 2012-09-11 2012-09-11 Can be selected at different time and place to simulate the sun and the moon and cloud scene lighting system

Publications (2)

Publication Number Publication Date
TW201412183A TW201412183A (en) 2014-03-16
TWI492658B true TWI492658B (en) 2015-07-11

Family

ID=50821009

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101133165A TWI492658B (en) 2012-09-11 2012-09-11 Can be selected at different time and place to simulate the sun and the moon and cloud scene lighting system

Country Status (1)

Country Link
TW (1) TWI492658B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110806732A (en) * 2019-10-23 2020-02-18 曲松 Intelligent environment change simulation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546017A (en) * 2005-06-01 2008-12-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sunny-cloudy scale for setting the color temperature of white light
TW201011943A (en) * 2008-09-12 2010-03-16 Univ Nat Taiwan Science Tech Nature-light illuminating lamp
US20100084996A1 (en) * 2007-03-29 2010-04-08 Koninklijke Philips Electronics N.V. Natural daylight mimicking system and user interface
CN102537681A (en) * 2009-07-02 2012-07-04 无锡市顺达物流涂装设备有限公司 Simulating lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546017A (en) * 2005-06-01 2008-12-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sunny-cloudy scale for setting the color temperature of white light
US20100084996A1 (en) * 2007-03-29 2010-04-08 Koninklijke Philips Electronics N.V. Natural daylight mimicking system and user interface
TW201011943A (en) * 2008-09-12 2010-03-16 Univ Nat Taiwan Science Tech Nature-light illuminating lamp
CN102537681A (en) * 2009-07-02 2012-07-04 无锡市顺达物流涂装设备有限公司 Simulating lighting device

Also Published As

Publication number Publication date
TW201412183A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
JP6081663B2 (en) Lighting system
US11129250B2 (en) Artificial sunlight luminaire
US9967529B2 (en) Output light monitoring for benchmarking and enhanced control of a display system
US10194503B2 (en) Composite light source systems and methods
CN102422718B (en) Lighting arrangement
US20110043501A1 (en) Material Simulation Device
JP6766066B2 (en) Color picker
JP2007018013A5 (en)
JP2011138731A (en) Lighting device
JP2019029109A (en) Illuminating device and illumination control system
CN106102248A (en) A kind of illumination control method, illuminator and terminal
CN106164572A (en) There is the lighting unit of reflecting element
CN204613561U (en) To mix colours the light-emitting diode flash device of coordinate
TWI492658B (en) Can be selected at different time and place to simulate the sun and the moon and cloud scene lighting system
CN206196081U (en) Lighting device and terminal
Lin et al. The study of a novel control method of the mood lighting emulator
JP2016171040A (en) Luminaire and illumination system having the same
Boughen LightWave 3D 7.5 Lighting
TWI680447B (en) Display device and the driving method thereof
TWI758793B (en) Lighting system
US11280471B2 (en) Lighted architectural block system
US20090223100A1 (en) Figure exhibiting method and figure exhibiting device
CN202947097U (en) Touch control type light adjusting system
JP4951413B2 (en) Brightness correction method
Lin et al. A composite light emitting device for sunset emulator with energy variation logic control algorithm

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees