TWI489838B - Antenna control method and system thereof - Google Patents
Antenna control method and system thereof Download PDFInfo
- Publication number
- TWI489838B TWI489838B TW101127244A TW101127244A TWI489838B TW I489838 B TWI489838 B TW I489838B TW 101127244 A TW101127244 A TW 101127244A TW 101127244 A TW101127244 A TW 101127244A TW I489838 B TWI489838 B TW I489838B
- Authority
- TW
- Taiwan
- Prior art keywords
- channel
- attenuation
- parameters
- delay
- base station
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Description
發明所屬技術領域係關於一種天線控制方法與系統。The field of the invention relates to an antenna control method and system.
隨著日漸高漲的環保意識以及節能經濟的考量,大眾運輸系統成為優先考量的重要建設。在大眾運輸系統的通訊服務架構上,目前通常採用結合車對內網路與車對外網路之兩段式服務架構以提供眾多乘客在單一行進車廂內完整的行動通訊服務。With the increasing awareness of environmental protection and the consideration of energy-saving economy, the mass transit system has become an important construction priority. In the communication service architecture of the mass transit system, a two-stage service architecture combining the in-vehicle network and the vehicle's external network is usually adopted to provide a complete mobile communication service for a large number of passengers in a single traveling vehicle.
光纖微波(Radio over Fiber,RoF)技術已被廣泛應用於隧道或建築物等訊號接收品質較差的地點。近年來,光纖微波技術更結合軌道通訊系統,將微波訊號先轉換成光訊號送至遠方目的地再轉回電訊號,故可傳送高頻訊號至較遠距離而不會快速衰減。在行動通訊中,受限於基地台涵蓋範圍而會發生換手(Hand Over、Hand Off)的情形。過於頻繁的換手情形可能會導致資料傳輸效能大幅下降,甚至無法提供服務的情形,此一現象在高速移動通訊中影響更為明顯。Radio over fiber (RoF) technology has been widely used in places with poor reception quality such as tunnels or buildings. In recent years, fiber-optic microwave technology has been combined with the track communication system to convert the microwave signal into an optical signal and send it to a distant destination and then back to the electrical signal. Therefore, the high-frequency signal can be transmitted to a long distance without rapid attenuation. In mobile communications, Hand Over (Hand Off) occurs when the coverage of the base station is limited. Too often a handicap situation may result in a significant drop in data transmission performance or even a service failure. This phenomenon is more pronounced in high-speed mobile communications.
因大眾運輸系統具有可預期性移動的特性,更進一步地,於軌道通訊系統中,固定基地台結合光纖微波技術的概念被提出以形成分散式天線系統(Distributed Antenna System,DAS),可延伸基地台涵蓋範圍。同時,並可透過射頻控制方法達成移動基地台(moving cell)以避免換手的情形發生。然而,光纖微波技術在通訊系統中所傳送的訊 號為同頻,可能會導致多重路徑(multipath)效應。對行動通訊系統而言,時域的多重路徑效應會造成頻域上的通道變化,當多重路徑又具備相近的能量分佈時影響更劇。Due to the predictable mobility of the mass transit system, further, in the orbit communication system, the concept of fixed base station combined with fiber-optic microwave technology is proposed to form a distributed antenna system (DAS), an extendable base. The coverage of the station. At the same time, a moving cell can be achieved through the radio frequency control method to avoid the situation of changing hands. However, the fiber-optic microwave technology transmits information in the communication system. The number is the same frequency and may result in a multipath effect. For mobile communication systems, the multipath effect of the time domain causes channel changes in the frequency domain, and the effects are more pronounced when multiple paths have similar energy distributions.
舉例來說,當列車在兩個遠端天線單元(Remote Antenna Unit,RAU)間移動時,具備相近能量的多重路徑情況容易出現,進而導致接收品質下降,甚至被迫中斷通訊。有提出過採用基地台結合選擇服務天線來達成單一直視波(Line of Sight,LoS)訊號以減少多重路徑效應。當應用於分頻多工(frequency domain multiplexing)系統中,基地台端控制裝置會選擇最接近行動台之遠端天線單元作為服務天線單元並關閉其他遠端天線單元發送接收訊號,減少多重路徑效應。For example, when a train moves between two Remote Antenna Units (RAUs), multiple paths with similar energies are prone to occur, resulting in reduced reception quality and even forced communication interruption. It has been proposed to use a base station combined with a selective service antenna to achieve a single Line of Sight (LoS) signal to reduce multiple path effects. When applied to a frequency domain multiplexing system, the base station control device selects the remote antenna unit closest to the mobile station as the serving antenna unit and turns off the other remote antenna unit to transmit and receive signals, thereby reducing the multipath effect.
在佈建分散式天線系統時,有提出過將基地台到每一個遠端天線單元的線路以接線或加上電子延遲裝置的方式來補償成相同的傳輸延遲時間。然而,上述的作法需要額外的光纖或電子延遲裝置。分散式天線系統中傳輸延遲時間包含光纖與空氣間的訊號傳遞,而訊號在光纖中傳輸速度較在空氣間慢;而使用的光纖長度越長,可容許的純空氣中傳送涵蓋範圍就越小。若想把訊號延伸較遠則需要較高密度佈建方式;反之,一般而言若想提升單一天線涵蓋範圍則不能使用較長的光纖,整體的涵蓋範圍較無法提升。In deploying a decentralized antenna system, it has been proposed to compensate the same transmission delay time by wiring the base station to each remote antenna unit by wiring or by adding an electronic delay device. However, the above approach requires additional fiber optic or electronic delay devices. The transmission delay time in a decentralized antenna system involves the signal transmission between the fiber and the air, and the transmission speed of the signal in the fiber is slower than that between the air. The longer the length of the fiber used, the smaller the transmission range in the allowable pure air. . If you want to extend the signal farther, you need a higher density deployment method. On the contrary, if you want to increase the coverage of a single antenna, you can't use a longer fiber. The overall coverage is not improved.
根據本揭露一實施範例,提出一種天線控制方法,包 括下列步驟。定義多組衰減參數與延遲參數。獲取一用戶端裝置與一基地台之對應於多個遠端天線單元的多個通道響應。依據該些通道響應計算對應該些組衰減參數與延遲參數的多個通道特徵值,該些通道特徵值反應該基地台與該用戶端裝置間之資料傳輸量。依據一預設資料傳輸量,選擇並輸出對應的該組衰減參數與延遲參數。According to an embodiment of the present disclosure, an antenna control method is provided. The following steps are included. Define multiple sets of attenuation parameters and delay parameters. Obtaining a plurality of channel responses of a client device and a base station corresponding to the plurality of remote antenna units. And calculating, according to the channel responses, a plurality of channel feature values corresponding to the group of attenuation parameters and delay parameters, the channel feature values reflecting a data transmission amount between the base station and the client device. The corresponding set of attenuation parameters and delay parameters are selected and output according to a preset data transmission amount.
根據本揭露一實施範例,提出一種天線控制系統,包括一量測模組、一控制模組以及一延遲與衰減模組。量測模組獲取一用戶端裝置與一基地台之對應於多個遠端天線單元的多個通道響應。控制模組依據該些通道響應計算對應多組衰減參數與延遲參數的多個通道特徵值,該些通道特徵值反應該基地台與該用戶端裝置間之資料傳輸量。控制模組依據一預設通道特徵值,選擇並輸出對應的特徵值該組衰減參數與延遲參數。延遲與衰減模組實現由該控制模組輸出之該組衰減參數與延遲參數。According to an embodiment of the present disclosure, an antenna control system is provided, including a measurement module, a control module, and a delay and attenuation module. The measurement module acquires a plurality of channel responses of a client device and a base station corresponding to the plurality of remote antenna units. The control module calculates a plurality of channel feature values corresponding to the plurality of sets of attenuation parameters and delay parameters according to the channel responses, and the channel feature values reflect a data transmission amount between the base station and the client device. The control module selects and outputs the corresponding characteristic value of the set of attenuation parameters and delay parameters according to a preset channel characteristic value. The delay and attenuation module implements the set of attenuation parameters and delay parameters output by the control module.
根據本揭露一實施範例,提出一種天線控制系統,包括多個遠端天線區塊、一量測模組、一控制模組以及一延遲與衰減模組。每一個遠端天線區塊包括一第一遠端天線單元與一第二遠端天線單元,第一遠端天線單元與一基地台間的距離大於第二遠端天線單元與該基地台間的距離。量測模組獲取一用戶端裝置對應於該些遠端天線單元的多個通道響應。控制模組依據該些通道響應計算對應多個衰減參數組的多個通道特徵值,該些通道特徵值反應該基地台與該用戶端裝置間之資料傳輸量。控制模組依據一預設通道特徵值,選擇並輸出對應的衰減參數組。其中衰 減模組實現由該控制模組輸出之衰減參數組至該多個遠端天線區塊之第一遠端天線單元。According to an embodiment of the present disclosure, an antenna control system is provided, including a plurality of remote antenna blocks, a measurement module, a control module, and a delay and attenuation module. Each of the remote antenna blocks includes a first remote antenna unit and a second remote antenna unit, and the distance between the first remote antenna unit and a base station is greater than the distance between the second remote antenna unit and the base station distance. The measurement module acquires a plurality of channel responses of the client device corresponding to the remote antenna units. The control module calculates a plurality of channel feature values corresponding to the plurality of attenuation parameter groups according to the channel responses, and the channel feature values reflect the data transmission amount between the base station and the client device. The control module selects and outputs a corresponding attenuation parameter group according to a preset channel characteristic value. Decay The subtraction module implements the attenuation parameter set output by the control module to the first remote antenna unit of the plurality of remote antenna blocks.
為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉若干實施範例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present disclosure, a number of embodiments will be described hereinafter with reference to the accompanying drawings, which are described in detail below:
本揭露所提出之天線控制方法與裝置的實施範例,可利用控制遠端天線單元的發射功率與延遲時間解決天線系統的多重路徑效應(multipath effect)問題。此外,本揭露更進一步提出非對稱式天線控制系統,以降低天線系統進行通道調整時的運算複雜度。The implementation example of the antenna control method and apparatus proposed by the present disclosure can solve the multipath effect problem of the antenna system by controlling the transmit power and delay time of the remote antenna unit. In addition, the present disclosure further proposes an asymmetric antenna control system to reduce the computational complexity of the antenna system for channel adjustment.
請參照第1A圖,一通訊系統100包括一基地台(Base Station,BS)120、一用戶端裝置(subscriber)170、一頭端單元(Head End Unit,HEU)140以及多個遠端天線單元(Remote Antenna Unit,RAU)160。Referring to FIG. 1A, a communication system 100 includes a base station (BS) 120, a subscriber 170, a Head End Unit (HEU) 140, and a plurality of remote antenna units ( Remote Antenna Unit, RAU) 160.
其中頭端單元140與遠端天線單元160之間的溝通採用光纖微波(Radio over Fiber,RoF)技術。其中,頭端單元140用以將基地台120之下行鏈路(Downlink)訊號,分配且導向該些遠端天線單元160;同時將遠端天線單元160收集之用戶端裝置170上行鏈路(Uplink)訊號,合成且導向基地台120。The communication between the head end unit 140 and the remote antenna unit 160 uses a radio over fiber (RoF) technology. The head end unit 140 is configured to allocate and direct the Downlink signal of the base station 120 to the remote antenna units 160; and simultaneously collect the uplink of the UE device 170 collected by the remote antenna unit 160 (Uplink) The signal is synthesized and directed to the base station 120.
頭端單元140包括一上下行訊號控制器152、一分歧器156、一合成器152,多電光轉換器(E/O)145,多光電轉換器(O/E)147。遠端天線單元160包括一光電轉換器162,一電光轉換器161,一功率放大器164、一低雜訊放大器 163、一上下行訊號切換器165以及一天線166。The head end unit 140 includes an uplink and downlink signal controller 152, a diplexer 156, a synthesizer 152, a multi-optical converter (E/O) 145, and a multi-opto-electrical converter (O/E) 147. The remote antenna unit 160 includes a photoelectric converter 162, an electro-optic converter 161, a power amplifier 164, and a low noise amplifier. 163. An uplink and downlink signal switch 165 and an antenna 166.
上下行訊號控制器152將基地台120發出的下行鏈路訊號導引至分歧器156,而後依據實際天線佈建需求,將下行訊號對應該些遠端天線單元160數量以分歧器156等分為多組訊號,經電光轉換器(E/O)145轉換成光域訊號經由光纖送至對應該遠端天線單元160。頭端單元140轉送基地台下行鏈路訊號之光域訊號,光電轉換器162轉換成電域訊號,經功率放大器164放大功率後,經上下行訊號控制器165導引至天線166發送。The uplink and downlink signal controller 152 directs the downlink signal sent by the base station 120 to the splitter 156, and then divides the downlink signal to the number of the remote antenna units 160 by the splitter 156 according to the actual antenna deployment requirements. The plurality of sets of signals are converted into optical domain signals via an optical to optical converter (E/O) 145 and sent to the corresponding remote antenna unit 160 via the optical fiber. The head end unit 140 forwards the optical domain signal of the base station downlink signal, and the photoelectric converter 162 converts the electric field signal into a electric field signal. After the power is amplified by the power amplifier 164, the signal is transmitted to the antenna 166 via the uplink and downlink signal controller 165.
將該些遠端天線單元160經天線166收集之用戶端裝置170上行鏈路訊號,經上下行訊號控制器165導引至低雜訊放大器163放大後,經電光轉換器161轉換成光域訊號經由光纖送至對應該頭端單元140。光電轉換器147轉換成光域訊號再經合成器152與其他遠端天線單元160轉送之上行鏈路訊號合成後,利用上下行訊號控制器152導向基地台120。The uplink signal of the user equipment 170 collected by the remote antenna unit 160 via the antenna 166 is led to the low noise amplifier 163 by the uplink and downlink signal controller 165, and then converted into the optical domain signal by the electro-optical converter 161. It is sent to the corresponding head unit 140 via the optical fiber. The photoelectric converter 147 converts the optical signal into an optical signal and combines it with the uplink signals forwarded by the other remote antenna unit 160, and then uses the uplink and downlink signal controller 152 to guide the base station 120.
其中,上下行訊號控制器152可以循環器(Circulator)或受控於基地台之切換器(Switch)實施;而上下行訊號控制器165可以循環器(Circulator)或受控於下行鏈路訊號功率偵測器之切換器(Switch)實施。The uplink and downlink signal controller 152 can be implemented by a Circulator or a switch controlled by a base station; and the uplink and downlink signal controller 165 can be circulator or controlled by downlink signal power. The switch of the detector is implemented by a switch.
圖1A中包括依照本揭露之天線控制系統146一實施範例示意圖,天線控制系統146至少包括一量測模組142、多個延遲與衰減模組148、以及一控制模組144。圖1A中延遲與衰減模組148係以實現於頭端單元140為例進行說明,然不限於此。量測模組142獲取用戶端裝置170與基 地台120對應於多個遠端天線單元160的多個通道響應。量測模組142可基於由上下行訊號控制器152參考一GPS訊號而得的一時序參考訊號(timing epoch)及該些遠端天線單元160之多個上行鏈路訊號得到該些通道響應,每一個通道響應包括一訊號強度值a 及一延遲時間τ 。多個延遲與衰減模組148對應多個遠端天線單元160,實現控制模組144輸出對應延遲與衰減模組148的遠端天線單元160之一組衰減參數與延遲參數。FIG. 1A includes a schematic diagram of an embodiment of an antenna control system 146 according to the present disclosure. The antenna control system 146 includes at least one measurement module 142, a plurality of delay and attenuation modules 148, and a control module 144. The delay and attenuation module 148 in FIG. 1A is described by taking the head end unit 140 as an example, but is not limited thereto. The measurement module 142 acquires a plurality of channel responses of the client device 170 and the base station 120 corresponding to the plurality of remote antenna units 160. The measurement module 142 can obtain the channel response based on a timing epoch obtained by the uplink and downlink signal controller 152 referring to a GPS signal and a plurality of uplink signals of the remote antenna units 160. Each channel response includes a signal strength value a and a delay time τ . The plurality of delay and attenuation modules 148 correspond to the plurality of remote antenna units 160, and the control module 144 outputs a set of attenuation parameters and delay parameters of the remote antenna unit 160 of the corresponding delay and attenuation module 148.
控制模組144定義多組衰減參數(attenuation candidate)A與延遲參數(delay candidate)Δ,每一組衰減參數A由多個衰減元素α組成並分別對應該些遠端天線單元160,多個衰減元素α數值可由系統元件可提供的裝置特性定義而得;同理,每一組延遲參數Δ由多個延遲元素δ組成並分別對應該些遠端天線單元160,多個延遲元素δ數值可由系統元件可提供的裝置特性定義而得。控制模組144依據該些通道響應計算對應該些組衰減參數與延遲參數的多個通道特徵值。其中,通道特徵值例如為方均根延遲展延(Root Mean Square delay spread)、平均過量延遲(Mean Excess Delay)、或與最強訊號差異在3dB以內的通道響應和其相關的延遲時間等,只要通道特徵值能反應基地台120與用戶端裝置(subscriber)170間之資料傳輸量(通道傳輸品質狀態)即可,如頻率響應之變化程度。舉例來說,方均根延遲展延越小,基地台120與用戶端裝置170間之資料傳輸量越高、通道傳輸品質狀態越好。以下通道特徵值採用方均根延遲展延為例說明,然不限於此。The control module 144 defines a plurality of sets of attenuation candidates A and delay candidates Δ. Each set of attenuation parameters A is composed of a plurality of attenuation elements α and respectively corresponds to the remote antenna units 160, and multiple attenuations. The element alpha value can be defined by the device characteristics that can be provided by the system component; for the same reason, each set of delay parameters Δ is composed of a plurality of delay elements δ and respectively correspond to the remote antenna elements 160, and the plurality of delay elements δ values can be determined by the system. The device characteristics that the component can provide are defined. The control module 144 calculates a plurality of channel feature values corresponding to the set of attenuation parameters and delay parameters according to the channel responses. The channel feature value is, for example, a Root Mean Square delay spread, a Mean Excess Delay, or a channel response within 3 dB of the strongest signal difference, and a delay time thereof, as long as the channel characteristics The value can reflect the amount of data transmission (channel transmission quality status) between the base station 120 and the subscriber station 170, such as the degree of change in the frequency response. For example, the smaller the delay per square root delay, the higher the data transmission between the base station 120 and the client device 170, and the better the channel transmission quality state. The following channel feature values are described by taking the rms delay spread as an example, but are not limited thereto.
控制模組144亦可因應系統設計需求,依據一預設通道特徵值選擇並輸出對應之一組衰減參數A與延遲參數△。此預設通道特徵值是能反應,例如,一較佳資料傳輸量或是一最高資料傳輸量。控制模組144可選擇並輸出,警如說,對應最小方均根延遲展延之該組衰減參數A與延遲參數△。由延遲與衰減模組148達到控制遠端天線單元160訊號發射之時間與大小。The control module 144 can also select and output a corresponding set of attenuation parameters A and delay parameters Δ according to a preset channel characteristic value in response to system design requirements. The preset channel characteristic value is reactive, for example, a preferred data transmission amount or a maximum data transmission amount. The control module 144 can select and output, for example, the set of attenuation parameters A and delay parameters Δ corresponding to the minimum rms delay spread. The time and magnitude of signal transmission by the remote antenna unit 160 is controlled by the delay and attenuation module 148.
此外,延遲與衰減模組148亦可置於遠端天線單元中,請參照第1B圖,其繪示一通訊系統100’,其中包括依照本揭露之天線控制系統146之另一實施範例示意圖。遠端天線單元160’之多個延遲與衰減模組168實現控制模組144輸出對應延遲與衰減模組168的遠端天線單元160’之衰減參數與延遲參數。控制模組144輸出對應遠端天線單元160’之一組衰減參數與延遲參數,轉換為一適當格式控制訊號如中心頻率為於較低頻之調幅訊號,透過多工器149與下行鏈路訊號整合,透過電光轉換器145(E/O)傳輸到遠端天線單元160’之光電轉換器162(O/E),經一解多工器169分離適當格式控制訊號及下行鏈路訊號。此一適當格式控制訊號經一控制器167回覆為該組衰減參數與延遲參數,控制延遲與衰減模組168。In addition, the delay and attenuation module 148 can also be placed in the remote antenna unit. Referring to FIG. 1B, a communication system 100' is illustrated, including a schematic diagram of another embodiment of the antenna control system 146 in accordance with the present disclosure. The plurality of delay and attenuation modules 168 of the remote antenna unit 160' implement the control module 144 to output the attenuation parameters and delay parameters of the remote antenna unit 160' of the corresponding delay and attenuation module 168. The control module 144 outputs a set of attenuation parameters and delay parameters corresponding to the remote antenna unit 160', and converts it into an appropriate format control signal, such as a center frequency of the amplitude modulation signal at a lower frequency, through the multiplexer 149 and the downlink signal. The integrated, optical-to-electric converter 145 (E/O) is transmitted to the optical converter 162 (O/E) of the remote antenna unit 160', and the appropriate format control signal and downlink signal are separated by a demultiplexer 169. The appropriate format control signal is replied to by the controller 167 as the set of attenuation parameters and delay parameters, and the delay and attenuation module 168 is controlled.
請參照第1C圖,其繪示一通訊系統100”,其中包括依照本揭露之天線控制系統146’一實施範例示意圖。天線控制系統146’包括:一量測模組142,一控制模組144,多個衰減模組648,以及多個遠端天線區塊610。第1C圖為一種非對稱分散式天線系統的架構。Please refer to FIG. 1C , which illustrates a communication system 100 ′′, including an embodiment of an antenna control system 146 ′ according to the disclosure. The antenna control system 146 ′ includes: a measurement module 142 and a control module 144 . A plurality of attenuation modules 648, and a plurality of remote antenna blocks 610. Figure 1C is an architecture of an asymmetric distributed antenna system.
多個遠端天線區塊610,每一個遠端天線區塊610包括一第一遠端天線單元160與一第二遠端天線單元160,該第一遠端天線單元160與該基地台120間的距離大於該第二遠端天線單元160與該基地台120間的距離。量測模組142用以獲取一用戶端裝置對應於該些遠端天線單元的多個通道響應。控制模組144,用以依據該些通道響應計算對應多個衰減參數的多個通道特徵值,該些通道特徵值反應該基地台與該用戶端裝置間之資料傳輸量,且選擇並輸出對應一預設通道特徵值之衰減參數。多個衰減模組648,用以實現控制模組144輸出之該些衰減參數對應該些遠端天線區塊610中該第一遠端天線單元160。請參照第2圖,其繪示依照本揭露一實施範例之天線控制方法流程圖。於步驟S200中,定義多組衰減參數A與延遲參數△。每一組衰減參數A由多個衰減元素α 組成並分別對應該些遠端天線單元160,多個衰減元素α 數值可由系統元件可提供的裝置特性定義而得;同理,每一組延遲參數△由多個衰減元素δ 組成並分別對應該些遠端天線160單元,此處之多個衰減元素δ 數值可由系統元件可提供的裝置特性定義而得。a plurality of remote antenna blocks 610, each of which includes a first remote antenna unit 160 and a second remote antenna unit 160. The first remote antenna unit 160 and the base station 120 The distance is greater than the distance between the second remote antenna unit 160 and the base station 120. The measurement module 142 is configured to acquire a plurality of channel responses of the client device corresponding to the remote antenna units. The control module 144 is configured to calculate, according to the channel responses, a plurality of channel feature values corresponding to the plurality of attenuation parameters, wherein the channel feature values reflect a data transmission amount between the base station and the client device, and select and output corresponding The attenuation parameter of a preset channel characteristic value. The plurality of attenuation modules 648 are configured to implement the attenuation parameters output by the control module 144 for the first remote antenna unit 160 in the remote antenna block 610. Please refer to FIG. 2 , which is a flowchart of an antenna control method according to an embodiment of the disclosure. In step S200, a plurality of sets of attenuation parameters A and delay parameters Δ are defined. Each set of attenuation parameters A is composed of a plurality of attenuation elements α and respectively corresponding to the remote antenna elements 160, and the plurality of attenuation elements α values can be defined by the device characteristics that can be provided by the system components; similarly, each group of delay parameters Δ consists of a plurality of attenuation elements δ and corresponds to the respective distal antenna 160 units, where the plurality of attenuation element δ values can be defined by the device characteristics that the system components can provide.
於步驟S210中,量測單元142獲取一用戶端裝置與一基地台120之對應於多個遠端天線單元160的多個通道響應,每一個通道響應包括一訊號強度值a 及一延遲時間τ 。於步驟S220中,控制單元144依據該些通道響應計算對應該些組衰減參數與延遲參數的多個通道特徵值,這些通道特徵值反應基地台120與用戶端170裝置間之資料 傳輸量(通道傳輸品質狀態)。於步驟S230中,控制單元144依據一預設通道特徵值,選擇並輸出對應之該組衰減參數與延遲參數。In step S210, the measuring unit 142 acquires a plurality of channel responses of a client device and a base station 120 corresponding to the plurality of remote antenna units 160, and each channel response includes a signal intensity value a and a delay time τ. . In step S220, the control unit 144 calculates a plurality of channel feature values corresponding to the group of attenuation parameters and delay parameters according to the channel responses, and the channel feature values reflect the data transmission amount between the base station 120 and the user terminal 170. Transmission quality status). In step S230, the control unit 144 selects and outputs the corresponding set of attenuation parameters and delay parameters according to a preset channel characteristic value.
接下來茲討論用戶端裝置位於基地台120之一涵蓋範圍C內一特定位置p且基地台對應至M個遠端天線單元160的情況。請參照第3圖,其繪示依照一實施範例之天線控制方法之詳細流程圖。於步驟S300中,定義多組衰減參數A與延遲參數△。每一組衰減參數A由多個衰減元素α k 組成並分別對應於第k個遠端天線160,多個衰減元素α k 數值可由系統元件可提供的裝置特性定義而得;同理,每一組延遲參數△由多個衰減元素δ k 組成並分別對應於第k個遠端天線單元160,該多個衰減元素δ k 數值可由系統元件可提供的裝置特性定義而得,k為1~M之正整數。於步驟S310中,量測模組142獲取用戶端裝置170位於該特定位置p時,對應於第k個遠端天線單元160的通道響應,此通道響應包括一訊號強度值a p,k 及一延遲時間τ p,k ,k為1~M之正整數。Next, it will be discussed that the client device is located at a specific location p within one of the base stations 120 covering the range C and the base station corresponds to the M remote antenna units 160. Please refer to FIG. 3, which illustrates a detailed flowchart of an antenna control method according to an embodiment. In step S300, a plurality of sets of attenuation parameters A and delay parameters Δ are defined. Each set of attenuation parameters A consists of a plurality of attenuation elements α k and respectively correspond to the kth remote antenna 160, and the plurality of attenuation elements α k values can be defined by the device characteristics that the system components can provide; similarly, each The group delay parameter Δ is composed of a plurality of attenuation elements δ k and respectively corresponding to the kth remote antenna unit 160, and the plurality of attenuation elements δ k values can be defined by device characteristics that can be provided by the system components, k is 1~M Positive integer. In step S310, the measurement module 142 obtains a channel response corresponding to the kth remote antenna unit 160 when the user equipment 170 is located at the specific position p, and the channel response includes a signal strength value a p, k and a The delay time τ p,k ,k is a positive integer from 1 to M.
於步驟S322中,逐一代入每一組衰減參數與延遲參數。於步驟S324中,控制模組144依據該些通道響應(a p,k 與τ p,k )計算當用戶端裝置170位於特定位置p時,對應步驟S322所代入該組衰減參數A與延遲參數△的通道特徵值σ p ,如公式(1)所示。通道特徵值σ p 能反應當用戶端裝置170位於特定位置p時,基地台120與用戶端170裝置間之資料傳輸量(通道傳輸品質狀態)。In step S322, each set of attenuation parameters and delay parameters are substituted one by one. In step S324, the control module 144 calculates , according to the channel responses ( a p, k and τ p, k ), when the user equipment 170 is located at the specific position p, the attenuation parameter A and the delay parameter are substituted according to the step S322. The channel characteristic value σ p of Δ is as shown in the formula (1). The channel characteristic value σ p can reflect the amount of data transmission (channel transmission quality status) between the base station 120 and the user terminal 170 when the client device 170 is at a specific position p.
當通道特徵σ p 未超過預設門檻值,則於步驟S330中,控制模組144選擇並輸出未超過預設門檻值之通道特徵值對應之該組衰減參數 p 與延遲參數至延遲與衰減模組148以實現該組衰減參數與延遲參數,改善用戶端裝置170位於特定位置p時與基地台120間之通道傳輸品質。當通道特徵σ p 超過預設門檻值,則於步驟S327中,控制模組144找出較佳通道特徵值對應的該組衰減參數Ap 與延遲參數△p ,並於步驟S328中,判斷是否每一組衰減參數與延遲參數均已代入。若否,則回到步驟S322進行迭代操作。若是,則接續步驟S330,控制模組144選擇並輸出一較佳通道特徵值對應的該組衰減參數 p 與延遲參數至延遲與衰減模組148,改善用戶端裝置170位於特定位置p時之通道傳輸品質。於一實施範例中,此較佳通道特徵值為一最小通道特徵值,則步驟S322~S330可以公式(2)表示,其中T σ 為預設門檻值。When the channel feature σ p does not exceed the preset threshold, in step S330, the control module 144 selects and outputs the set of attenuation parameters  p and the delay parameter corresponding to the channel feature values that do not exceed the preset threshold value. The delay and attenuation module 148 is implemented to implement the set of attenuation parameters and delay parameters to improve channel transmission quality between the base station 120 and the base station 120 when the user equipment 170 is located at a specific position p. When the channel feature σ p exceeds the preset threshold, in step S327, the control module 144 finds the set of attenuation parameters Ap and the delay parameter Δp corresponding to the preferred channel feature values, and determines whether or not in step S328. Each set of attenuation parameters and delay parameters have been substituted. If no, the process returns to step S322 to perform an iterative operation. If yes, then in step S330, the control module 144 selects and outputs a set of attenuation parameters  p and delay parameters corresponding to a preferred channel feature value. To the delay and attenuation module 148, the channel transmission quality when the client device 170 is located at a specific position p is improved. In an embodiment, the preferred channel feature value is a minimum channel feature value, and steps S322-S330 can be represented by formula (2), where T σ is a preset threshold value.
請參照第4圖,其繪示包括依照本揭露之天線控制系統一實施範例之一通訊系統400之訊號傳輸路徑簡略佈建示意圖。藉由第4圖解釋圖1A、1B中之天線控制系統應 用上述之天線控制方法,基於用戶端裝置170位於一特定位置p的觀點,找出較佳化多個遠端天線單元160之通道特徵值之該組衰減參數與延遲參數,而後控制遠端天線單元160的發射功率與延遲時間,改善用戶端裝置170位於涵蓋範圍C時之通道傳輸品質,故可以解決分散式天線系統中因多重路徑效應而導致的資料傳輸速率下降問題。在第4圖中,每一個延遲與衰減模組148例如由延遲元件DLY與衰減元件ATT串聯組成。Please refer to FIG. 4 , which illustrates a schematic diagram of a signal transmission path of a communication system 400 including an embodiment of an antenna control system according to the present disclosure. Explain the antenna control system in Figure 1A, 1B by Figure 4 Using the antenna control method described above, based on the viewpoint that the user equipment 170 is located at a specific position p, the set of attenuation parameters and delay parameters for optimizing the channel characteristic values of the plurality of remote antenna units 160 are found, and then the remote antenna is controlled. The transmit power and delay time of the unit 160 improve the channel transmission quality when the user equipment 170 is in the coverage area C, so that the problem of the data transmission rate degradation caused by the multiple path effect in the distributed antenna system can be solved. In FIG. 4, each of the delay and attenuation modules 148 is composed, for example, by a delay element DLY and attenuating element ATT in series.
接下來茲討論用戶端裝置170位於基地台120之涵蓋範圍內任一位置且基地台對應至M個該些遠端天線單元160的情況。請參照第5圖,其繪示依照本揭露另一實施範例之天線控制方法之一例之詳細流程圖。於步驟S500中,定義多組衰減參數A與延遲參數△,每一組衰減參數A由多個衰減元素α k 組成並分別對應於第k個遠端天線160,該多個衰減元素α k 數值由系統元件可提供的裝置特性定義而得;同理,每一組延遲參數△由多個衰減元素δ k 組成並分別對應於第k個遠端天線160,該多個衰減元素δ k 數值由系統元件可提供的裝置特性定義而得,k為1~M之正整數。於步驟S510中,量測模組142獲取用戶端裝置170位於任一位置p時,對應於第k個遠端天線單元160的通道響應,通道響應包括一訊號強度值a p,k 及一延遲時間τ p,k ,k為1~M之正整數。Next, the case where the client device 170 is located at any position within the coverage of the base station 120 and the base station corresponds to the M remote antenna units 160 will be discussed. Please refer to FIG. 5, which is a detailed flowchart of an example of an antenna control method according to another embodiment of the present disclosure. In step S500, a plurality of sets of attenuation parameters A and delay parameters Δ are defined, each set of attenuation parameters A consisting of a plurality of attenuation elements α k and respectively corresponding to the kth remote antenna 160, the plurality of attenuation elements α k values By the definition of the device characteristics that can be provided by the system components; for the same reason, each set of delay parameters Δ is composed of a plurality of attenuation elements δ k and respectively corresponding to the kth remote antenna 160, and the plurality of attenuation elements δ k are The system component can be defined by the device characteristics provided, and k is a positive integer from 1 to M. In step S510, the measurement module 142 obtains the channel response corresponding to the kth remote antenna unit 160 when the user equipment 170 is located at any position p, and the channel response includes a signal strength value a p, k and a delay. The time τ p,k ,k is a positive integer from 1 to M.
於步驟S522中,逐一代入每一組衰減參數與延遲參數。於步驟S524中,控制模組144依據該些通道響應(a p,k 與τ p,k )計算當用戶端裝置170位於涵蓋範圍C任一位置p 時,對應步驟S522所代入該組衰減參數A與延遲參數△的通道特徵值σ p ,如公式(1)所示。通道特徵值σ p 能反應當用戶端裝置170位於涵蓋範圍C任一位置p時,基地台120與用戶端裝置170裝置間之資料傳輸量(通道傳輸品質狀態)。In step S522, each set of attenuation parameters and delay parameters are substituted one by one. In step S524, the control module 144 calculates , according to the channel responses ( a p, k and τ p, k ), when the user equipment 170 is located at any position p of the coverage range C, the group attenuation parameter is substituted according to step S522. The channel characteristic value σ p of A and the delay parameter Δ is as shown in the formula (1). The channel characteristic value σ p can reflect the amount of data transmission (channel transmission quality status) between the base station 120 and the user equipment 170 device when the client device 170 is located at any position p of the coverage area C.
於步驟S526中,計算用戶端裝置170平均分布於涵蓋範圍C任一位置p,該些通道特徵值σ p 大於一預設門檻值(預設通道特徵值)的機率P,如公式(3)所示,其中,T σ 為由實驗決定之預設門檻值,例如為2.5μs。In step S526, it is calculated that the user equipment 170 is evenly distributed at any position p of the coverage area C, and the probability values σ p of the channel are greater than a preset threshold value (preset channel feature value), such as formula (3). As shown, where T σ is a preset threshold determined experimentally, for example, 2.5 μs.
於步驟S527中,控制模組144找出最小機率對應的該組衰減參數 與延遲參數,並於步驟S528中,判斷是否每一組衰減參數與延遲參數均已代入。若否,則回到步驟S522進行迭代操作。若是,則接續步驟S530,控制模組144選擇並輸出最小機率對應的該組衰減參數 與延遲參數至延遲與衰減模組148,以改善用戶端裝置170位於涵蓋範圍C時與基地台120間之通道傳輸品質。步驟S522~S530實質作用可以公式(4)表示。In step S527, the control module 144 finds the set of attenuation parameters  and delay parameters corresponding to the minimum probability. And in step S528, it is determined whether each set of attenuation parameters and delay parameters have been substituted. If not, the process returns to step S522 to perform an iterative operation. If yes, proceed to step S530, the control module 144 selects and outputs the set of attenuation parameters  and delay parameters corresponding to the minimum probability. The delay and attenuation module 148 is used to improve the channel transmission quality between the client device 170 and the base station 120 when it is in the coverage area C. The substantial effects of steps S522 to S530 can be expressed by equation (4).
上述之天線控制方法,基於用戶端裝置170位於涵蓋範圍C的觀點,找出較佳化用戶端裝置170位於涵蓋範圍C時與基地台120間通道特徵值大於預設門檻值的機率之該組衰減參數與延遲參數,而後控制調整遠端天線單元 160的發射功率與延遲時間,改善用戶端裝置170位於涵蓋範圍C時與基地台120間之傳輸品質,故可以解決分散式天線系統中因多重路徑效應而導致的資料傳輸速率下降問題。若環境不易變動,於第1B圖之天線系統100中,可根據衰減參數與延遲參數直接設定延遲與衰減模組168,而省略多工器149,解多工器169與控制器167。The above antenna control method is based on the viewpoint that the user equipment 170 is located in the coverage area C, and finds the group that optimizes the probability that the user equipment 170 is located in the coverage area C and the channel characteristic value between the base station 120 and the base station 120 is greater than the preset threshold value. Attenuation parameters and delay parameters, and then control to adjust the remote antenna unit The transmission power and delay time of 160 improve the transmission quality between the client device 170 and the base station 120 when the coverage area C is located, so that the problem of the data transmission rate degradation caused by the multipath effect in the distributed antenna system can be solved. If the environment is not easily changed, in the antenna system 100 of FIG. 1B, the delay and attenuation module 168 can be directly set according to the attenuation parameter and the delay parameter, and the multiplexer 149, the multiplexer 169 and the controller 167 are omitted.
此外,如第6圖所示,其繪示包括依照本揭露之天線系統之另一實施範例之一通訊系統600之訊號傳輸路徑簡略佈建示意圖。藉由第6圖解釋圖1C中之天線控制系統應用上述之天線控制方法。通訊系統600包括一基地台120、多個遠端天線區塊610_1及610_2、一量測模組(未繪示於圖)、一控制模組(未繪示於圖)以及衰減模組648(由多個衰減元件所組成)。每一個遠端天線區塊610包括一第一遠端天線單元與一第二遠端天線單元,第一遠端天線單元與基地台120間的距離大於第二遠端天線單元與基地台120間的距離。In addition, as shown in FIG. 6, a schematic diagram of a signal transmission path of the communication system 600 including one embodiment of the antenna system according to the present disclosure is shown. The antenna control method of FIG. 1C is explained by using FIG. 6 to apply the antenna control method described above. The communication system 600 includes a base station 120, a plurality of remote antenna blocks 610_1 and 610_2, a measurement module (not shown), a control module (not shown), and an attenuation module 648 ( Consists of multiple attenuation components). Each of the remote antenna blocks 610 includes a first remote antenna unit and a second remote antenna unit. The distance between the first remote antenna unit and the base station 120 is greater than the distance between the second remote antenna unit and the base station 120. the distance.
量測模組與控制模組之作用同上述之天線控制方法所述,依據一預設通道特徵值,最終決定對應較佳通道特徵值之衰減參數。衰減模組實現對應較小通道特徵值之衰減參數至該些第一遠端天線單元,例如為遠端天線單元2及3。以遠端天線區塊610_1為例做說明,遠端天線單元2與基地台120間的距離大於遠端天線單元3與基地台120間的距離,亦即遠端天線單元2在光纖間的訊號傳遞延遲時間較長。因此,以由衰減元件ATT2組成的衰減模組648施加衰減參數以降低遠端天線單元2的發射功率,並維持 遠端天線單元3的發射功率。是故,在不需調整延遲參數的情況下,分散式的天線系統600的多重路徑效應被減緩。而觀察第6圖可以得知,在單一遠端天線區塊中距離基地台120較遠的遠端天線單元其發射功率會被衰減。The function of the measurement module and the control module is the same as the antenna control method described above, and finally determines the attenuation parameter corresponding to the characteristic value of the preferred channel according to a preset channel characteristic value. The attenuation module implements attenuation parameters corresponding to the smaller channel characteristic values to the first remote antenna units, such as the remote antenna units 2 and 3. Taking the remote antenna block 610_1 as an example, the distance between the remote antenna unit 2 and the base station 120 is greater than the distance between the remote antenna unit 3 and the base station 120, that is, the signal of the remote antenna unit 2 between the optical fibers. The delivery delay is longer. Therefore, the attenuation parameter is applied by the attenuation module 648 composed of the attenuation element ATT2 to reduce the transmission power of the remote antenna unit 2 and maintain Transmit power of the remote antenna unit 3. Therefore, the multipath effect of the decentralized antenna system 600 is mitigated without the need to adjust the delay parameters. As can be seen from Fig. 6, it can be seen that the transmission power of the remote antenna unit farther from the base station 120 in the single remote antenna block is attenuated.
本揭露上述實施範例所揭露之天線控制方法與裝置的實施範例,依據一預設通道特徵值,找出較佳化用戶端裝置170位於涵蓋範圍C時與基地台120間通道特徵值,並據以控制遠端天線單元的發射功率與延遲時間,可有效解決天線系統的多重路徑效應問題。此外,本揭露更進一步提出非對稱式天線系統,降低天線系統進行通道調整時的運算複雜度,並節省天線系統的佈建成本。An embodiment of the antenna control method and apparatus disclosed in the foregoing embodiment, according to a preset channel feature value, finds a channel feature value between the base station 120 and the base station 120 when the optimized user equipment 170 is located in the coverage area C, and according to In order to control the transmit power and delay time of the remote antenna unit, the multipath effect problem of the antenna system can be effectively solved. In addition, the present disclosure further proposes an asymmetric antenna system, which reduces the computational complexity of the antenna system for channel adjustment and saves the deployment cost of the antenna system.
綜上所述,雖然已以多個實施範例揭露如上,然其並非用以限定本發明。發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In summary, although the above has been disclosed in various embodiments, it is not intended to limit the invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
100、100’、100”、400、600‧‧‧通訊系統100, 100’, 100”, 400, 600‧‧‧ communication systems
120‧‧‧基地台120‧‧‧Base station
140、140’‧‧‧頭端單元140, 140’‧‧‧ head unit
142‧‧‧量測模組142‧‧‧Measurement module
144‧‧‧控制模組144‧‧‧Control Module
145、161‧‧‧電光轉換器(E/O)145,161‧‧‧Electrical to Optical Converter (E/O)
146‧‧‧天線控制系統146‧‧‧Antenna Control System
147、162‧‧‧光電轉換器(O/E)147, 162‧ ‧ photoelectric converter (O / E)
148、168‧‧‧延遲與衰減模組148, 168‧‧‧ Delay and Attenuation Modules
149‧‧‧多工器149‧‧‧Multiplexer
152、165‧‧‧上下行訊號控制器152, 165‧‧‧Upstream and Downlink Signal Controller
154‧‧‧合成器154‧‧‧Synthesizer
156‧‧‧分歧器156‧‧ ‧Discriminator
160、160’‧‧‧遠端天線單元160, 160'‧‧‧Remote antenna unit
163‧‧‧低雜訊放大器163‧‧‧Low noise amplifier
164‧‧‧功率放大器164‧‧‧Power Amplifier
166‧‧‧天線166‧‧‧Antenna
167‧‧‧控制器167‧‧‧ Controller
169‧‧‧解多工器169‧‧ ‧ multiplexer
170‧‧‧用戶端裝置170‧‧‧Customer device
610、610_1、610_2‧‧‧遠端天線區塊610, 610_1, 610_2‧‧‧ remote antenna block
648‧‧‧衰減模組648‧‧‧Attenuation Module
第1A圖繪示一通訊系統,其中包括依照本揭露之天線控制裝置之一實施範例示意圖。FIG. 1A is a schematic diagram showing a communication system including an embodiment of an antenna control device according to the present disclosure.
第1B圖繪示另一通訊系統,其中包括依照本揭露之天線控制裝置之另一實施範例示意圖。FIG. 1B illustrates another communication system including a schematic diagram of another embodiment of an antenna control apparatus according to the present disclosure.
第1C圖繪示另一通訊系統,其中包括依照本揭露之天線控制裝置之另一實施範例示意圖。FIG. 1C illustrates another communication system including a schematic diagram of another embodiment of an antenna control apparatus according to the present disclosure.
第2圖繪示依照本揭露之天線控制方法一實施範例流程圖。FIG. 2 is a flow chart showing an embodiment of an antenna control method according to the present disclosure.
第3圖繪示依照本揭露之天線控制方法一實施範例之詳細流程圖。FIG. 3 is a detailed flowchart of an embodiment of an antenna control method according to the present disclosure.
第4圖繪示依照本揭露之天線控制系統之一實施範例簡略佈建示意圖。FIG. 4 is a schematic diagram showing a simplified construction of an embodiment of an antenna control system according to the present disclosure.
第5圖繪示依照本揭露之天線控制方法之另一實施範例之詳細流程圖。FIG. 5 is a detailed flowchart of another embodiment of an antenna control method according to the present disclosure.
第6圖繪示依照本揭露之天線控制系統之另一實施範例簡略佈建示意圖。FIG. 6 is a schematic diagram showing a schematic layout of another embodiment of an antenna control system according to the present disclosure.
100‧‧‧通訊系統100‧‧‧Communication system
120‧‧‧基地台120‧‧‧Base station
140‧‧‧頭端單元140‧‧‧ head unit
142‧‧‧量測模組142‧‧‧Measurement module
144‧‧‧控制模組144‧‧‧Control Module
145、161‧‧‧電光轉換器(E/O)145,161‧‧‧Electrical to Optical Converter (E/O)
146‧‧‧天線控制系統146‧‧‧Antenna Control System
147、162‧‧‧光電轉換器(O/E)147, 162‧ ‧ photoelectric converter (O / E)
148‧‧‧延遲與衰減模組148‧‧‧Delay and Attenuation Module
152、165‧‧‧上下行訊號控制器152, 165‧‧‧Upstream and Downlink Signal Controller
154‧‧‧合成器154‧‧‧Synthesizer
156‧‧‧分歧器156‧‧ ‧Discriminator
160‧‧‧遠端天線單元160‧‧‧Remote antenna unit
163‧‧‧低雜訊放大器163‧‧‧Low noise amplifier
164‧‧‧功率放大器164‧‧‧Power Amplifier
166‧‧‧天線166‧‧‧Antenna
170‧‧‧用戶端裝置170‧‧‧Customer device
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101127244A TWI489838B (en) | 2012-07-27 | 2012-07-27 | Antenna control method and system thereof |
CN201210282785.7A CN103580734B (en) | 2012-07-27 | 2012-08-09 | antenna control method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101127244A TWI489838B (en) | 2012-07-27 | 2012-07-27 | Antenna control method and system thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201406117A TW201406117A (en) | 2014-02-01 |
TWI489838B true TWI489838B (en) | 2015-06-21 |
Family
ID=50051776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101127244A TWI489838B (en) | 2012-07-27 | 2012-07-27 | Antenna control method and system thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103580734B (en) |
TW (1) | TWI489838B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI467936B (en) | 2012-11-22 | 2015-01-01 | Ind Tech Res Inst | Method and apparatus for interference suppression in radio-over-fiber communication systems |
CN109041087A (en) * | 2018-07-31 | 2018-12-18 | 复旦大学 | WiFi signal acquisition, visualization and fault location system towards campus network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030112880A1 (en) * | 2001-05-17 | 2003-06-19 | Walton Jay R. | Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion |
TW200534727A (en) * | 2004-04-07 | 2005-10-16 | Benq Corp | Communication channel characteristic estimation method |
TW200635403A (en) * | 2005-03-17 | 2006-10-01 | Askey Computer Corp | Inpsection system of wireless communication performance |
US20100329370A1 (en) * | 2009-04-28 | 2010-12-30 | Beceem Communications Inc. | Selection of a Subset of Antennas for Transmission |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5805983A (en) * | 1996-07-18 | 1998-09-08 | Ericsson Inc. | System and method for equalizing the delay time for transmission paths in a distributed antenna network |
KR100819257B1 (en) * | 2006-08-31 | 2008-04-02 | 삼성전자주식회사 | Radio Over Fiber System and Method for Controlling Transmission Time |
CN201174765Y (en) * | 2008-04-09 | 2008-12-31 | 厦门特力通信息技术有限公司 | Self-adapting base station pulling far apparatus |
-
2012
- 2012-07-27 TW TW101127244A patent/TWI489838B/en active
- 2012-08-09 CN CN201210282785.7A patent/CN103580734B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030112880A1 (en) * | 2001-05-17 | 2003-06-19 | Walton Jay R. | Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion |
TW200534727A (en) * | 2004-04-07 | 2005-10-16 | Benq Corp | Communication channel characteristic estimation method |
TW200635403A (en) * | 2005-03-17 | 2006-10-01 | Askey Computer Corp | Inpsection system of wireless communication performance |
US20100329370A1 (en) * | 2009-04-28 | 2010-12-30 | Beceem Communications Inc. | Selection of a Subset of Antennas for Transmission |
Also Published As
Publication number | Publication date |
---|---|
TW201406117A (en) | 2014-02-01 |
CN103580734A (en) | 2014-02-12 |
CN103580734B (en) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7773887B2 (en) | Single wavelength bi-directional RoF link apparatus or signal transmission in TDD wireless system | |
US9807722B2 (en) | Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods | |
Kazaura et al. | RoFSO: a universal platform for convergence of fiber and free-space optical communication networks | |
EP2815520B1 (en) | Timing adjustments for small cell distributed antenna systems | |
US8897839B2 (en) | Method, apparatus and system for controlling distributed antenna system | |
EP2828988B1 (en) | Wdm link for radio base station | |
KR100866217B1 (en) | Method and apparatus constructing system delay time and frame length using time division duplexing | |
EP3396911B1 (en) | Main unit and distributed antenna system comprising same | |
JP2012520016A (en) | Range extension for time division duplex systems | |
WO2023103481A1 (en) | Distributed antenna system | |
TWI489838B (en) | Antenna control method and system thereof | |
KR100770883B1 (en) | Radio over fiber system of tdd type and method for controlling transmission time | |
KR102069543B1 (en) | Headend apparatus of distributed antenna system and signal processing method thereof | |
Wang et al. | High speed 4× 12.5 Gbps WDM optical wireless communication systems for indoor applications | |
EP3242421B1 (en) | Node unit capable of measuring delay and distributed antenna system comprising same | |
WO2020255354A1 (en) | Wireless communication system, wireless communication method, and terminal device | |
Bogaert et al. | SiPhotonics/GaAs 28-GHz transceiver for mmwave-over-fiber laser-less active antenna units | |
CN106550288B (en) | A kind of time-delay compensation device of passive optical network, method and passive optical network | |
EP2987249B1 (en) | Power-saving communication system having leaky transmission lines and amplifiers to extend wireless coverage and power control unit included therein | |
CN109167629B (en) | Method, related equipment and system for transmitting information | |
JP2004147009A (en) | Relay amplifying device | |
Gong et al. | Ef fect of optical losses on the transmission performance of a radio-over-fiber distributed antenna system | |
Tayq et al. | Real time demonstration of fronthaul transport over a mix of analog and digital RoF | |
KR20090046527A (en) | Method and apparatus for controlling time delay of remote access unit in distributed antenna system | |
Jan et al. | Comprehensive Approach Toward the Feasibility of Radio Over Fiber Technology for WiMAX Systems |