TWI490790B - Dynamic cardiac imaging analysis and cardiac function assessment system - Google Patents
Dynamic cardiac imaging analysis and cardiac function assessment system Download PDFInfo
- Publication number
- TWI490790B TWI490790B TW101142408A TW101142408A TWI490790B TW I490790 B TWI490790 B TW I490790B TW 101142408 A TW101142408 A TW 101142408A TW 101142408 A TW101142408 A TW 101142408A TW I490790 B TWI490790 B TW I490790B
- Authority
- TW
- Taiwan
- Prior art keywords
- cardiac
- stage
- fuzzy
- cutting
- dynamic
- Prior art date
Links
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
Description
本發明係有關一種動態心臟影像分析與心功能評估系統,尤指一種針對心導管心室攝影影像,針對左心室右斜前像影像進行切割及辨識處理,以輔助醫生作為心臟病的診斷與病情評估參考之生醫資訊電腦輔助診斷系統。
按;隨著科技的進步及發展,醫療影像數位化技術在醫療領域有相當程度革新的發展與應用,藉由資訊的量化,配合電腦輔助診斷系統的開發,提供專業醫師在診斷上能有快速及正確的診斷,避免醫療資源的浪費,並提高醫療影像的診斷價值。而近年來心臟病已經成為現代人最常見的疾病之一,也是國人重要的死因之一。若能及早發現及早治療,便能降低心臟病致死率。心導管心室攝影可顯示心肌和四個瓣膜的運作功能,也提供冠狀動脈的資訊,觀察心臟瓣膜是否有血液倒流的情況,藉以診斷及確認各種心臟疾病。心導管也是唯一能夠提供有關供應心肌含氧血的血管精確「分佈圖」之檢查,幾乎所有的心臟病都可以藉由心導管做最精確的檢查。其中如中華民國專利第
180735證書號之「心臟診斷系統」,第193555證書號之「脈動訊號與心臟機能相關性分析方法」,第201104623公開號之「心臟M模式圖片之自動分析」。因此,心導管是現代心臟醫學的基礎,也是心臟病最徹底的檢查方式之一。然而,目前缺乏一有效之心臟影像自動化電腦輔助診斷系統可供運用,且人為判讀時亦因為經驗或人員等因素容易造成差異及不精確之情形發生。
目前已知相關專利,大部份針對心臟之生理訊號值進行分析,而針對心臟影像之功能分析技術則較為少見。在已知文獻當中,在心導管心室攝影心室邊緣偵測的研究中,有Kenji Suzuki等人提出使用Neural Edge Detector,此方法著重在利用一個自我調適的多層類神經網路經由倒傳遞演算法(Back-propagation algorithm)不斷的訓練以求得心室邊緣,訓練的影像包括由醫生手動圈選的左心室及右心室影像,驗證結果的方法是由測量出的輪廓面積和醫生圈選的封閉輪廓面積進行比較,在心臟舒張結束(End-Diastole,ED)的平均錯誤率為6.2%,在心臟收縮結束(End-Systole,ES)的平均錯誤率為17.1%。Elco Oost等人則於2006年提出以多重視角之主動式外觀模型(Multiview Active Appearance Models,AAMs)結合動態規劃的方法,主要基於心臟收縮結束(End-Diastolic,ED)和心臟舒張結束(End-Systolic,ES)的形狀和紋理資訊建立多重解析的主動式外觀模型以得到心室邊界和特徵。藉由動態規劃演算法(Dynamic Programming Algorithm,DPA)將整合的影像強度和心臟運動的特徵加入至成本函數(Cost Function)中以限制過度驅使的主動式外觀模型。比較兩組切割模式,分別為手動
初始化切割和全自動切割。手動初始化切割模式提供高正確率以及高臨床驗證率。實驗資料共包含70位病人的資訊,使用手動初始模式切割將得到100%心臟舒張結束(End-Diastolic,ED)的切割輪廓和99%的心臟收縮結束(End-Systolic,ES)的切割輪廓,平均ED切割輪廓和ES切割輪廓的誤差為0.68mm和1.45mm;使用全自動模式切割將得到91%的ED切割輪廓和83%的ES切割輪廓,平均ED切割輪廓和ES切割輪廓的誤差為0.79mm和1.55mm。全自動模式雖然可以提供一個很精確的心臟切割卻無法被臨床上當作標準的依據。Antonio Bravo等人則提出利用分群(Clustering)的概念運用在雙向的心室攝影(Biplane Ventriculograms)上,主要是基於區域成長演算法(Region Growing Algorithm)進行切割。此方法包含兩階段,第一階段是影像前處理,利用統計線性回歸模型(Linear Regression Model)來增強影像的對比度。第二階段是利用鄰近像素值的灰階和平均灰階實做兩階段分群演算法。另外,Antonio Bravo等人也提出使用支援向量機分類器(Support Vector Machine Classifier)和變形模型(Deformable Models)的概念運用在心室的切割上,藉由解剖學標記(Anatomical Landmarks)的擷取,配合支援向量機分類器(Support Vector Machine Classifier)提供左心室初始輪廓進行切割,藉由梯度坡降演算法(Gradient Descend Algorithm)提供最小能量值以求得最佳輪廓。
綜觀上述,目前尚未有任一方法可以有效整合心臟影像分析並作為臨床上判斷心臟疾病的標準依據,且耗力耗時。申請人有鑑於此,乃秉持從事該項業務多年之經驗,經不斷研究、實驗,遂萌生設計一
種動態心臟影像分析與心功能評估系統,提供一個針對動態心臟影像序列結合區塊匹配估計法(Blocking matching)的切割為主,模糊邏輯系統(Fuzzy Logic System)辨識心臟運動方向為輔的架構,利用前處理心室切割結果為基底,再加上提出兩階段之模糊邏輯系統(Fuzzy Logic System)應用於動態心臟影像運動之分析,並將模糊邏輯系統(Fuzzy Logic System)之輸出以都卜勒(Doppler)顏色表示顯示,最後利用左心室射出率(Ejection Fraction)指標和動態切割面積之斜率以及切割面積之差值進行心臟運動功能之評估,以提供醫生在臨床心臟病的診斷上一個判斷心臟疾病的自動化電腦輔助診斷系統(Computer Aided Diagnosis System,CAD),降低因人員及經驗等差異性所造成之影響,作為心臟疾病的初步診斷與病情評估的參考,以輔助醫生作為心臟病的診斷與病情評估參考。
本發明之主要目的,即在提供一種動態心臟影像分析與心功能評估系統,透過動態之心導管心室攝影的處理,取得心臟週期之序列動態影像,自動偵測左心室之位置與變化,進行左心室運動的評估與分析,輔助診斷者對於左心室的功能以及構造上的評量,藉以評估心臟結構性與功能性疾病發生的原因,並針對心臟動態攝影影像建立一套電腦輔助診斷系統來評估心臟運動功能。
前述之動態心臟影像分析與心功能評估系統,係針對心導管心室攝影影像,針對左心室右斜前像和左斜前像影像進行切割及辨識處
理,其包含切割階段、辨識階段及評估階段。其中,於切割階段係利用前處理取得初步二值化影像後進行區塊匹配估計法,接著利用形態學處理優化邊緣,最終得到一心臟輪廓;於辨識階段,係採用模糊邏輯系統分析心臟的運動方向,並比照都卜勒超音波之顏色表示法,呈現較直觀與客觀的判讀資訊,最後利用指標評估心臟運動之功能,從而輔助醫生作為心臟病的診斷與病情評估之參考。
前述之動態心臟影像分析與心功能評估系統,其中之辨識階段係包含兩階段,第一階段為主要辨識部份,第二階段為去雜訊部份。其中包括第一階段方向特徵值擷取、模糊邏輯系統的建立、歸屬函數的設立及模糊規則庫設立,以及第二階段雙方向特徵值擷取、橢圓偵測及使用都卜勒顏色表示呈現心臟運動之方向及兩階段心臟運動偵測。
請參閱第一圖,係為本發明之操作流程圖。如圖所示,本發明主要係包含以下之步驟:切割階段,心導管手術是利用特殊導管及導線將心導管經由左右大腿鼠蹊部的大腿動脈或右手臂的橈動脈插入心導管,再注射少量的顯影劑於左心室,進行X光攝影。由於心導管心室攝影的影像是以X光進行顯影,而此類型的影像具有低解析度和高雜訊等特性,若直接對影像進行切割,將無法得到精確的邊緣,因此我們配合對數相減(Logarithm)法及平均濾波器前處理將影像去雜訊後,以作為後續切割之依據。由於
心導管心室攝影為一序列影像,若僅僅以單張進行切割,結果可能會因為各張的雜訊或區域強度不一致等特性而影響切割結果,因此本技術納入時序的考量,將傳統二維切割轉換為三維切割,以得到較精確的切割結果,分離出前景和背景區後,透過區塊匹配估計法、候選區選取,最後再輔以形態學處理方法進行優化取得較精確的左心室輪廓切割結果。
辨識階段,主要以模糊邏輯系統為主軸,將相鄰兩張影像輸入至模糊邏輯系統,經由九個不同方向的特徵值擷取後以Takagi-Sugeno-Kang(TSK)模糊系統經過模糊化、模糊規則庫、模糊推論與解模糊化後得到一個線性組合的輸出,進行心臟運動分析,並以切割階段後所得之心臟輪廓以橢圓偵測法擷取出橢圓後,計算橢圓面積的重心再比照都卜勒超音波(Doppler ultrasonography)之顏色表示法呈現。模糊理論的應用普遍著重於使用者經驗與問題特性掌握的程度,因此能較明確的處理感覺模糊的部份,因此我們採用模糊理論中的模糊集合運算概念,將灰階值變異的特性轉換為可讀取使用的數值資訊,再以模糊推論將結果比照都卜勒顏色表示,希望提供一個判讀的資訊。本方法以一個兩階段的模糊系統,應用於左心室運動偵測,第一階段為主要辨識部份;第二階段為去雜訊部份。其中包括第一階段方向特徵值擷取、模糊邏輯系統的建立、歸屬函數的設立及模糊規則庫設立,以及第二階段雙方向特徵值擷取、橢圓偵測及使用都卜勒顏色表示呈現心臟運動之方向及兩階段心臟運動偵測,
評估階段,係利用左心室射出率(Ejection Fraction)及左心室面積變化之斜率、差異量的指標評估心臟運動功能以提供醫生判讀的資訊。
藉由前述之階段步驟,本發明希望透過影像前處理配合區塊匹配法為主擷取心臟輪廓,再輔以形態學演算法進行輪廓優化以得到左心室切割畫面;接著採用模糊邏輯系統以進行心臟運動之方向的辨識,最後採以指標進行心臟運動之評估,以提出一套判斷心臟運動功能之電腦輔助診斷系統。一個理想的心臟在舒張或收縮時都呈現均勻的縮放,本方法利用此特徵結合左心室射出率(Ejection Fraction)指標和面積斜率的指標評估心臟的運動功能,提出一電腦輔助診斷系統(Computer Aided Diagnosis System,CAD),希望對心臟疾病的判斷提供有效的初步診斷資訊。
前述實施例,僅為說明本發明之較佳實施方式,而非限制本發明之範圍,凡經由些微修飾、變更,仍不失本發明之要義所在,亦不脫本發明之精神範疇。
綜上所述,本發明以切割階段、辨識階段及評估階段,構成動態心臟影像分析與心功能評估系統,透過動態之心導管心室攝影的處理,取得心臟週期之序列動態影像,自動偵測左心室之位置與變化,進行左心室運動的評估與分析,輔助診斷者對於左心室的功能以及構造上的評量,藉以評估心臟結構性與功能性疾病發生的原因,並針對心臟動態攝影影像建立一套電腦輔助診斷系統來評估心臟運動功能。
為一實用之設計,誠屬一俱新穎性之創作,爰依法提出專利之申請,祈 鈞局予以審查,早日賜准專利,至感德便。
第一圖係本發明之操作流程圖。
Claims (5)
- 一種動態心臟影像分析與心功能評估系統,係包含以下之步驟:切割階段,係配合對數相減法及平均濾波器前處理將影像去雜訊後,以作為後續切割之依據,將二維切割轉換為三維切割,以得到較精確的切割結果,分離出前景和背景區後,透過區塊匹配估計法及候選區選取,取得較精確的左心室輪廓切割結果;辨識階段,係將相鄰兩張影像輸入至模糊邏輯系統,經由九個不同方向的特徵值擷取後,以模糊系統經過模糊化、模糊規則庫、模糊推論與解模糊化後得到一個線性組合的輸出,進行心臟運動分析,並以切割階段後所得之心臟輪廓以橢圓偵測法擷取出橢圓後,計算橢圓面積的重心再比照都卜勒超音波之顏色表示法,呈現心臟運動之方向及兩階段心臟運動偵測;評估階段,係利用左心室射出率及左心室面積變化之斜率、差異量的指標評估心臟運動功能以提供醫生判讀的資訊。
- 如申請專利範圍第1項所述之動態心臟影像分析與心功能評估系統,其中,切割階段係於透過區塊匹配估計法及候選區選取後,再輔以形態學處理方法進行優化,以取得較精確的左心室輪廓切割結果。
- 如申請專利範圍第1項所述之動態心臟影像分析與心功能評估系統,其中,辨識階段係藉由模糊集合運算概念,將灰階值變異的特性轉換為可讀取使用的數值資訊,再以模糊推論將結果比照都卜勒顏色表示,從而提供一個判讀的資訊。
- 如申請專利範圍第1項所述之動態心臟影像分析與心功能評估系統,其中,辨識階段係進一步包含一個兩階段的模糊系統,應用於左心室運動偵測,其中之第一階段為主要辨識部份,第二階段為去雜訊部份。
- 如申請專利範圍第4項所述之動態心臟影像分析與心功能評估系統,其中,該第一階段之主要辨識部份係包含方向特徵值擷取、模糊邏輯系統的建立、歸屬函數的設立及模糊規則庫設立,該第二階段之去雜訊部份係包含雙方向特徵值擷取、橢圓偵測及使用都卜勒顏色表示呈現心臟運動之方向及兩階段心臟運動偵測。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101142408A TWI490790B (zh) | 2012-11-14 | 2012-11-14 | Dynamic cardiac imaging analysis and cardiac function assessment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101142408A TWI490790B (zh) | 2012-11-14 | 2012-11-14 | Dynamic cardiac imaging analysis and cardiac function assessment system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201419167A TW201419167A (zh) | 2014-05-16 |
TWI490790B true TWI490790B (zh) | 2015-07-01 |
Family
ID=51294378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101142408A TWI490790B (zh) | 2012-11-14 | 2012-11-14 | Dynamic cardiac imaging analysis and cardiac function assessment system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI490790B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI571244B (zh) * | 2015-07-13 | 2017-02-21 | 奇美醫療財團法人奇美醫院 | 用於心臟超音波之影像數據整合系統及方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI714440B (zh) * | 2020-01-20 | 2020-12-21 | 緯創資通股份有限公司 | 用於電腦斷層攝影的後處理的裝置和方法 |
CN116687353B (zh) * | 2023-08-01 | 2023-12-19 | 宁波杜比医疗科技有限公司 | 新辅助化疗疗效评估系统、设备及介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200832237A (en) * | 2007-01-19 | 2008-08-01 | Univ Nat Chiao Tung | Human activity recognition method by combining temple posture matching and fuzzy rule reasoning |
CN100550004C (zh) * | 2002-04-15 | 2009-10-14 | 通用电气公司 | 一种对包含感兴趣区的三维医疗图像进行分割的方法 |
CN101576997A (zh) * | 2009-06-19 | 2009-11-11 | 西安电子科技大学 | 基于二次三维区域生长的腹部器官分割方法 |
TW201104623A (en) * | 2009-03-13 | 2011-02-01 | Ibm | Automatic analysis of cardiac M-mode views |
CN102711626A (zh) * | 2010-01-07 | 2012-10-03 | 株式会社日立医疗器械 | 医用图像诊断装置和医用图像的轮廓提取处理方法 |
CN102737379A (zh) * | 2012-06-07 | 2012-10-17 | 中山大学 | 一种基于自适应学习的ct图像分割方法 |
-
2012
- 2012-11-14 TW TW101142408A patent/TWI490790B/zh not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100550004C (zh) * | 2002-04-15 | 2009-10-14 | 通用电气公司 | 一种对包含感兴趣区的三维医疗图像进行分割的方法 |
TW200832237A (en) * | 2007-01-19 | 2008-08-01 | Univ Nat Chiao Tung | Human activity recognition method by combining temple posture matching and fuzzy rule reasoning |
TW201104623A (en) * | 2009-03-13 | 2011-02-01 | Ibm | Automatic analysis of cardiac M-mode views |
CN101576997A (zh) * | 2009-06-19 | 2009-11-11 | 西安电子科技大学 | 基于二次三维区域生长的腹部器官分割方法 |
CN101576997B (zh) * | 2009-06-19 | 2011-07-20 | 西安电子科技大学 | 基于二次三维区域生长的腹部器官分割方法 |
CN102711626A (zh) * | 2010-01-07 | 2012-10-03 | 株式会社日立医疗器械 | 医用图像诊断装置和医用图像的轮廓提取处理方法 |
CN102737379A (zh) * | 2012-06-07 | 2012-10-17 | 中山大学 | 一种基于自适应学习的ct图像分割方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI571244B (zh) * | 2015-07-13 | 2017-02-21 | 奇美醫療財團法人奇美醫院 | 用於心臟超音波之影像數據整合系統及方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201419167A (zh) | 2014-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3277183B1 (en) | Method and apparatus for assessing blood vessel stenosis | |
JP6058093B2 (ja) | 医療用画像のコンピュータ支援による解析装置、および、医療用画像解析のためのコンピュータプログラム | |
Lynch et al. | Automatic segmentation of the left ventricle cavity and myocardium in MRI data | |
JP6570145B2 (ja) | 画像を処理する方法、プログラム、代替的な投影を構築する方法および装置 | |
Athanasiou et al. | Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography–comparison and registration with IVUS | |
Ding et al. | Automated pericardium delineation and epicardial fat volume quantification from noncontrast CT | |
Wang et al. | Automatic segmentation of intravascular optical coherence tomography images for facilitating quantitative diagnosis of atherosclerosis | |
CN111667456A (zh) | 一种冠状动脉x光序列造影中血管狭窄检测方法及装置 | |
JP2018537157A (ja) | 非侵襲的血流予備量比(ffr)に対する側副血流モデル化 | |
JP2012075938A (ja) | 画像処理装置及びその制御方法、コンピュータプログラム | |
Chang et al. | Development of a deep learning-based algorithm for the automatic detection and quantification of aortic valve calcium | |
Sakellarios et al. | Novel methodology for 3D reconstruction of carotid arteries and plaque characterization based upon magnetic resonance imaging carotid angiography data | |
Kishore et al. | Automatic stenosis grading system for diagnosing coronary artery disease using coronary angiogram | |
Wan et al. | Spatio‐temporal texture (SpTeT) for distinguishing vulnerable from stable atherosclerotic plaque on dynamic contrast enhancement (DCE) MRI in a rabbit model | |
TWI490790B (zh) | Dynamic cardiac imaging analysis and cardiac function assessment system | |
Loizou et al. | Segmentation of atherosclerotic carotid plaque in ultrasound video | |
Rahmatikaregar et al. | A Review of Automatic Cardiac Segmentation using Deep Learning and Deformable Models | |
Zhang et al. | Robust infrarenal aortic aneurysm lumen centerline detection for rupture status classification | |
Hemmati et al. | Segmentation of carotid arteries in computed tomography angiography images using fast marching and graph cut methods | |
Chi et al. | A composite of features for learning-based coronary artery segmentation on cardiac CT angiography | |
Shahzad et al. | Automatic detection of calcified lesions in the descending aorta using contrast enhanced CT scans | |
M’hiri et al. | Automatic evaluation of vessel diameter variation from 2D X-ray angiography | |
Helmberger et al. | Pulmonary vascular tree segmentation from contrast-enhanced CT images | |
Fujita et al. | State-of-the-art of computer-aided detection/diagnosis (CAD) | |
Sakellarios et al. | IVUS image processing methodologies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |