TWI489573B - Detecting device - Google Patents
Detecting device Download PDFInfo
- Publication number
- TWI489573B TWI489573B TW101133334A TW101133334A TWI489573B TW I489573 B TWI489573 B TW I489573B TW 101133334 A TW101133334 A TW 101133334A TW 101133334 A TW101133334 A TW 101133334A TW I489573 B TWI489573 B TW I489573B
- Authority
- TW
- Taiwan
- Prior art keywords
- mirror
- incident light
- optical
- module
- light
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明是有關於一種檢測裝置,且特別是有關於一種適用於太陽能電池之檢測裝置。The present invention relates to a detecting device, and more particularly to a detecting device suitable for use in a solar cell.
在太陽能電池之電極的結構設計中,為了兼顧低光遮蔽率與低電阻,目前係將電極設計成包含匯流電極(bus bar)與指狀電極(finger bar)。指狀電極與匯流電極相接而自匯流電極延伸散布在太陽能電池之表面上,以將電流供應至匯流電極。在此電極設計中,指狀電極的設置可有助於降低光遮蔽率,而匯流電極的設置則可降低電阻,進而可提高電子流量。In the structural design of the electrode of the solar cell, in order to achieve both the low light shielding rate and the low resistance, the electrode is currently designed to include a bus bar and a finger bar. The finger electrode is connected to the bus electrode and extends from the bus electrode to spread over the surface of the solar cell to supply current to the bus electrode. In this electrode design, the arrangement of the finger electrodes can help to reduce the light shielding rate, and the arrangement of the bus electrodes can reduce the resistance, thereby increasing the electron flow rate.
一般係採用網印技術在太陽能電池之基板上設置電極。由於指狀電極在較佳高寬比之需求下,其高度通常無法僅透過單一次的網印步驟達成,而需經多次的印刷塗覆、烤乾與燒結,才能完成具所需高度之電極的製作。為了使後續印刷之材料層可準確疊合在已印刷之圖案層上,先前在印刷圖案層時也會同時將數個對準標記印刷至基材上方,以利後續印刷對準。在此種技術中,通常利用電荷耦合元件(CCD)相機等光學元件來檢測圖案層上之對準標記的位置,藉以判斷圖案層之位置,並利用此位置資訊來調整下一材料層之印刷位置。其中,所謂之對準標記有者係於前一道印刷時,額外印上不同於匯流電極(bus bar)與指狀電極(finger bar)之標記,然此標記除會遮蔽受光面積而 影響電池效率外,亦改變了電池外觀,進而衍生客戶能否接受此一外觀改變之問題。此外,亦有者係以電池片之側邊、邊角等處當作對準標記,如此卻因多晶電池片本身係為方形直角之設計,而單晶電池片四角有類似切邊之型態,而使得同一檢測裝置無法同時適用於單、多晶電池片之位置檢測。故若能以電池本身之匯流電極與指狀電極之交界等處作為對準標記,即可解決上述之問題。Generally, screen electrodes are used to mount electrodes on the substrate of the solar cell. Since the finger electrodes are required to have a high aspect ratio, the height is usually not achieved by a single screen printing step, but requires multiple times of printing, baking and sintering to complete the desired height. The production of electrodes. In order for the subsequently printed material layer to be accurately superimposed on the printed pattern layer, several alignment marks are also printed over the substrate simultaneously in the printing of the pattern layer for subsequent printing alignment. In this technique, an optical element such as a charge coupled device (CCD) camera is usually used to detect the position of the alignment mark on the pattern layer, thereby judging the position of the pattern layer, and using the position information to adjust the printing of the next material layer. position. Wherein, the so-called alignment mark is printed on the front printing, and is additionally printed with a mark different from the bus bar and the finger bar, but the mark shields the light receiving area. In addition to affecting the efficiency of the battery, it also changes the appearance of the battery, and thus whether the derivative customer can accept the change of appearance. In addition, some people use the side edges, corners, etc. of the cell as alignment marks, so that the polycrystalline cell itself is designed as a square right angle, and the four corners of the single crystal cell have a similar trimming pattern. Therefore, the same detecting device cannot be simultaneously applied to position detection of single and polycrystalline cells. Therefore, if the boundary between the bus electrode of the battery itself and the finger electrode is used as an alignment mark, the above problem can be solved.
然而,進行具不同數量之匯流電極印刷,例如二個匯流電極(2 BusBar)與三個匯流電極(3 Bus Bar)之產品的產線更換時,配置三個匯流電極時係以較靠兩側之兩個匯流電極與指狀電極之交界處做對準標記,而僅配置兩個匯流電極之電池,其兩個匯流電極之寬度係較配置三個匯流電極之間距為小,致使此二種產品之對準標記的位置產生不同,因此每一次更換產品線時,均需移動CCD相機,並進行CCD相機軟硬體的重新校正。每做一次CCD相機的校正約需耗時10小時不等之時間,使得停工期大幅增加,而造成產線上極大的產能損失。此外,產品線的更換也會產生對位問題,而導致產品缺陷增加,造成產品良率下降。However, when the production line with different numbers of bus electrode printing, such as two bus bars (2 BusBar) and three bus bars (3 Bus Bar), is replaced, the three bus electrodes are arranged on both sides. The junction between the two bus electrodes and the finger electrodes is aligned, and only the cells of the two bus electrodes are arranged. The width of the two bus electrodes is smaller than the distance between the three bus electrodes, so that the two are The position of the alignment mark of the product is different, so each time the product line is replaced, the CCD camera needs to be moved and the CCD camera software and hardware are recalibrated. It takes about 10 hours for each calibration of the CCD camera to be made, which greatly increases the downtime and causes a huge loss of production capacity on the production line. In addition, the replacement of the product line will also create a problem of alignment, which will lead to an increase in product defects, resulting in a decline in product yield.
因此,本發明之一態樣就是在提供一種檢測裝置,其利用導光模組而可將不同產品線之對準標記影像分別傳送至同一光學模組之光學元件,以供進行這些產品線之對準標記的位置判讀與電極漿料印刷位置之補正。由於不需要移動光學模組之光學元件的鏡頭,因此可省略鏡頭校正的 動作,而大幅縮減網印機台之停工期,進而可有效提升產能利用率。Therefore, an aspect of the present invention is to provide a detecting device that can transmit alignment mark images of different product lines to optical components of the same optical module by using a light guiding module for performing these product lines. The position of the alignment mark is corrected and corrected by the printing position of the electrode paste. Since the lens of the optical component of the optical module is not required to be moved, the lens correction can be omitted. The action, and greatly reduce the downtime of the screen printing machine, which can effectively improve the capacity utilization.
本發明之另一態樣是在提供一種檢測裝置,其檢測不同位置之對準標記時,不需移動光學模組之光學元件的鏡頭,因此可直接更換產品線,而可避免習知因更換產線之產品而衍生之印刷對位缺陷等問題。Another aspect of the present invention provides a detecting device that does not need to move the lens of the optical component of the optical module when detecting the alignment marks at different positions, so that the product line can be directly replaced, and the conventional replacement can be avoided. Issues such as print alignment defects derived from the products of the production line.
根據本發明之上述目的,提出一種檢測裝置。此檢測裝置包含一光學模組以及一導光模組。導光模組係與光學模組連接配置,且此導光模組可分別接收一第一入射光與一第二入射光,並分別以一第一導引方向與一第二導引方向導引至光學模組。其中,第一入射光之入射方向與第二入射光之入射方向平行且不重疊。According to the above object of the invention, a detecting device is proposed. The detecting device comprises an optical module and a light guiding module. The light guiding module is connected to the optical module, and the light guiding module can receive a first incident light and a second incident light, respectively, and are respectively guided by a first guiding direction and a second guiding direction. Lead to the optical module. The incident direction of the first incident light is parallel to the incident direction of the second incident light and does not overlap.
依據本發明之一實施例,上述之第一導引方向與第二導引方向平行且重疊。According to an embodiment of the invention, the first guiding direction is parallel and overlapping with the second guiding direction.
依據本發明之另一實施例,上述之第一導引方向與第二導引方向平行且不重疊。According to another embodiment of the present invention, the first guiding direction is parallel to the second guiding direction and does not overlap.
依據本發明之又一實施例,上述之第二入射光與第二導引方向為同軸向。According to still another embodiment of the present invention, the second incident light is in the same axial direction as the second guiding direction.
依據本發明之再一實施例,上述之光學模組包括二鏡頭,分別接收第一入射光與第二入射光。According to still another embodiment of the present invention, the optical module includes two lenses that receive the first incident light and the second incident light, respectively.
依據本發明之再一實施例,上述之導光模組包括一反射鏡組。According to still another embodiment of the present invention, the light guiding module comprises a mirror group.
請參照第1圖,其係繪示依照本發明之一實施方式的 一種檢測裝置的示意圖。此檢測裝置100可適用在太陽能電池的製程中。在本實施方式中,檢測裝置100可在太陽能電池之電極製作過程中,檢測已形成之電極圖案層上之對準標記的位置,以利太陽能電池之下一處理程序的進行。此檢測裝置100主要包含一導光模組108以及一光學模組106。Please refer to FIG. 1 , which illustrates an embodiment of the present invention. A schematic diagram of a detection device. This detecting device 100 can be applied to the process of a solar cell. In the present embodiment, the detecting device 100 can detect the position of the alignment mark on the formed electrode pattern layer during the electrode manufacturing process of the solar cell to facilitate the processing of a processing procedure under the solar cell. The detecting device 100 mainly includes a light guiding module 108 and an optical module 106.
在一實施例中,光學模組106包含二光學元件104a與二光學元件104b。其中,二光學元件104a可例如分別用以接收來自具三個匯流電極之太陽能電池上之二對準標記120a的二第一入射光116a,而二光學元件104b可例如分別用以接收來自具二個匯流電極之太陽能電池上之二對準標記120b的二第二入射光116b。光學元件104a與104b可例如為CCD。在此實施方式中,可根據太陽能電池上欲檢測之對準標記的數量,來對應調整光學元件的數量,通常至少需三個位置處的對準標記才能符合位置檢測之所需,且一般多會以四個位置處的對準標記來進行位置檢測,故可配置兩組如第1圖之裝置並對應於靠匯流電極之兩端位置處而等距設置。檢測裝置100可應用在太陽能電池之圖案層如電極等之多重印刷的對準標記檢測上,但並不限於電極的多重印刷。各光學元件104a包含有鏡頭102a,且各光學元件104b包含有鏡頭102b,其中,鏡頭102a、102b可例如為CCTV鏡頭。光學元件104a與104b可分別透過鏡頭102a與102b而接收第一入射光116a與第二入射光116b。In one embodiment, the optical module 106 includes two optical elements 104a and two optical elements 104b. Wherein, the two optical elements 104a can be used, for example, to receive two first incident lights 116a from two alignment marks 120a on the solar cells having three bus electrodes, and the two optical elements 104b can be used to receive, for example, two The two of the solar cells of the bus electrodes are aligned with the second second incident light 116b of the mark 120b. Optical elements 104a and 104b can be, for example, CCDs. In this embodiment, the number of optical components can be adjusted according to the number of alignment marks to be detected on the solar cell, and usually at least three alignment marks are required to meet the position detection requirements, and generally The position detection is performed with the alignment marks at the four positions, so that two sets of devices as shown in Fig. 1 can be arranged and arranged equidistantly corresponding to the positions of the ends of the bus electrodes. The detecting device 100 can be applied to the multi-printed alignment mark detection of a pattern layer such as an electrode of a solar cell, but is not limited to multiple printing of electrodes. Each optical element 104a includes a lens 102a, and each optical element 104b includes a lens 102b, wherein the lenses 102a, 102b can be, for example, a CCTV lens. The optical elements 104a and 104b can receive the first incident light 116a and the second incident light 116b through the lenses 102a and 102b, respectively.
在檢測裝置100中,光學模組106之光學元件104a與 104b均與導光模組108連接。在一實施例中,如第1圖所示,導光模組108包含二反射鏡組114a與二反射鏡組114b。二反射鏡組114a分別與二光學元件104a連接,且二反射鏡組114b分別與二光學元件104b連接,以分別將第一入射光116a和第二入射光116b分別導引至光學元件104a與104b。每個反射鏡組114a可例如包含反射鏡110a與112a,而每個反射鏡組114b可例如包含反射鏡110b與112b。In the detecting device 100, the optical component 104a of the optical module 106 is 104b is connected to the light guiding module 108. In one embodiment, as shown in FIG. 1, the light guiding module 108 includes a second mirror group 114a and a second mirror group 114b. The two mirror groups 114a are respectively connected to the two optical elements 104a, and the two mirror groups 114b are respectively connected to the two optical elements 104b to respectively guide the first incident light 116a and the second incident light 116b to the optical elements 104a and 104b, respectively. . Each mirror group 114a can include, for example, mirrors 110a and 112a, and each mirror group 114b can include mirrors 110b and 112b, for example.
反射鏡組114a與反射鏡組114b之位置係分別根據太陽能電池上之對準標記120a與120b的位置來進行調整,以使第一入射光116a與第二入射光116b可分別射入反射鏡組114a與反射鏡組114b中,其中,尤其是對準標記120a、120b可與反射鏡110a、110b分別對應。而光學元件104a和104b的位置則分別根據反射鏡組114a與反射鏡組114b的位置來調整,以使第一入射光116a和116b分別經反射鏡組114a與反射鏡組114b反射後可進入光學元件104a和104b中。在此實施例中,二反射鏡組114b介於二反射鏡組114a之間,且二光學元件104b介於二光學元件104a之間。在其他實施例中,導光模組可例如包含折射鏡組,或選自由折射鏡、反射鏡與反射稜鏡組成之群組中的任一種組合。在本實施方式中,導光模組所包含之光學構件或組合只要可將來自對準標記之入射光導引至對應之光學元件中即可,並不限於上述實施例。The positions of the mirror group 114a and the mirror group 114b are respectively adjusted according to the positions of the alignment marks 120a and 120b on the solar cell, so that the first incident light 116a and the second incident light 116b can be respectively injected into the mirror group. In the 114a and mirror group 114b, in particular, the alignment marks 120a, 120b may correspond to the mirrors 110a, 110b, respectively. The positions of the optical elements 104a and 104b are adjusted according to the positions of the mirror group 114a and the mirror group 114b, respectively, so that the first incident light 116a and 116b are reflected by the mirror group 114a and the mirror group 114b, respectively, to enter the optical In elements 104a and 104b. In this embodiment, the two mirror sets 114b are interposed between the two mirror sets 114a and the two optical elements 104b are interposed between the two optical elements 104a. In other embodiments, the light directing module can comprise, for example, a refractive mirror set, or a combination selected from the group consisting of a refractive mirror, a mirror, and a reflective dome. In the present embodiment, the optical member or combination included in the light guiding module is not limited to the above embodiment as long as the incident light from the alignment mark can be guided to the corresponding optical element.
運用檢測裝置100來進行具二個匯流電極之太陽能電池上之二對準標記120b的檢測時,此二對準標記120b所 分別產生之二第二入射光116b以入射方向122b而分別射向導光模組108之二反射鏡組114b的反射鏡110b。經反射鏡110b反射後,第二入射光116b再射向反射鏡組114b之另一反射鏡112b。反射鏡112b可以第二導引方向118b,而將第二入射光116b導引至光學元件104b之鏡頭102b,而進入光學元件104b中。When the detecting device 100 is used to perform the detection of the two alignment marks 120b on the solar cell having the two bus electrodes, the two alignment marks 120b are The second incident light 116b, which is generated separately, is incident on the mirror 110b of the second mirror group 114b of the light module 108 in the incident direction 122b. After being reflected by the mirror 110b, the second incident light 116b is again incident on the other mirror 112b of the mirror group 114b. The mirror 112b can be in the second guiding direction 118b and direct the second incident light 116b to the lens 102b of the optical element 104b into the optical element 104b.
另一方面,當運用檢測裝置100來進行具三個匯流電極之太陽能電池上之二對準標記120a的檢測時,此二對準標記120a所分別產生之二第一入射光116a以入射方向122a而分別射向導光模組108之二反射鏡組114a的反射鏡110a。經反射鏡110a反射後,第一入射光116a再射向反射鏡組114a之另一反射鏡112a。此時,反射鏡112a可以第一導引方向118a,而將第一入射光116a導引至光學元件104a之鏡頭102a,而進入光學元件104a。On the other hand, when the detecting device 100 is used to perform the detection of the two alignment marks 120a on the solar cells having the three bus electrodes, the two first incident lights 116a respectively generated by the two alignment marks 120a are in the incident direction 122a. The mirrors 110a of the two mirror groups 114a of the light guiding module 108 are respectively emitted. After being reflected by the mirror 110a, the first incident light 116a is again incident on the other mirror 112a of the mirror group 114a. At this time, the mirror 112a may be guided in the first guiding direction 118a to guide the first incident light 116a to the lens 102a of the optical element 104a to enter the optical element 104a.
在本實施方式中,具三個匯流電極之太陽能電池上之二對準標記120a與具二個匯流電極之太陽能電池上之二對準標記120b的位置不同,因此對準標記120a所產生之第一入射光116a的入射方向122a與對準標記120b之第二入射光116b的入射方向122b平行,但不重疊。在一實施例中,如第1圖所示,導光模組108之反射鏡組114a與反射鏡組114b分別將第一入射光116a與第二入射光116b導引至對應之光學元件104a與104b的第一導引方向118a與第二導引方向118b平行,但不重疊。In the present embodiment, the position of the two alignment marks 120a on the solar cell having three bus electrodes is different from the position of the two alignment marks 120b on the solar cell having the two bus electrodes, so that the alignment mark 120a is generated. The incident direction 122a of the incident light 116a is parallel to the incident direction 122b of the second incident light 116b of the alignment mark 120b, but does not overlap. In an embodiment, as shown in FIG. 1, the mirror group 114a and the mirror group 114b of the light guiding module 108 respectively guide the first incident light 116a and the second incident light 116b to the corresponding optical component 104a and The first guiding direction 118a of 104b is parallel to the second guiding direction 118b, but does not overlap.
運用此實施方式,縱使不同產品線之太陽能電池的對準標記120a與120b之間的距離太小,而無法直接於這些 對準標記120a與120b正上方直接設置對應之光學元件104a與104b來做位置檢測時,可藉由搭配導光模組108的設計,在光學元件104a與104b非設置在對準標記120a與120b之正上方的情況下,仍可將對準標記120a與120b所產生之第一入射光116a與第二入射光116b順利導入光學元件104a與104b中。如此一來,可使光學元件104a與104b的設置空間擴大,且在設置上更有彈性。With this embodiment, even if the distance between the alignment marks 120a and 120b of the solar cells of different product lines is too small, it is impossible to directly When the corresponding optical elements 104a and 104b are directly disposed directly above the alignment marks 120a and 120b for position detection, the optical elements 104a and 104b may be disposed not on the alignment marks 120a and 120b by the design of the light guiding module 108. In the case of directly above, the first incident light 116a and the second incident light 116b generated by the alignment marks 120a and 120b can be smoothly introduced into the optical elements 104a and 104b. As a result, the installation space of the optical elements 104a and 104b can be enlarged, and the installation is more flexible.
由於,不同產品線之太陽能電池的對準標記120a與120b所分別發出之第一入射光116a與第二入射光116b均可傳送至檢測裝置100中,以使光學元件104a與104b可分別進行對準標記120a與120b之位置的判讀與補正。因此,檢測裝置100可同時檢測不同產品線之太陽能電池的對準標記120a與120b。因而,更換產品線時,不需移動檢測裝置100之光學元件104a與104b與導光模組108。如此一來,可省略習知技術之光學元件移動與校正程序,而可大大地縮減製程機台之停工期,進而可大幅提升產能利用率。此外,由於並未移動光學元件104a與104b,因此在多重印刷製程中,可避免習知技術因換線而產生之印刷對位缺陷。Since the first incident light 116a and the second incident light 116b respectively emitted by the alignment marks 120a and 120b of the solar cells of different product lines can be transmitted to the detecting device 100, the optical elements 104a and 104b can be respectively paired. The interpretation and correction of the positions of the quasi-markers 120a and 120b. Therefore, the detecting device 100 can simultaneously detect the alignment marks 120a and 120b of the solar cells of different product lines. Therefore, when the product line is replaced, the optical elements 104a and 104b of the detecting device 100 and the light guiding module 108 need not be moved. In this way, the optical component movement and correction procedure of the prior art can be omitted, and the downtime of the process machine can be greatly reduced, thereby greatly improving the capacity utilization rate. In addition, since the optical elements 104a and 104b are not moved, in the multiple printing process, the printing alignment defects caused by the conventional technique can be avoided.
請參照第2圖,其係繪示依照本發明之另一實施方式的一種適用於太陽能電池之檢測裝置的示意圖。在此實施方式中,檢測裝置200可應用在太陽能電池之圖案層如電極等之多重印刷的對準標記檢測上,但並不限於電極的多重印刷。檢測裝置200主要包含一導光模組204以及一光學模組202,其中,相較於第1圖之實施例而言,本實施 例主在說明第1圖導光模組108與光學模組106之右半部係有其他設計之方式,故而本實施例以下係僅以單側來說明三個匯流電極或二個匯流電極於檢測時之相關使用情形。在此實施方式中,相同於上述檢測裝置100之光學模組106,檢測裝置200之光學模組202可包含光學元件(未繪示),例如CCD,而光學元件均包含有鏡頭,例如CCTV鏡頭。光學模組202之光學元件可接收來自不同產品線之太陽能電池上的對準標記的入射光,例如具三個匯流電極之太陽能電池上之對準標記222的第一入射光212、以及具二個匯流電極之太陽能電池上之對準標記224的第二入射光214。Please refer to FIG. 2, which is a schematic diagram of a detecting device suitable for a solar cell according to another embodiment of the present invention. In this embodiment, the detecting device 200 can be applied to the multi-printed alignment mark detection of a pattern layer such as an electrode of a solar cell, but is not limited to multiple printing of the electrodes. The detecting device 200 mainly includes a light guiding module 204 and an optical module 202, wherein the embodiment is compared to the embodiment of FIG. In the first embodiment, the light guide module 108 and the right half of the optical module 106 are designed in another manner. Therefore, in the present embodiment, only three bus electrodes or two bus electrodes are described on one side. Relevant use cases at the time of testing. In this embodiment, similar to the optical module 106 of the detecting device 100, the optical module 202 of the detecting device 200 may include an optical component (not shown), such as a CCD, and the optical component includes a lens, such as a CCTV lens. . The optical component of the optical module 202 can receive incident light from alignment marks on solar cells of different product lines, such as first incident light 212 of alignment marks 222 on a solar cell having three bus electrodes, and The second incident light 214 of the alignment mark 224 on the solar cells of the bus electrodes.
在檢測裝置200中,光學模組202與導光模組204連接。在一實施例中,如第2圖所示,導光模組204包含一反射鏡組,此反射鏡組可包含二反射鏡206與208、以及可轉動之反射鏡210。反射鏡206與208係設置成可分別將第一入射光212與第二入射光214朝反射鏡210的方向反射,而反射鏡210則可根據檢測裝置200欲檢測之太陽能電池產品而旋轉調整。其中,上述之反射鏡206、208可為固定式或可旋轉調整之形式。In the detecting device 200, the optical module 202 is connected to the light guiding module 204. In an embodiment, as shown in FIG. 2, the light guiding module 204 includes a mirror group, which may include two mirrors 206 and 208, and a rotatable mirror 210. The mirrors 206 and 208 are arranged to reflect the first incident light 212 and the second incident light 214 toward the mirror 210, respectively, and the mirror 210 can be rotationally adjusted according to the solar cell product to be detected by the detecting device 200. Wherein, the above-mentioned mirrors 206, 208 can be in the form of fixed or rotatable adjustment.
在本實施方式中,導光模組204所包含之光學構件或組合只要可分別將來自對準標記222與224之第一入射光212與第二入射光214導引至光學模組202之光學元件中即可,並不限於上述實施例之反射鏡組。在一些實施例中,導光模組可例如包含選自由折射鏡、反射鏡與反射菱鏡所組成群組中之任一種的組合。In the present embodiment, the optical member or combination included in the light guiding module 204 can directly guide the first incident light 212 and the second incident light 214 from the alignment marks 222 and 224 to the optical module 202. The components may be, and are not limited to, the mirror group of the above embodiment. In some embodiments, the light directing module can, for example, comprise a combination selected from any of the group consisting of a refractor, a mirror, and a reflective mirror.
運用檢測裝置200來進行具三個匯流電極之太陽能電池上之對準標記222的檢測時,可先旋轉反射鏡210,使反射鏡210之反射面與反射鏡206之反射面相對。對準標記222產生之第一入射光212以入射方向216而射向導光模組204之反射鏡206。經反射鏡206反射後,第一入射光212再射向反射鏡210。由於反射鏡210已經過旋轉調整,故反射鏡210之反射面可將自反射鏡206之反射面反射而來之第一反射光212,以一第一導引方向導引至光學模組202之光學元件。亦即藉此可使得反射鏡210之反射面可將自反射鏡206之反射面射來之第一反射光212,以一第一導引方向導引至光學模組202。When the detection device 200 is used to detect the alignment mark 222 on the solar cell having three bus electrodes, the mirror 210 may be rotated first so that the reflection surface of the mirror 210 faces the reflection surface of the mirror 206. The first incident light 212 generated by the alignment mark 222 is incident on the mirror 206 of the light guide module 204 in the incident direction 216. After being reflected by the mirror 206, the first incident light 212 is again incident on the mirror 210. Since the mirror 210 has been rotated and adjusted, the reflecting surface of the mirror 210 can guide the first reflected light 212 reflected from the reflecting surface of the mirror 206 to the optical module 202 in a first guiding direction. Optical element. That is, the reflective surface of the mirror 210 can be used to guide the first reflected light 212 from the reflective surface of the mirror 206 to the optical module 202 in a first guiding direction.
另一方面,當欲檢測二個匯流電極之太陽能電池上之對準標記224時,可先旋轉反射鏡210,使反射鏡210之反射面與反射鏡208之反射面相對。對準標記224產生之第二入射光214以入射方向218而射向導光模組204之反射鏡208。經反射鏡208反射後,第二入射光214再射向反射鏡210。由於反射鏡210已經過旋轉調整,故反射鏡210之反射面可將自反射鏡208之反射面反射來之第二入射光214,以一第二導引方向導引至光學模組202之光學元件。On the other hand, when the alignment mark 224 on the solar cell of the two bus electrodes is to be detected, the mirror 210 may be rotated first so that the reflection surface of the mirror 210 opposes the reflection surface of the mirror 208. The second incident light 214 generated by the alignment mark 224 is incident on the mirror 208 of the light guide module 204 in the incident direction 218. After being reflected by the mirror 208, the second incident light 214 is again incident on the mirror 210. Since the mirror 210 has been rotated and adjusted, the reflecting surface of the mirror 210 can guide the second incident light 214 reflected from the reflecting surface of the mirror 208 to the optical module 202 in a second guiding direction. element.
在本實施方式中,第一導引方向與第二導引方向均為導引方向220,也就是說,第一導引方向與第二導引方向平行且重疊,如此,僅需採用單一個光學模組202之光學元件即可。此外,如第2圖所示,具三個匯流電極之太陽能電池上之對準標記222與具二個匯流電極之太陽能電池 上之對準標記224的位置不同(其中,第2圖之對準標記222與224係僅呈現於不同太陽能電池於相同側處之不同匯流電極位置而言。),因此對準標記222所產生之第一入射光212的入射方向216與對準標記224之第二入射光214的入射方向218平行,但不重疊。In this embodiment, the first guiding direction and the second guiding direction are both guiding directions 220, that is, the first guiding direction is parallel and overlapping with the second guiding direction, so that only a single one is needed. The optical component of the optical module 202 can be used. In addition, as shown in FIG. 2, an alignment mark 222 on a solar cell having three bus electrodes and a solar cell having two bus electrodes The position of the alignment mark 224 is different (wherein the alignment marks 222 and 224 of FIG. 2 are only present at different bus electrode positions at different sides of different solar cells), and thus the alignment mark 222 is generated. The incident direction 216 of the first incident light 212 is parallel to the incident direction 218 of the second incident light 214 of the alignment mark 224, but does not overlap.
運用此實施方式,藉由導光模組204的設計,檢測裝置200之光學模組202可僅具有單一個光學元件,即可將不同產品線之產品的對準標記222與224所產生之第一入射光212與第二入射光214均順利導入光學模組202之此一光學元件中。With this embodiment, by the design of the light guiding module 204, the optical module 202 of the detecting device 200 can have only a single optical component, that is, the alignment marks 222 and 224 of products of different product lines can be generated. Both the incident light 212 and the second incident light 214 are smoothly introduced into the optical component of the optical module 202.
由於,不同產品線之太陽能電池的對準標記222與224所分別發出之第一入射光212與第二入射光214均可傳送至檢測裝置200中,而使光學模組202可進行對準標記222與224之位置的判讀與補正。因此,檢測裝置200可同時檢測不同產品線之太陽能電池的對準標記222與224。因而,更換產品線時,此實施方式同樣不需移動檢測裝置200之光學模組202與導光模組204。Since the first incident light 212 and the second incident light 214 respectively emitted by the alignment marks 222 and 224 of the solar cells of different product lines can be transmitted to the detecting device 200, the optical module 202 can be aligned. Interpretation and correction of the positions of 222 and 224. Therefore, the detecting device 200 can simultaneously detect the alignment marks 222 and 224 of the solar cells of different product lines. Therefore, when the product line is replaced, the embodiment also does not need to move the optical module 202 and the light guiding module 204 of the detecting device 200.
請參照第3圖,其係繪示依照本發明之又一實施方式的一種適用於太陽能電池之檢測裝置的示意圖。在此實施方式中,檢測裝置300同樣可應用在太陽能電池之圖案層之多重印刷的對準標記檢測上,但並不限於電極的多重印刷。檢測裝置300主要包含一導光模組304以及一光學模組326。其中,相較於第1圖之實施例而言,本實施例主要係在說明第1圖導光模組108與光學模組106之右半部係有其他設計之方式,故而本實施例以下係僅以單側來說 明三個匯流電極或二個匯流電極於檢測時之相關使用情形。Please refer to FIG. 3, which is a schematic diagram of a detecting device suitable for a solar cell according to still another embodiment of the present invention. In this embodiment, the detecting device 300 is equally applicable to the multi-printed alignment mark detection of the pattern layer of the solar cell, but is not limited to multiple printing of the electrodes. The detecting device 300 mainly includes a light guiding module 304 and an optical module 326. In this embodiment, the present embodiment mainly uses other designs in the right half of the light guiding module 108 and the optical module 106 in FIG. 1 . Therefore, the present embodiment is as follows. Only on one side Explain the relevant use cases of three bus electrodes or two bus electrodes at the time of detection.
在此實施方式中,類似於上述檢測裝置100之光學模組106,檢測裝置300之光學模組326可包含二光學元件302a與302b,例如CCD,而每個光學元件302a與302b均包含有鏡頭,例如CCTV鏡頭。光學模組326之光學元件302a與302b可接收來自不同產品線之太陽能電池上的對準標記的入射光,例如具三個匯流電極之太陽能電池上之對準標記322的第一入射光310、以及具二個匯流電極之太陽能電池上之對準標記324的第二入射光312。在一實施例中,如第3圖所示,對準標記324設置在光學模組326之光學元件302b之鏡頭的下方,因而從對準標記324發出之第二入射光312可直接射入光學元件302b中。In this embodiment, similar to the optical module 106 of the detecting device 100, the optical module 326 of the detecting device 300 can include two optical elements 302a and 302b, such as a CCD, and each of the optical elements 302a and 302b includes a lens. , for example, a CCTV lens. Optical elements 302a and 302b of optical module 326 can receive incident light from alignment marks on solar cells of different product lines, such as first incident light 310 of alignment marks 322 on solar cells having three bus electrodes, And second incident light 312 of alignment marks 324 on the solar cells of the two bus electrodes. In one embodiment, as shown in FIG. 3, the alignment mark 324 is disposed under the lens of the optical element 302b of the optical module 326, so that the second incident light 312 emitted from the alignment mark 324 can be directly incident on the optical In element 302b.
在檢測裝置300中,光學模組326之光學元件302a和302b均與導光模組304連接,或者,因對準標記324發出之第二入射光312係直接射入光學元件302b,故亦可與導光模組304無連接配置之關係。在一實施例中,如第3圖所示,導光模組304包含一反射鏡組,此反射鏡組可包含二反射鏡306與308,且此反射鏡組可設於對準標記322之正上方。在本實施方式中,導光模組304所包含之光學構件或組合只要可分別將來自對準標記322之第一入射光310導引至光學模組326之光學元件302a中即可,並不限於上述實施例之反射鏡組。在一些實施例中,導光模組可例如包含選自由折射鏡、反射鏡與反射菱鏡所組成群組中之任一種的組合。In the detecting device 300, the optical elements 302a and 302b of the optical module 326 are both connected to the light guiding module 304, or the second incident light 312 emitted by the alignment mark 324 is directly incident on the optical element 302b, so The relationship with the light guide module 304 is not connected. In an embodiment, as shown in FIG. 3, the light guiding module 304 includes a mirror group, the mirror group may include two mirrors 306 and 308, and the mirror group may be disposed on the alignment mark 322. Directly above. In the present embodiment, the optical member or combination included in the light guiding module 304 can directly guide the first incident light 310 from the alignment mark 322 to the optical element 302a of the optical module 326, and It is limited to the mirror group of the above embodiment. In some embodiments, the light directing module can, for example, comprise a combination selected from any of the group consisting of a refractor, a mirror, and a reflective mirror.
運用檢測裝置300來進行具三個匯流電極之太陽能電池上之對準標記322的檢測時,對準標記322產生之第一入射光310以入射方向314而射向導光模組304之反射鏡308。經反射鏡308反射後,第一入射光310再射向反射鏡306。此時,反射鏡306可將自反射鏡308之反射面射來之第一反射光310,以一第一導引方向316導引至光學模組326之光學元件302a。When the detecting device 300 is used to perform the detection of the alignment mark 322 on the solar cell having three bus electrodes, the first incident light 310 generated by the alignment mark 322 is incident on the mirror 308 of the light guiding module 304 in the incident direction 314. . After being reflected by the mirror 308, the first incident light 310 is again directed toward the mirror 306. At this time, the mirror 306 can guide the first reflected light 310 emitted from the reflecting surface of the mirror 308 to the optical element 302a of the optical module 326 in a first guiding direction 316.
另一方面,當欲檢測具二個匯流電極之太陽能電池上之對準標記324時,對準標記324產生之第二入射光312以入射方向318而射向導光模組304。由於對準標記324設置在光學模組326之光學元件302b之鏡頭的正下方,因而第二入射光312可無需經導光模組304導引、或者經導光模組304導引後以與第二入射光312的入射方向318同軸向的第二導引方向320直接射入光學元件302b中。On the other hand, when the alignment mark 324 on the solar cell having the two bus electrodes is to be detected, the second incident light 312 generated by the alignment mark 324 is incident on the light guiding module 304 in the incident direction 318. Since the alignment mark 324 is disposed directly under the lens of the optical component 302b of the optical module 326, the second incident light 312 can be guided by the light guiding module 304 or guided by the light guiding module 304 to The incident direction 318 of the second incident light 312 is incident directly into the optical element 302b with the second guiding direction 320 of the axial direction.
在本實施方式中,具三個匯流電極之太陽能電池上之對準標記322與具二個匯流電極之太陽能電池上之對準標記324的位置不同,因此對準標記322所產生之第一入射光310的入射方向314與對準標記324之第二入射光312的入射方向318平行,但不重疊。In the present embodiment, the alignment mark 322 on the solar cell having three bus electrodes is different from the position of the alignment mark 324 on the solar cell having the two bus electrodes, and thus the first incident of the alignment mark 322 is generated. The incident direction 314 of the light 310 is parallel to the incident direction 318 of the second incident light 312 of the alignment mark 324, but does not overlap.
運用此實施方式,縱使不同產品線之太陽能電池的對準標記322與324之間的距離太小,而無法將對應之光學元件302a與302b均直接設在這些對準標記322與324的正上方,藉由導光模組304的設計,可在僅有光學元件302b設置在對準標記324之正上方的情況下,仍可將對準標記322與324所產生之第一入射光310與第二入射光312均 順利導入光學元件302a與302b中。如此一來,可使光學元件光學模組326之設置空間擴大,且在設置上更有彈性。With this embodiment, even if the distance between the alignment marks 322 and 324 of the solar cells of different product lines is too small, the corresponding optical elements 302a and 302b cannot be directly disposed directly above the alignment marks 322 and 324. By the design of the light guiding module 304, the first incident light 310 generated by the alignment marks 322 and 324 can still be obtained only when the optical element 302b is disposed directly above the alignment mark 324. Two incident light 312 Smooth introduction into the optical elements 302a and 302b. In this way, the installation space of the optical component optical module 326 can be expanded, and the installation is more flexible.
由於,不同產品線之太陽能電池的對準標記322與324所分別發出之第一入射光310與第二入射光312均可傳送至檢測裝置300中,而使光學模組326可進行對準標記322與324之位置的判讀與補正。因此,檢測裝置300可同時檢測不同產品線之太陽能電池的對準標記322與324。因而,更換產品線時,此實施方式也不需移動檢測裝置300之光學模組326與導光模組304。Since the first incident light 310 and the second incident light 312 respectively emitted by the alignment marks 322 and 324 of the solar cells of different product lines can be transmitted to the detecting device 300, the optical module 326 can be aligned. Interpretation and correction of the positions of 322 and 324. Therefore, the detecting device 300 can simultaneously detect the alignment marks 322 and 324 of the solar cells of different product lines. Therefore, when the product line is replaced, the embodiment does not need to move the optical module 326 and the light guiding module 304 of the detecting device 300.
於本發明之再一實施方式中,為了使檢測裝置可同時檢測不同產品線之太陽能電池的對準標記,亦可使檢測裝置包含步進式之光學模組系統。由於此步進式光學模組系統可根據不同產品線之太陽能電池之對準標記的位置而以自動化方式移動光學模組系統之光學元件,因此可適用於所有產品線之太陽能電池之對準標記的檢測。In still another embodiment of the present invention, in order to enable the detecting device to simultaneously detect the alignment marks of the solar cells of different product lines, the detecting device may also include a stepping optical module system. Since the stepper optical module system can automatically move the optical components of the optical module system according to the position of the alignment marks of the solar cells of different product lines, it can be applied to the alignment marks of the solar cells of all product lines. Detection.
由上述之實施方式可知,本發明之一優點就是因為檢測裝置可利用導光模組而將不同產品線之對準標記影像分別傳送至同一光學模組之光學元件,以供進行這些產品線之對準標記的位置判讀與電極漿料印刷位置之補正。由於不需要移動光學模組之光學元件的鏡頭,因此可省略鏡頭校正的動作,而大幅縮減網印機台之停工期,進而可有效提升產能利用率。It can be seen from the above embodiments that one advantage of the present invention is that the detecting device can use the light guiding module to respectively transmit the alignment mark images of different product lines to the optical components of the same optical module for performing the product lines. The position of the alignment mark is corrected and corrected by the printing position of the electrode paste. Since the lens of the optical component of the optical module is not required, the lens correction operation can be omitted, and the downtime of the screen printing machine can be greatly reduced, thereby effectively improving the capacity utilization rate.
由上述之實施方式可知,本發明之另一優點就是因為檢測裝置在檢測不同位置之對準標記時,不需移動光學模組之光學元件的鏡頭,因此可直接更換產品線,而可避免 習知因換線而產生之印刷對位缺陷等問題。It can be seen from the above embodiments that another advantage of the present invention is that the detection device does not need to move the lens of the optical component of the optical module when detecting the alignment marks at different positions, so the product line can be directly replaced, and can be avoided. Conventional problems such as printing alignment defects caused by changing lines.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何在此技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described above by way of example, it is not intended to be construed as a limitation of the scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
100‧‧‧檢測裝置100‧‧‧Detection device
102a‧‧‧鏡頭102a‧‧‧ lens
102b‧‧‧鏡頭102b‧‧‧ lens
104a‧‧‧光學元件104a‧‧‧Optical components
104b‧‧‧光學元件104b‧‧‧Optical components
106‧‧‧光學模組106‧‧‧Optical module
108‧‧‧導光模組108‧‧‧Light guide module
110a‧‧‧反射鏡110a‧‧‧Mirror
110b‧‧‧反射鏡110b‧‧‧Mirror
112a‧‧‧反射鏡112a‧‧‧Mirror
112b‧‧‧反射鏡112b‧‧‧Mirror
114a‧‧‧反射鏡組114a‧‧‧Mirror group
114b‧‧‧反射鏡組114b‧‧‧Mirror group
116a‧‧‧第一入射光116a‧‧‧first incident light
116b‧‧‧第二入射光116b‧‧‧second incident light
118a‧‧‧第一導引方向118a‧‧‧First guiding direction
118b‧‧‧第二導引方向118b‧‧‧second guiding direction
120a‧‧‧對準標記120a‧‧‧ alignment mark
120b‧‧‧對準標記120b‧‧‧ alignment mark
122a‧‧‧入射方向122a‧‧‧Injection direction
122b‧‧‧入射方向122b‧‧‧Injection direction
200‧‧‧檢測裝置200‧‧‧Detection device
202‧‧‧光學模組202‧‧‧Optical module
204‧‧‧導光模組204‧‧‧Light guide module
206‧‧‧反射鏡206‧‧‧Mirror
208‧‧‧反射鏡208‧‧‧Mirror
210‧‧‧反射鏡210‧‧‧Mirror
212‧‧‧第一反射光212‧‧‧First reflected light
214‧‧‧第二入射光214‧‧‧second incident light
216‧‧‧入射方向216‧‧‧Injection direction
218‧‧‧入射方向218‧‧‧Injection direction
220‧‧‧導引方向220‧‧‧Direction direction
222‧‧‧對準標記222‧‧‧ alignment mark
224‧‧‧對準標記224‧‧ Alignment mark
300‧‧‧檢測裝置300‧‧‧Detection device
302a‧‧‧光學元件302a‧‧‧Optical components
302b‧‧‧光學元件302b‧‧‧Optical components
304‧‧‧導光模組304‧‧‧Light guide module
306‧‧‧反射鏡306‧‧‧Mirror
308‧‧‧反射鏡308‧‧‧Mirror
310‧‧‧第一入射光310‧‧‧First incident light
312‧‧‧第二入射光312‧‧‧second incident light
314‧‧‧入射方向314‧‧‧Injection direction
316‧‧‧第一導引方向316‧‧‧First guiding direction
318‧‧‧入射方向318‧‧‧Injection direction
320‧‧‧第二導引方向320‧‧‧Second guiding direction
322‧‧‧對準標記322‧‧‧ alignment mark
324‧‧‧對準標記324‧‧‧ alignment marks
326‧‧‧光學模組326‧‧‧Optical module
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖係繪示依照本發明之一實施方式的一種檢測裝置的示意圖。The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;
第2圖係繪示依照本發明之另一實施方式的一種檢測裝置的示意圖。2 is a schematic view showing a detecting device according to another embodiment of the present invention.
第3圖係繪示依照本發明之又一實施方式的一種檢測裝置的示意圖。3 is a schematic view showing a detecting device according to still another embodiment of the present invention.
100‧‧‧檢測裝置100‧‧‧Detection device
102a‧‧‧鏡頭102a‧‧‧ lens
102b‧‧‧鏡頭102b‧‧‧ lens
104a‧‧‧光學元件104a‧‧‧Optical components
104b‧‧‧光學元件104b‧‧‧Optical components
106‧‧‧光學模組106‧‧‧Optical module
108‧‧‧導光模組108‧‧‧Light guide module
110a‧‧‧反射鏡110a‧‧‧Mirror
110b‧‧‧反射鏡110b‧‧‧Mirror
112a‧‧‧反射鏡112a‧‧‧Mirror
112b‧‧‧反射鏡112b‧‧‧Mirror
114a‧‧‧反射鏡組114a‧‧‧Mirror group
114b‧‧‧反射鏡組114b‧‧‧Mirror group
116a‧‧‧第一入射光116a‧‧‧first incident light
116b‧‧‧第二入射光116b‧‧‧second incident light
118a‧‧‧第一導引方向118a‧‧‧First guiding direction
118b‧‧‧第二導引方向118b‧‧‧second guiding direction
120a‧‧‧對準標記120a‧‧‧ alignment mark
120b‧‧‧對準標記120b‧‧‧ alignment mark
122a‧‧‧入射方向122a‧‧‧Injection direction
122b‧‧‧入射方向122b‧‧‧Injection direction
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101133334A TWI489573B (en) | 2012-09-12 | 2012-09-12 | Detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101133334A TWI489573B (en) | 2012-09-12 | 2012-09-12 | Detecting device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201411753A TW201411753A (en) | 2014-03-16 |
TWI489573B true TWI489573B (en) | 2015-06-21 |
Family
ID=50820927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101133334A TWI489573B (en) | 2012-09-12 | 2012-09-12 | Detecting device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI489573B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5220176A (en) * | 1991-09-13 | 1993-06-15 | Nikon Corporation | Apparatus and method for detecting alignment marks having alignment optical systems' driving means |
CN1461977A (en) * | 2002-05-31 | 2003-12-17 | 株式会社阿迪泰克工程 | Projection exposure device, position alignment device and position alignment method |
TW200609483A (en) * | 2004-05-28 | 2006-03-16 | Nikon Corp | Method of adjusting optical imaging system, imaging device, positional deviation detecting device, mark identifying device and edge position detecting device |
CN101158821A (en) * | 2007-08-31 | 2008-04-09 | 上海微电子装备有限公司 | Aligning mark, alignment method and aligning system |
-
2012
- 2012-09-12 TW TW101133334A patent/TWI489573B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5220176A (en) * | 1991-09-13 | 1993-06-15 | Nikon Corporation | Apparatus and method for detecting alignment marks having alignment optical systems' driving means |
CN1461977A (en) * | 2002-05-31 | 2003-12-17 | 株式会社阿迪泰克工程 | Projection exposure device, position alignment device and position alignment method |
TW200609483A (en) * | 2004-05-28 | 2006-03-16 | Nikon Corp | Method of adjusting optical imaging system, imaging device, positional deviation detecting device, mark identifying device and edge position detecting device |
CN101158821A (en) * | 2007-08-31 | 2008-04-09 | 上海微电子装备有限公司 | Aligning mark, alignment method and aligning system |
Also Published As
Publication number | Publication date |
---|---|
TW201411753A (en) | 2014-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101588706B1 (en) | Autotuned screen printing process | |
JP5488015B2 (en) | Screen printing method | |
CN103988119B (en) | Liquid crystal indicator | |
CN102782446B (en) | Board checking device | |
KR20130031380A (en) | Laser processing with multiple beams and respective suitable laser optics head | |
JP2010509067A (en) | Laser beam alignment method and apparatus for scribing solar panels | |
CN104136969B (en) | The manufacture device of three-dimensional liquid crystal display device and manufacture method | |
US11305378B2 (en) | Wafer alignment with restricted visual access | |
JP2009224777A (en) | Method and apparatus for forming dividing line of photovoltaic module with serially-connected cells | |
KR101129262B1 (en) | Optical system for laser repair apparatus | |
US20220179296A1 (en) | Manufacturing method of projection apparatus by classifying light valve according to brightness | |
US11567013B2 (en) | Image inspection device and lighting device | |
TWI489573B (en) | Detecting device | |
ITUD20120061A1 (en) | PROCEDURE FOR CHECKING A SCHEME PRINTED ON A SUBSTRATE | |
WO2012117363A1 (en) | System and methods for producing homogeneous light intensity distribution | |
WO2013189605A2 (en) | Laser scribing system | |
US20230345105A1 (en) | Electronic device and camera module thereof | |
JP2009224779A (en) | Method for forming dividing line of photovoltaic module with series-connected cells | |
CN104091545B (en) | Display device and method for eliminating reflected light | |
CN214225571U (en) | Imaging device for curved surface screen arc edge defect | |
CN108057645A (en) | The camera adjusting mechanism and its control method of color selector | |
CN111781800B (en) | Multi-path light path calibration system and method in laser direct writing equipment | |
CN206400259U (en) | A kind of write-through exposure machine pair story boards | |
CN107784932A (en) | Display device | |
CN210090334U (en) | High-precision backlight detection mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |