TWI491271B - Thin speaker with piezoelectric ceramic fiber composite and manufacturing method thereof - Google Patents

Thin speaker with piezoelectric ceramic fiber composite and manufacturing method thereof Download PDF

Info

Publication number
TWI491271B
TWI491271B TW099142399A TW99142399A TWI491271B TW I491271 B TWI491271 B TW I491271B TW 099142399 A TW099142399 A TW 099142399A TW 99142399 A TW99142399 A TW 99142399A TW I491271 B TWI491271 B TW I491271B
Authority
TW
Taiwan
Prior art keywords
piezoelectric ceramic
ceramic fiber
fiber composite
diaphragm
thin horn
Prior art date
Application number
TW099142399A
Other languages
Chinese (zh)
Other versions
TW201225685A (en
Inventor
Chia Hsin Lin
Syh Yuh Cheng
Irene Wang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099142399A priority Critical patent/TWI491271B/en
Priority to CN2010105933952A priority patent/CN102487475A/en
Publication of TW201225685A publication Critical patent/TW201225685A/en
Application granted granted Critical
Publication of TWI491271B publication Critical patent/TWI491271B/en

Links

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Description

壓電陶瓷纖維複合薄型喇叭及其製造方法Piezoelectric ceramic fiber composite thin horn and manufacturing method thereof

本發明是有關於一種薄型喇叭(thin speaker),且特別是有關於一種具音樂品質(acoustics)、寬音域、可頻率調整控制及低頻響應提升的壓電陶瓷纖維複合(piezoelectric ceramic fiber composite)薄型喇叭(thin speaker)。The present invention relates to a thin speaker, and more particularly to a piezoelectric ceramic fiber composite thin with acoustic quality, wide range, frequency adjustable control and low frequency response enhancement. Speaker (thin speaker).

聲音與影像為電子設備與使用者的主要溝通媒介,尤其在聲音的部份,由電影電視、收音機、隨身聽以至於智慧手機等產品,高品質的影像及聲音輸出一直是技術發展重要方向。尤其隨著可攜式智慧化電子產品功能不斷創新,在產品外觀尺寸持續縮小減薄減重的趨勢下,更重視影音輸出品質要求。然而,科技的進步在顯示影像部分有著長足的進步,但受限於消費性可攜式智慧化電子產品整體尺寸空間有限,高品質喇叭的尺寸過大,只能內建語音用途或較差聲音輸出的電聲元件,無法達到播放音樂的品質要求。高品質的聲音或音樂則仍需依賴外接喇叭來獲得0.2~20kHz的寬音域效果。Sound and video are the main communication mediums for electronic devices and users. Especially in the sound part, from movies and TV, radio, walkman to smart phones, high-quality image and sound output has always been an important direction of technology development. In particular, with the continuous innovation of the functions of portable intelligent electronic products, under the trend of continuously reducing the size and weight of the products, the quality of audio and video output is more important. However, advances in technology have made great strides in the display image segment, but limited by the limited size of consumer portable smart electronic products. The size of high-quality speakers is too large to be built-in for voice use or poor sound output. Electroacoustic components cannot meet the quality requirements for playing music. High-quality sound or music still depends on an external speaker to achieve a wide range of 0.2 to 20 kHz.

喇叭的動作方式一般是使用包括動圈、壓電與靜電(或稱駐極體)等三種。其中「壓電式喇叭」是使用壓電陶瓷薄片做為機電轉換源,當外加電場時可驅動壓電陶瓷薄片產生機械變形,驅動振膜使其發聲。壓電材料為剛性高的陶瓷材料,結合振膜後產生的振動不利於低音域表現,因此有些專利是在結構上作設計,使其利用外接平台或具有容積的物體作為音箱來達到低音域的改善,唯其屬於攜帶式外接型喇叭設計,無法整合到薄型電子產品。The operation mode of the horn is generally three types including moving coil, piezoelectric and static electricity (or electret). Among them, the "piezoelectric horn" uses a piezoelectric ceramic sheet as an electromechanical conversion source. When an electric field is applied, the piezoelectric ceramic sheet can be driven to generate mechanical deformation, and the diaphragm is driven to make sound. The piezoelectric material is a highly rigid ceramic material, and the vibration generated by the combination of the diaphragm is not conducive to the performance of the low range. Therefore, some patents are designed in the structure to make the bass field reach by using an external platform or a volumetric object as a speaker. Improvement, but it is a portable external speaker design, can not be integrated into thin electronic products.

此外,壓電式喇叭雖然可由壓電陶瓷厚度降低改善低音域響應,如美國專利US7596235。唯受限於陶瓷易脆特性,不易製作厚度夠薄的壓電陶瓷薄片,因此目前發展有使用多層結構來改善陶瓷片易脆問題,如美國專利公開號US20030099371,其雖然音壓可因多層的疊加作用而增加,唯對低音域響應的改善仍不足,其低音域一般仍在1kHz左右才有足夠的響應,低音域的表現仍有相當的改善空間。In addition, piezoelectric horns can improve the bass response by reducing the thickness of the piezoelectric ceramics, such as U.S. Patent 7,590,235. However, it is not limited to the fragile nature of ceramics, and it is difficult to fabricate piezoelectric ceramic sheets having a sufficiently thin thickness. Therefore, there has been a development of a multilayer structure to improve the fragility of ceramic sheets, such as US Patent Publication No. US20030099371, although the sound pressure can be multi-layered. The superposition effect increases, but the improvement of the response of the low range is still insufficient. The low range of the low range is still sufficient at around 1 kHz, and the performance of the low range still has considerable room for improvement.

此外,由於降低壓電陶瓷的剛性可改善低音頻的特性,所以也有專利如美國專利公開號US20100150381是使用聚偏二氟乙烯(polyvinylidene difluoride,PVDF)及鋯鈦酸鉛(PZT)壓電陶瓷粉末混練再刮刀成膜,唯傳統以樹脂與壓電陶瓷粉體混合形成的複合材料,雖有低的剛性卻損失壓電材料的機電轉換特性,導致輸出音量的降低。In addition, since the rigidity of the piezoelectric ceramic can be lowered to improve the characteristics of low audio, there is also a patent such as US Patent Publication No. US20100150381 which uses polyvinylidene difluoride (PVDF) and lead zirconate titanate (PZT) piezoelectric ceramic powder. The compounding material formed by mixing the resin and the piezoelectric ceramic powder has the low rigidity but loses the electromechanical conversion characteristics of the piezoelectric material, resulting in a decrease in the output volume.

本發明提供一種壓電陶瓷纖維複合薄型喇叭,能改善音樂品質、可頻率調整控制及提升低頻響應。The invention provides a piezoelectric ceramic fiber composite thin speaker capable of improving music quality, frequency adjustment control and improving low frequency response.

本發明提供一種壓電陶瓷纖維複合薄型喇叭的製造方法,能簡單製作出音質佳、寬音域且適合微型化的薄型喇叭。The invention provides a manufacturing method of a piezoelectric ceramic fiber composite thin horn, which can easily produce a thin horn with good sound quality, wide sound range and suitable for miniaturization.

本發明提出一種壓電陶瓷纖維複合薄型喇叭,包括由交聯固化膠體及多個壓電單元(element)構成之壓電陶瓷纖維複材致動器與至少一振膜。上述振膜是位於壓電陶瓷纖維複材致動器的單面或雙面。The invention provides a piezoelectric ceramic fiber composite thin horn, comprising a piezoelectric ceramic fiber composite actuator composed of a crosslinked solidified colloid and a plurality of piezoelectric elements and at least one diaphragm. The diaphragm is located on one or both sides of the piezoelectric ceramic fiber composite actuator.

在本發明之一實施例中,上述壓電陶瓷纖維複材致動器的楊氏係數範圍是0.1GPa~10Gpa,較佳的是3GPa至5GPa,致動器仍需一定強度的剛性才能將機械能有效傳遞至振膜。In an embodiment of the invention, the piezoelectric ceramic fiber composite actuator has a Young's modulus ranging from 0.1 GPa to 10 GPa, preferably from 3 GPa to 5 GPa, and the actuator still requires a certain strength of rigidity to mechanically Can be effectively transmitted to the diaphragm.

在本發明之一實施例中,上述振膜的楊氏係數範圍為0.1GPa~3.5GPa,較佳的是2GPa至3.5GPa。In an embodiment of the invention, the diaphragm has a Young's modulus in the range of 0.1 GPa to 3.5 GPa, preferably 2 GPa to 3.5 GPa.

在本發明之一實施例中,每一壓電單元為壓電陶瓷纖維。而壓電陶瓷纖維的成分如表示為ABO3 ,其中A代表鉛(Pb)、鋇(Ba)、鑭(La)、鍶(Sr)、鉀(K)或鋰(Li);B代表鈦(Ti)、鋯(Zr)、錳(Mn)、鈷(Co)、鈮(Nb)、鐵(Fe)、鋅(Zn)、鎂(Mg)、釔(Y)、錫(Sn)、鎳(Ni)或鎢(W)。上述壓電陶瓷纖維的線徑範圍為20μm~1000μm,較佳的是100μm至300μm。壓電陶瓷纖維的添加量範圍為60 vol%~92 vol%,較佳的添加量是80vol%以上至92vol%。In an embodiment of the invention, each piezoelectric unit is a piezoelectric ceramic fiber. The composition of the piezoelectric ceramic fiber is expressed as ABO 3 , where A represents lead (Pb), barium (Ba), barium (La), strontium (Sr), potassium (K) or lithium (Li); B represents titanium ( Ti), zirconium (Zr), manganese (Mn), cobalt (Co), niobium (Nb), iron (Fe), zinc (Zn), magnesium (Mg), yttrium (Y), tin (Sn), nickel ( Ni) or tungsten (W). The piezoelectric ceramic fiber has a wire diameter in the range of 20 μm to 1000 μm, preferably 100 μm to 300 μm. The piezoelectric ceramic fiber is added in an amount ranging from 60 vol% to 92 vol%, and a preferred addition amount is from 80 vol% or more to 92 vol%.

在本發明之一實施例中,上述壓電陶瓷纖維複材致動器的面積為0.5cm2 ~25cm2 ,較佳的複材致動器面積是5cm2 以上至25cm2In an embodiment of the invention, the piezoelectric ceramic fiber composite actuator has an area of 0.5 cm 2 to 25 cm 2 , and a preferred composite actuator area is 5 cm 2 or more to 25 cm 2 .

在本發明之一實施例中,上述壓電陶瓷纖維複材致動器之厚度範圍為30μm~300μm,較佳的是70μm至120μm。In an embodiment of the invention, the piezoelectric ceramic fiber composite actuator has a thickness in the range of 30 μm to 300 μm, preferably 70 μm to 120 μm.

在本發明之一實施例中,上述交聯固化膠體是選自包括環氧樹脂系樹脂、壓克力系樹脂與酚醛樹脂所組成之族群中的一種聚合物。In one embodiment of the present invention, the crosslinked cured colloid is a polymer selected from the group consisting of an epoxy resin, an acrylic resin, and a phenol resin.

在本發明之一實施例中,上述壓電陶瓷纖維複材致動器為圓形、橢圓或矩形。In an embodiment of the invention, the piezoelectric ceramic fiber composite actuator is circular, elliptical or rectangular.

在本發明之一實施例中,上述振膜還包括電極層,其中電極層的材料包括金(Au)、鉑(Pt)、銀(Ag)、銀鈀(Ag-Pd)、鋁(Al)或銅(Cu)。電極層之厚度範圍為0.1μm~10μm,較佳的是0.5μm~1μm。In an embodiment of the invention, the diaphragm further includes an electrode layer, wherein the material of the electrode layer comprises gold (Au), platinum (Pt), silver (Ag), silver palladium (Ag-Pd), aluminum (Al) Or copper (Cu). The thickness of the electrode layer ranges from 0.1 μm to 10 μm, preferably from 0.5 μm to 1 μm.

在本發明之一實施例中,上述振膜是選自包括聚碳酸酯(polycarbonate,PC)、聚對苯二甲酸乙二醇酯(polyethylene terephthalate,PET)與聚亞醯胺(polyimide,PI)所組成之族群中的一種材料。In an embodiment of the invention, the diaphragm is selected from the group consisting of polycarbonate (PC), polyethylene terephthalate (PET) and polyimide (PI). A material in a group of people.

在本發明之一實施例中,上述振膜的厚度範圍為15μm~150μm,較佳的是100μm以下至15μm。In an embodiment of the invention, the diaphragm has a thickness in the range of 15 μm to 150 μm, preferably 100 μm or less to 15 μm.

在本發明之一實施例中,上述振膜之形狀為圓形或矩形。In an embodiment of the invention, the diaphragm is circular or rectangular in shape.

在本發明之一實施例中,上述振膜之面積範圍為1cm2 ~250cm2 ,振膜面積與致動器面積的比值在2~5左右會有較佳的音場表現,振膜之較佳的面積範圍為10cm2 ~125cm2In one embodiment of the present invention, the area of the diaphragm in the range of 1cm 2 ~ 250cm 2, the ratio of the area of the actuator diaphragm area will be preferred sound field performance at about 2 to 5, the diaphragm more The preferred area ranges from 10 cm 2 to 125 cm 2 .

本發明另提出一種壓電陶瓷纖維複合薄型喇叭的製造方法,包括先將壓電陶瓷纖維排列集束,再用一交聯固化膠體黏結壓電陶瓷纖維並固化所述交聯固化膠體,而形成一壓電陶瓷纖維複合材料。接著,切割壓電陶瓷纖維複合材料以得到數個複材薄片。然後,極化複材薄片作為壓電陶瓷纖維複材致動器,再於壓電陶瓷纖維複材致動器的單面或雙面貼合振膜。The invention further provides a manufacturing method of a piezoelectric ceramic fiber composite thin horn, which comprises first arranging piezoelectric ceramic fibers, and then bonding the piezoelectric ceramic fibers with a cross-linking curing colloid and curing the cross-linked curing colloid to form a Piezoelectric ceramic fiber composite. Next, the piezoelectric ceramic fiber composite is cut to obtain a plurality of composite sheets. Then, the polarized composite sheet is used as a piezoelectric ceramic fiber composite actuator, and the diaphragm is attached to one or both sides of the piezoelectric ceramic fiber composite actuator.

在本發明之另一實施例中,切割上述壓電陶瓷纖維複合材料之步驟包括以垂直壓電陶瓷纖維的角度進行切割。In another embodiment of the invention, the step of cutting the piezoelectric ceramic fiber composite comprises cutting at an angle of the vertical piezoelectric ceramic fiber.

在本發明之另一實施例中,在貼合振膜之前還可包括在振膜之表面形成電極層。In another embodiment of the present invention, the electrode layer may be formed on the surface of the diaphragm before the diaphragm is attached.

在本發明之另一實施例中,形成上述電極層的方法包括真空濺鍍或印刷。In another embodiment of the invention, the method of forming the electrode layer described above includes vacuum sputtering or printing.

基於上述,本發明用壓電陶瓷纖維複合材料做為致動器,故此薄型壓電複材喇叭在低音頻(200~1kHz)就有高響應(>90dB)並可延伸至高音頻(~20kHz),而且因為結構簡單、超薄(<0.5mm),所以容易與可攜式產品整合。經測試還能得到低失真度(distortion rate)(~10%)的效果。因此,本發明的喇叭無論就音質(acoustics characteristic)或體積而言均較傳統壓電陶瓷喇叭(piezoelectric speaker)優異,且驅動電壓低。Based on the above, the piezoelectric ceramic fiber composite material is used as an actuator, so the thin piezoelectric composite material speaker has high response (>90 dB) in low audio (200~1 kHz) and can be extended to high audio (~20 kHz). And because of its simple structure and ultra-thin (<0.5mm), it is easy to integrate with portable products. It has also been tested to achieve a low distortion rate (~10%). Therefore, the horn of the present invention is superior in comparison to a conventional piezoelectric ceramic speaker in terms of acoustic characteristics or volume, and has a low driving voltage.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1是依照一實施例之一種壓電陶瓷纖維複合薄型喇叭的立體透視圖。1 is a perspective perspective view of a piezoelectric ceramic fiber composite thin horn according to an embodiment.

請參照圖1,本實施例的壓電陶瓷纖維複合薄型喇叭100包括一振膜102與一壓電陶瓷纖維複材致動器104。其中壓電陶瓷纖維複材致動器104的楊氏係數範圍例如是0.1GPa~10GPa,較佳的是3GPa至5GPa,而位在壓電陶瓷纖維複材致動器104單面的振膜102之楊氏係數範圍例如0.1GPa~3.5GPa,較佳的是2GPa至3.5GPa。上述壓電陶瓷纖維複材致動器104是由交聯固化膠體106及數個壓電單元(element)108構成,其中每一壓電單元108為壓電陶瓷纖維,其成分如表示為ABO3 ,則A代表Pb、Ba、La、Sr、K、Li等元素;B代表Ti、Zr、Mn、Co、Nb、Fe、Zn、Mg、Y、Sn、Ni、W等元素。由於壓電陶瓷複合材料中陶瓷相的比例較高時,其機電轉換效率可高於全壓電陶瓷材料約10%以上,所以壓電陶瓷纖維的添加量可為60 vol%~92 vol%,較佳的是80 vol%~92 vol%,以得到更佳的機電轉換效率、更低的剛性與質量比。上述壓電陶瓷纖維的線徑範圍譬如20μm~1000μm,較佳的是100μm至300μm。至於交聯固化膠體106則例如選自包括環氧樹脂(epoxy)系樹脂、壓克力(acrylic)系樹脂與酚醛樹脂(novolak resin)所組成之族群中的一種聚合物。Referring to FIG. 1, the piezoelectric ceramic fiber composite thin horn 100 of the present embodiment includes a diaphragm 102 and a piezoelectric ceramic fiber composite actuator 104. The Young's modulus of the piezoelectric ceramic fiber composite actuator 104 is, for example, 0.1 GPa to 10 GPa, preferably 3 GPa to 5 GPa, and the diaphragm 102 located on one side of the piezoelectric ceramic fiber composite actuator 104. The Young's coefficient ranges, for example, from 0.1 GPa to 3.5 GPa, preferably from 2 GPa to 3.5 GPa. The piezoelectric ceramic fiber composite actuator 104 is composed of a crosslinked cured colloid 106 and a plurality of piezoelectric elements 108, wherein each piezoelectric unit 108 is a piezoelectric ceramic fiber, and its composition is expressed as ABO 3 . A represents an element such as Pb, Ba, La, Sr, K, and Li; and B represents an element such as Ti, Zr, Mn, Co, Nb, Fe, Zn, Mg, Y, Sn, Ni, and W. Since the ratio of the ceramic phase in the piezoelectric ceramic composite is high, the electromechanical conversion efficiency can be higher than that of the all-piezoelectric ceramic material by more than 10%, so the piezoelectric ceramic fiber can be added in an amount of 60 vol% to 92 vol%. It is preferably 80 vol% to 92 vol% for better electromechanical conversion efficiency and lower rigidity and mass ratio. The piezoelectric ceramic fiber has a wire diameter ranging from 20 μm to 1000 μm, preferably from 100 μm to 300 μm. The crosslinked cured colloid 106 is, for example, selected from the group consisting of an epoxy resin, an acrylic resin, and a novolak resin.

請繼續參照圖1,本實施例中的壓電陶瓷纖維複材致動器104的面積例如在0.5cm2 ~25cm2 之間、厚度範圍例如在30μm~300μm之間,較佳的是面積在5cm2 ~25cm2 、厚度範圍為70μm至120μm之間。而振膜102可為包括兩種或兩種以上不同楊氏係數的有機或有機無機混成之複材,如選自包括聚碳酸酯(polycarbonate,PC)、聚對苯二甲酸乙二醇酯(polyethylene terephthalate,PET)與聚亞醯胺(polyimide,PI)所組成之族群中的一種材料。此外,振膜102的厚度範圍例如在15μm~150μm之間、面積範圍例如在1cm2 ~250cm2 之間,較佳的振膜102厚度在15μm~100μm、振膜102面積與致動器104面積的比值在2~5左右會有較佳的音場表現,較佳的振膜102面積範圍例如在10cm2 ~125cm2 之間。另外,在振膜102與壓電陶瓷纖維複材致動器104的貼附面與相對面上還可包括電極層110,其材料包括Au、Pt、Ag、Ag-Pd、Al、Cu等。電極層110之厚度範圍例如0.1μm~10μm之間,較佳的電極層110厚度範圍在0.5μm~1μm之間。With reference to FIG. 1, the piezoelectric ceramic fiber composite actuator 104 of the present embodiment has an area of, for example, 0.5 cm 2 to 25 cm 2 and a thickness ranging from 30 μm to 300 μm, preferably in an area of 5 cm 2 ~ 25 cm 2 and a thickness ranging from 70 μm to 120 μm. The diaphragm 102 may be an organic or organic-inorganic composite comprising two or more different Young's coefficients, such as selected from the group consisting of polycarbonate (PC) and polyethylene terephthalate ( Polyethylene terephthalate (PET) is a material of the group consisting of polyimine (PI). Further, the thickness of the diaphragm 102, for example, between 15μm ~ 150μm, the area range, for example between 1cm 2 ~ 250cm 2, preferably the diaphragm 102 in the thickness 15μm ~ 100μm, the area of the diaphragm 102 and the actuator 104 area The ratio of 2 to 5 has a better sound field performance, and the preferred diaphragm 102 has an area ranging, for example, between 10 cm 2 and 125 cm 2 . In addition, the electrode layer 110 may be further included on the attachment surface and the opposite surface of the diaphragm 102 and the piezoelectric ceramic fiber composite actuator 104, and the material thereof may include Au, Pt, Ag, Ag-Pd, Al, Cu, or the like. The thickness of the electrode layer 110 ranges, for example, between 0.1 μm and 10 μm, and the thickness of the preferred electrode layer 110 ranges from 0.5 μm to 1 μm.

在圖1中,壓電陶瓷纖維複材致動器104為矩形;振膜102之形狀也為矩形。但是,本發明並不限於此,本實施例之壓電陶瓷纖維複材致動器104還可以是圓形(如圖2)或橢圓。同樣地,振膜102之形狀還可以是圓形(如圖2)或其他形狀,且振膜102與壓電陶瓷纖維複材致動器104的形狀可相同抑或不同。In Fig. 1, the piezoelectric ceramic fiber composite actuator 104 is rectangular; the diaphragm 102 is also rectangular in shape. However, the present invention is not limited thereto, and the piezoelectric ceramic fiber composite actuator 104 of the present embodiment may also be circular (as shown in Fig. 2) or elliptical. Similarly, the shape of the diaphragm 102 may also be circular (as in FIG. 2) or other shapes, and the shape of the diaphragm 102 and the piezoelectric ceramic fiber composite actuator 104 may be the same or different.

圖3是依照另一實施例之一種壓電陶瓷纖維複合薄型喇叭的立體透視圖,其中使用與圖1相同的元件符號來代表相同的構件。3 is a perspective perspective view of a piezoelectric ceramic fiber composite thin horn according to another embodiment, in which the same reference numerals are used to denote the same members.

請參照圖3,本實施例的壓電陶瓷纖維複合薄型喇叭300除壓電陶瓷纖維複材致動器104外,還有位在壓電陶瓷纖維複材致動器104雙面的第一振膜302與第二振膜304。其中,第一振膜302與第二振膜304的材料、厚度與面積等均可參照圖1之實施例。Referring to FIG. 3, the piezoelectric ceramic fiber composite thin horn 300 of the present embodiment has a first vibration on both sides of the piezoelectric ceramic fiber composite actuator 104 in addition to the piezoelectric ceramic fiber composite actuator 104. The membrane 302 and the second diaphragm 304. The material, thickness, area, and the like of the first diaphragm 302 and the second diaphragm 304 can be referred to the embodiment of FIG. 1 .

在上述各圖中,壓電陶瓷纖維複材致動器104是屬於1(壓電陶瓷纖維)-3(硬化膠體)結構的複材;也就是說,其中的壓電單元108(壓電陶瓷纖維)具有同一方向性排列,交聯固化膠體106則包附於壓電單元108之間,亦即有機材料黏結等向性排列的壓電陶瓷纖維,以達到高陶瓷相(>60%)的複材。因此,除上述實施例的附圖外,圖4A和圖4B都可應用在壓電陶瓷纖維複材致動器104。圖4A是由交聯固化膠體400及壓電陶瓷球(spheres)402構成的複材。圖4B是由交聯固化膠體400及壓電陶瓷塊(dices)404構成的複材。除圖中所示的1-3結構的複材外,本發明應可應用其他類型的複材,並不限於此。In each of the above figures, the piezoelectric ceramic fiber composite actuator 104 is a composite material belonging to a 1 (piezoelectric ceramic fiber)-3 (hardened colloid) structure; that is, a piezoelectric unit 108 (piezoelectric ceramic) therein. The fibers have the same directional alignment, and the crosslinked curing colloid 106 is enclosed between the piezoelectric units 108, that is, the organic material is bonded to the isotropically arranged piezoelectric ceramic fibers to achieve a high ceramic phase (>60%). Compound material. Therefore, in addition to the drawings of the above embodiments, FIGS. 4A and 4B can be applied to the piezoelectric ceramic fiber composite actuator 104. 4A is a composite material composed of a crosslinked solidified colloid 400 and piezoelectric ceramic balls 402. 4B is a composite material composed of a crosslinked cured colloid 400 and a piezoelectric ceramic block 404. In addition to the composite material of the 1-3 structure shown in the drawings, the present invention should be applicable to other types of composite materials, and is not limited thereto.

圖5是依照又一實施例之一種壓電陶瓷纖維複合薄型喇叭的製造流程步驟圖。FIG. 5 is a flow chart showing the manufacturing process of a piezoelectric ceramic fiber composite thin horn according to still another embodiment.

請參照圖5,首先在步驟S500中將壓電陶瓷纖維排列集束,其中所用的壓電陶瓷纖維的成分如表示為ABO3 ,則A代表鉛(Pb)、鋇(Ba)、鑭(La)、鍶(Sr)、鉀(K)或鋰(Li);B代表鈦(Ti)、鋯(Zr)、錳(Mn)、鈷(Co)、鈮(Nb)、鐵(Fe)、鋅(Zn)、鎂(Mg)、釔(Y)、錫(Sn)、鎳(Ni)或鎢(W)。上述壓電陶瓷纖維的線徑約20μm~1000μm,較佳的是100μm至300μm。Referring to FIG. 5, first, the piezoelectric ceramic fibers are arranged and bundled in step S500, wherein the composition of the piezoelectric ceramic fibers used is expressed as ABO 3 , and A represents lead (Pb), barium (Ba), and barium (La). , strontium (Sr), potassium (K) or lithium (Li); B represents titanium (Ti), zirconium (Zr), manganese (Mn), cobalt (Co), niobium (Nb), iron (Fe), zinc ( Zn), magnesium (Mg), yttrium (Y), tin (Sn), nickel (Ni) or tungsten (W). The piezoelectric ceramic fiber has a wire diameter of about 20 μm to 1000 μm, preferably 100 μm to 300 μm.

然後,在步驟S502中用一交聯固化膠體黏結上述壓電陶瓷纖維並固化所述交聯固化膠體,而形成低楊氏係數(約0.1GPa~10Gpa,較佳的是3GPa至5GPa)的一壓電陶瓷纖維複合材料。所述交聯固化膠體例如是選自包括環氧樹脂系樹脂、壓克力系樹脂與酚醛樹脂所組成之族群中的一種聚合物。而以交聯固化膠體與壓電陶瓷纖維的體積相比,壓電陶瓷纖維的添加量約60 vol%~92 vol%,較佳的是80 vol%以上至92 vol%。Then, in step S502, the piezoelectric ceramic fiber is bonded with a crosslinked solidified colloid and the crosslinked solidified colloid is cured to form a low Young's modulus (about 0.1 GPa to 10 GPa, preferably 3 GPa to 5 GPa). Piezoelectric ceramic fiber composite. The crosslinked cured colloid is, for example, a polymer selected from the group consisting of an epoxy resin, an acrylic resin, and a phenol resin. The piezoelectric ceramic fiber is added in an amount of about 60 vol% to 92 vol%, preferably 80 vol% or more to 92 vol%, based on the volume of the crosslinked solidified colloid and the piezoelectric ceramic fiber.

接著,在步驟S504中切割壓電陶瓷纖維複合材料,以得到數個複材薄片。在本實施例中,步驟S504例如是以垂直壓電陶瓷纖維的角度進行切割。在步驟S504之後,還可研磨複材薄片,以得到更薄或更精細的形狀。Next, the piezoelectric ceramic fiber composite is cut in step S504 to obtain a plurality of composite sheets. In the present embodiment, step S504 is, for example, cutting at an angle of a vertical piezoelectric ceramic fiber. After step S504, the composite sheet may also be ground to obtain a thinner or finer shape.

之後,在步驟S506中極化複材薄片,以將其作為壓電陶瓷纖維複材致動器。Thereafter, the composite sheet is polarized in step S506 to be used as a piezoelectric ceramic fiber composite actuator.

然後,在步驟S508中於壓電陶瓷纖維複材致動器的單面或雙面貼合振膜,其中振膜的楊氏係數約0.1GPa~3.5GPa,較佳的是2GPa至3.5GPa。振膜例如選自包括聚碳酸酯(PC)、聚對苯二甲酸乙二醇酯(PET)與聚亞醯胺(PI)所組成之族群中的一種材料。另外,步驟S508之前還可在振膜之表面先形成電極層,其方法例如真空濺鍍或印刷。上述電極層的材料例如Au、Pt、Ag、Ag-Pd、Al或Cu。Then, in step S508, the diaphragm is attached to one side or both sides of the piezoelectric ceramic fiber composite actuator, wherein the Young's modulus of the diaphragm is about 0.1 GPa to 3.5 GPa, preferably 2 GPa to 3.5 GPa. The diaphragm is, for example, selected from the group consisting of polycarbonate (PC), polyethylene terephthalate (PET), and polyamidamine (PI). In addition, an electrode layer may be formed on the surface of the diaphragm before the step S508 by a method such as vacuum sputtering or printing. The material of the above electrode layer is, for example, Au, Pt, Ag, Ag-Pd, Al or Cu.

以下列舉幾個實驗來驗證本發明的效果。Several experiments are listed below to verify the effects of the present invention.

實例一Example one

首先,製作不同壓電陶瓷纖維添加量的複材棒,包含壓電陶瓷纖維添加量為53vol%、72vol%、80vol%以及85vol%的複材First, a composite rod of different piezoelectric ceramic fibers is prepared, and the composite material containing piezoelectric ceramic fibers is 53 vol%, 72 vol%, 80 vol%, and 85 vol%.

製作方式是先將壓電陶瓷纖維集束後置入面積為5cm2 的模具內,所用的壓電陶瓷纖維的線徑為250μm,其長度為10cm。接著,調製適當可硬化的交聯固化膠體,此處使用環氧樹脂填入模具內後,施以離心及抽氣步驟,待膠體硬化脫模後得到具有壓電陶瓷纖維等向性排列的無機陶瓷與有機膠體的複材。然後,以垂直纖維的角度切割上述複材並極化得到超薄的壓電複材薄片作為帶動喇叭振膜的致動器,壓電陶瓷纖維複材致動器的厚度為70μm、面積固定為5cm2The piezoelectric ceramic fiber was first bundled into a mold having an area of 5 cm 2 , and the piezoelectric ceramic fiber used had a wire diameter of 250 μm and a length of 10 cm. Then, a suitable hardenable cross-linking curing colloid is prepared. After the epoxy resin is filled into the mold, a centrifugal and pumping step is applied, and after the colloid hardening and demoulding, an inorganic material having an isotropic arrangement of piezoelectric ceramic fibers is obtained. A composite of ceramic and organic colloid. Then, the above composite material is cut at an angle of a vertical fiber and polarized to obtain an ultrathin piezoelectric composite material sheet as an actuator for driving the horn diaphragm. The thickness of the piezoelectric ceramic fiber composite actuator is 70 μm, and the area is fixed. 5cm 2 .

另外,準備一個傳統全壓電陶瓷致動器,其面積為5cm2 、厚度為70μm。In addition, a conventional all-piezoceramic actuator was prepared having an area of 5 cm 2 and a thickness of 70 μm.

然後,測量以上樣品的複材特性,結果顯示於下表一。在表一中,壓電陶瓷纖維複材致動器之楊氏係數(Y33 )明顯比傳統全壓電陶瓷的值小2~3個數量級。Then, the composite properties of the above samples were measured, and the results are shown in Table 1 below. In Table 1, the Young's modulus (Y 33 ) of the piezoelectric ceramic fiber composite actuator is significantly 2 to 3 orders of magnitude smaller than that of the conventional all-piezoelectric ceramic.

然後,在這些壓電陶瓷纖維複材致動器上貼附單層PET振膜來測試音頻響應。其中,PET振膜面積固定為25cm2 、厚度為100μm。整體喇叭含框架厚度約為0.5mm。音頻響應結果如圖6所示,測試條件為15V-10cm。Then, a single layer PET diaphragm was attached to these piezoelectric ceramic fiber composite actuators to test the audio response. Among them, the area of the PET diaphragm was fixed to 25 cm 2 and the thickness was 100 μm. The overall horn has a frame thickness of approximately 0.5 mm. The audio response results are shown in Figure 6, and the test conditions are 15V-10cm.

從圖6可知,不同壓電陶瓷纖維添加量的壓電陶瓷纖維複材致動器貼附單層振膜的喇叭起振頻率f0 在200~215Hz左右,音壓響應位準(sound pressure level,S.P.L.)隨複材中壓電陶瓷纖維添加量增加成正比增加,當複材中壓電陶瓷纖維添加量最高達85%時,起振頻率f0 的響應達到105dB。It can be seen from Fig. 6 that the horn starting frequency f 0 of a piezoelectric ceramic fiber composite actuator with a different piezoelectric ceramic fiber addition amount attached to a single-layer diaphragm is about 200 to 215 Hz, and the sound pressure level is sound pressure level. , SPL) increases proportionally with the increase of the amount of piezoelectric ceramic fiber in the composite material. When the amount of piezoelectric ceramic fiber in the composite material is up to 85%, the response of the starting frequency f 0 reaches 105 dB.

而且,總諧波失真(total harmonic distortion,THD)的結果顯示於圖7,其中顯示在可聽音頻範圍(200Hz~10kHz)多在10%以下。Moreover, the results of total harmonic distortion (THD) are shown in Fig. 7, which shows that the audible audio range (200 Hz to 10 kHz) is more than 10%.

實例二Example two

以表一中壓電陶瓷纖維添加量為85%之壓電陶瓷纖維複材作為致動器,然後在其雙面各貼附一層振膜,兩層振膜中央除了與複材薄片接著外,兩層振膜其餘空間各自獨立。振膜的貼附面具有電極層,振膜周圍以固定結構框架固定構成如圖3之壓電陶瓷纖維複合薄型喇叭。其中,下振膜為厚度100μm的PET膜、面積固定為25cm2 ;上振膜為厚度25μm的Kapton(PI)膜、面積則分別為20cm2 、12.5cm2 和6.25cm2 (上振膜與下振膜之面積比分別為0.8、0.5與0.25)。整體喇叭含框架厚度約為0.5mm,測試條件為15V-10cm。The piezoelectric ceramic fiber composite material with 85% piezoelectric ceramic fiber added in Table 1 is used as an actuator, and then a diaphragm is attached to both sides of the piezoelectric ceramic film, and the center of the two layers of the diaphragm is followed by the composite sheet. The remaining spaces of the two layers of diaphragm are independent. The attaching surface of the diaphragm has an electrode layer, and the piezoelectric ceramic fiber composite thin horn of FIG. 3 is fixed by a fixed structural frame around the diaphragm. Wherein the lower diaphragm 100μm thickness PET film, fixed area of 25cm 2; the diaphragm is Kapton (PI) film thickness of 25μm, respectively, the area 20cm 2, 12.5cm 2 and 6.25cm 2 (on the diaphragm and The area ratio of the lower diaphragm is 0.8, 0.5 and 0.25, respectively. The overall horn has a frame thickness of approximately 0.5 mm and a test condition of 15 V to 10 cm.

隨著上振膜面積之改變,測量不同喇叭之音頻響應的影響。結果如圖8所示,壓電陶瓷纖維複材貼合雙層振膜的喇叭起振頻率f0 在230Hz左右,響應達95dB;而在350Hz左右亦有一共振頻率f0 ’,響應為93dB。結果顯示採用獨立雙層振膜貼合單一壓電複材薄片方式,在低音域有各自獨立的起振頻率。As the area of the upper diaphragm changes, the effects of the audio response of the different speakers are measured. As a result, as shown in FIG. 8, the piezoelectric ceramic fiber composite material is laminated with a double-layer diaphragm, and the horn vibration frequency f 0 is about 230 Hz, and the response is 95 dB. At about 350 Hz, there is also a resonance frequency f 0 ', and the response is 93 dB. The results show that a single double-layer diaphragm is used to fit a single piezoelectric composite sheet, and each has its own independent starting frequency in the low range.

至於總諧波失真(THD)的結果顯示於圖9,其中顯示在可聽音頻範圍(200Hz~10kHz)同樣大多在10%以下。The results of Total Harmonic Distortion (THD) are shown in Figure 9, which shows that the audible audio range (200 Hz to 10 kHz) is also mostly below 10%.

由實例一與實例二可得到,無論是單層振膜或雙層振膜,使用壓電陶瓷纖維複材做為致動器的喇叭起振頻率f0 均可低到200Hz~230Hz左右,響應則至少在95dB左右。It can be obtained from the first example and the second example. Whether the single-layer diaphragm or the double-layer diaphragm, the horn vibration frequency f 0 using the piezoelectric ceramic fiber composite as the actuator can be as low as 200 Hz to 230 Hz, and the response Then at least about 95dB.

實例三Example three

除改變上振膜的尺寸(上振膜與下振膜之面積比)以外,用與實例二相同的結構與實驗條件研究起振頻率及對應的音壓響應位準關係,結果顯示於圖10。In addition to changing the size of the upper diaphragm (the area ratio of the upper diaphragm to the lower diaphragm), the same structure and experimental conditions as in the second example were used to study the oscillation frequency and the corresponding sound pressure response level relationship. The results are shown in Fig. 10. .

從圖10可知,在上、下兩層振膜的面積比為0.9之前的起振頻率都小於350Hz,響應也在90dB以上。As can be seen from Fig. 10, the oscillation frequency before the area ratio of the upper and lower diaphragms is 0.9 is less than 350 Hz, and the response is also 90 dB or more.

實例四Example four

除了下振膜為厚度100μm的Kapton PI膜之外,用與實例二相同的結構與實驗條件進行測試。結果如圖11所示,隨著上振膜面積之改變,壓電陶瓷纖維複合薄型喇叭從200Hz至20kHz之響應大致都在90dB以上。The test was carried out under the same structure and experimental conditions as in Example 2, except that the lower diaphragm was a Kapton PI film having a thickness of 100 μm. As a result, as shown in FIG. 11, as the area of the upper diaphragm changes, the response of the piezoelectric ceramic fiber composite thin horn from 200 Hz to 20 kHz is approximately 90 dB or more.

以上實例一~四的壓電陶瓷纖維複合薄型喇叭的起振頻率都明顯較全壓電陶瓷喇叭(f0 ~1000Hz 95dB@,L×W×H 30mm×15mm×3mm)為低。結果顯示使用單一壓電陶瓷纖維複材致動器以及結合單層或雙層振膜的薄型喇叭都可以明顯降低喇叭的共振頻率,響應都維持在90dB以上並延伸至高音域。此外,薄型化的體積優勢及微型化的(microminiaturized)驅動電路使之非常容易內埋於可攜式行動消費產品,例如手機、mp3、PDA或notebook,能提供智慧化通訊產品較佳的音樂品質。The starting frequency of the piezoelectric ceramic fiber composite thin horn of the above examples 1-4 is significantly lower than that of the all-piezoceramic horn (f 0 ~ 1000 Hz 95 dB@, L × W × H 30 mm × 15 mm × 3 mm). The results show that the use of a single piezoelectric ceramic fiber composite actuator and a thin horn combined with a single or double diaphragm can significantly reduce the resonant frequency of the horn, and the response is maintained above 90dB and extends to the high range. In addition, the thinness of the volume advantage and the microminiaturized drive circuit make it very easy to be embedded in portable mobile consumer products, such as mobile phones, mp3, PDA or notebooks, which can provide better communication quality for intelligent communication products. .

實例五:可撓性驗證Example 5: Flexibility Verification

以表一中壓電陶瓷纖維添加量為85%之壓電陶瓷纖維複材作為樣品,其中所用的交聯固化膠體是環氧樹脂。然後測量不同厚度的壓電陶瓷纖維複材之可撓角度,得到下表二。從表二可知,根據實例所得到的壓電陶瓷纖維致動器具有可撓性。A piezoelectric ceramic fiber composite material having a piezoelectric ceramic fiber addition amount of 85% in Table 1 was used as a sample, and the crosslinked solidified colloid used was an epoxy resin. Then, the flexible angles of the piezoelectric ceramic fiber composites of different thicknesses were measured, and the following Table 2 was obtained. As can be seen from Table 2, the piezoelectric ceramic fiber actuator obtained according to the examples has flexibility.

實例六: 振膜厚度比例對音壓響應位準的影響 Example 6: Effect of diaphragm thickness ratio on sound pressure response level

使用實例四中面積比為0.8之壓電陶瓷纖維複合薄型喇叭,但是改變下振膜的厚度為100μm、50μm與25μm,然後先測量這三種喇叭的起振頻率,分別為230Hz、275Hz及286Hz。至於振膜厚度比與音壓響應位準(dB)之關係則顯示於圖12。A piezoelectric ceramic fiber composite thin horn having an area ratio of 0.8 was used in Example 4, but the thickness of the lower diaphragm was changed to 100 μm, 50 μm, and 25 μm, and then the starting frequencies of the three types of horns were measured, respectively, 230 Hz, 275 Hz, and 286 Hz. The relationship between the diaphragm thickness ratio and the sound pressure response level (dB) is shown in Fig. 12.

實例七: 致動器厚度對音壓響應位準的影響 Example 7: Effect of actuator thickness on sound pressure response level

使用實例四中面積比為0.8之壓電陶瓷纖維複合薄型喇叭,但是致動器厚度分別為30μm、70μm以及100μm,然後先測量這三種喇叭的起振頻率,分別為315Hz、230Hz及372Hz。至於致動器厚度與音壓響應位準(dB)之關係則顯示於圖13。A piezoelectric ceramic fiber composite thin horn having an area ratio of 0.8 was used in Example 4, but the actuator thicknesses were 30 μm, 70 μm, and 100 μm, respectively, and then the starting frequencies of the three types of horns were measured, respectively, 315 Hz, 230 Hz, and 372 Hz. The relationship between the actuator thickness and the sound pressure response level (dB) is shown in FIG.

從以上實例六與實例七的結果可知,壓電陶瓷纖維複合薄型喇叭的響應都能維持在90dB以上。From the results of Example 6 and Example 7 above, it can be seen that the response of the piezoelectric ceramic fiber composite thin horn can be maintained above 90 dB.

綜上所述,本發明之壓電陶瓷纖維複合薄型喇叭兼具壓電陶瓷喇叭之簡單結構與薄型化,以及低頻響應佳的特色,因此比現有的喇叭更具競爭優勢,有利於寬音域薄型小喇叭的產品開發,可有效解決現在可攜式電子產品亟需內建音樂品級喇叭的問題。In summary, the piezoelectric ceramic fiber composite thin speaker of the present invention has the simple structure and thinness of the piezoelectric ceramic horn, and the characteristics of low frequency response, so that it has a competitive advantage over the existing speaker, and is advantageous for wide-range thin type. The product development of the small speaker can effectively solve the problem that the portable audio products need to be built-in music-grade speakers.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100、300‧‧‧壓電陶瓷纖維複合薄型喇叭100,300‧‧‧ Piezoelectric ceramic fiber composite thin speaker

102、302、304‧‧‧振膜102, 302, 304‧‧ ‧ diaphragm

104‧‧‧壓電陶瓷纖維複材致動器104‧‧‧ Piezoelectric Ceramic Fiber Composite Actuator

106、400‧‧‧交聯固化膠體106, 400‧‧‧ crosslinked solidified colloid

108‧‧‧壓電單元108‧‧‧Piezo unit

110‧‧‧電極層110‧‧‧electrode layer

402‧‧‧壓電陶瓷球402‧‧‧ Piezoelectric ceramic ball

404‧‧‧壓電陶瓷塊404‧‧‧ Piezoelectric ceramic block

S500~S508‧‧‧步驟S500~S508‧‧‧Steps

圖1是依照一實施例之一種壓電陶瓷纖維複合薄型喇叭的立體透視圖。1 is a perspective perspective view of a piezoelectric ceramic fiber composite thin horn according to an embodiment.

圖2是圖1之變形例。Fig. 2 is a modification of Fig. 1;

圖3是依照另一實施例之一種壓電陶瓷纖維複合薄型喇叭的立體透視圖。3 is a perspective perspective view of a piezoelectric ceramic fiber composite thin horn according to another embodiment.

圖4A和圖4B是兩種不同的壓電陶瓷纖維複材致動器的立體圖。4A and 4B are perspective views of two different piezoelectric ceramic fiber composite actuators.

圖5是依照又一實施例之一種壓電陶瓷纖維複合薄型喇叭的製造流程步驟圖。FIG. 5 is a flow chart showing the manufacturing process of a piezoelectric ceramic fiber composite thin horn according to still another embodiment.

圖6是實例一的不同壓電陶瓷纖維添加量的喇叭之音頻響應曲線圖。Fig. 6 is a graph showing the audio response of the horn of the different piezoelectric ceramic fibers added in the first example.

圖7是實例一的不同壓電陶瓷纖維添加量的喇叭之總諧波失真曲線圖。Fig. 7 is a graph showing the total harmonic distortion of the horn of the different piezoelectric ceramic fibers added in Example 1.

圖8是實例二的不同上、下振膜面積比的壓電陶瓷纖維複合薄型喇叭之音頻響應曲線圖。Figure 8 is a graph showing the audio response of a piezoelectric ceramic fiber composite thin horn with different upper and lower diaphragm area ratios of Example 2.

圖9是實例二的不同上、下振膜面積比的壓電陶瓷纖維複合薄型喇叭之總諧波失真曲線圖。Figure 9 is a graph showing the total harmonic distortion of a piezoelectric ceramic fiber composite thin horn having different upper and lower diaphragm area ratios of Example 2.

圖10是實例三的不同上、下振膜面積比與起振頻率及音頻響應的曲線圖。Figure 10 is a graph of different upper and lower diaphragm area ratios, and the starting frequency and audio response of Example 3.

圖11是實例四的不同上、下振膜面積比的壓電陶瓷纖維複合薄型喇叭之音頻響應曲線圖。Figure 11 is a graph showing the audio response of a piezoelectric ceramic fiber composite thin horn having different upper and lower diaphragm area ratios of Example 4.

圖12是實例六的振膜厚度比與音壓響應位準之關係圖。Figure 12 is a graph showing the relationship between the film thickness ratio of Example 6 and the sound pressure response level.

圖13是實例七的致動器厚度與音壓響應位準之關係圖。Figure 13 is a graph of actuator thickness versus sound pressure response level for Example 7.

100...壓電陶瓷纖維複合薄型喇叭100. . . Piezoelectric ceramic fiber composite thin speaker

102...振膜102. . . Diaphragm

104...壓電陶瓷纖維複材致動器104. . . Piezoelectric ceramic fiber composite actuator

106...交聯固化膠體106. . . Crosslinked solidified colloid

108...壓電單元108. . . Piezoelectric unit

110...電極層110. . . Electrode layer

Claims (30)

一種壓電陶瓷纖維複合薄型喇叭,包括:一壓電陶瓷纖維複材致動器,其是由多數個壓電單元及包覆於該些壓電單元之間的一交聯固化膠體構成,其中每一壓電單元為單一壓電陶瓷纖維;以及至少一振膜,位於該壓電陶瓷纖維複材致動器的單面或雙面。 A piezoelectric ceramic fiber composite thin horn comprises: a piezoelectric ceramic fiber composite actuator, which is composed of a plurality of piezoelectric units and a crosslinked solid colloid coated between the piezoelectric units, wherein Each piezoelectric unit is a single piezoelectric ceramic fiber; and at least one diaphragm is located on one or both sides of the piezoelectric ceramic fiber composite actuator. 如申請專利範圍第1項所述之壓電陶瓷纖維複合薄型喇叭,其中該壓電陶瓷纖維複材致動器楊氏係數範圍為0.1GPa~10GPa。 The piezoelectric ceramic fiber composite thin horn according to claim 1, wherein the piezoelectric ceramic fiber composite actuator has a Young's modulus ranging from 0.1 GPa to 10 GPa. 如申請專利範圍第2項所述之壓電陶瓷纖維複合薄型喇叭,其中該壓電陶瓷纖維複材致動器楊氏係數範圍為3GPa~5GPa。 The piezoelectric ceramic fiber composite thin horn according to claim 2, wherein the piezoelectric ceramic fiber composite actuator has a Young's modulus ranging from 3 GPa to 5 GPa. 如申請專利範圍第1項所述之壓電陶瓷纖維複合薄型喇叭,其中該至少一振膜的楊氏係數範圍為0.1GPa~3.5GPa。 The piezoelectric ceramic fiber composite thin horn according to claim 1, wherein the at least one diaphragm has a Young's modulus ranging from 0.1 GPa to 3.5 GPa. 如申請專利範圍第4項所述之壓電陶瓷纖維複合薄型喇叭,其中該至少一振膜的楊氏係數範圍為2GPa~3.5GPa。 The piezoelectric ceramic fiber composite thin horn according to claim 4, wherein the at least one diaphragm has a Young's modulus ranging from 2 GPa to 3.5 GPa. 如申請專利範圍第1項所述之壓電陶瓷纖維複合薄型喇叭,其中該壓電陶瓷纖維的成分表示為ABO3 ,其中A代表鉛、鋇、鑭、鍶、鉀或鋰;B代表鈦、鋯、錳、鈷、鈮、鐵、鋅、鎂、釔、錫、鎳或鎢。The piezoelectric ceramic fiber composite thin horn according to claim 1, wherein the composition of the piezoelectric ceramic fiber is represented by ABO 3 , wherein A represents lead, bismuth, antimony, bismuth, potassium or lithium; and B represents titanium, Zirconium, manganese, cobalt, ruthenium, iron, zinc, magnesium, bismuth, tin, nickel or tungsten. 如申請專利範圍第1項所述之壓電陶瓷纖維複合 薄型喇叭,其中該壓電陶瓷纖維的線徑範圍為20μm~1000μm。 Piezoelectric ceramic fiber composite as described in claim 1 A thin horn, wherein the piezoelectric ceramic fiber has a wire diameter ranging from 20 μm to 1000 μm. 如申請專利範圍第7項所述之壓電陶瓷纖維複合薄型喇叭,其中該壓電陶瓷纖維的線徑範圍為100μm~300μm。 The piezoelectric ceramic fiber composite thin horn according to claim 7, wherein the piezoelectric ceramic fiber has a wire diameter ranging from 100 μm to 300 μm. 如申請專利範圍第1項所述之壓電陶瓷纖維複合薄型喇叭,其中該壓電陶瓷纖維的添加量範圍為60vol%~92vol%。 The piezoelectric ceramic fiber composite thin horn according to claim 1, wherein the piezoelectric ceramic fiber is added in an amount ranging from 60 vol% to 92 vol%. 如申請專利範圍第9項所述之壓電陶瓷纖維複合薄型喇叭,其中該壓電陶瓷纖維的添加量範圍為80vol%~92vol%。 The piezoelectric ceramic fiber composite thin horn according to claim 9, wherein the piezoelectric ceramic fiber is added in an amount ranging from 80 vol% to 92 vol%. 如申請專利範圍第1項所述之壓電陶瓷纖維複合薄型喇叭,其中該壓電陶瓷纖維複材致動器的面積為0.5cm2 ~25cm2The piezoelectric ceramic fiber composite thin horn according to claim 1, wherein the piezoelectric ceramic fiber composite actuator has an area of 0.5 cm 2 to 25 cm 2 . 如申請專利範圍第11項所述之壓電陶瓷纖維複合薄型喇叭,其中該壓電陶瓷纖維複材致動器的面積為5cm2 ~25cm2The piezoelectric ceramic fiber composite thin horn according to claim 11, wherein the piezoelectric ceramic fiber composite actuator has an area of 5 cm 2 to 25 cm 2 . 如申請專利範圍第1項所述之壓電陶瓷纖維複合薄型喇叭,其中該壓電陶瓷纖維複材致動器之厚度範圍為30μm~300μm。 The piezoelectric ceramic fiber composite thin horn according to claim 1, wherein the piezoelectric ceramic fiber composite actuator has a thickness ranging from 30 μm to 300 μm. 如申請專利範圍第13項所述之壓電陶瓷纖維複合薄型喇叭,其中該壓電陶瓷纖維複材致動器之厚度範圍為70μm~120μm。 The piezoelectric ceramic fiber composite thin horn according to claim 13, wherein the piezoelectric ceramic fiber composite actuator has a thickness ranging from 70 μm to 120 μm. 如申請專利範圍第1項所述之壓電陶瓷纖維複合 薄型喇叭,其中該交聯固化膠體是選自包括環氧樹脂系樹脂、壓克力系樹脂與酚醛樹脂所組成之族群中的一種聚合物。 Piezoelectric ceramic fiber composite as described in claim 1 A thin horn, wherein the crosslinked cured colloid is a polymer selected from the group consisting of epoxy resin, acrylic resin and phenolic resin. 如申請專利範圍第1項所述之壓電陶瓷纖維複合薄型喇叭,其中該壓電陶瓷纖維複材致動器為圓形、橢圓或矩形。 The piezoelectric ceramic fiber composite thin horn according to claim 1, wherein the piezoelectric ceramic fiber composite actuator is circular, elliptical or rectangular. 如申請專利範圍第1項所述之壓電陶瓷纖維複合薄型喇叭,其中該振膜更包括一電極層。 The piezoelectric ceramic fiber composite thin horn according to claim 1, wherein the diaphragm further comprises an electrode layer. 如申請專利範圍第17項所述之壓電陶瓷纖維複合薄型喇叭,其中該電極層的材料包括金、鉑、銀、銀鈀、鋁或銅。 The piezoelectric ceramic fiber composite thin horn according to claim 17, wherein the material of the electrode layer comprises gold, platinum, silver, silver palladium, aluminum or copper. 如申請專利範圍第17項所述之壓電陶瓷纖維複合薄型喇叭,其中該電極層之厚度範圍為0.1μm~10μm。 The piezoelectric ceramic fiber composite thin horn according to claim 17, wherein the electrode layer has a thickness ranging from 0.1 μm to 10 μm. 如申請專利範圍第19項所述之壓電陶瓷纖維複合薄型喇叭,其中該電極層之厚度範圍為0.5μm~1μm。 The piezoelectric ceramic fiber composite thin horn according to claim 19, wherein the electrode layer has a thickness ranging from 0.5 μm to 1 μm. 如申請專利範圍第1項所述之壓電陶瓷纖維複合薄型喇叭,其中該至少一振膜是選自包括聚碳酸酯、聚對苯二甲酸乙二醇酯與聚亞醯胺所組成之族群中的一種材料。 The piezoelectric ceramic fiber composite thin horn according to claim 1, wherein the at least one diaphragm is selected from the group consisting of polycarbonate, polyethylene terephthalate and polyamidamine. One of the materials. 如申請專利範圍第1項所述之壓電陶瓷纖維複合薄型喇叭,其中該至少一振膜的厚度範圍為15μm~150μm。 The piezoelectric ceramic fiber composite thin horn according to claim 1, wherein the at least one diaphragm has a thickness ranging from 15 μm to 150 μm. 如申請專利範圍第22項所述之壓電陶瓷纖維複合薄型喇叭,其中該至少一振膜的厚度範圍為15μm~100μm。 The piezoelectric ceramic fiber composite thin horn according to claim 22, wherein the at least one diaphragm has a thickness ranging from 15 μm to 100 μm. 如申請專利範圍第1項所述之壓電陶瓷纖維複合 薄型喇叭,其中該至少一振膜之形狀為圓形或矩形。 Piezoelectric ceramic fiber composite as described in claim 1 A thin horn, wherein the at least one diaphragm is circular or rectangular in shape. 如申請專利範圍第1項所述之壓電陶瓷纖維複合薄型喇叭,其中該至少一振膜之面積範圍為1cm2 ~250cm2The piezoelectric ceramic fiber composite thin horn according to claim 1, wherein the at least one diaphragm has an area ranging from 1 cm 2 to 250 cm 2 . 如申請專利範圍第25項所述之壓電陶瓷纖維複合薄型喇叭,其中該至少一振膜之面積範圍為10cm2 ~125cm2 ,且該至少一振膜之面積與該致動器之面積的比值在2~5。The piezoelectric ceramic fiber composite thin horn according to claim 25, wherein the at least one diaphragm has an area ranging from 10 cm 2 to 125 cm 2 , and an area of the at least one diaphragm and an area of the actuator The ratio is between 2 and 5. 一種壓電陶瓷纖維複合薄型喇叭的製造方法,用於製造如申請專利範圍第1~26項中任一項所述之壓電陶瓷纖維複合薄型喇叭,該方法包括:將多數個壓電陶瓷纖維排列集束;用一交聯固化膠體黏結該些壓電陶瓷纖維並固化該交聯固化膠體,以形成一壓電陶瓷纖維複合材料;切割該壓電陶瓷纖維複合材料,以得到多數個複材薄片;極化至少一複材薄片,作為一壓電陶瓷纖維複材致動器;以及在該壓電陶瓷纖維複材致動器的單面或雙面貼合振膜。 A piezoelectric ceramic fiber composite thin horn manufacturing method for manufacturing a piezoelectric ceramic fiber composite thin horn according to any one of claims 1 to 26, the method comprising: a plurality of piezoelectric ceramic fibers Aligning the bundles; bonding the piezoelectric ceramic fibers with a cross-linking curing colloid and curing the cross-linked solidified colloid to form a piezoelectric ceramic fiber composite material; cutting the piezoelectric ceramic fiber composite material to obtain a plurality of composite material sheets Polarizing at least one composite sheet as a piezoelectric ceramic fiber composite actuator; and bonding the diaphragm to one or both sides of the piezoelectric ceramic fiber composite actuator. 如申請專利範圍第27項所述之壓電陶瓷纖維複合薄型喇叭的製造方法,其中切割該壓電陶瓷纖維複合材料之步驟包括以垂直該些壓電陶瓷纖維的角度進行切割。 The method of manufacturing a piezoelectric ceramic fiber composite thin horn according to claim 27, wherein the step of cutting the piezoelectric ceramic fiber composite comprises cutting at an angle perpendicular to the piezoelectric ceramic fibers. 如申請專利範圍第27項所述之壓電陶瓷纖維複合薄型喇叭的製造方法,其中貼合該振膜之前更包括:在該 振膜之表面形成電極層。 The method for manufacturing a piezoelectric ceramic fiber composite thin horn according to claim 27, wherein before the aligning the diaphragm, the method further comprises: The surface of the diaphragm forms an electrode layer. 如申請專利範圍第29項所述之壓電陶瓷纖維複合薄型喇叭的製造方法,其中形成該電極層的方法包括真空濺鍍或印刷。 The method of manufacturing a piezoelectric ceramic fiber composite thin horn according to claim 29, wherein the method of forming the electrode layer comprises vacuum sputtering or printing.
TW099142399A 2010-12-06 2010-12-06 Thin speaker with piezoelectric ceramic fiber composite and manufacturing method thereof TWI491271B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099142399A TWI491271B (en) 2010-12-06 2010-12-06 Thin speaker with piezoelectric ceramic fiber composite and manufacturing method thereof
CN2010105933952A CN102487475A (en) 2010-12-06 2010-12-17 Piezoelectric ceramic fiber composite thin type horn and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099142399A TWI491271B (en) 2010-12-06 2010-12-06 Thin speaker with piezoelectric ceramic fiber composite and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201225685A TW201225685A (en) 2012-06-16
TWI491271B true TWI491271B (en) 2015-07-01

Family

ID=46152920

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099142399A TWI491271B (en) 2010-12-06 2010-12-06 Thin speaker with piezoelectric ceramic fiber composite and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN102487475A (en)
TW (1) TWI491271B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045645A1 (en) * 2012-09-21 2014-03-27 京セラ株式会社 Audio emitter, audio emission device, and electronic apparatus
CN105392091A (en) * 2016-01-01 2016-03-09 苏州井利电子股份有限公司 Fatigue-resistant long-service-life voice coil wire
CN105491486A (en) * 2016-01-01 2016-04-13 苏州井利电子股份有限公司 Voice coil wire for loudspeaker
CN105898648B (en) 2016-05-24 2019-04-09 大连理工大学 A kind of new type superthin sound impedance converter
CN111373768A (en) * 2017-11-21 2020-07-03 日东电工株式会社 Laminated body for forming piezoelectric speaker
TWI714934B (en) * 2018-12-25 2021-01-01 財團法人工業技術研究院 Ceramic fiber piezoelectric composite material and shoe
US10959025B2 (en) * 2019-03-29 2021-03-23 Lg Display Co., Ltd. Flexible vibration module and display apparatus including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020176592A1 (en) * 2001-05-23 2002-11-28 Howarth Thomas R. Piezoelectric acoustic actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1015150A3 (en) * 2002-10-21 2004-10-05 Sonitron Nv Improved transducer
KR101159734B1 (en) * 2008-12-22 2012-06-28 한국전자통신연구원 Piezoelectric speaker and method for forming the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020176592A1 (en) * 2001-05-23 2002-11-28 Howarth Thomas R. Piezoelectric acoustic actuator

Also Published As

Publication number Publication date
CN102487475A (en) 2012-06-06
TW201225685A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
TWI491271B (en) Thin speaker with piezoelectric ceramic fiber composite and manufacturing method thereof
JP6042925B2 (en) Sound generator
US9635467B2 (en) Electroacoustic converter film
US8712079B2 (en) Piezoelectric speaker and method of manufacturing the same
JPWO2016158518A1 (en) Electroacoustic transducer
US20220115579A1 (en) Piezoelectric film
JP2019501605A (en) Sound output device
JPWO2013002384A1 (en) Sound generator and sound generator using the same
JP2012209866A (en) Acoustic generator
WO2013099512A1 (en) Vibration device, sound generator, speaker system, and electronic device
WO2016017632A1 (en) Electroacoustic conversion film and electroacoustic converter
US11930714B2 (en) Piezoelectric film
JP2006121648A (en) Piezoelectric acoustic element and piezoelectric acoustic generating device
JP6495866B2 (en) Speaker unit
KR101765419B1 (en) Piezoelectric Speaker and Method of Manufacturing the Same
TW202108377A (en) Polymer composite piezoelectric body, and piezoelectric film
JPWO2016136591A1 (en) Electroacoustic transducer and electroacoustic transducer system
US20240179474A1 (en) Piezoelectric film and piezoelectric element
CN101662718A (en) Film loudspeaker
Kim et al. Low-frequency reinforced ferroelectric acoustic actuators