TWI489856B - Dimensional image processing method - Google Patents

Dimensional image processing method Download PDF

Info

Publication number
TWI489856B
TWI489856B TW101132051A TW101132051A TWI489856B TW I489856 B TWI489856 B TW I489856B TW 101132051 A TW101132051 A TW 101132051A TW 101132051 A TW101132051 A TW 101132051A TW I489856 B TWI489856 B TW I489856B
Authority
TW
Taiwan
Prior art keywords
image
output
processor
control signal
signal
Prior art date
Application number
TW101132051A
Other languages
Chinese (zh)
Other versions
TW201412090A (en
Inventor
Tong Fei Yeh
Min Hsiung Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW101132051A priority Critical patent/TWI489856B/en
Publication of TW201412090A publication Critical patent/TW201412090A/en
Application granted granted Critical
Publication of TWI489856B publication Critical patent/TWI489856B/en

Links

Landscapes

  • Image Processing (AREA)

Description

立體影像處理方法Stereo image processing method

本發明係提供一種立體影像處理方法,尤指利用時序控制訊號讓各影像處理器及各影像源同步輸出影像訊號,且透過緩衝器儲存再同步輸出影像訊號,再用多工器合成影像訊號最後便可成為單一立體影像訊號,因僅利用成本低廉之雙通道影像處理器,進而可降低生產成本。The present invention provides a stereoscopic image processing method, in particular, using a timing control signal to enable each image processor and each image source to synchronously output an image signal, and storing and resynchronizing the output image signal through a buffer, and then synthesizing the image signal with a multiplexer. It can be a single stereo image signal, which can reduce production costs by using only a low-cost dual-channel image processor.

按,隨著科技的進步,從顯示技術從黑白螢幕、彩色螢幕演進到液晶螢幕,且螢幕由使用於電視漸漸的擴大到使用於電腦、手機等多種裝置,雖然在生活周遭已經到處都可見到螢幕的蹤跡,但是為了能在顯示上達到更好的效果,便有廠商針對原本平面的影像播放螢幕,不斷研發而產生了立體(3D)螢幕,其可讓觀看者的視覺感受提昇而更有身歷其境的感覺。With the advancement of technology, the display technology has evolved from black-and-white screens and color screens to LCD screens, and the screens have been gradually expanded from use to televisions to computers, mobile phones, etc., although they are everywhere in life. The trace of the screen, but in order to achieve better results on the display, there are manufacturers to play the screen for the original flat image, and constantly develop a stereo (3D) screen, which can enhance the viewer's visual experience and more The feeling of immersion.

其3D螢幕的原理是基於一般人左右二眼的瞳孔距離約6.5公分,二眼與物體之間形成一個夾角,所以左右二眼所看到的物體就會產生差異(視差),所以二眼所接收的不同影像傳遞到大腦之後,大腦將二個不同影像融合後便產生了遠近的空間和立體的感覺,而裸眼3D螢幕正是藉由讓觀看者二眼看見不同影像形成視差來產生立體效果。The principle of the 3D screen is based on the pupil distance of about 6.5 cm from the left and right eyes of the average person. The two eyes form an angle with the object, so the objects seen by the left and right eyes will have a difference (parallax), so the two eyes receive After the different images are transmitted to the brain, the brain combines two different images to create a spatial and stereoscopic sense of the distance, and the naked-eye 3D screen produces a stereoscopic effect by allowing the viewer to see different images to form a parallax.

裸眼3D螢幕所使用的光學技術主要有斜紋光柵片( Slanted Lenticular Lens)及狹縫視差(Parallax Barrier,亦可稱視差屏障)二種;斜紋光柵片的技術是將柱狀平凸透鏡旋轉一預定角度後緊密貼合在液晶面板上,其使用凸透鏡折射(Refraction)原理與一般光柵片相同,而旋轉一預定角度的目的是在消除RGB Sub-Pixel之間的黑色間隙(Black Matrix)所產生之幹擾紋;視差屏障的技術則是運用光的繞射(Diffraction)原理,將多視角影像透過一整排細微的狹縫(Slits)再繞射至觀看者二眼以產生立體視覺。The optical technology used in the naked-eye 3D screen mainly includes twill grating sheets ( Slanted Lenticular Lens and Parallel Barrier (also known as Parallax Barrier); the technique of the twill lenticular sheet is to rotate the columnar plano-convex lens to a predetermined angle and closely adhere to the liquid crystal panel, which is refracted by a convex lens ( The principle of Refraction is the same as that of a general grating, and the purpose of rotating a predetermined angle is to eliminate the interference pattern generated by the Black Matrix between RGB Sub-Pixels; the technique of the parallax barrier is to use the diffraction of light ( Diffraction) principle, the multi-view image is transmitted through a whole row of tiny slits (Slits) and then diffracted to the viewer's eyes to produce stereoscopic vision.

但不論是使用哪種光學技術,都必需將影像處理成為合成圖,請參閱第四、五圖所示,其係將多視角影像同一水準位置的Pixels切成條狀(Stripe),再依序排列在一起,如紅、綠、藍三個影像各含10%~50%的顏色,將其各切成五等份(即10%、20%、30%、40%與50%),再將各顏色中相同比例的影像排在一起,這五組的排列就是光柵影像的合成圖方式,再將此五組的顏色排列對應到光柵片之五個柱狀平凸透鏡便可進行運作;在實務上,係利用不同視角之影像來取代上方之紅、綠、藍影像,且水準位置的圖元(Pixels)取代上方之顏色比例,且水準位置有多少的畫素就要合成多少組的多視角影像及 對應同樣數目的柱狀平凸透鏡。However, no matter which optical technology is used, it is necessary to process the image into a composite image. Please refer to the fourth and fifth figures. The Pixels of the multi-view image at the same level are cut into stripes, and then sequentially. Arranged together, such as red, green, and blue images each containing 10% to 50% of the color, each cut into five equal parts (ie 10%, 20%, 30%, 40% and 50%), and then The images of the same proportion in each color are arranged together. The arrangement of the five groups is the composite image mode of the raster image, and the five groups of colors are arranged to correspond to the five columnar plano-convex lenses of the grating piece to operate; In practice, the images of different angles of view are used to replace the red, green and blue images above, and the level of pixels (Pixels) replaces the color ratio above, and how many pixels in the level position are combined into how many groups Perspective image and Corresponding to the same number of cylindrical plano-convex lenses.

一般而言,使用越多數量的攝影機拍攝不同角度的影像,其合成後的3D圖像中可以看到3D成像的位置(sweet spot)越多,其產生的3D效果也會越顯著,如大尺寸的液晶電視需要使用5到7個攝影機,更大的顯示器如廣告牆則需要9個或9個以上的攝影機,然而,原本市面上可以買到的影像處理器絕大部分都是只能處理單一影像輸入(single channel vedio input),隨著3D技術的漸漸成熟及推廣,雙通道的影像處理器(dual channel video processor)也開始出現在市面上,因為影像處理器是由非常複雜的邏輯線路所組成,雙通道的影像處理器所占的邏輯數量(gate count)大約是單一通道影像處理器的二倍,雙通道影像處理器所需要的資料線的引腳(IO)也幾乎單一通道影像處理器的二倍,雖然目前還沒有三通道或三通道以上的影像處理器問世,但由上述內容可得知,影像處理器隨著可處理的通道數量增加,不僅會增大晶片尺寸(die size)、增加引腳數量及增加生產製造成本,且散熱上也會成為一個很大的問題。In general, the more images are used to capture images at different angles, the more 3D images are visible in the synthesized 3D image, the more 3D effects they produce, such as large Size LCD TVs require 5 to 7 cameras, and larger displays such as advertising walls require 9 or more cameras. However, most of the image processors that are commercially available can only be processed. Single channel vedio input, with the gradual maturity and promotion of 3D technology, the dual channel video processor has also begun to appear on the market because the image processor is composed of very complicated logic circuits. The two-channel image processor occupies approximately twice the gate count of a single-channel image processor. The data line pins (IO) required for the two-channel image processor are also almost single channel images. Two times the processor, although there are no three-channel or more-channel image processors available, it can be known from the above that the image processor can be processed. The number of channels increases, not only increases the size of the wafer (die size), and increasing the number of pins increases manufacturing costs, and will also become a big problem on the heat sink.

此外,根據不同的斜紋光柵片貼膜(Slanted Lenticular film),圖元(pixel or sub-pixel)要有相對應的排列才能看到3 D的效果,因為高解析度的影像傳輸速率非常快,以Full HD、1920x1080x3解析度的影像為例,每個圖元的傳送速率可高達186Mhz,如果影像的輸入埠(input channel)不設置在同一顆控制處理器上,要同步是有一定的困難度,所以基於考量同步和可控性之因素,便會把多通道都放在同一顆處理器上。In addition, according to the different Slanted Lenticular film, the pixel or sub-pixel should have a corresponding arrangement to see 3 The effect of D, because the high-resolution image transmission rate is very fast, taking Full HD, 1920x1080x3 resolution image as an example, the transfer rate of each primitive can be as high as 186Mhz, if the input channel of the image is not set in On the same control processor, there is a certain degree of difficulty in synchronization. Therefore, based on factors of synchronization and controllability, multiple channels are placed on the same processor.

但如果將所有的多個影像處理器都設計在同一晶片上,根據不同使用者的需求就要設計製造不同的晶片,如3、4、5、7、9或16通道都要有不同的晶片,由於每一個晶片的開發成本十分高昂,如果沒有一定的需求量,廠商因為成本效益便不會進行開發製造;如果設計一個預定通道數量較高的處理器(如16通道),就可以使用於所有通道數量低於處理器預定通道數量的環境(如3、5或7通道),這樣雖可減少晶片的開發成本,但是當使用者將該晶片使用於低於處理器預定通道數量的環境時,其成本將會提高而讓使用者不願意使用。However, if all of the multiple image processors are designed on the same wafer, different wafers should be designed and manufactured according to the needs of different users. For example, 3, 4, 5, 7, 9, or 16 channels must have different wafers. Because the development cost of each chip is very high, if there is no certain demand, the manufacturer will not develop and manufacture because it is cost-effective; if you design a processor with a higher number of predetermined channels (such as 16 channels), you can use it. An environment where the number of channels is lower than the number of channels reserved by the processor (such as 3, 5 or 7 channels), which reduces the development cost of the chip, but when the user uses the wafer for an environment lower than the predetermined number of channels of the processor The cost will increase and the user will not want to use it.

是以,上述習用之多通道3D影像處理器,因生產、製造及使用上具有諸多問題與缺失,此即為本發明人與從事此行業者所亟欲改善之目標所在。Therefore, the above-mentioned multi-channel 3D image processor has many problems and defects in production, manufacture and use, which is the goal that the inventors and those engaged in the industry desire to improve.

故,發明人有鑑於上述缺失,乃蒐集相關資料,經由多方評估及考量,並以從事於此行業累積之多年經驗,經由不 斷試作及修改,始設計出此種低生產成本之立體影像處理方法的發明專利者。Therefore, in view of the above-mentioned shortcomings, the inventors have collected relevant information, evaluated and considered through multiple parties, and have accumulated many years of experience in the industry. The patents of the invention for designing such a low-cost stereo image processing method were designed and modified.

本發明之主要目的乃在於,透過將二個或二個以上雙通道影像處理器結合,來接收多個影像源之影像訊號,且下游影像處理器輸出時序控制訊號以供上游影像處理器及影像源同步輸出影像訊號,並利用各影像處理器之二緩衝器儲存以同步輸出讓多工器之狀態控制器選擇由其中一緩衝器來輸入訊號,多工器再依寄存器設定擷取畫素形成影像訊號,藉此讓多個成本低廉之雙通道影像處理器可將多個影像訊號合成為單一立體影像訊號,進而達到降低生產成本之目的。The main purpose of the present invention is to receive image signals of multiple image sources by combining two or more dual channel image processors, and the downstream image processor outputs timing control signals for upstream image processors and images. The source synchronously outputs the image signal, and uses two buffers of each image processor to store the synchronous output so that the state controller of the multiplexer selects one of the buffers to input the signal, and the multiplexer selects the pixel by the register setting. The image signal enables a plurality of low-cost dual-channel image processors to combine multiple image signals into a single stereo image signal, thereby reducing production costs.

本發明之次要目的乃在於,該複數個雙通道影像處理器因為僅利用連接方式結合,所以可視不同的影像源數量,增減影像處理器數量且簡單變更排列之方式,並隨之更改各影像處理器內部所設狀態控制器的寄存器設定,又因寄存器設定有固定規則依循,所以設計上就十分簡單、快速,進而可降低生產設計生產成本。The second object of the present invention is that the plurality of dual-channel image processors are combined by only the connection method, so that the number of different image sources can be increased, the number of image processors can be increased or decreased, and the arrangement can be easily changed, and each of them is changed. The register setting of the state controller set in the image processor is also simple and fast in design because the register setting has a fixed rule, which can reduce the production design and production cost.

為達成上述目的及功效,本發明所採用之技術手段及其構造,茲繪圖就本發明之較佳實施例詳加說明其特徵與功能如下,俾利完全瞭解。In order to achieve the above objects and effects, the technical means and the configuration of the present invention will be described in detail with reference to the preferred embodiments of the present invention.

請參閱第一圖所示,係為本發明影像處理器之方塊圖,由圖中可以清楚看出,其係利用雙通道(dual input)之影像處理器1,其影像處理器1中設有連接第一影像輸入埠111之第一緩衝器11(Sync Buffer)及連接第二影像輸入埠121之第二緩衝器12(Sync Buffer),且第一緩衝器11及第二緩衝器12電性連接於多工器13(Multiplexer),影像處理器1設有前端控制訊號輸入埠14、前端控制訊號輸出埠15、後端控制訊號輸入埠16及供多工器13輸出影像訊號之後端控制及影像訊號輸出埠17。Please refer to the first figure, which is a block diagram of the image processor of the present invention. It can be clearly seen from the figure that it utilizes dual channels (dual The image processor 1 of the input image is provided with a first buffer 11 (Sync Buffer) connected to the first image input port 111 and a second buffer 12 (Sync Buffer) connected to the second image input port 121. The first buffer 11 and the second buffer 12 are electrically connected to the multiplexer 13 (Multiplexer), and the image processor 1 is provided with a front end control signal input port 14, a front end control signal output port 15, and a back end control signal. The input terminal 16 and the multiplexer 13 output the image signal rear end control and image signal output 埠17.

該影像處理器1使用時,係將第一影像輸入埠111及第二影像輸入埠121分別連接二影像源(image source),影像源可為影像感測器(image sensor)或影像處理器的輸出埠,影像源的輸入格式可符合8bits~16bits的平行輸入埠(parallel port)格式或8bits/16bits的CCIR656/601格式,由於第一影像輸入埠111及第二影像輸入埠121輸入影像時有可能會有不同步之情形,所以需利用第一緩衝器11及第二緩衝器12儲存先接收的圖元,才能進行同步輸出,且因為輸出埠位會有一行的訊號延遲,所以其緩衝器至少能儲存二行訊號。When the image processor 1 is used, the first image input port 111 and the second image input port 121 are respectively connected to two image sources, and the image source may be an image sensor or an image processor. After the output, the input format of the image source can conform to the parallel input port format of 8bits~16bits or the CCIR656/601 format of 8bits/16bits, because the first image input port 111 and the second image input port 121 input images. There may be cases of out-of-synchronization. Therefore, the first buffer 11 and the second buffer 12 are required to store the previously received primitives in order to perform synchronous output, and since the output clamp has a line of signal delay, its buffer At least two lines of signals can be stored.

而多工器13則以內部狀態控制器131的設定值來選擇訊號的輸入源(input source)為第一緩衝 器11或第二緩衝器12,如:值00表示結束選擇、值01表示選擇第一影像輸入埠111、值10表示選擇第二影像輸入埠121及值11表示此值不重要,通常值11為設為零(output 8bits‘0’),因為值11在後續處理中會被其他的訊號覆蓋,所以不論值為多少都不會影響到影像處理結果,其狀態控制器131儲存空間(state control register value storage)的大小則視所支援的影像源數量而定,如支援16個具紅色、藍色及綠色元素之影像源,則需3x16=48個儲存空間來儲存每一個狀態所需的輸入元素的值。The multiplexer 13 selects the input source of the signal as the first buffer by using the set value of the internal state controller 131. 11 or second buffer 12, such as: value 00 indicates end selection, value 01 indicates selection of first image input port 111, value 10 indicates selection of second image input port 121, and value 11 indicates that the value is not important, usually 11 Set to zero (output 8bits '0'), because the value 11 will be covered by other signals in the subsequent processing, no matter what the value will not affect the image processing results, its state controller 131 storage space (state control The value of register value storage) depends on the number of supported image sources. For example, if you support 16 image sources with red, blue and green elements, you need 3x16=48 storage space to store the input required for each state. The value of the element.

再者,請參閱第一、二圖所示,係為本發明影像處理器之方塊圖、較佳實施例之方塊圖,由圖中可以清楚看出,由於單一影像處理器1只能接收二影像源之影像訊號,當遇到三個或三個以上之影像源時,就需要利用二個或二個以上之影像處理器1才能進行處理,其係透過連接方式將二個或二個以上之影像處理器1連接,但因為影像訊號輸入的時間會有延遲,且各影像處理器1因需耗費時間處理影像訊號所以也會產生延遲,所以必須讓各個影像處理器1進行同步才能順利進行處理,各影像處理器1為利用前端控制訊號輸入埠14、前端控制訊號輸出埠15、後端控制訊號輸入埠16及後端控制及影像訊號輸出埠17來和上下游的影像處理器 1作同步,藉此讓複數個只能接收二影像源之單一影像處理器1,便可進行多通道的影像處理,進而達到低成本便能進行高階影像處理之目的。Furthermore, please refer to the first and second figures, which are block diagrams of the image processor of the present invention, and a block diagram of a preferred embodiment. It can be clearly seen from the figure that since the single image processor 1 can only receive two The image signal of the image source, when encountering three or more image sources, requires two or more image processors 1 to be processed, which is two or more through the connection method. The image processor 1 is connected, but there is a delay in the input time of the image signal, and each image processor 1 has a delay in processing the image signal, so the image processor 1 must be synchronized to perform smoothly. For processing, each image processor 1 uses front-end control signal input 、14, front-end control signal output 埠15, back-end control signal input 埠16, and back-end control and image signal output 来17, and upstream and downstream image processors. 1 is synchronized, so that a plurality of single image processors 1 that can only receive two image sources can perform multi-channel image processing, thereby achieving high-order image processing at low cost.

一般的影像源都是由水準同步訊號(Horizontal Synchronization,H-sync)及垂直同步訊號(Vertical Synchronization,V-sync)來控制它的訊號輸出,每一個垂直同步訊號的到來,表示一幀影像(frame or field)的開始,而每一個水準同步訊號的到來,表示一條影像線(image line)的輸出開始,當統一了所有影像源的水準同步訊號及垂直同步訊號後,就可以同步所有影像源的輸入訊號,但因為是用多個雙通道影像處理器1連接進行處理,並不是所有影像處理器1的第一影像輸入埠111及第二影像輸入埠121都直接連接到影像源,所以光靠水準同步訊號和垂直同步訊號是不能夠讓所有影像處理器1都達到同步的。The general image source is controlled by Horizontal Synchronization (H-sync) and Vertical Synchronization (V-sync) to control its signal output. The arrival of each vertical sync signal represents one frame of image ( The beginning of frame or field), and the arrival of each level sync signal indicates the start of the output of an image line. When the level sync signal and vertical sync signal of all image sources are unified, all image sources can be synchronized. Input signal, but because it is connected by multiple dual-channel image processor 1, not all of the first image input port 111 and the second image input port 121 of the image processor 1 are directly connected to the image source, so the light The level synchronization signal and the vertical sync signal are not able to synchronize all of the image processors 1.

上述二個或二個以上之影像處理器1進行同步時,影像處理器1使用前端控制訊號輸入埠14、前端控制訊號輸出埠15及後端控制訊號輸入埠16傳輸同步訊號(inter module Synchronization;I-sync及o-sync;以下稱時序控制訊號)來進行影像同步,前端控 制訊號輸入埠14為輸入時序控制訊號,前端控制訊號輸出埠15根據前端控制訊號輸入埠14的時序控制訊號產生輸出時序控制訊號來控制影像處理器1的第一影像輸入埠111及第二影像輸入埠121,使二個輸入影像同步(如第一影像輸入埠111及第二影像輸入埠121之影像訊號輸入同步),後端控制訊號輸入埠16為輸入時序控制訊號,後端控制及影像訊號輸出埠17根據後端控制訊號輸入埠16的時序控制訊號產生輸出時序控制訊號和影像輸出訊號,前端控制訊號輸入埠14和後端控制訊號輸入埠16的輸入時序可以不一樣,也就是說第一影像輸入埠111及第二影像輸入埠121可以和唯一的後端控制及影像訊號輸出埠17不同步,藉此讓二個以上影像處理器1連接時,可隨各影像處理器1串接位置及訊號處理速度調整以同步輸出至其後方之影像處理器1。When the two or more image processors 1 are synchronized, the image processor 1 uses the front end control signal input port 14, the front end control signal output port 15 and the back end control signal input port 16 to transmit a synchronization signal (inter module Synchronization; I-sync and o-sync; hereinafter referred to as timing control signals) for image synchronization, front-end control The signal input port 14 is an input timing control signal, and the front end control signal output port 15 controls the first image input port 111 and the second image of the image processor 1 according to the timing control signal of the front end control signal input port 14 to generate an output timing control signal. The input port 121 synchronizes the two input images (such as the image input of the first image input port 111 and the second image input port 121), and the back end control signal input port 16 is the input timing control signal, the back end control and the image. The signal output 埠17 generates an output timing control signal and an image output signal according to the timing control signal of the back-end control signal input ,16, and the input timings of the front-end control signal input 埠14 and the back-end control signal input 埠16 may be different, that is, The first image input port 111 and the second image input port 121 can be out of synchronization with the unique backend control and video signal output port 17, thereby allowing two or more image processor 1 to be connected with each image processor 1 string. The position and signal processing speed are adjusted to synchronously output to the image processor 1 behind it.

請參閱第一、二圖所示,係為本發明影像處理器之方塊圖、較佳實施例之方塊圖,由圖二中可以清楚看出,其係將二個影像處理器1和2,串聯成一三通道處理器,以下實施例中用第一處理器2及第二處理器3稱呼,第一處理器2連接有第一影像源21及第二影像源22,第二處理器3則連接有第三影像源31,其第一處理器2之前端控制訊號輸出埠15供應相同的水準同步訊號和垂直同步訊號給第一影像源21、第二影像源22及第三影像源31,所以三個影像 源會同步輸出影像訊號,因為第一處理器2之第一影像輸入埠111與第二影像輸入埠121為同時接收到第一影像源21及第二影像源22所傳輸的影像訊號,便可達到同步,但第二處理器3之第一影像輸入埠111是接收第一處理器2處理後所輸出的影像訊號,因為第一處理器2處理影像訊號需要耗費時間,所以第一影像輸入埠111接收到影像訊號的時間會比第二影像輸入埠121接收到第三影像源31影像訊號的時間晚,二影像訊號不同步,然而所有影像訊號必須同步取像才能合成正確的3D影像,所以第二處理器3需用第二緩衝器12將第三影像源31所先傳輸到的影像訊號儲存,等候接收到第一處理器2之影像訊號後,再取出進行合成。Please refer to the first and second figures, which are block diagrams of the image processor of the present invention, and a block diagram of a preferred embodiment. As can be clearly seen from FIG. 2, two image processors 1 and 2 are used. The first processor 2 and the second processor 3 are connected to each other. The first processor 2 is connected to the first image source 21 and the second image source 22, and the second processor 3 is connected to the first processor 2 and the second processor 3. A third image source 31 is connected, and the front end control signal output port 15 of the first processor 2 supplies the same level synchronization signal and vertical synchronization signal to the first image source 21, the second image source 22, and the third image source 31. , so three images The source image is synchronously outputted, because the first image input port 111 and the second image input port 121 of the first processor 2 can simultaneously receive the image signals transmitted by the first image source 21 and the second image source 22, Synchronization is achieved, but the first image input port 111 of the second processor 3 is the image signal outputted by the first processor 2, because the first processor 2 takes time to process the image signal, so the first image input 埠111 The time when the image signal is received is later than the time when the second image input port 121 receives the image signal of the third image source 31, and the two image signals are not synchronized. However, all the image signals must be synchronized to acquire the correct 3D image, so The second processor 3 needs to store the image signal to which the third image source 31 is first transmitted by using the second buffer 12, and wait for the image signal of the first processor 2 to be received, and then fetch and synthesize.

該第一處理器2實際使用時,係於接收到第一影像源21及第二影像源22的影像訊號後,根據狀態控制器131的設定合成;再根據後端控制訊號輸入埠16的輸入時序,讓後端控制及影像訊號輸出埠17輸出訊號至第二處理器3之第一影像輸入埠111,因為第一處理器2的前端控制訊號輸入埠14及後端控制訊號輸入埠16同時接到第二處理器3的前端控制訊號輸出埠15,也就是說第二處理器3之第一影像輸入埠111及第二影像輸入埠121的時序控制訊號都是來自於第二處理器3之前端控制訊號輸出埠15,而且第二處理器3之第一影像輸入埠111資料比第二影像 輸入埠121的資料延遲一行,透過上述方式便可讓第一處理器2及第二處理器3同步處理三個影像源的影像訊號並合成為3D影像,所以當需要處理n個通道之3D影像處理器時,便可利用n-1個影像處理器1當作建構模組(building block)進行連接的組合。When the first processor 2 is actually used, after receiving the image signals of the first image source 21 and the second image source 22, the first processor 2 is synthesized according to the setting of the state controller 131; and then input according to the backend control signal input 埠16. Timing, the backend control and video signal output 埠17 output signals to the first image input port 111 of the second processor 3, because the front end control signal input port 14 and the back end control signal input port 16 of the first processor 2 are simultaneously Receiving the front end control signal output 埠15 of the second processor 3, that is, the timing control signals of the first image input port 111 and the second image input port 121 of the second processor 3 are all from the second processor 3 The front end control signal output 埠15, and the first image input 埠111 data of the second processor 3 is smaller than the second image The data of the input port 121 is delayed by one line. In this way, the first processor 2 and the second processor 3 can synchronously process the image signals of the three image sources and synthesize them into 3D images, so when it is necessary to process 3D images of n channels When the processor is used, n-1 image processors 1 can be used as a construction block to perform a combination of connections.

請參閱第一、二、三圖所示,係為本發明影像處理器之方塊圖、較佳實施例之方塊圖、另一實施例之方塊圖,由圖中可以清楚看出,當具有第一影像源21、第二影像源22、第三影像源31、第四影像源41及第五影像源42時,則可設有第一處理器2、第二處理器3、第三處理器4及第四處理器5等四個處理器來合成3D影像,第一處理器2之第一影像輸入埠111及第二影像輸入埠121分別連接於第一影像源21及第二影像源22,第二處理器3的第一影像輸入埠111及第二影像輸入埠121則分別連接到第一處理器2的後端控制及影像訊號輸出埠17及第三影像源31,第三處理器4之第一影像輸入埠111及第二影像輸入埠121分別連接於第四影像源41及第五影像源42,第四處理器5之第一影像輸入埠111及第二影像輸入埠121則分別連接於第二處理器3之後端控制及影像訊號輸出埠17及第三處理器4之後端控制及影像訊號輸出埠17。Please refer to the first, second and third figures, which are block diagrams of the image processor of the present invention, a block diagram of a preferred embodiment, and a block diagram of another embodiment, which can be clearly seen from the figure. When the image source 21, the second image source 22, the third image source 31, the fourth image source 41, and the fifth image source 42 are provided, the first processor 2, the second processor 3, and the third processor may be disposed. 4 and 4 processors 5 and the like are used to synthesize 3D images, and the first image input port 111 and the second image input port 121 of the first processor 2 are respectively connected to the first image source 21 and the second image source 22 The first image input port 111 and the second image input port 121 of the second processor 3 are respectively connected to the back end control and image signal output port 17 of the first processor 2 and the third image source 31, and the third processor 4, the first image input port 111 and the second image input port 121 are respectively connected to the fourth image source 41 and the fifth image source 42, and the first image input port 111 and the second image input port 121 of the fourth processor 5 are Connected to the second processor 3 and the rear end control and video signal output port 17 and the third processor 4 rear end respectively Control and video signal output 埠17.

上述之第四處理器5為利用前端控制訊號輸出埠15輸出影像同步的時序控制訊號至第二處理器3及第三處理器4 ,第二處理器3再將影像輸同步的時序控制訊號利用前端控制訊號輸出埠15輸出至第一處理器2,第一處理器2則以上述之方式讓第一影像源21、第二影像源22及第三影像源31同步輸出影像訊號,而第三處理器4亦利用前端控制訊號輸出埠15輸出影像同步的時序控制訊號至第四影像源41及第五影像源42,如此便可讓影像輸入同步;而第一處理器2、第二處理器3及第三處理器4都以後端控制及影像訊號輸出埠17輸出訊號至下游之處理器,如此便可同步處理影像訊號並合成為3D影像。The fourth processor 5 is configured to output a video synchronization timing control signal to the second processor 3 and the third processor 4 by using the front end control signal output 埠15. The second processor 3 outputs the timing control signal for synchronizing the image to the first processor 2 by using the front-end control signal output 埠15, and the first processor 2 makes the first image source 21 and the second image in the above manner. The source 22 and the third image source 31 synchronously output image signals, and the third processor 4 also outputs the image synchronization timing control signals to the fourth image source 41 and the fifth image source 42 by using the front end control signal output 埠15. The image input is synchronized, and the first processor 2, the second processor 3, and the third processor 4 both output the rear end control and the image signal output 埠17 output signals to the downstream processor, so that the image signals can be synchronously processed and synthesized. For 3D images.

由於實際使用的3D光學技術不同時(如光柵片貼膜、斜紋光柵片貼膜或狹縫視差),其圖元輸出也會隨之改變,以下為具有第一影像源21、第二影像源22、第三影像源31、第四影像源41及第五影像源42時,對圖元輸出舉例說明,其圖元輸出順序為:Since the actual 3D optical technology is not used (such as a lenticular sheet film, a twill grating film or a slit parallax), the image element output thereof also changes, and the following has a first image source 21 and a second image source 22, For the third image source 31, the fourth image source 41, and the fifth image source 42, the output of the primitive is illustrated, and the order of output of the primitives is:

第一影像源21為A1r、A1g、A1b、A2r…The first image source 21 is A1r, A1g, A1b, A2r...

第二影像源22為B1r、B1g、B1b、B2r…The second image source 22 is B1r, B1g, B1b, B2r...

第三影像源31為C1r、C1g、C1b、C2r…The third image source 31 is C1r, C1g, C1b, C2r...

第四影像源41為D1r、D1g、D1b、D2r…The fourth image source 41 is D1r, D1g, D1b, D2r...

第五影像源42為E1r、E1g、E1b、E2r…The fifth image source 42 is E1r, E1g, E1b, E2r...

根據光柵片貼膜的設計不同,我們圖元的輸出排列也要有相對應的調整,其輸出順序可能是A1r、B1g、C1b、D2r…或A1r、C1g、E1b、B2r…等不同 型式,如果是使用斜紋式光柵貼膜其輸出的圖元排列也會不同,如:A1r、C1g、E1b、B2r…,此時,可以使用四個影像處理器1來滿足同步處理及輸出之需求,然而,使用四個影像處理器1時,因為將原本單一影像處理器1所需處理之影像訊號合成動作分散到各個影像處理器1,所以必須控制各個影像處理器1的圖元合成來符合使用者所需之輸出排列。According to the design of the lenticular film, the output arrangement of our primitives should be adjusted accordingly. The output order may be A1r, B1g, C1b, D2r... or A1r, C1g, E1b, B2r...etc. Type, if the twill grating film is used, the output of the primitives will be different, such as: A1r, C1g, E1b, B2r... In this case, four image processors 1 can be used to meet the requirements of synchronous processing and output. However, when four image processor 1 are used, since the image signal synthesizing action to be processed by the original single image processor 1 is distributed to each image processor 1, it is necessary to control the image element synthesis of each image processor 1 to conform to the use. The output arrangement required by the person.

是以,第一處理器2內部狀態控制器131的第一寄存器20需進行如下之設定,其設定值請參閱上方所述:Therefore, the first register 20 of the internal state controller 131 of the first processor 2 needs to be set as follows. For the setting values, please refer to the above:

寄存器00={01,11,11,10},表示第1~4點之輸出訊號順序為第一影像源21輸出,不輸出,不輸出,第二影像源22輸出。The register 00={01, 11, 11, 10} indicates that the output signals of the first to fourth points are sequentially outputted by the first image source 21, are not output, are not output, and the second image source 22 is output.

寄存器01={11,01,11,11},表示第5~8點之輸出訊號順序為不輸出,第一影像源21輸出,不輸出,不輸出。Register 01={11,01,11,11}, indicating that the output signals of the 5th to 8th points are not outputted, and the first image source 21 outputs, does not output, and does not output.

寄存器02={10,11,01,11},表示第9~12點之輸出訊號順序為第二影像源22輸出,不輸出,第一影像源21輸出,不輸出。Register 02={10,11,01,11}, indicating that the output signal sequence of the 9th to 12th points is the output of the second image source 22, and is not output, and the first image source 21 outputs, and does not output.

寄存器03={11,10,11,00},表示第13~16點之輸出訊號順序為不輸出,第二影像源22輸出,不輸出,第一迴圈結束,所以跑到第16點時,下一點會從新開始,再次進行寄存器00之輸出順序。Register 03={11,10,11,00}, indicating that the output signal of the 13th to 16th points is not output, the second image source 22 outputs, does not output, the first loop ends, so when it reaches the 16th point The next point will start from the beginning, and the output order of register 00 will be performed again.

從上述內容可以得知,第一處理器2的輸出訊號為{A1r,X,X,B2r,X,A2b,X,X,B3b,X,A4g,X,X,B5g,X},{A6r,X,X,B7r,X,A7b,X,X,B8b,X,A9g,X,X,B10g,X},其係將第一影像源21及第二影像源22所提供之影像訊號中所需之畫素擷取放至預設資料區塊中。It can be known from the above that the output signals of the first processor 2 are {A1r, X, X, B2r, X, A2b, X, X, B3b, X, A4g, X, X, B5g, X}, {A6r , X, X, B7r, X, A7b, X, X, B8b, X, A9g, X, X, B10g, X}, which are the image signals provided by the first image source 21 and the second image source 22 The desired pixel is captured in the preset data block.

第二處理器3之第二寄存器30則需進行如下之設定:寄存器00={01,10,11,01},表示第1~4點之輸出訊號順序為第一處理器2輸出,第三影像源31輸出,不輸出,第一處理器2輸出。The second register 30 of the second processor 3 needs to be set as follows: register 00={01,10,11,01}, indicating that the output signals of the first to fourth points are in the order of the first processor 2, and the third The image source 31 outputs, does not output, and the first processor 2 outputs.

寄存器01={11,01,10,11},表示第5~8點之輸出訊號順序為不輸出,第一處理器2輸出,第三影像源31輸出,不輸出。Register 01={11,01,10,11}, indicating that the output signals of the 5th to 8th points are not outputted, the first processor 2 outputs, and the third image source 31 outputs, and does not output.

寄存器02={01,11,01,10},表示第9~12點之輸出訊號順序為第一處理器2輸出,不輸出,第一處理器2輸出,第三影像源31輸出。The register 02={01,11,01,10} indicates that the output signals of the 9th to 12th points are the output of the first processor 2, are not output, the output of the first processor 2, and the output of the third image source 31.

寄存器03={11,01,11,00},表示第13~16點之輸出訊號順序為不輸出,第一處理器2輸出,不輸出,第一迴圈結束,所以跑到第16點時,下一點會從新開始,再次進行寄存器00之輸出順序。Register 03={11,01,11,00}, indicating that the output signals of the 13th to 16th points are not outputted, the first processor 2 outputs, does not output, the first loop ends, so when it reaches the 16th point The next point will start from the beginning, and the output order of register 00 will be performed again.

從上述內容可以得知,第二處理器3的輸出訊號為{A 1r,C1g,X,B2r,X,A2b,C3r,X,B3b,X,A4g,C4b,X,B5g,X},{A6r,C6g,X,B7r,X,A7b,C8r,X,B8b,X,A9g,C9b,X,B10g,X},由上述輸出訊號可得知,第二處理器3係將第三影像源31所提供之影像訊號中,將所需之畫素擷取放至第一處理器2所輸出影像訊號內之預設資料區塊中。It can be known from the above that the output signal of the second processor 3 is {A 1r, C1g, X, B2r, X, A2b, C3r, X, B3b, X, A4g, C4b, X, B5g, X}, {A6r, C6g, X, B7r, X, A7b, C8r, X, B8b, X, A9g, C9b, X, B10g, X}, as can be seen from the above output signal, the second processor 3 is to take the desired pixel from the image signal provided by the third image source 31. The preset data block in the image signal output by the first processor 2 is included.

第三處理器4的第三寄存器40則需進行如下之設定:寄存器00={11,11,10,11},寄存器01={01,11,11,10},寄存器02={11,01,11,11},寄存器03={10,11,01,00},01表示第四影像源41輸出,10表示第五影像源42輸出,11表示不輸出,00表示第一迴圈結束,從上述內容可以得知,第三處理器4的輸出訊號為{X,X,E1b,X,D2g,X,X,E3g,X,D4r,X,X,E5r,X,D5b},{X,X,E6b,X,D7g,X,X,E8g,X,D9r,X,X,E10r,X,D10b},其係將第四影像源41及第五影像源42所提供之影像訊號中所需之畫素擷取放至預設資料區塊中。The third register 40 of the third processor 4 needs to be set as follows: register 00={11,11,10,11}, register 01={01,11,11,10}, register 02={11,01 , 11, 11}, register 03 = {10, 11, 01, 00}, 01 indicates the output of the fourth image source 41, 10 indicates the output of the fifth image source 42, 11 indicates no output, and 00 indicates the end of the first loop. It can be known from the above that the output signals of the third processor 4 are {X, X, E1b, X, D2g, X, X, E3g, X, D4r, X, X, E5r, X, D5b}, {X , X, E6b, X, D7g, X, X, E8g, X, D9r, X, X, E10r, X, D10b}, which are the image signals provided by the fourth image source 41 and the fifth image source 42 The desired pixel is captured in the preset data block.

第四處理器5的第四寄存器50則需進行如下之設定:寄存器00={01,01,10,01},寄存器01={10,01,01,10},寄存器02={01, 10,01,01},寄存器03={10,01,10,00},01表示第二處理器3輸出,10表示第三處理器4輸出,00表示第一迴圈結束,從上述內容可以得知,第四處理器5的輸出訊號為{A1r,C1g,E1b,B2r,D2g,A2b,C3r,E3g,B3b,D4r,A4g,C4b,E5r,B5g,D5b},{A6r,C6g,E6b,B7r,D7g,A7b,C8r,E8g,B8b,D9r,A9g,C9b,E10r,B10g,D10b},其係將第二處理器3及第三處理器4所提供之影像訊號中所需之畫素擷取放至預設資料區塊中,所以第四處理器5所輸出之資料便已經將第一影像源21、第二影像源22、第三影像源31、第四影像源41及第五影像源42所輸出影像訊號處理及合成了,是以,依照實際使用的3D光學技術及影像源數量,便可對各影像處理器1中之寄存器進行設定,進而可達到透過多個成本低廉之雙通道影像處理器1同步處理及合成三個或三個以上影像源之影像訊號,並產生3D影像訊號之目的,且由於引腳數量也不需增加,晶片尺寸也不會增大,便可降低生產成本,再者,因為僅是利用多個雙通道影像處理器1組合,所以僅需針對不同的影像源數量進行相對應之多個影像處理器1排列結合設計,因為結合方式簡單且僅需更改狀態控制器的寄存器設定,寄存器設定因具有固定規則之設定方式,開發成本就可以降 低。The fourth register 50 of the fourth processor 5 needs to be set as follows: register 00={01,01,10,01}, register 01={10,01,01,10}, register 02={01, 10, 01, 01}, register 03 = {10, 01, 10, 00}, 01 indicates the output of the second processor 3, 10 indicates the output of the third processor 4, and 00 indicates the end of the first loop, from the above content It is known that the output signals of the fourth processor 5 are {A1r, C1g, E1b, B2r, D2g, A2b, C3r, E3g, B3b, D4r, A4g, C4b, E5r, B5g, D5b}, {A6r, C6g, E6b , B7r, D7g, A7b, C8r, E8g, B8b, D9r, A9g, C9b, E10r, B10g, D10b}, which are required for the image signals provided by the second processor 3 and the third processor 4 The first image source 21, the second image source 22, the third image source 31, the fourth image source 41, and the first image source 21 have been selected by the fourth processor 5 The image signals output by the five image sources 42 are processed and synthesized. Therefore, according to the actual 3D optical technology and the number of image sources, the registers in each image processor 1 can be set, thereby achieving multiple low cost. The dual-channel image processor 1 synchronously processes and synthesizes image signals of three or more image sources, and generates a 3D image signal, and the chip size does not increase because the number of pins does not need to be increased. In addition, the production cost can be reduced. Furthermore, since only a plurality of dual-channel image processor 1 combinations are used, it is only necessary to perform a plurality of image processor 1 arrangement combinations for different number of image sources, because the combination manner Simple and only need to change the register setting of the state controller. The register setting has a fixed rule setting, and the development cost can be reduced. low.

上述之舉例為第一條影像線時各影像處理器1之寄存器設定,而第二、三、四、五、六…條影像線時各影像處理器1之寄存器設定亦用相同方式處理,但第二條影像線取點的順序雖如同第一條影像線,但卻跳過(skip)第一點,並將第一點變成最後一點(rotate to last point),而第六條影像線的寄存器設定則又相同於第一條影像線之取點順序,是以,所有影像線是以每五條影像線為基準進行重複。The above example is the register setting of each image processor 1 in the first image line, and the register settings of the image processor 1 in the second, third, fourth, fifth, and sixth image lines are also processed in the same manner, but The order of the second image line is like the first image line, but skips the first point and turns the first point to the last point (rotate to last point), while the sixth image line The register setting is the same as the order of the first image line. Therefore, all image lines are repeated based on every five image lines.

另,因為每一條影像線之相對順序都要控制,所以影像處理器1中需設有一線旋轉寄存器(Line Rotate Register),藉此控制每一條影像線之間的相對順序,如線旋轉寄存器〔〕={1,1,1,1,1},1為正值,正值時表示下一條的排列順序是向左旋轉,負值時表示下一條的排列順序是向右旋轉,線旋轉寄存器的值只有五個,代表五條線以後就會回到原來的順序以形成迴圈。In addition, since the relative order of each image line is controlled, the image processor 1 needs to have a line rotation register (Line Rotate Register), thereby controlling the relative order between each image line, such as a line rotation register [ 〕={1,1,1,1,1}, 1 is a positive value. Positive values indicate that the next order is rotated to the left, and negative values indicate that the next order is rotated to the right, the line rotation register The value of only five, representing the five lines will return to the original order to form a loop.

上述影像處理器1之狀態控制器131及控制寄存器之舉例說明,其數量及詳細設定值僅為單一範例,故可隨著實際使用之狀態進行增減修改,其僅具將多個影像源之影像訊進行處理合成之功能即可,非因此即侷限本發明之專利範圍,如利用其他修飾及等效結構變化,均應同理包含於本發明 之專利範圍內,合予陳明。The state controller 131 and the control register of the image processor 1 are exemplified. The number and detailed setting values are only a single example, so they can be added or subtracted according to the actual use state, and only have multiple image sources. The function of processing and synthesizing the video signal is not limited to the scope of the patent of the present invention, and other modifications and equivalent structural changes are equally included in the present invention. Within the scope of the patent, it is given to Chen Ming.

故,本發明為主要針對立體影像處理方法,而可將二個或二個以上之雙通道影像處理器連接來接收多個影像源之影像訊號,且利用時序控制訊號讓各影像處理器及各影像源同步輸出影像訊號,各影像處理器並以二緩衝器儲存再同步輸出影像訊號至多工器,多工器便可合成影像訊號,藉此讓最下游影像處理器合成產生並輸出有立體影像訊號,因為僅利用了成本低廉之雙通道影像處理器,便可降低生產成本為主要保護重點,乃僅使多個影像處理器1僅需變更結合之設計及狀態控制器131的寄存器設定,便可適用於不同數量之影像源,因而具有降低開發成本之優勢,惟,以上所述僅為本發明之較佳實施例而已,非因此即侷限本發明之專利範圍,故舉凡運用本發明說明書及圖式內容所為之簡易修飾及等效結構變化,均應同理包含於本發明之專利範圍內,合予陳明。Therefore, the present invention is mainly directed to a stereoscopic image processing method, and two or more dual-channel image processors can be connected to receive image signals of a plurality of image sources, and the image processing signals are respectively used by the image processing signals. The image source synchronously outputs the image signal, and each image processor stores and resynchronizes the output image signal to the multiplexer by using two buffers, and the multiplexer can synthesize the image signal, thereby allowing the most downstream image processor to synthesize and output the stereo image. The signal, because only the low-cost dual-channel image processor is utilized, the production cost can be reduced as the main protection point, and only the plurality of image processors 1 need only change the register settings of the combined design and state controller 131. It can be applied to different numbers of image sources, and thus has the advantage of reducing the development cost. However, the above description is only the preferred embodiment of the present invention, and thus does not limit the scope of the patent of the present invention. The simple modifications and equivalent structural changes of the drawings are included in the scope of the patent of the present invention. Bright.

綜上所述,本發明上述之立體影像處理方法於實施、操作時,為確實能達到其功效及目的,故本發明誠為一實用性優異之發明,為符合發明專利之申請要件,爰依法提出申請,盼 審委早日賜准本案,以保障發明人之辛苦研發,倘若 鈞局貴審委有任何稽疑,請不吝來函指示,發明人定當竭力配合,至感德便。In summary, the above-described three-dimensional image processing method of the present invention can achieve its efficacy and purpose during implementation and operation, so the present invention is an invention with excellent practicability, and is an application for conforming to the invention patent, To file an application, I hope that the trial committee will grant the case as soon as possible to protect the intensive research and development of the inventor. If there is any doubt in the audit committee, please do not hesitate to give instructions to the inventor, and the inventor will try his best to cooperate with him.

1‧‧‧影像處理器1‧‧‧Image Processor

11‧‧‧第一緩衝器11‧‧‧First buffer

111‧‧‧第一影像輸入埠111‧‧‧First image input埠

12‧‧‧第二緩衝器12‧‧‧Second buffer

121‧‧‧第二影像輸入埠121‧‧‧Second image input埠

13‧‧‧多工器13‧‧‧Multiplexer

131‧‧‧狀態控制器131‧‧‧State Controller

14‧‧‧前端控制訊號輸入埠14‧‧‧ Front-end control signal input埠

15‧‧‧前端控制訊號輸出埠15‧‧‧ Front-end control signal output埠

16‧‧‧後端控制訊號輸入埠16‧‧‧ Backend Control Signal Input埠

17‧‧‧後端控制及影像訊號輸出埠17‧‧‧ Backend Control and Video Signal Output埠

2‧‧‧第一處理器2‧‧‧First processor

20‧‧‧第一寄存器20‧‧‧First register

21‧‧‧第一影像源21‧‧‧ First image source

22‧‧‧第二影像源22‧‧‧Second image source

3‧‧‧第二處理器3‧‧‧second processor

30‧‧‧第二寄存器30‧‧‧Second register

31‧‧‧第三影像源31‧‧‧ Third image source

4‧‧‧第三處理器4‧‧‧ third processor

40‧‧‧第三寄存器40‧‧‧ third register

41‧‧‧第四影像源41‧‧‧Fourth image source

42‧‧‧第五影像源42‧‧‧ Fifth image source

5‧‧‧第四處理器5‧‧‧ fourth processor

50‧‧‧第四寄存器50‧‧‧ fourth register

第一圖 係為本發明影像處理器之方塊圖。The first figure is a block diagram of the image processor of the present invention.

第二圖 係為本發明較佳實施例之方塊圖。The second drawing is a block diagram of a preferred embodiment of the invention.

第三圖 係為本發明另一實施例之方塊圖。The third figure is a block diagram of another embodiment of the present invention.

第四圖 係為習用光柵影像之示意圖(一)。The fourth picture is a schematic diagram of a conventional raster image (1).

第五圖 係為習用光柵影像之示意圖(二)。The fifth picture is a schematic diagram of a conventional raster image (2).

2‧‧‧第一處理器2‧‧‧First processor

20‧‧‧第一寄存器20‧‧‧First register

21‧‧‧第一影像源21‧‧‧ First image source

22‧‧‧第二影像源22‧‧‧Second image source

3‧‧‧第二處理器3‧‧‧second processor

30‧‧‧第二寄存器30‧‧‧Second register

31‧‧‧第三影像源31‧‧‧ Third image source

Claims (6)

一種立體影像處理方法,其係利用二個或二個以上之雙通道影像處理器連接,以接收三個或三個以上影像源之影像訊號,並對影像訊號進行處理合成後輸出立體(3D)影像訊號,其影像處理器中設有連接第一影像輸入埠之第一緩衝器及連接第二影像輸入埠之第二緩衝器,且第一緩衝器及第二緩衝器電性連接於多工器,影像處理器設有前端控制訊號輸入埠、前端控制訊號輸出埠、後端控制訊號輸入埠及供多工器輸出影像訊號之後端控制及影像訊號輸出埠,其處理方法為包括:該各影像處理器前端控制訊號輸入埠為接收輸入時序控制訊號,各下游影像處理器之前端控制訊號輸出埠輸出讓影像輸入同步的時序控制訊號至上游之各影像處理器,最上游之各影像處理器再以前端控制訊號輸出埠輸出時序控制訊號讓其本身及下游影像處理器之各影像源同步輸出影像訊號,且上游之各影像處理器利用後端控制及影像訊號輸出埠輸出時序控制訊號及影像輸出訊號到下游各影像處理器,各影像處理器利用第一緩衝器及第二緩衝器儲存接收的圖元再同步輸出至多工器,多工器則以內部狀態控制器的設定值來選擇訊號的輸入源為第一緩衝器或第二緩衝器,且各內部狀態控制器的寄存器設定將二影像訊號中所需之畫素擷取放至預設資料區塊中來進行立體影像合成,再以後端控制及影像訊號輸出 埠輸出影像訊號。A stereo image processing method is connected by using two or more two-channel image processors to receive image signals of three or more image sources, and processing and synthesizing the image signals to output stereo (3D) The image processor has a first buffer connected to the first image input port and a second buffer connected to the second image input port, and the first buffer and the second buffer are electrically connected to the multiplexer. The image processor has a front-end control signal input port, a front-end control signal output port, a back-end control signal input port, and a multiplexer output image signal rear-end control and image signal output port, and the processing method includes: The image processor front-end control signal input 接收 is a receiving input timing control signal, and each downstream image processor front-end control signal output 埠 outputs a timing control signal for synchronizing the image input to each of the upstream image processors, and the most upstream image processor Then, the front-end control signal output/output timing control signal allows the image source of the image processor and the downstream image processor to simultaneously output the image. The image processor and the upstream image processor use the back end control and the image signal output to output the timing control signal and the image output signal to the downstream image processors, and each image processor uses the first buffer and the second buffer to store and receive the signal. The picture element is synchronously outputted to the multiplexer, and the multiplexer selects the input source of the signal as the first buffer or the second buffer by using the set value of the internal state controller, and the register settings of each internal state controller will be two images. The required pixel in the signal is placed in the preset data block for stereo image synthesis, and then the rear control and image signal output. 埠 Output image signal. 如申請專利範圍第1項所述之立體影像處理方法,其中該影像處理器中設有控制每一條影像線之間的相對順序之一線旋轉寄存器,其相對順序為包括向左、右旋轉及順序迴圈。The method of processing a stereoscopic image according to claim 1, wherein the image processor is provided with a linear rotation register for controlling the relative order between each image line, and the relative order includes rotating to the left and right and the order. Loop. 如申請專利範圍第1項所述之立體影像處理方法,其中該各影像處理器之第一緩衝器及第二緩衝器至少能儲存二行訊號。The stereoscopic image processing method of claim 1, wherein the first buffer and the second buffer of each image processor can store at least two lines of signals. 如申請專利範圍第1項所述之立體影像處理方法,其中該狀態控制器儲存空間的大小為3倍於影像源之數量。The stereoscopic image processing method of claim 1, wherein the state controller storage space is three times larger than the number of image sources. 如申請專利範圍第1項所述之立體影像處理方法,其中該前端控制訊號輸出埠為根據前端控制訊號輸入埠之輸入時序控制訊號產生輸出之時序控制訊號。The method of processing a stereoscopic image according to the first aspect of the invention, wherein the front end control signal output port is a timing control signal for generating an output according to an input timing control signal of the front end control signal input port. 如申請專利範圍第1項所述之立體影像處理方法,其中該後端控制及影像訊號輸出埠根據後端控制訊號輸入埠的時序控制訊號產生輸出時序控制訊號和影像輸出訊號。The method of processing a stereoscopic image according to claim 1, wherein the backend control and the image signal output generate an output timing control signal and an image output signal according to a timing control signal of the backend control signal input.
TW101132051A 2012-09-03 2012-09-03 Dimensional image processing method TWI489856B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101132051A TWI489856B (en) 2012-09-03 2012-09-03 Dimensional image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101132051A TWI489856B (en) 2012-09-03 2012-09-03 Dimensional image processing method

Publications (2)

Publication Number Publication Date
TW201412090A TW201412090A (en) 2014-03-16
TWI489856B true TWI489856B (en) 2015-06-21

Family

ID=50820994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101132051A TWI489856B (en) 2012-09-03 2012-09-03 Dimensional image processing method

Country Status (1)

Country Link
TW (1) TWI489856B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105966732A (en) * 2015-03-11 2016-09-28 万润科技股份有限公司 Method and device for preventing falling and damage of electronic component classification material box

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414794A (en) * 2001-10-22 2003-04-30 矽统科技股份有限公司 Equipment and method of displaying stereo cartoon in viewing window
US20100151944A1 (en) * 2003-12-19 2010-06-17 Manuel Rafael Gutierrez Novelo 3d videogame system
US20100194857A1 (en) * 2009-02-03 2010-08-05 Bit Cauldron Corporation Method of stereoscopic 3d viewing using wireless or multiple protocol capable shutter glasses
TW201222525A (en) * 2010-11-26 2012-06-01 Mediatek Singapore Pte Ltd Method for performing video display control, and associated video processing circuit and video display system
TW201230768A (en) * 2010-08-06 2012-07-16 Panasonic Corp Encoding method, display device, and decoding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414794A (en) * 2001-10-22 2003-04-30 矽统科技股份有限公司 Equipment and method of displaying stereo cartoon in viewing window
US20100151944A1 (en) * 2003-12-19 2010-06-17 Manuel Rafael Gutierrez Novelo 3d videogame system
US20100194857A1 (en) * 2009-02-03 2010-08-05 Bit Cauldron Corporation Method of stereoscopic 3d viewing using wireless or multiple protocol capable shutter glasses
TW201230768A (en) * 2010-08-06 2012-07-16 Panasonic Corp Encoding method, display device, and decoding method
TW201222525A (en) * 2010-11-26 2012-06-01 Mediatek Singapore Pte Ltd Method for performing video display control, and associated video processing circuit and video display system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105966732A (en) * 2015-03-11 2016-09-28 万润科技股份有限公司 Method and device for preventing falling and damage of electronic component classification material box

Also Published As

Publication number Publication date
TW201412090A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
US9924153B2 (en) Parallel scaling engine for multi-view 3DTV display and method thereof
EP2383995B1 (en) Display system, method and computer program for capturing images using multiple integrated image sensors
WO2020199889A1 (en) Multi-view naked-eye stereoscopic display, display system, and display method
US8401339B1 (en) Apparatus for partitioning and processing a digital image using two or more defined regions
CN103988504A (en) Image processing apparatus and method for subpixel rendering
KR20140022764A (en) Combining video data streams of differing dimensionality for concurrent display
JP2002271819A (en) Multi-layer display device
US8723920B1 (en) Encoding process for multidimensional display
CN102014293B (en) Three-dimensional rendering method of plane video
US20130021438A1 (en) 3d video processing unit
JP6667981B2 (en) Imbalance setting method and corresponding device
TWI772997B (en) Multi-view 3D display screen, multi-view 3D display device
TW201031179A (en) Image transform method, imaging methods and system for stereo vision
KR101719984B1 (en) Method for processing image of multivision display system outputting 3 dimensional contents and multivision display system enabling of the method
WO2012068784A1 (en) Synchronization method for displaying mixed signals of stereoscopic and flat image signals on ultra large screen
US20120120190A1 (en) Display device for use in a frame sequential 3d display system and related 3d display system
CN102238396A (en) Image converting method, imaging method and system of stereoscopic vision
CN113219668B (en) Method and device for refreshing screen of head-mounted display device and electronic device
WO2016004715A1 (en) Display processing system and method, and electronic device
TWI489856B (en) Dimensional image processing method
US20120163700A1 (en) Image processing device and image processing method
US20120081513A1 (en) Multiple Parallax Image Receiver Apparatus
CN110996092A (en) 3D effect display system and method of DLP spliced screen
KR20200054846A (en) Apparatus and method for dual stereoscopic display
Andorko et al. Hardware implementation of a real-time 3D video acquisition system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees