TWI489787B - Analog digital converter - Google Patents

Analog digital converter Download PDF

Info

Publication number
TWI489787B
TWI489787B TW101124633A TW101124633A TWI489787B TW I489787 B TWI489787 B TW I489787B TW 101124633 A TW101124633 A TW 101124633A TW 101124633 A TW101124633 A TW 101124633A TW I489787 B TWI489787 B TW I489787B
Authority
TW
Taiwan
Prior art keywords
signal
analog
switch
coupled
capacitive sensing
Prior art date
Application number
TW101124633A
Other languages
Chinese (zh)
Other versions
TW201404046A (en
Inventor
Yao Hung Lai
Jih Fon Huang
Chih Hsiung Chen
Original Assignee
Alcor Micro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcor Micro Corp filed Critical Alcor Micro Corp
Priority to TW101124633A priority Critical patent/TWI489787B/en
Publication of TW201404046A publication Critical patent/TW201404046A/en
Application granted granted Critical
Publication of TWI489787B publication Critical patent/TWI489787B/en

Links

Description

類比數位轉換器Analog digital converter

本發明是有關於一種類比數位轉換器,且特別是有關於一種可同時適用於不同類型的電容感測元件的類比數位轉換器。This invention relates to an analog digital converter, and more particularly to an analog digital converter that can be applied to different types of capacitive sensing elements simultaneously.

為了使電子產品能夠更人性化的符合消費者的需求,許多不同類型的電容感測元件因而被設計於同一個電子產品中以提供使用者多種不同的感測功能。例如一般智慧型手機中,大部份至少具有觸控感測、晃動感測以及手持方向感測等的感測功能。其中,觸控感測的功能可利用觸控面板的技術來達成,而晃動感測與手持方向感測的功能則可利用重力感測器的技術來加以實現。In order to make electronic products more humane and meet the needs of consumers, many different types of capacitive sensing elements are thus designed in the same electronic product to provide users with a variety of different sensing functions. For example, in general smart phones, most of them have at least sensing functions such as touch sensing, shaking sensing, and hand-held direction sensing. Among them, the function of the touch sensing can be achieved by the technology of the touch panel, and the function of the shaking sensing and the hand-held direction sensing can be realized by the technology of the gravity sensor.

由於各種不同類型的電容感測元件皆需利用類比數位轉換器(analog digital converter,ADC)來將電容感測元件的類比感測訊號轉換為數位訊號,以便於使後端的微處理器(microcontroller unit,MCU)進行訊號處理。但是電容感測元件依據其感測類型,一般必須分別利用不同的類比數位轉換器及微處理器分別進行訊號處理。若要整合兩種以上的電容感測元件,則至少必須利用兩種以上的類比數位轉換器及微處理器。如此一來,不僅會造成電路設計成本上的浪費,亦會使得電路佈局的面積增加,有悖於現今電子產品微小化的趨勢。Since various types of capacitive sensing components need to use an analog digital converter (ADC) to convert the analog sensing signal of the capacitive sensing component into a digital signal, so as to make the back end of the microprocessor (microcontroller unit , MCU) for signal processing. However, depending on the type of sensing, the capacitive sensing component must generally perform signal processing using different analog-to-digital converters and microprocessors, respectively. To integrate more than two types of capacitive sensing components, at least two analog-to-digital converters and microprocessors must be utilized. As a result, not only will the cost of circuit design be wasted, but also the area of the circuit layout will increase, which is contrary to the trend of miniaturization of electronic products today.

本發明提供一種類比數位轉換器,可同時適用於將不同類型的電容感測元件之類比感測訊號轉換為對應的數位訊號。The invention provides an analog digital converter which can be simultaneously applied to convert analog analog signals of different types of capacitive sensing elements into corresponding digital signals.

本發明提出一種類比數位轉換器,適於耦接至少兩相異類型的電容感測元件。類比數位轉換器包括訊號產生單元、開關模組以及轉換單元。訊號產生單元產生第一控制訊號與第二控制訊號。開關模組耦接訊號產生單元。開關模組反應於多工切換手段而接收第一控制訊號與第二控制訊號其中之一,並據以進行切換而輸出所述電容感測元件其中之一的類比感測訊號。轉換單元耦接開關模組。轉換單元接收類比感測訊號,以將類比感測訊號轉換為數位訊號。The present invention provides an analog digital converter adapted to couple at least two different types of capacitive sensing elements. The analog digital converter includes a signal generating unit, a switch module, and a conversion unit. The signal generating unit generates the first control signal and the second control signal. The switch module is coupled to the signal generating unit. The switch module receives one of the first control signal and the second control signal in response to the multiplex switching means, and outputs an analog sensing signal of one of the capacitive sensing elements according to the switching. The conversion unit is coupled to the switch module. The conversion unit receives the analog sensing signal to convert the analog sensing signal into a digital signal.

在本發明一實施例中,電容感測元件包括單一電容感測元件以及差動電容感測元件,且開關模組包括多個開關電路。各個開關模组具有輸入端與輸出端。各個開關電路的輸入端對應耦接電容感測元件之各端,且所述多個開關電路的輸出端耦接轉換單元。其中,當類比數位轉換器對單一電容感測元件進行類比數位轉換時,耦接單一電容感測元件之開關電路依據第一控制訊號切換其開關組態以輸出單一電容感測元件的類比感測訊號。當類比數位轉換器對差動電容感測元件進行類比數位轉換時,耦接差動電容感測元件之開關電路依據第二控制訊號切換其開關組態以 輸出差動電容感測元件的類比感測訊號。In an embodiment of the invention, the capacitive sensing component includes a single capacitive sensing component and a differential capacitive sensing component, and the switching module includes a plurality of switching circuits. Each switch module has an input end and an output end. The input ends of the respective switch circuits are coupled to the respective ends of the capacitive sensing elements, and the output ends of the plurality of switch circuits are coupled to the conversion unit. Wherein, when the analog digital converter performs analog digital conversion on a single capacitive sensing component, the switching circuit coupled to the single capacitive sensing component switches its switching configuration according to the first control signal to output a sense of analogy of the single capacitive sensing component. Test signal. When the analog digital converter performs analog digital conversion on the differential capacitive sensing component, the switching circuit coupled to the differential capacitive sensing component switches its switch configuration according to the second control signal. The analog sensing signal of the differential capacitive sensing component is output.

在本發明一實施例中,訊號產生單元採用多工切換手段選擇性地輸出第一控制訊號或第二控制訊號至對應的開關電路,以使開關模組依序輸出單一電容感測元件的類比感測訊號與差動電容感測元件的類比感測訊號。In an embodiment of the invention, the signal generating unit selectively outputs the first control signal or the second control signal to the corresponding switch circuit by using a multiplexing switching method, so that the switch module outputs the analogy of the single capacitive sensing element in sequence. The analog sensing signal of the sensing signal and the differential capacitance sensing component.

在本發明一實施例中,第一控制訊號與第二控制訊號分別包括多個開關訊號,且各個開關電路包括第一開關、第二開關、第三開關以及第四開關。第一開關具有第一端與第二端,其第一端耦接驅動電壓,且其第二端耦接開關電路的輸入端。第二開關具有第一端與第二端,其第一端耦接開關電路的輸入端,且其第二端耦接接地電壓。第三開關具有第一端與第二端,其第一端耦接一第一參考電壓,且其第二端耦接開關電路的輸入端。第四開關具有第一端與第二端,其第一端耦接開關電路的輸入端,且其第二端耦接開關電路的輸出端。其中,第一開關、第二開關、第三開關以及第四開關分別依據對應的開關訊號而決定是否導通,以切換為符合單一電容感測元件或差動電容感測元件的開關組態。In an embodiment of the invention, the first control signal and the second control signal respectively comprise a plurality of switching signals, and each of the switching circuits comprises a first switch, a second switch, a third switch and a fourth switch. The first switch has a first end and a second end, the first end of which is coupled to the driving voltage, and the second end of which is coupled to the input end of the switching circuit. The second switch has a first end and a second end, the first end of which is coupled to the input end of the switch circuit, and the second end of which is coupled to the ground voltage. The third switch has a first end and a second end, the first end of which is coupled to a first reference voltage, and the second end of which is coupled to the input end of the switch circuit. The fourth switch has a first end and a second end, the first end of which is coupled to the input end of the switch circuit, and the second end of which is coupled to the output end of the switch circuit. The first switch, the second switch, the third switch, and the fourth switch respectively determine whether to be turned on according to the corresponding switching signal, so as to switch to a switch configuration conforming to the single capacitive sensing element or the differential capacitive sensing element.

在本發明一實施例中,單一電容感測元件為觸控面板的感測單元。In an embodiment of the invention, the single capacitive sensing component is a sensing unit of the touch panel.

在本發明一實施例中,差動電容感測元件為重力感測器。In an embodiment of the invention, the differential capacitance sensing element is a gravity sensor.

在本發明一實施例中,轉換單元包括積分器、比較器、正反器以及計數器。積分器具有正輸入端、負輸入端 與輸出端,其正輸入端耦接第二參考電壓,其負輸入端耦接開關模組以接收類比感測訊號,其中積分器依據第二參考電壓與類比感測訊號輸出積分訊號。比較器具有正輸入端、負輸入端與輸出端,其正輸入端耦接第二參考電壓,其負輸入端耦接積分器的輸出端以接收積分訊號,其中比較器依據第二參考電壓與積分訊號輸出比較訊號。正反器具有輸入端與輸出端,其輸入端耦接比較器的輸出端以接收比較訊號,其中正反器依據比較訊號與時脈訊號輸出邏輯準位。計數器具有輸入端與輸出端,其輸入端耦接正反器的輸出端,其中計數器依據邏輯準位計數時脈訊號,並且於其輸出端輸出數位訊號。In an embodiment of the invention, the conversion unit includes an integrator, a comparator, a flip-flop, and a counter. The integrator has a positive input and a negative input And the output end, the positive input end is coupled to the second reference voltage, and the negative input end is coupled to the switch module to receive the analog sense signal, wherein the integrator outputs the integral signal according to the second reference voltage and the analog sense signal. The comparator has a positive input terminal, a negative input terminal and an output terminal, wherein the positive input terminal is coupled to the second reference voltage, and the negative input terminal is coupled to the output terminal of the integrator to receive the integrated signal, wherein the comparator is configured according to the second reference voltage The integral signal outputs a comparison signal. The flip-flop has an input end and an output end, and the input end is coupled to the output end of the comparator to receive the comparison signal, wherein the flip-flop outputs a logic level according to the comparison signal and the clock signal. The counter has an input end and an output end, and the input end is coupled to the output end of the flip-flop, wherein the counter counts the clock signal according to the logic level, and outputs the digital signal at the output end thereof.

在本發明一實施例中,第一控制訊號包括放電致能訊號,且轉換單元更包括放電控制單元。放電控制單元耦接於積分器的負輸入端與正反器的輸出端之間,用以依據邏輯準位對積分器的負輸入端進行放電,其中當電容感測元件的類型為單一電容感測元件時,放電控制單元依據放電致能訊號而致能。In an embodiment of the invention, the first control signal includes a discharge enable signal, and the conversion unit further includes a discharge control unit. The discharge control unit is coupled between the negative input end of the integrator and the output end of the flip-flop to discharge the negative input end of the integrator according to the logic level, wherein the type of the capacitive sensing element is a single capacitive sense When the component is measured, the discharge control unit is enabled according to the discharge enable signal.

基於上述,本發明實施例之類比數位轉換器利用開關模組依據對應的控制訊號改變開關電路的開關組態,而使得所述之類比數位轉換器可同時適用於將單一電容感測元件與差動電容感測元件的類比感測訊號轉換為數位訊號,進而節省了電路設計上的成本與電路佈局的面積。Based on the above, the analog-to-digital converter of the embodiment of the present invention uses the switch module to change the switch configuration of the switch circuit according to the corresponding control signal, so that the analog digital converter can be simultaneously applied to the single capacitive sensing component and the difference. The analog sensing signal of the dynamic capacitance sensing component is converted into a digital signal, thereby saving the cost of the circuit design and the area of the circuit layout.

應瞭解的是,上述一般描述及以下具體實施方式僅為例示性及闡釋性的,其並不能限制本發明所欲主張之範圍。It is to be understood that the foregoing general description and claims

本發明實施例提出一種類比數位轉換器,其可利用相同的電路架構將單一電容感測元件與差動電容感測元件的類比感測訊號轉換為數位訊號,因此使利用所述之類比數位轉換器的感測系統可進一步地節省電路佈局的面積以及電路設計上的成本而提高商業上的競爭力。為了使本發明之內容更容易明瞭,以下特舉實施例作為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟代表相同或類似部分。The embodiment of the invention provides an analog-to-digital converter, which can convert the analog sensing signals of the single capacitive sensing component and the differential capacitive sensing component into digital signals by using the same circuit architecture, thereby making use of the analog digital The converter's sensing system can further increase the area of the circuit layout and the cost of circuit design to increase commercial competitiveness. In order to make the content of the present invention easier to understand, the following specific embodiments are illustrative of the embodiments of the present invention. In addition, wherever possible, the elements and/

圖1繪示為本發明一實施例之感測系統的示意圖。請參照圖1,感測系統10包括感測模組50、類比數位轉換器100以及微控制器150。感測模組50包括至少兩相異類型的電容感測元件,例如電容感測元件50_1與電容感測元件50_2,其中電容感測元件50_1與電容感測元件50_2分別依據其感測結果產生類比感測訊號s_a1與s_a2。類比數位轉換器100耦接感測模組50中的各個電容感測元件50_1與50_2,用以將電容感測元件50_1的類比感測訊號s_a1轉換為對應的數位訊號s_d1,或者將電容感測元件50_2的類比感測訊號s_a2轉換為對應的數位訊號s_d2。微控制器150耦接類比數位轉換器100。微控制器150接收類比數位轉換器100所產生的數位訊號s_d1/s_d2以進行數位訊號處理,並且依據數位訊號處理的結果產生對應的控制動作。FIG. 1 is a schematic diagram of a sensing system according to an embodiment of the invention. Referring to FIG. 1 , the sensing system 10 includes a sensing module 50 , an analog digital converter 100 , and a microcontroller 150 . The sensing module 50 includes at least two different types of capacitive sensing elements, such as the capacitive sensing element 50_1 and the capacitive sensing element 50_2, wherein the capacitive sensing element 50_1 and the capacitive sensing element 50_2 respectively generate an analogy according to the sensing result thereof. Sensing signals s_a1 and s_a2. The analog-to-digital converter 100 is coupled to each of the capacitive sensing elements 50_1 and 50_2 of the sensing module 50 for converting the analog sensing signal s_a1 of the capacitive sensing component 50_1 into a corresponding digital signal s_d1, or sensing the capacitance. The analog sensing signal s_a2 of the component 50_2 is converted into a corresponding digital signal s_d2. The microcontroller 150 is coupled to the analog digital converter 100. The microcontroller 150 receives the digital signal s_d1/s_d2 generated by the analog-to-digital converter 100 for digital signal processing, and generates a corresponding control action according to the result of the digital signal processing.

在本實施例中,感測系統10可將不同類型的電容感測元件所傳輸之類比感測訊號s_a1與s_a2轉換為對應的數位訊號s_d1與s_d2,並且進行訊號處理以產生對應的控制動作。在此,感測模組50中的電容感測元件50_1與50_2可例如為單一電容感測元件(single element sensor)或差動電容感測元件(differential sensor)。其中,單一電容感測元件例如為電容式觸控面板上之感測單元,而差動電容感測元件例如為重力感測器(G sensor)或壓力感測器(pressure sensor)等感測器,然而本發明不僅限於此。In this embodiment, the sensing system 10 can convert the analog sensing signals s_a1 and s_a2 transmitted by different types of capacitive sensing elements into corresponding digital signals s_d1 and s_d2, and perform signal processing to generate corresponding control actions. Here, the capacitive sensing elements 50_1 and 50_2 in the sensing module 50 can be, for example, a single capacitive sensor or a differential capacitive sensing sensor. The single capacitive sensing component is, for example, a sensing unit on the capacitive touch panel, and the differential capacitive sensing component is, for example, a sensor such as a G sensor or a pressure sensor. However, the invention is not limited to this.

此外,比數位轉換器100可利用多種類比數位轉換方式來實現其訊號轉換的機制,例如三角積分調變(sigma-delta modulation ADC)、逐次逼近型(successive approximation ADC)、直接轉換型(direct-conversion ADC)、積分型(integrating ADC)或者時間交織型(time-interleaved ADC)等等,本發明不以此為限。In addition, the digital converter 100 can utilize various analog-to-digital conversion methods to implement its signal conversion mechanism, such as a sigma-delta modulation ADC, a successive approximation ADC, and a direct conversion type (direct). -conversion ADC), integral (integrating ADC) or time-interleaved ADC, etc., the invention is not limited thereto.

在一般的感測系統中,若是要將單一電容感測元件與差動電容感測元件的類比感測訊號轉換為對應的數位訊號,由於電容感測元件之操作方式的不同,傳統的類比數位轉換器無法同時轉換此兩種類型的類比感測訊號,因此傳統的感測系統至少必須利用兩種類比數位轉換電路來處理單一電容感測元件與差動電容感測元件的類比感測訊號。In a general sensing system, if the analog sensing signal of the single capacitive sensing component and the differential capacitive sensing component is to be converted into a corresponding digital signal, the conventional analog digital is different due to the different operation modes of the capacitive sensing component. The converter cannot convert the two types of analog sensing signals at the same time, so the conventional sensing system must at least use two analog digital conversion circuits to process the analog sensing signals of the single capacitive sensing component and the differential capacitive sensing component.

但是,在本實施例中,類比數位轉換器100的架構可同時適用於轉換具有相異類型之電容感測元件50_1與電 容感測元件50_2的類比感測訊號。因此,感測系統10不僅可以個別地針對不同類型的電容感測元件50_1與50_2進行類比感測訊號與數位訊號之間的轉換,其亦可利用多工切換的手段來依序處理電容感測元件50_1與50_2的類比感測訊號,而不需分別採用兩種不同的電路來處理兩種不同類型的電容感測元件所傳輸的感測訊號。However, in this embodiment, the architecture of the analog-to-digital converter 100 can be simultaneously applied to convert the capacitive sensing element 50_1 and the battery having different types. The analog sensing signal of the capacitive sensing element 50_2. Therefore, the sensing system 10 can not only perform analog conversion between the analog sensing signal and the digital signal for different types of capacitive sensing elements 50_1 and 50_2, but also can utilize the multiplex switching method to sequentially process the capacitive sensing. The analog sensing signals of the components 50_1 and 50_2 do not need to use two different circuits to process the sensing signals transmitted by the two different types of capacitive sensing components.

為了更清楚的說明本實施例,圖2繪示為本發明一實施例之類比數位轉換器200的示意圖。請參照圖2,類比數位轉換器200適於耦接至少兩相異類型的電容感測元件,在此係以單一電容感測元件60_1與差動電容感測元件60_2為例,且類比數位轉換器200包括訊號產生單元210、開關模組220以及轉換單元230。訊號產生單元210產生第一控制訊號s_c1與第二控制訊號s_c2。開關模組220耦接訊號產生單元210,反應於多工切換手段而接收第一控制訊號s_c1與第二控制訊號s_c2其中之一,並據以進行切換而輸出單一電容感測元件60_1的類比感測訊號s_a1或差動電容感測元件60_2的類比感測訊號s_a2。轉換單元230耦接開關模組220並接收類比感測訊號s_a1與類比感測訊號s_a2其中之一,以將類比感測訊號s_a1轉換為對應的數位訊號s_d1,或者將類比感測訊號s_a2轉換為對應的數位訊號s_d2。In order to explain the present embodiment more clearly, FIG. 2 is a schematic diagram of an analog-to-digital converter 200 according to an embodiment of the present invention. Referring to FIG. 2, the analog-to-digital converter 200 is adapted to couple at least two different types of capacitive sensing elements, where a single capacitive sensing component 60_1 and a differential capacitive sensing component 60_2 are taken as an example, and analog digital conversion is used. The device 200 includes a signal generating unit 210, a switch module 220, and a converting unit 230. The signal generating unit 210 generates the first control signal s_c1 and the second control signal s_c2. The switch module 220 is coupled to the signal generating unit 210, and receives one of the first control signal s_c1 and the second control signal s_c2 in response to the multiplexing switching means, and outputs a sense of analogy of the single capacitive sensing element 60_1 according to the switching. The analog signal s_a1 or the analog sensing signal s_a2 of the differential capacitance sensing element 60_2. The conversion unit 230 is coupled to the switch module 220 and receives one of the analog sensing signal s_a1 and the analog sensing signal s_a2 to convert the analog sensing signal s_a1 into a corresponding digital signal s_d1, or convert the analog sensing signal s_a2 into Corresponding digital signal s_d2.

為了使類比數位轉換器200能夠轉換不同類型電容感測元件的類比感測訊號,開關模組220包括多個開關電路222_1~222_n,其中n為正整數,且係可依據設計者需求 自行更動。各個開關電路222_1~222_n的輸入端IT1~ITn分別對應耦接至電容感測元件的各端。當類比數位轉換器200分別耦接單一電容感測元件60_1與差動電容感測元件60_2時,具有兩端的單一電容感測元件60_1之兩端分別耦接開關電路222_1與開關電路222_2的輸入端IT1與IT2,且具有三端的差動電容感測元件60_2之三端則分別耦接開關電路222_3~222_5的輸入端IT3~IT5。此外,各個開關電路222_1~222_n的輸出端OT則共同耦接至轉換單元230。In order to enable the analog-to-digital converter 200 to convert the analog sensing signals of different types of capacitive sensing elements, the switch module 220 includes a plurality of switching circuits 222_1 222 222_n, where n is a positive integer and can be based on the designer's needs. Change it yourself. The input terminals IT1~ITn of the respective switch circuits 222_1~222_n are respectively coupled to the respective ends of the capacitive sensing elements. When the analog-to-digital converter 200 is coupled to the single-capacitance sensing component 60_1 and the differential-capacitance sensing component 60_2, the two ends of the single-capacitance sensing component 60_1 having two ends are respectively coupled to the input of the switch circuit 222_1 and the switch circuit 222_2. The terminals IT1 and IT2, and the three ends of the three-terminal differential capacitance sensing component 60_2 are respectively coupled to the input terminals IT3~IT5 of the switch circuits 222_3~222_5. In addition, the output terminals OT of the respective switch circuits 222_1 222 222_n are commonly coupled to the conversion unit 230.

分別就不同類型的電容感測元件而言,當類比數位轉換器200對單一電容感測元件60_1進行類比數位轉換時,訊號產生單元210輸出第一控制訊號s_c1至耦接單一電容感測元件60_1的開關電路222_1與開關電路222_2。因此,開關電路222_1與222_2將依據第一控制訊號s_c1分別切換其開關組態,使得單一電容感測元件60_1可正常的進行感測操作,而將類比感測訊號s_a1經由開關電路222_1與222_2輸出至轉換單元230以輸出單一電容感測元件60_1的類比感測訊號s_a1。For the different types of capacitive sensing components, when the analog digital converter 200 performs analog digital conversion on the single capacitive sensing component 60_1, the signal generating unit 210 outputs the first control signal s_c1 to couple the single capacitive sensing component. The switch circuit 222_1 of 60_1 and the switch circuit 222_2. Therefore, the switch circuits 222_1 and 222_2 respectively switch their switch configurations according to the first control signal s_c1, so that the single capacitive sensing component 60_1 can perform the sensing operation normally, and the analog sensing signal s_a1 is output via the switch circuits 222_1 and 222_2. The conversion unit 230 is configured to output the analog sensing signal s_a1 of the single capacitive sensing element 60_1.

另一方面,當類比數位轉換器200對差動電容感測元件60_2進行類比數位轉換時,耦接差動電容感測元件60_2的開關電路222_3、開關電路222_4以及開關電路222_5將依據第二控制訊號s_c2分別切換其開關組態,使得差動電容感測元件60_2可正常的進行感測操作以輸出差動電容感測元件60_2的類比感測訊號s_a2。On the other hand, when the analog-to-digital converter 200 performs analog-to-digital conversion on the differential capacitance sensing component 60_2, the switching circuit 222_3, the switching circuit 222_4, and the switching circuit 222_5 coupled to the differential capacitive sensing component 60_2 will be in accordance with the second control. The signal s_c2 switches its switch configuration, respectively, so that the differential capacitance sensing component 60_2 can normally perform a sensing operation to output the analog sensing signal s_a2 of the differential capacitive sensing component 60_2.

具體而言,當類比數位轉換器200同時耦接單一電容感測元件60_1與差動電容感測元件60_2時,訊號產生單元210將採用多工切換手段而選擇性地輸出第一控制訊號s_c1或第二控制訊號s_c2至對應的開關電路222_1~222_5,以使開關模組220依序輸出單一電容感測元件60_1的類比感測訊號s_a1與差動電容感測元件60_2的類比感測訊號s_a2。Specifically, when the analog-to-digital converter 200 is coupled to the single capacitive sensing component 60_1 and the differential capacitive sensing component 60_2, the signal generating unit 210 selectively outputs the first control signal s_c1 by using a multiplexing switching means. Or the second control signal s_c2 to the corresponding switch circuit 222_1~222_5, so that the switch module 220 sequentially outputs the analog sense signal s_a1 of the single capacitive sensing component 60_1 and the analog sensing signal s_a2 of the differential capacitive sensing component 60_2. .

舉例來說,訊號產生單元210可藉由依序切換輸出訊號的方式先行輸出第一控制訊號s_c1至開關電路222_1與222_2。開關電路222_1與222_2依據第一控制訊號s_c1分別切換其開關組態,而將類比感測訊號s_a1經由開關電路222_1與222_2輸出至轉換單元230,以使轉換單元230將類比感測訊號s_a1轉換為對應的數位訊號s_d1。For example, the signal generating unit 210 can output the first control signal s_c1 to the switch circuits 222_1 and 222_2 first by sequentially switching the output signals. The switch circuits 222_1 and 222_2 respectively switch their switch configurations according to the first control signal s_c1, and output the analog sense signal s_a1 to the conversion unit 230 via the switch circuits 222_1 and 222_2, so that the conversion unit 230 converts the analog sense signal s_a1 into Corresponding digital signal s_d1.

接著,當類比感測訊號s_a1轉換完成後,訊號產生單元210切換輸出為輸出第二控制訊號s_c2並將第二控制訊號s_c2至開關電路222_3~222_5。因此,開關電路222_3~222_5依據第二控制訊號s_c2分別切換其開關組態,而將類比感測訊號s_a2經由開關電路222_3~222_5輸出至轉換單元230,以使轉換單元230將類比感測訊號s_a2轉換為對應的數位訊號s_d2。Then, after the conversion of the analog sensing signal s_a1 is completed, the signal generating unit 210 switches the output to output the second control signal s_c2 and the second control signal s_c2 to the switch circuits 222_3 222 222_5. Therefore, the switch circuits 222_3~222_5 respectively switch their switch configurations according to the second control signal s_c2, and output the analog sense signal s_a2 to the conversion unit 230 via the switch circuits 222_3~222_5, so that the conversion unit 230 compares the analog sense signal s_a2. Converted to the corresponding digital signal s_d2.

更進一步地來看,圖3繪示為本發明一實施例之類比數位轉換器300的電路示意圖。在圖3中,各個開關電路322_1~322_n係以多個開關的電路架構所組成,其中前述之第一控制訊號s_c1與第二控制訊號s_c2在本實施例中 係分別包括對應於各個開關的開關訊號。此外,在本實施例中,轉換單元330係以三角積分調變型式的類比數位轉換架構為例,但本發明不僅限於此。Further, FIG. 3 is a circuit diagram of an analog-to-digital converter 300 according to an embodiment of the invention. In FIG. 3, each of the switch circuits 322_1 322 322_n is composed of a circuit structure of a plurality of switches, wherein the first control signal s_c1 and the second control signal s_c2 are in this embodiment. The system includes switching signals corresponding to the respective switches. Further, in the present embodiment, the conversion unit 330 is exemplified by an analog digital conversion architecture of a triangular integral modulation type, but the present invention is not limited thereto.

請參照圖3,在此以開關電路322_1為例,開關電路322包括第一開關SW_11、第二開關SW_12、第三開關SW_13以及第四開關SW_14。第一開關SW_11的第一端耦接驅動電壓VR1,且其第二端耦接開關電路322_1的輸入端IT1。第二開關SW_12的第一端耦接輸入端IT1,且其第二端耦接接地電壓VR2。第三開關的第一端耦接第一參考電壓VR3,且其第二端耦接輸入端IT1。第四開關的第一端耦接輸入端IT1,且其第二端耦接輸出端OT。其中,第一開關SW_11、第二開關SW_12、第三開關SW_13以及第四開關SW_14分別依據對應的開關訊號s_11、s_12、s_13以及s_14而決定是否導通,以切換為符合類比數位轉換器所耦接之電容感測元件的開關組態。相似地,在其餘開關電路322_2~322_n中,各個開關亦以上述之開關電路322_1中的第一開關SW_11到第四開關SW_14之電性連接關係相互耦接,並且同樣地依據其所對應的開關訊號所控制。Referring to FIG. 3 , the switch circuit 322 is taken as an example. The switch circuit 322 includes a first switch SW_11 , a second switch SW_12 , a third switch SW_13 , and a fourth switch SW_14 . The first end of the first switch SW_11 is coupled to the driving voltage VR1, and the second end thereof is coupled to the input terminal IT1 of the switching circuit 322_1. The first end of the second switch SW_12 is coupled to the input terminal IT1, and the second end thereof is coupled to the ground voltage VR2. The first end of the third switch is coupled to the first reference voltage VR3, and the second end thereof is coupled to the input terminal IT1. The first end of the fourth switch is coupled to the input terminal IT1, and the second end of the fourth switch is coupled to the output terminal OT. The first switch SW_11, the second switch SW_12, the third switch SW_13, and the fourth switch SW_14 respectively determine whether to be turned on according to the corresponding switching signals s_11, s_12, s_13, and s_14, so as to be switched to be matched with the analog digital converter. The switch configuration of the capacitive sensing element. Similarly, in the remaining switch circuits 322_2-322_n, the switches are also coupled to each other by the electrical connection relationship of the first switch SW_11 to the fourth switch SW_14 of the switch circuit 322_1, and the switch is correspondingly Controlled by the signal.

轉換單元330包括積分器332、比較器334、正反器336以及計數器338。積分器332具有正輸入端、負輸入端以及輸出端。積分器332的正輸入端耦接第二參考電壓VR4,其負輸入端耦接開關模組320以接收類比感測訊號s_a,其中積分器332依據第二參考電壓VR4與類比感測 訊號輸出積分訊號s_i。比較器334具有正輸入端、負輸入端以及輸出端。比較器334的正輸入端同樣耦接第二參考電壓VR4,其負輸入端耦接積分器332的輸出端以接收積分訊號s_i,其中比較器依據第二參考電壓VR4與積分訊號s_i輸出比較訊號s_c。正反器336的輸入端耦接比較器334的輸出端以接收比較訊號s_c,並且正反器336依據時脈訊號CLK於其輸出端輸出邏輯準位1g。計數器338的輸入端耦接正反器336的輸出端。其中,計數器338更依據邏輯準位1g計數時脈訊號CLK,並且依據計數結果於其輸出端輸出數位訊號s_d。The conversion unit 330 includes an integrator 332, a comparator 334, a flip-flop 336, and a counter 338. The integrator 332 has a positive input, a negative input, and an output. The positive input terminal of the integrator 332 is coupled to the second reference voltage VR4, and the negative input terminal is coupled to the switch module 320 to receive the analog sensing signal s_a, wherein the integrator 332 senses the second reference voltage VR4 according to the second reference voltage The signal outputs the integral signal s_i. Comparator 334 has a positive input, a negative input, and an output. The positive input terminal of the comparator 334 is also coupled to the second reference voltage VR4, and the negative input terminal is coupled to the output end of the integrator 332 to receive the integrated signal s_i, wherein the comparator outputs a comparison signal according to the second reference voltage VR4 and the integrated signal s_i. S_c. The input end of the flip-flop 336 is coupled to the output of the comparator 334 to receive the comparison signal s_c, and the flip-flop 336 outputs the logic level 1g at its output according to the clock signal CLK. The input of the counter 338 is coupled to the output of the flip flop 336. The counter 338 further counts the clock signal CLK according to the logic level 1g, and outputs the digital signal s_d at its output according to the counting result.

具體而言,由於電容感測元件所傳輸的類比感測訊號s_a一般係為對應於電容感測元件之容值變化的電壓準位。因此當積分器332經由開關模組320接收到電容感測元件的類比感測訊號s_a時,其可依據第二參考電壓VR4將類比感測訊號s_a進行積分的操作,而使得積分器332於其輸出端輸出一個與時域相關的積分訊號s_i。Specifically, the analog sensing signal s_a transmitted by the capacitive sensing component is generally a voltage level corresponding to a change in the capacitance of the capacitive sensing component. Therefore, when the integrator 332 receives the analog sensing signal s_a of the capacitive sensing element via the switch module 320, it can integrate the analog sensing signal s_a according to the second reference voltage VR4, so that the integrator 332 The output outputs a time domain s_i associated with the time domain.

當積分訊號s_i的電壓準位依據積分類比感測訊號s_a而隨著時間逐漸降低至低於第二參考電壓VR4時,比較器334將輸出一個致能的比較訊號s_c而使得正反器336依據時脈訊號CLK與比較訊號s_c而產生一個致能的邏輯準位1g,例如為邏輯1,因此使得計數器338依據致能的邏輯準位1g而開始計數時脈訊號CLK的脈衝週期,並依據此計數值而輸出對應於類比感測訊號s_a的數位訊號s_d。When the voltage level of the integrated signal s_i is gradually decreased to be lower than the second reference voltage VR4 according to the integral analog sensing signal s_a, the comparator 334 outputs an enabled comparison signal s_c such that the flip-flop 336 is based on The clock signal CLK and the comparison signal s_c generate an enabled logic level 1g, for example, logic 1, thus causing the counter 338 to start counting the pulse period of the clock signal CLK according to the enabled logic level 1g, and according to this The digital signal s_d corresponding to the analog sensing signal s_a is outputted by the count value.

此外,為了使轉換單元330能夠進行各種不同的電容感測元件之類比感測訊號的轉換,因此轉換單元330更包括放電控制單元DCU。放電控制單元DCU耦接於積分器332的負輸入端與正反器336的輸出端之間,其係用以依據邏輯準位1g而對積分器332的負輸入端進行放電。其中,放電控制單元DCU係依據第一控制訊號s_c1中的放電致能訊號s_de和正反器輸出訊號1g而致能。In addition, in order to enable the conversion unit 330 to perform conversion of analog sensing signals of various different capacitive sensing elements, the converting unit 330 further includes a discharging control unit DCU. The discharge control unit DCU is coupled between the negative input terminal of the integrator 332 and the output terminal of the flip-flop 336 for discharging the negative input terminal of the integrator 332 according to the logic level 1g. The discharge control unit DCU is enabled according to the discharge enable signal s_de and the flip-flop output signal 1g in the first control signal s_c1.

當類比數位轉換器300所耦接的電容感測元件的類型為單一電容感測元件時,例如為電容式觸控面板上的感測單元。由於此類型的單一電容感測元件,其控制上需利用對應的控制訊號來交替的進行電容感測元件的驅動以週期性的輸出感測訊號。因此,轉換單元330需要藉由重複充電轉換與放電的過程來操作。When the type of the capacitive sensing component coupled to the digital converter 300 is a single capacitive sensing component, for example, a sensing unit on the capacitive touch panel. Since this type of single capacitive sensing component is controlled, the corresponding control signal is used to alternately drive the capacitive sensing component to periodically output the sensing signal. Therefore, the conversion unit 330 needs to operate by repeating the process of charge conversion and discharge.

詳細而言,當邏輯準位1g為致能的邏輯準位時,放電控制單元DCU將依據邏輯準位1g而對積分器332的負輸入端進行放電而使得積分器332的輸出端的積分訊號s_i電壓準位提高。當積分訊號s_i上升至超過第二參考電壓VR4時,則比較器334將輸出禁能的比較訊號s_c而使得正反器336依據時脈訊號CLK與比較訊號s_c產生一個禁能的邏輯準位1g,例如為邏輯0,因此使得計數器338依據禁能的邏輯準位1g而停止計數時脈訊號CLK的脈衝週期並停止放電控制單元的放電動作。In detail, when the logic level 1g is the enabled logic level, the discharge control unit DCU will discharge the negative input terminal of the integrator 332 according to the logic level 1g so that the integral signal s_i of the output of the integrator 332 The voltage level is increased. When the integral signal s_i rises above the second reference voltage VR4, the comparator 334 outputs the disabled comparison signal s_c such that the flip-flop 336 generates an disabled logic level 1g according to the clock signal CLK and the comparison signal s_c. For example, it is a logic 0, so that the counter 338 stops counting the pulse period of the clock signal CLK according to the disable logic level 1g and stops the discharge operation of the discharge control unit.

值得注意的是,當類比數位轉換器300所耦接的電容感測元件為差動電容感測元件時,由於其不需要進行放電 的機制來轉換其類比感測訊號。因此,在第二控制訊號s_c2中並未包括放電致能訊號s_de,故在差動電容感測元件的類比數位轉換操作中,放電控制單元DCU並未被致能。It should be noted that when the capacitive sensing component coupled to the analog-to-digital converter 300 is a differential capacitive sensing component, it does not need to be discharged. The mechanism to convert its analog sensing signal. Therefore, the discharge enable signal s_de is not included in the second control signal s_c2, so in the analog digital conversion operation of the differential capacitance sensing element, the discharge control unit DCU is not enabled.

為了更進一步地說明本發明實施例之類比數位轉換器在耦接不同類型之電容感測元件時的訊號控制流程,在此分別利用投射電容式(projected capacitive)觸控面板的感測電容作為單一電容感測元件的示例,以及利用重力感測器作為差動電容感測元件的示例來說明本發明實施例的訊號控制流程。In order to further illustrate the signal control flow when the analog-to-digital converter of the embodiment of the present invention is coupled to different types of capacitive sensing elements, the sensing capacitance of the projected capacitive touch panel is used as a single An example of a capacitive sensing element, and an example of using a gravity sensor as a differential capacitive sensing element to illustrate the signal control flow of an embodiment of the present invention.

首先,就投射電容式觸控面板的感測電容而言,其又可區分為自容式(self capacitance)與互容式(mutual capacitance)的感測驅動方式。因此,在本實施例中將依據感測方式的不同,而分別說明自容式感測與互容式感測在相同類比數位轉換器的電路架構下的訊號控制流程,如圖4、圖5a與圖5b所示。First, in terms of the sensing capacitance of the projected capacitive touch panel, it can be further divided into a self-capacitance and a mutual capacitance sensing driving method. Therefore, in this embodiment, the signal control flow of the self-capacitance sensing and the mutual capacitance sensing in the circuit architecture of the same analog-to-digital converter will be respectively described according to the different sensing modes, as shown in FIG. 4 and FIG. 5a. As shown in Figure 5b.

圖4繪示為本發明一實施例之類比數位轉換器400的示意圖。請參照圖4,類比數位轉換器400經由開關電路422_1與422_2的輸入端IT1與IT2分別耦接感測電容70_1的兩端。其中,所述之感測電容70_1可為自容式或互容式觸控面板的感測電容。此外,類比數位轉換器400的電路架構與圖3所述相同,故於此處不再贅述。4 is a schematic diagram of an analog-to-digital converter 400 in accordance with an embodiment of the present invention. Referring to FIG. 4, the analog-to-digital converter 400 is coupled to the two ends of the sensing capacitor 70_1 via the input terminals IT1 and IT2 of the switching circuits 422_1 and 422_2, respectively. The sensing capacitor 70_1 can be a sensing capacitor of a self-capacitive or mutual capacitive touch panel. In addition, the circuit architecture of the analog-to-digital converter 400 is the same as that described in FIG. 3, and thus will not be described herein.

當感測電容70_1為自感電容時,第一控制訊號s_c1中的各個開關訊號s_11~s_24,如圖5a所示。圖5a繪示為本發明一實施例之第一控制訊號的時序圖。在本實施例 中,各個開關係依據高準位的開關訊號而導通,並且依據低準位的開關訊號而截止,但本發明不以此為限。When the sensing capacitor 70_1 is a self-inductive capacitor, each of the switching signals s_11~s_24 in the first control signal s_c1 is as shown in FIG. 5a. FIG. 5a is a timing diagram of a first control signal according to an embodiment of the invention. In this embodiment In the middle, each open relationship is turned on according to the switching signal of the high level, and is cut off according to the switching signal of the low level, but the invention is not limited thereto.

請同時參照圖4與圖5a,開關電路422_1的第一開關SW_11與第四開關SW_14分別依據對應的開關訊號s_11與s_14週期性的導通或截止。對應於第二開關SW_22之開關訊號s_22恆為高準位,而使得第二開關SW_22恆導通。此外,其餘的開關訊號s_12、s_13、s_21、s_23與s_24皆為低準位,而使得各個開關訊號s_12、s_13、s_21、s_23與s_24所控制的開關截止。Referring to FIG. 4 and FIG. 5 a , the first switch SW_11 and the fourth switch SW_14 of the switch circuit 422_1 are periodically turned on or off according to the corresponding switching signals s_11 and s_14, respectively. The switching signal s_22 corresponding to the second switch SW_22 is always at a high level, and the second switch SW_22 is always turned on. In addition, the remaining switching signals s_12, s_13, s_21, s_23, and s_24 are all low-level, and the switches controlled by the respective switching signals s_12, s_13, s_21, s_23, and s_24 are turned off.

換言之,由於開關訊號s_11與s_14係互為反相的訊號,因此當第一開關SW_11導通時,第四開關SW_14將對應的截止;反之,當第一開關SW_11依據開關訊號s_11而截止時,則第四開關SW_14則依據開關訊號s_14而導通,藉此來切換對感測電容70_1進行充電或是輸出類比感測訊號s_a。In other words, since the switching signals s_11 and s_14 are mutually inverted signals, when the first switch SW_11 is turned on, the fourth switch SW_14 will be correspondingly turned off; otherwise, when the first switch SW_11 is turned off according to the switching signal s_11, then The fourth switch SW_14 is turned on according to the switching signal s_14, thereby switching the charging of the sensing capacitor 70_1 or outputting the analog sensing signal s_a.

就時序上的觀點來看,所述之開關訊號s_11與s_14係以期間t1與t2為一個週期。在期間t1時,第一開關SW_11依據高準位的開關訊號s_11導通,且第四開關SW_14依據低準位的開關訊號s_14截止,而第二開關SW_22的導通使得感測電容70_1的一端耦接接地電壓VR2。此時,開關模组422_1與422_2以及感測電容70_1可以等效成利用驅動電壓VR1來對感測電容70_1進行充電的狀態。From the viewpoint of timing, the switching signals s_11 and s_14 are in a period of period t1 and t2. During the period t1, the first switch SW_11 is turned on according to the high-level switching signal s_11, and the fourth switch SW_14 is turned off according to the low-level switching signal s_14, and the second switch SW_22 is turned on to couple one end of the sensing capacitor 70_1. Ground voltage VR2. At this time, the switch modules 422_1 and 422_2 and the sensing capacitor 70_1 may be equivalent to a state in which the sensing capacitor 70_1 is charged by the driving voltage VR1.

當感測電容70_1充電完成後的期間t2時,開關訊號 s_11轉態為低準位,且開關訊號s_14轉態為高準位,使得第一開關SW_11截止,且第四開關SW_14對應導通。因此,電容感測元件70_1可將類比感測訊號s_a透過開關模组422_1輸出至轉換單元430以進行類比數位的轉換並輸出數位訊號s_d。When the sensing capacitor 70_1 is completed during the period t2, the switching signal The s_11 transition state is a low level, and the switching signal s_14 is turned to a high level, so that the first switch SW_11 is turned off, and the fourth switch SW_14 is turned on. Therefore, the capacitive sensing component 70_1 can output the analog sensing signal s_a to the converting unit 430 through the switching module 422_1 for analog digital conversion and output the digital signal s_d.

詳細而言,由於自容式觸控面板的感測方式係利用感測觸控面板中之電極與地(ground)之間的電容值變化而輸出對應的感測訊號。在本實施例中,開關模组422_2係將第二開關SW_22恆導通,而使輸入端IT2耦接接地電壓VR2,亦即將觸控面板中耦接至輸入端IT2的電極接地而將感測電容70_1等效為自容式感測的電路架構,並且藉由開關訊號依據時序的切換而實現自容式感測的驅動與訊號轉換。In detail, the sensing method of the self-capacitive touch panel outputs a corresponding sensing signal by sensing a change in capacitance between the electrode and the ground in the touch panel. In this embodiment, the switch module 422_2 is constant to conduct the second switch SW_22, and the input terminal IT2 is coupled to the ground voltage VR2, that is, the electrode coupled to the input terminal IT2 in the touch panel is grounded to sense the capacitor. The 70_1 is equivalent to a self-capacitance sensing circuit architecture, and realizes self-capacitance sensing driving and signal conversion by switching signals according to timing switching.

另一方面,當感測電容70_1為互感電容時,第一控制訊號s_c1中的各個開關訊號s_11~s_24,如圖5b所示。圖5b繪示為本發明另一實施例之第一控制訊號的時序圖。On the other hand, when the sensing capacitor 70_1 is a mutual inductance capacitor, each of the switching signals s_11~s_24 in the first control signal s_c1 is as shown in FIG. 5b. FIG. 5b is a timing diagram of a first control signal according to another embodiment of the present invention.

請同時參照圖4與圖5b,開關電路422_1的第一開關SW_11與第四開關SW_14同樣地分別依據對應的開關訊號s_11與s_14週期性的導通或截止。並且,開關模组422_2的第三開關SW_23與第四開關SW_24亦依據對應的開關訊號s_23與s_24而週期性的導通或截止。此外,開關模组422_1的第一開關SW_11與開關模组422_2的第三開關SW_23所對應的開關訊號s_11與s_23為同相。在此,其餘的開關訊號s_13、s_14、s_21與s_22皆為低準位,而 使得各個開關訊號s_13、s_14、s_21與s_22所控制的開關截止。Referring to FIG. 4 and FIG. 5b simultaneously, the first switch SW_11 and the fourth switch SW_14 of the switch circuit 422_1 are periodically turned on or off according to the corresponding switching signals s_11 and s_14, respectively. Moreover, the third switch SW_23 and the fourth switch SW_24 of the switch module 422_2 are also periodically turned on or off according to the corresponding switching signals s_23 and s_24. In addition, the switching signals s_11 and s_23 corresponding to the first switch SW_11 of the switch module 422_1 and the third switch SW_23 of the switch module 422_2 are in phase. Here, the remaining switching signals s_13, s_14, s_21 and s_22 are all low level, and The switches controlled by the respective switching signals s_13, s_14, s_21 and s_22 are turned off.

換言之,由於開關訊號s_11與s_23以及開關訊號s_12與s_24分別為相同的週期訊號,而且開關訊號s_11與s_23以及開關訊號s_12與s_24之間互為反相。因此,當第一開關SW_11與第三開關SW_23導通時,第二開關SW_12與第四開關SW_24將對應的截止;反之,當第一開關SW_11與第三開關SW_23截止時,第二開關SW_12與第四開關SW_24分別依據開關訊號s_12與s_24而導通,藉此來切換對感測電容70_1進行充電或是輸出類比感測訊號s_a。In other words, since the switching signals s_11 and s_23 and the switching signals s_12 and s_24 are respectively the same periodic signal, and the switching signals s_11 and s_23 and the switching signals s_12 and s_24 are mutually inverted. Therefore, when the first switch SW_11 and the third switch SW_23 are turned on, the second switch SW_12 and the fourth switch SW_24 will be correspondingly turned off; otherwise, when the first switch SW_11 and the third switch SW_23 are turned off, the second switch SW_12 and the second switch The four switches SW_24 are turned on according to the switching signals s_12 and s_24, respectively, thereby switching the charging of the sensing capacitor 70_1 or outputting the analog sensing signal s_a.

就時序上的觀點來看,所述之開關訊號s_11、s_12、s_23與s_24係以期間t3與t4為一個週期。在期間t3時,第一開關SW_11與第三開關SW_23分別依據高準位的開關訊號s_11與s_23導通,且第二開關SW_12與第四開關SW_24分別依據低準位的開關訊號s_12與s_24截止。此時,開關模组422_1與422_2以及感測電容70_1可以等效成利用驅動電壓VR1與第一參考電壓VR3來對感測電容70_1進行充電的狀態。From the viewpoint of timing, the switching signals s_11, s_12, s_23, and s_24 are in a period of period t3 and t4. During the period t3, the first switch SW_11 and the third switch SW_23 are respectively turned on according to the high-level switching signals s_11 and s_23, and the second switch SW_12 and the fourth switch SW_24 are turned off according to the low-level switching signals s_12 and s_24, respectively. At this time, the switch modules 422_1 and 422_2 and the sensing capacitor 70_1 may be equivalent to a state in which the sensing capacitor 70_1 is charged by using the driving voltage VR1 and the first reference voltage VR3.

當感測電容70_1充電完成後的期間t4時,開關訊號s_11與s_23轉態為低準位,且開關訊號s_12與s_24轉態為高準位,使得第一開關SW_11與第三開關SW_23截止,且第二開關SW_12與第四開關SW_14對應導通。因此,電容感測元件70_1可將類比感測訊號s_a透過開關模组 422_2輸出至轉換單元430以進行類比數位的轉換並輸出數位訊號s_d。When the sensing capacitor 70_1 is completed, the switching signals s_11 and s_23 are turned to a low level, and the switching signals s_12 and s_24 are turned to a high level, so that the first switch SW_11 and the third switch SW_23 are turned off. The second switch SW_12 is electrically connected to the fourth switch SW_14. Therefore, the capacitive sensing component 70_1 can pass the analog sensing signal s_a through the switch module. The 422_2 is output to the conversion unit 430 for analog-to-digital conversion and outputs the digital signal s_d.

詳細而言,由於互容式觸控面板的感測方式係利用感測觸控面板中之電極間的電容值變化而輸出對應的感測訊號。在本實施例中,開關模组422_1與開關模组422_2係對應地切換其開關組態而將感測電容70_1等效為互容式感測的電路架構,並且藉由開關訊號依據時序的切換而實現互容式感測的驅動與訊號轉換。In detail, the sensing method of the mutual-capacitive touch panel outputs a corresponding sensing signal by sensing a change in the capacitance value between the electrodes in the touch panel. In this embodiment, the switch module 422_1 and the switch module 422_2 switch their switch configurations correspondingly, and the sense capacitor 70_1 is equivalent to the circuit structure of the mutual capacitance sensing, and the switching signal is switched according to the timing. Drive and signal conversion for mutual capacitive sensing.

圖6繪示為本發明一實施例之類比數位轉換器600的示意圖。在本實施例中,差動電容感測元件係以重力感測器70_2為例。其中,重力感測器70_2中具有兩個配置於不同方向的電容C1與C2。並且,重力感測器70_2可藉由移動時的加速度而導致電容C1與C2的電容值對應的改變,進而偵測出偏移的方向。FIG. 6 is a schematic diagram of an analog-to-digital converter 600 according to an embodiment of the invention. In the embodiment, the differential capacitance sensing element is exemplified by the gravity sensor 70_2. The gravity sensor 70_2 has two capacitors C1 and C2 arranged in different directions. Moreover, the gravity sensor 70_2 can change the capacitance value of the capacitors C1 and C2 by the acceleration during the movement, thereby detecting the direction of the offset.

請參照圖6,類比數位轉換器600經由開關電路622_1、622_2與622_3的輸入端IT1、IT2與IT3分別耦接重力感測器70_2的三端。其中,類比數位轉換器600的電路架構亦與圖3所述相同,故於此處不再贅述。Referring to FIG. 6, the analog-to-digital converter 600 is coupled to the three ends of the gravity sensor 70_2 via input terminals IT1, IT2, and IT3 of the switch circuits 622_1, 622_2, and 622_3, respectively. The circuit architecture of the analog-to-digital converter 600 is also the same as that described in FIG. 3, and thus is not described herein again.

第二控制訊號s_c2包括多個開關訊號,各個開關係依據高準位的開關訊號而導通,並且依據低準位的開關訊號而截止,但本發明不以此為限。The second control signal s_c2 includes a plurality of switching signals, each of which is turned on according to the switching signal of the high level, and is turned off according to the switching signal of the low level, but the invention is not limited thereto.

在本實施例中,開關模组622_1的第一開關SW_11與第三開關SW_13、開關模组622_2的第三開關SW_23與第四開關SW_24以及開關模组622_3的第一開關 SW_31與第三開關SW_33分別依據對應的開關訊號s_11、s_13、s_23、s_24、s_31與s_33週期性的導通或截止。此外,其餘的開關訊號s_12、s_14、s_21、s_22、s_32與s_34皆為低準位,而使得各個開關訊號s_12、s_14、s_21、s_22、s_32與s_34所控制的開關截止。In this embodiment, the first switch SW_11 and the third switch SW_13 of the switch module 622_1, the third switch SW_23 and the fourth switch SW_24 of the switch module 622_2, and the first switch of the switch module 622_3 The SW_31 and the third switch SW_33 are periodically turned on or off according to the corresponding switching signals s_11, s_13, s_23, s_24, s_31, and s_33, respectively. In addition, the remaining switching signals s_12, s_14, s_21, s_22, s_32, and s_34 are all low-level, and the switches controlled by the respective switching signals s_12, s_14, s_21, s_22, s_32, and s_34 are turned off.

就時序上的觀點來看,如圖7a所示,圖7a繪示為本發明一實施例之第二控制訊號的時序圖。在本實施例中係以電容C1與電容C2相等的狀況下說明類比數位轉換器600的操作時序,所述之開關訊號s_11、s_13、s_23、s_24、s_31與s_33係依據邏輯準位1g而以期間t5至t8為一個週期。其中,開關訊號s_11、s_13、s_23、s_24、s_31與s_33的訊號準位係受控於時脈訊號CLK以及正反器636所輸出之邏輯準位1g。As shown in FIG. 7a, FIG. 7a is a timing diagram of a second control signal according to an embodiment of the present invention. In the present embodiment, the operation timing of the analog-to-digital converter 600 is described in the case where the capacitor C1 and the capacitor C2 are equal. The switching signals s_11, s_13, s_23, s_24, s_31, and s_33 are based on the logic level 1g. The period t5 to t8 is one cycle. The signal levels of the switching signals s_11, s_13, s_23, s_24, s_31, and s_33 are controlled by the clock signal CLK and the logic level 1g output by the flip-flop 636.

請同時參照圖6與圖7a,在本實施例之初始的狀態下,積分器632之輸出端的電壓準位等於第二參考電壓VR4。因此邏輯準位1g在初始的狀態下為高準位。在期間t5時,假設時脈訊號CLK與邏輯準位1g皆位於高準位,因此第一開關SW_11以及第三開關SW_23與SW_33分別依據高準位的開關訊號s_11、s_23與s_33導通,而第三開關SW_13、第四開關SW_24與第一開關SW_31分別依據低準位的開關訊號s_13、s_24與s_33截止。此時,由於電容C2被第一參考電壓VR3所短路,故開關模组622_1、622_2與622_3以及重力感測器70_2可以等效為利用驅動電壓VR1來對重力感測器70_2中的電容C1進 行充電的狀態。Referring to FIG. 6 and FIG. 7a simultaneously, in the initial state of the embodiment, the voltage level at the output of the integrator 632 is equal to the second reference voltage VR4. Therefore, the logic level 1g is at a high level in the initial state. During the period t5, it is assumed that the clock signal CLK and the logic level 1g are both at a high level, so the first switch SW_11 and the third switches SW_23 and SW_33 are respectively turned on according to the high-level switching signals s_11, s_23 and s_33, and the first The three switches SW_13, the fourth switch SW_24 and the first switch SW_31 are turned off according to the low-level switching signals s_13, s_24 and s_33, respectively. At this time, since the capacitor C2 is short-circuited by the first reference voltage VR3, the switch modules 622_1, 622_2 and 622_3 and the gravity sensor 70_2 can be equivalent to use the driving voltage VR1 to enter the capacitor C1 in the gravity sensor 70_2. Line charging status.

在期間t6時,訊號產生單元610依據低準位的時脈訊號CLK以及高準位的邏輯準位1g而使開關訊號s_11與s_23轉態為低準位,且開關訊號s_13與s_24轉態為高準位,使得第一開關SW_11與第三開關SW_23截止,且第三開關SW_13與第四開關SW_24對應導通。此時,電容C1將依據目前的開關組態而完全放電至積分器632中的積分電容(未繪示出),以使積分訊號s_i的電壓準位藉由與電容C1和積分電容比值相關的函數而逐漸增加。During the period t6, the signal generating unit 610 turns the switching signals s_11 and s_23 to a low level according to the low-level clock signal CLK and the logic level 1g of the high level, and the switching signals s_13 and s_24 are turned into The high level is such that the first switch SW_11 and the third switch SW_23 are turned off, and the third switch SW_13 and the fourth switch SW_24 are turned on. At this time, the capacitor C1 will be completely discharged to the integral capacitor (not shown) in the integrator 632 according to the current switch configuration, so that the voltage level of the integrated signal s_i is related to the ratio of the capacitance C1 and the integral capacitance. The function gradually increases.

於進入期間t7時,積分訊號s_i的電壓準位將大於第二參考電壓VR4,使得比較器634輸出禁能的比較訊號s_c而使邏輯準位1g轉態為低準位。因此,在期間t7時,訊號產生單元610依據高準位的時脈訊號CLK以及低準位的邏輯準位1g而使開關訊號s_31轉態為高準位,且s_33轉態為低準位,故電容C2得以藉由驅動電壓VR1進行充電,並且電容C2的充電電流將會流經積分器632的積分電容。此時,積分訊號s_i的電壓準位將依據電容C1與電容C2的差值而逐漸的降低。以本實施例之電容C1等於電容C2的狀況而言,當期間t7結束時,積分訊號s_i的電壓準位將降至等同於第二參考電壓VR4。During the entry period t7, the voltage level of the integration signal s_i will be greater than the second reference voltage VR4, so that the comparator 634 outputs the disabled comparison signal s_c to shift the logic level 1g to the low level. Therefore, during the period t7, the signal generating unit 610 shifts the switching signal s_31 to a high level according to the high-level clock signal CLK and the low-level logic level 1g, and the s_33 transitions to a low level. Therefore, the capacitor C2 can be charged by the driving voltage VR1, and the charging current of the capacitor C2 will flow through the integrating capacitor of the integrator 632. At this time, the voltage level of the integral signal s_i will gradually decrease according to the difference between the capacitor C1 and the capacitor C2. In the case where the capacitor C1 of the present embodiment is equal to the capacitor C2, when the period t7 ends, the voltage level of the integral signal s_i will fall to be equal to the second reference voltage VR4.

接著,在期間t8時,訊號產生單元610將依據低準位的時脈訊號CLK以及低準位的邏輯準位1g而使開關訊號s_23與s_33於期間t8轉態為高準位,開關訊號s_24與s_31於期間t8轉態為低準位,使得第三開關SW_13、SW_23 與SW_33對應導通,故電容C2將依據目前的開關組態進行放電。此時,由於積分訊號s_i的電壓準位已經回復至初始的狀態,亦即等於第二參考電壓VR4。因此,於下一個期間開始時,類比數位轉換器600將利用與期間t5~t8相同的操作來進行類比數位轉換。Then, during the period t8, the signal generating unit 610 will switch the switching signals s_23 and s_33 to a high level during the period t8 according to the low level clock signal CLK and the low level logic level 1g, and the switching signal s_24 And s_31 transition to a low level during the period t8, so that the third switch SW_13, SW_23 Corresponding to SW_33, capacitor C2 will discharge according to the current switch configuration. At this time, since the voltage level of the integration signal s_i has returned to the initial state, that is, it is equal to the second reference voltage VR4. Therefore, at the beginning of the next period, the analog-to-digital converter 600 will perform the analog-to-digital conversion using the same operations as the periods t5~t8.

換言之,在電容C1等於電容C2的情況下,轉換單元630將依據類比感測訊號s_a而使一個週期的邏輯準位1g中之高準位的期間t5~t6等於低準位的期間t7~t8,故計數器638將於一個邏輯準位1g的週期內計算到高準位期間與低準位期間具有相同的計數值,進而得知重力感測器70_2此時並未產生偏移。In other words, in the case where the capacitor C1 is equal to the capacitor C2, the conversion unit 630 equalizes the period t5~t6 of the high level in the logic level 1g of one cycle according to the analog sense signal s_a to the period t7~t8 of the low level. Therefore, the counter 638 calculates that the high level period has the same count value as the low level period during the period of one logic level 1g, and further knows that the gravity sensor 70_2 does not generate an offset at this time.

另一方面,以重力感測器70_2產生偏移而造成電容C1大於電容C2的狀況為例,如圖7b所示,圖7a繪示為本發明另一實施例之第二控制訊號的時序圖。在本實施例中,所述之開關訊號s_11、s_13、s_23、s_24、s_31與s_33係依據邏輯準位1g而以期間t5至t10為一個週期。其中,開關訊號s_11、s_13、s_23、s_24、s_31與s_33的訊號準位同樣地受控於時脈訊號CLK以及正反器636所輸出之邏輯準位1g。On the other hand, as shown in FIG. 7b, FIG. 7b shows a timing diagram of the second control signal according to another embodiment of the present invention. For example, as shown in FIG. 7b, the offset of the gravity sensor 70_2 causes the capacitor C1 to be larger than the capacitor C2. . In this embodiment, the switching signals s_11, s_13, s_23, s_24, s_31, and s_33 are based on the logic level 1g and the period t5 to t10 is one cycle. The signal levels of the switching signals s_11, s_13, s_23, s_24, s_31, and s_33 are similarly controlled by the clock signal CLK and the logic level 1g output by the flip-flop 636.

在圖7b中,所繪示之操作時序係以電容C1之電容值為電容C2之電容值的兩倍為例,但是本發明不以此為限。此外,在電容C1大於電容C2的情況下,期間t5與期間t6的操作與前述相同,故於此不再贅述。In FIG. 7b, the operation sequence is shown as an example in which the capacitance value of the capacitor C1 is twice the capacitance value of the capacitor C2, but the invention is not limited thereto. In addition, in the case where the capacitor C1 is larger than the capacitor C2, the operation of the period t5 and the period t6 is the same as described above, and thus will not be described again.

請同時參照圖6與圖7b,在期間t7時,訊號產生單 元610同樣地依據高準位的時脈訊號CLK以及低準位的邏輯準位1g而使開關訊號s_31轉態為高準位,且s_33轉態為低準位,故使電容C2得以藉由驅動電壓VR1充電,並且使得積分訊號s_i的電壓準位為與電容C1和電容C2差值相關的函數。Please refer to FIG. 6 and FIG. 7b at the same time, during the period t7, the signal generation list Similarly, the element 610 rotates the switching signal s_31 to a high level according to the high level clock signal CLK and the low level logic level 1g, and the s_33 transition state is a low level, so that the capacitor C2 is enabled by The driving voltage VR1 is charged, and the voltage level of the integrating signal s_i is a function related to the difference between the capacitance C1 and the capacitance C2.

於進入期間t7時,積分訊號s_i的電壓準位將大於第二參考電壓VR4,使得比較器634輸出禁能的比較訊號s_c而使邏輯準位1g轉態為低準位。因此,在期間t7時,訊號產生單元610依據高準位的時脈訊號CLK以及低準位的邏輯準位1g而使開關訊號s_31轉態為高準位,且開關訊號s_33轉態為低準位,故電容C2得以藉由驅動電壓VR1進行充電。由於此時之電容C1大於電容C2,因此在期間t7時,積分訊號s_i的電壓準位仍大於第二參考電壓VR4,而並未回到初始的狀態。During the entry period t7, the voltage level of the integration signal s_i will be greater than the second reference voltage VR4, so that the comparator 634 outputs the disabled comparison signal s_c to shift the logic level 1g to the low level. Therefore, during the period t7, the signal generating unit 610 shifts the switching signal s_31 to a high level according to the high level clock signal CLK and the low level logic level 1g, and the switching signal s_33 transitions to a low level. Bit, so capacitor C2 can be charged by driving voltage VR1. Since the capacitance C1 at this time is greater than the capacitance C2, the voltage level of the integration signal s_i is still greater than the second reference voltage VR4 during the period t7, and does not return to the initial state.

經過期間t8的放電後,由於積分訊號s_i的電壓準位仍大於第二參考電壓VR4而使得邏輯準位1g並未轉態。因此,在期間t9時,訊號產生單元610依據高準位的時脈訊號CLK以及低準位的邏輯準位1g而轉態各個開關訊號,以切換開關組態為相同於期間t7的開關組態而再次對電容C2進行充電。此時,積分訊號s_i的電壓準位持續逐漸降低,以致當期間t9結束時,積分訊號s_i的電壓準位回復至第二參考電壓VR4。After the discharge of the period t8, since the voltage level of the integration signal s_i is still greater than the second reference voltage VR4, the logic level 1g is not changed. Therefore, during the period t9, the signal generating unit 610 shifts the respective switching signals according to the high-level clock signal CLK and the low-level logic level 1g, so that the switching switch is configured to be the same as the switch configuration of the period t7. The capacitor C2 is charged again. At this time, the voltage level of the integration signal s_i continues to decrease gradually, so that when the period t9 ends, the voltage level of the integration signal s_i returns to the second reference voltage VR4.

因此,在經過期間t10的放電後,由於積分訊號s_i的電壓準位已經回復至初始的狀態,故於下一個期間開始 時,類比數位轉換器600將重複利用與期間t5~t10相同的操作來進行類比數位轉換。Therefore, after the discharge of the period t10, since the voltage level of the integral signal s_i has returned to the initial state, it starts in the next period. The analog-to-digital converter 600 will repeat the same operation as the period t5~t10 for analog-to-digital conversion.

換言之,在電容C1大於電容C2的情況下,轉換單元630將依據類比感測訊號s_a而使一個週期的邏輯準位1g中之高準位的期間t5~t6小於低準位的期間t7~t10,故計數器638將於一個邏輯準位1g的週期內計算到高準位期間的計數值小於低準位期間的計數值,進而得知重力感測器70_2此時並未產生偏移。此外,經由上述之說明,本領域通常知識者應可自行推論電容C1小於電容C2之操作情況,故於此不再贅述。In other words, in the case where the capacitor C1 is larger than the capacitor C2, the conversion unit 630 sets the period t5~t6 of the high level of the logic level 1g of one cycle to be less than the low level period t7~t10 according to the analog sense signal s_a. Therefore, the counter 638 calculates that the count value during the high level period is less than the count value during the low level period in the period of one logic level 1g, and further knows that the gravity sensor 70_2 does not generate an offset at this time. In addition, through the above description, those skilled in the art should be able to infer that the operation of the capacitor C1 is smaller than the capacitor C2, and therefore will not be described again.

值得注意的是,由於在差動電容感測元件之訊號轉換流程中,轉換單元並不需要藉由放電的機制來進行類比數位轉換,故在第二控制訊號s_c2中並未包括放電致能訊號s_de。因此,當類比數位轉換器係對差動電容感測元件70_2進行轉換時,放電控制單元DCU並不會產生動作。另一方面,一旦當類比數位轉換器係對單一電容感測元件70_1進行訊號轉換時,訊號產生單元將切換輸出包括放電致能訊號的第一控制訊號s_c1,進而使放電控制單元DCU被致能而進行對應的放電操作。It should be noted that, in the signal conversion process of the differential capacitance sensing component, the conversion unit does not need to perform the analog digital conversion by the discharge mechanism, so the discharge enable signal is not included in the second control signal s_c2. S_de. Therefore, when the analog-to-digital converter converts the differential capacitance sensing element 70_2, the discharge control unit DCU does not generate an action. On the other hand, once the analog-to-digital converter performs signal conversion on the single capacitive sensing component 70_1, the signal generating unit switches the output of the first control signal s_c1 including the discharge enable signal, thereby enabling the discharge control unit DCU to be enabled. The corresponding discharge operation is performed.

此外,所述之第一參考電壓VR3與第二參考電壓VR4在本實施例中可為具有相同電壓準位的參考電壓。然而,在其他實施例中,設計者可依據其設計需求而分別調整第一參考電壓VR3與第二參考電壓VR4的電壓準位,而使第一參考電壓VR3與第二參考電壓VR4具有不同的電壓 準位,本發明不以此為限。In addition, the first reference voltage VR3 and the second reference voltage VR4 may be reference voltages having the same voltage level in this embodiment. However, in other embodiments, the designer can adjust the voltage levels of the first reference voltage VR3 and the second reference voltage VR4 according to their design requirements, respectively, so that the first reference voltage VR3 and the second reference voltage VR4 have different Voltage The present invention is not limited thereto.

綜上所述,本發明實施例之類比數位轉換器利用開關模組依據對應的控制訊號改變開關電路的開關組態,而使得所述之類比數位轉換器可同時適用於將單一電容感測元件與差動電容感測元件的類比感測訊號轉換為數位訊號。此外,本發明實施例之類比數位轉換器可藉由多工的方式同時控制多個不同種類的電容感測元件,進而節省了電路設計上的成本與電路佈局的面積。In summary, the analog-to-digital converter of the embodiment of the present invention uses the switch module to change the switch configuration of the switch circuit according to the corresponding control signal, so that the analog digital converter can be simultaneously applied to the single capacitive sensing component. The analog sensing signal with the differential capacitive sensing component is converted into a digital signal. In addition, the analog-to-digital converter of the embodiment of the present invention can simultaneously control a plurality of different types of capacitive sensing components by multiplexing, thereby saving the cost of the circuit design and the area of the circuit layout.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧感測系統10‧‧‧Sensing system

50‧‧‧感測模組50‧‧‧Sensor module

50_1、50_2‧‧‧電容感測元件50_1, 50_2‧‧‧ capacitive sensing components

60_1‧‧‧單一電容感測元件60_1‧‧‧Single Capacitance Sensing Element

60_2‧‧‧差動電容感測元件60_2‧‧‧Differential Capacitance Sensing Element

70_1‧‧‧感測電容70_1‧‧‧Sense Capacitance

70_2‧‧‧重力感測器70_2‧‧‧Gravity Sensor

100、200、300、400、600‧‧‧類比數位轉換器100, 200, 300, 400, 600‧‧‧ analog digital converters

150‧‧‧微控制器150‧‧‧Microcontroller

210、310、410、610‧‧‧訊號產生單元210, 310, 410, 610‧‧‧ signal generation unit

220、320、420、620‧‧‧開關模組220, 320, 420, 620‧‧‧ switch modules

222_1~222_n、322_1~322_n、422_1、422_2、622_1、622_2、622_3‧‧‧開關電路222_1~222_n, 322_1~322_n, 422_1, 422_2, 622_1, 622_2, 622_3‧‧‧ switch circuit

230、330、430、630‧‧‧轉換單元230, 330, 430, 630‧‧ conversion units

332、432、632‧‧‧積分器332, 432, 632‧‧ ‧ integrator

334、434、634‧‧‧比較器334, 434, 634 ‧ ‧ comparator

336、436、636‧‧‧正反器336, 436, 636‧ ‧ positive and negative

338、438、638‧‧‧計數器338, 438, 638‧‧ ‧ counter

IT1~ITn‧‧‧輸入端IT1~ITn‧‧‧ input

OT‧‧‧輸出端OT‧‧‧ output

C1、C2‧‧‧電容C1, C2‧‧‧ capacitor

SW_11~SW_n1‧‧‧第一開關SW_11~SW_n1‧‧‧ first switch

SW_12~SW_n2‧‧‧第二開關SW_12~SW_n2‧‧‧Second switch

SW_13~SW_n3‧‧‧第三開關SW_13~SW_n3‧‧‧third switch

SW_14~SW_n4‧‧‧第四開關SW_14~SW_n4‧‧‧fourth switch

t1~t8‧‧‧期間During the period of t1~t8‧‧

VR1‧‧‧驅動電壓VR1‧‧‧ drive voltage

VR2‧‧‧接地電壓VR2‧‧‧ Grounding voltage

VR3‧‧‧第一參考電壓VR3‧‧‧ first reference voltage

VR4‧‧‧第二參考電壓VR4‧‧‧second reference voltage

CLK‧‧‧時脈訊號CLK‧‧‧ clock signal

s_11~s_n4‧‧‧開關訊號S_11~s_n4‧‧‧Switch signal

s_a、s_a1、s_a2‧‧‧類比感測訊號S_a, s_a1, s_a2‧‧‧ analog analog signal

s_c1‧‧‧第一控制訊號S_c1‧‧‧First control signal

s_c2‧‧‧第二控制訊號S_c2‧‧‧second control signal

s_d、s_d1、s_d2‧‧‧數位訊號S_d, s_d1, s_d2‧‧‧ digital signal

s_i‧‧‧積分訊號S_i‧‧‧Integral signal

s_c‧‧‧比較訊號S_c‧‧‧ comparison signal

1g‧‧‧邏輯準位1g‧‧‧logical level

DCU‧‧‧放電控制單元DCU‧‧‧Discharge Control Unit

下面的所附圖式是本發明的說明書的一部分,繪示了本發明的示例實施例,所附圖式與說明書的描述一起說明本發明的原理。The following drawings are a part of the specification of the invention, and illustrate the embodiments of the invention

圖1繪示為本發明一實施例之感測控制模組100的示意圖。FIG. 1 is a schematic diagram of a sensing control module 100 according to an embodiment of the invention.

圖2繪示為本發明一實施例之類比數位轉換器200的示意圖。2 is a schematic diagram of an analog to digital converter 200 in accordance with an embodiment of the present invention.

圖3繪示為本發明一實施例之類比數位轉換器300的電路示意圖。FIG. 3 is a circuit diagram of an analog-to-digital converter 300 according to an embodiment of the invention.

圖4繪示為本發明一實施例之類比數位轉換器400的 電路示意圖。FIG. 4 illustrates an analog-to-digital converter 400 according to an embodiment of the invention. Circuit diagram.

圖5a繪示為本發明一實施例之第一控制訊號的時序圖。FIG. 5a is a timing diagram of a first control signal according to an embodiment of the invention.

圖5b繪示為本發明另一實施例之第一控制訊號的時序圖。FIG. 5b is a timing diagram of a first control signal according to another embodiment of the present invention.

圖6繪示為本發明一實施例之類比數位轉換器600的電路示意圖。FIG. 6 is a schematic circuit diagram of an analog-to-digital converter 600 according to an embodiment of the invention.

圖7a繪示為本發明一實施例之第二控制訊號的時序圖。FIG. 7a is a timing diagram of a second control signal according to an embodiment of the invention.

圖7b繪示為本發明另一實施例之第二控制訊號的時序圖。FIG. 7b is a timing diagram of a second control signal according to another embodiment of the present invention.

60_1‧‧‧單一電容感測元件60_1‧‧‧Single Capacitance Sensing Element

60_2‧‧‧差動電容感測元件60_2‧‧‧Differential Capacitance Sensing Element

200‧‧‧類比數位轉換器200‧‧‧ analog digital converter

210‧‧‧訊號產生單元210‧‧‧Signal generating unit

220‧‧‧開關模組220‧‧‧Switch Module

222_1~222_n‧‧‧開關電路222_1~222_n‧‧‧Switch circuit

230‧‧‧轉換單元230‧‧‧ conversion unit

IT1~ITn‧‧‧輸入端IT1~ITn‧‧‧ input

OT‧‧‧輸出端OT‧‧‧ output

s_a1、s_a2‧‧‧類比感測訊號S_a1, s_a2‧‧‧ analog analog signal

s_c1‧‧‧第一控制訊號S_c1‧‧‧First control signal

s_c2‧‧‧第二控制訊號S_c2‧‧‧second control signal

s_d1、s_d2‧‧‧數位訊號S_d1, s_d2‧‧‧ digital signal

Claims (8)

一種類比數位轉換器,適於耦接至少兩相異類型的電容感測元件,該類比數位轉換器包括:一訊號產生單元,產生一第一控制訊號與一第二控制訊號;一開關模組,耦接該訊號產生單元,反應於一多工切換手段而接收該第一控制訊號與該第二控制訊號其中之一,並據以進行切換而輸出該些電容感測元件其中之一的一類比感測訊號;以及一轉換單元,耦接該開關模組,接收該類比感測訊號,以將該類比感測訊號轉換為一數位訊號。An analog-to-digital converter is adapted to be coupled to at least two different types of capacitive sensing elements, the analog-to-digital converter comprising: a signal generating unit for generating a first control signal and a second control signal; The group is coupled to the signal generating unit, and receives one of the first control signal and the second control signal in response to a multiplexing switch, and outputs one of the capacitive sensing elements according to the switching The analog sensing signal is coupled to the switching module, and the analog sensing signal is received to convert the analog sensing signal into a digital signal. 如申請專利範圍第1項所述之類比數位轉換器,其中電容感測元件包括單一電容感測元件以及差動電容感測元件,且該開關模組包括:多個開關電路,各該些開關電路具有一輸入端與一輸出端,各該些開關電路的該輸入端對應耦接該電容感測元件之各端,且該些開關電路的該輸出端耦接該轉換單元,其中,當該類比數位轉換器對該單一電容感測元件進行類比數位轉換時,耦接該單一電容感測元件之該些開關電路依據該第一控制訊號進行切換以輸出該單一電容感測元件的該類比感測訊號,其中,當該類比數位轉換器對該差動電容感測元件進行類比數位轉換時,耦接該差動電容感測元件之該些開關電路依據該第二控制訊號進行切換以輸出該差動電容感測元件的該類比感測訊號。The analog-to-digital converter of claim 1, wherein the capacitive sensing component comprises a single capacitive sensing component and a differential capacitive sensing component, and the switching module comprises: a plurality of switching circuits, each of the switches The circuit has an input end and an output end, and the input end of each of the switch circuits is coupled to each end of the capacitive sensing element, and the output end of the switch circuit is coupled to the conversion unit, wherein When the analog-to-digital converter performs the analog-to-digital conversion of the single capacitive sensing component, the switching circuits coupled to the single capacitive sensing component are switched according to the first control signal to output the analogy of the single capacitive sensing component. a test signal, wherein when the analog-to-digital converter performs analog-to-digital conversion on the differential capacitance sensing component, the switching circuits coupled to the differential capacitive sensing component are switched according to the second control signal to output the The analog sensing signal of the differential capacitive sensing component. 如申請專利範圍第2項所述之類比數位轉換器,其中該訊號產生單元採用該多工切換手段選擇性地輸出該第一控制訊號或該第二控制訊號至對應的該些開關電路,以使該開關模組依序輸出該單一電容感測元件與該差動電容感測元件的該類比感測訊號。The analog digital converter of claim 2, wherein the signal generating unit selectively outputs the first control signal or the second control signal to the corresponding switch circuits by using the multiplexing switch The switch module sequentially outputs the analog sensing signal of the single capacitive sensing component and the differential capacitive sensing component. 如申請專利範圍第2項所述之類比數位轉換器,其中該第一控制訊號與該第二控制訊號分別包括多個開關訊號,且各該些開關電路包括:一第一開關,其第一端耦接一驅動電壓,且其第二端耦接該輸入端;一第二開關,其第一端耦接該輸入端,且其第二端耦接一接地電壓;一第三開關,其第一端耦接一第一參考電壓,且其第二端耦接該輸入端;以及一第四開關,其第一端耦接該輸入端,且其第二端耦接該輸出端,其中,該第一開關、該第二開關、該第三開關以及該第四開關分別依據對應的該些開關訊號而決定是否導通,以切換為符合該單一電容感測元件或該差動電容感測元件的開關組態。The analog digital converter of claim 2, wherein the first control signal and the second control signal respectively comprise a plurality of switching signals, and each of the switching circuits comprises: a first switch, the first The second end is coupled to the input end, the second end of the second switch is coupled to the input end, and the second end is coupled to a ground voltage; a third switch is The first end is coupled to the first reference voltage, and the second end is coupled to the input end; and a fourth switch is coupled to the input end, and the second end is coupled to the output end, wherein The first switch, the second switch, the third switch, and the fourth switch respectively determine whether to be turned on according to the corresponding switching signals to switch to meet the single capacitive sensing element or the differential capacitance sensing Switch configuration of the component. 如申請專利範圍第2項所述之類比數位轉換器,其中該單一電容感測元件至少為電容式觸控面板的感測單元。The analog digital converter of claim 2, wherein the single capacitive sensing component is at least a sensing unit of the capacitive touch panel. 如申請專利範圍第2項所述之類比數位轉換器,其中該差動電容感測元件至少為重力感測器。The analog digital converter of claim 2, wherein the differential capacitance sensing element is at least a gravity sensor. 如申請專利範圍第1項所述之類比數位轉換器器,其中該轉換單元包括:一積分器,具有正輸入端、負輸入端與輸出端,其正輸入端耦接一第二參考電壓,其負輸入端耦接該開關模組以接收該類比感測訊號,其中該積分器依據該第二參考電壓與該類比感測訊號輸出一積分訊號;一比較器,具有正輸入端、負輸入端與輸出端,其正輸入端耦接該第二參考電壓,其負輸入端耦接該積分器的輸出端以接收該積分訊號,其中該比較器依據該第二參考電壓與該積分訊號輸出一比較訊號;一正反器,具有輸入端與輸出端,其輸入端耦接該比較器的輸出端以接收該比較訊號,其中該正反器依據該比較訊號與一時脈訊號輸出一邏輯準位;以及一計數器,具有輸入端與輸出端,其輸入端耦接該正反器的輸出端,其中該計數器依據該邏輯準位計數該時脈訊號,並且於其輸出端輸出該數位訊號。The analog-to-digital converter of claim 1, wherein the conversion unit comprises: an integrator having a positive input terminal, a negative input terminal and an output terminal, wherein the positive input terminal is coupled to a second reference voltage, The negative input terminal is coupled to the switch module to receive the analog sensing signal, wherein the integrator outputs an integral signal according to the second reference voltage and the analog sensing signal; a comparator having a positive input terminal and a negative input terminal And a positive input end coupled to the second reference voltage, and a negative input end coupled to the output end of the integrator to receive the integrated signal, wherein the comparator outputs the integrated signal according to the second reference voltage a comparison signal; a flip-flop having an input end and an output end, wherein the input end is coupled to the output end of the comparator to receive the comparison signal, wherein the flip-flop outputs a logic according to the comparison signal and a clock signal output And a counter having an input end and an output end, the input end of which is coupled to the output end of the flip-flop, wherein the counter counts the clock signal according to the logic level, and inputs the clock signal The output signal is output from the out end. 如申請專利範圍第7項所述之類比數位轉換器,其中該些電容感測元件包括一單一電容感測元件,該第一控制訊號包括一放電致能訊號,且該轉換單元更包括:一放電控制單元,耦接於該積分器的負輸入端與該正反器的輸出端之間,用以依據該邏輯準位對該積分器的負輸入端進行放電,其中,當該類比數位轉換器對該單一電容感測元件進行類比數位轉換時,該放電控制單元依據該放電致能訊號而致能。The analog-to-digital converter of claim 7, wherein the capacitive sensing component comprises a single capacitive sensing component, the first control signal comprises a discharge enable signal, and the conversion unit further comprises: a discharge control unit, coupled between the negative input end of the integrator and the output end of the inverter, for discharging the negative input end of the integrator according to the logic level, wherein when the analog digital conversion When analog-to-digital conversion is performed on the single capacitive sensing element, the discharge control unit is enabled according to the discharge enable signal.
TW101124633A 2012-07-09 2012-07-09 Analog digital converter TWI489787B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101124633A TWI489787B (en) 2012-07-09 2012-07-09 Analog digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101124633A TWI489787B (en) 2012-07-09 2012-07-09 Analog digital converter

Publications (2)

Publication Number Publication Date
TW201404046A TW201404046A (en) 2014-01-16
TWI489787B true TWI489787B (en) 2015-06-21

Family

ID=50345710

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101124633A TWI489787B (en) 2012-07-09 2012-07-09 Analog digital converter

Country Status (1)

Country Link
TW (1) TWI489787B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923998B2 (en) * 2006-07-12 2011-04-12 Infineon Technologies Ag Sensor device
US8102175B2 (en) * 2006-07-12 2012-01-24 Infineon Technologies Ag Magnetic field sensor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923998B2 (en) * 2006-07-12 2011-04-12 Infineon Technologies Ag Sensor device
US8102175B2 (en) * 2006-07-12 2012-01-24 Infineon Technologies Ag Magnetic field sensor device

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Gerosa, A.; Maniero, A.; Neviani, A., "A fully integrated two-channel A/D interface for the acquisition of cardiac signals in implantable pacemakers," Solid-State Circuits, IEEE Journal of , vol.39, no.7, pp.1083,1093, July 2004 *
Jarvinen, J.A.M.; Saukoski, M.; Halonen, K., "A 12-bit Ratio-Independent Algorithmic ADC for a Capacitive Sensor Interface," Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on , vol., no., pp.1713,1716, 27-30 May 2007 *
Malcovati, P.; Maloberti, F.; Pesucci, A.; Poletti, M., "A 12 bit A/D interface for a 3D magnetic sensor," Circuits and Systems, 1997. ISCAS '97., Proceedings of 1997 IEEE International Symposium on , vol.1, no., pp.1,4 vol.1, 9-12 Jun 1997 *
Maloberti, F.; Liberali, V.; Malcovati, P., "Signal processing for smart sensors," Integrated Circuit Design, 1998. Proceedings. XI Brazilian Symposium on , vol., no., pp.141,149, 30 Sep-3 Oct 1998 *
Yufera, A.; Rueda, A., "A SI incremental A/D converter for IC sensor interfaces," Instrumentation and Measurement Technology Conference, 1996. IMTC-96. Conference Proceedings. Quality Measurements: The Indispensable Bridge between Theory and Reality., IEEE , vol.2, no., pp.1029,1033 vol.2, 1996 *

Also Published As

Publication number Publication date
TW201404046A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
US8436263B2 (en) Noise resistant capacitive sensor
US7688131B2 (en) Charge pump circuit
US7282985B2 (en) Charge pump with at least two outputs
US7750612B2 (en) Voltage-pulse converting circuit and charge control system
EP2386143B1 (en) Wide range charge balancing capacitive-to-digital converter
US20110068810A1 (en) Sensing method and driving circuit of capacitive touch screen
US11609664B2 (en) Capacitance detection circuit, sensor, chip and electronic device
US20110074617A1 (en) Charge-sharing digital to analog converter and successive approximation analog to digital converter
US8873644B1 (en) Isolated modulator circuit with synchronized pulse generator for self-monitoring reset with capacitively-coupled isolation barrier
WO2017040123A1 (en) Differential sigma-delta capacitance sensing devices and methods
CN108365747B (en) Switching capacitor DC-DC converter circuit and method for generating the same
CN102957432A (en) Configurable continuous-time sigma-delta analog-to-digital converter
CN115735332A (en) Oscillator circuit, device and method for generating an oscillator signal
TWI408593B (en) Capacitive touch panel and sensing apparatus thereof
JP5198427B2 (en) Sigma delta modulator
CN108139840A (en) The device of capacitance detecting
TWI489787B (en) Analog digital converter
CN106788345B (en) Ramp signal generator using resistance structure
CN111414093B (en) Capacitive touch detection circuit
KR101317227B1 (en) Touch sensor interface using passive sigma-delta modulator
US9374101B2 (en) Sensor device including high-resolution analog to digital converter
CN102169140B (en) Clock frequency detection circuit
CN111650441B (en) Capacitance detection circuit, capacitance detection method and electronic equipment
TWI499961B (en) Capacitive Touch Sensing Circuit
JP3125644U (en) Button device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees