TWI487786B - 降解戴奧辛同源物或類戴奧辛同源物之反應系統及方法 - Google Patents

降解戴奧辛同源物或類戴奧辛同源物之反應系統及方法 Download PDF

Info

Publication number
TWI487786B
TWI487786B TW102136171A TW102136171A TWI487786B TW I487786 B TWI487786 B TW I487786B TW 102136171 A TW102136171 A TW 102136171A TW 102136171 A TW102136171 A TW 102136171A TW I487786 B TWI487786 B TW I487786B
Authority
TW
Taiwan
Prior art keywords
dioxin
homolog
hexachlorodibenzofuran
hexachlorodibenzo
nutrient solution
Prior art date
Application number
TW102136171A
Other languages
English (en)
Other versions
TW201514296A (zh
Inventor
Jer Horng Wu
Juu En Chang
Shih Chiang Lin
Wei Yu Chen
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW102136171A priority Critical patent/TWI487786B/zh
Publication of TW201514296A publication Critical patent/TW201514296A/zh
Application granted granted Critical
Publication of TWI487786B publication Critical patent/TWI487786B/zh

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

降解戴奧辛同源物或類戴奧辛同源物之反應系統及方法
本發明係關於一種降解戴奧辛同源物或類戴奧辛同源物之反應系統及方法,尤指一種適用於降解多氯戴奧辛之反應系統及降解多氯戴奧辛之方法,以有效地降低多氯戴奧辛對環境造成的汙染。
十九世紀時,為了因應農業需求而大量製造了作為除草劑及防腐劑的氯酚類化合物,該些氯酚類化合物產生大量的多氯二聯苯戴奧辛(polychlorinated dibenzo-p-dioxins,PCDD)以及多氯二聯苯呋喃(polychlorinated dibenzofurans,PCDF)等戴奧辛類化合物;此外,戴奧辛的產生也可能透過自然生成(如火山爆發、森林火災)、工業原料製程(如含氯酚類化合物)的副產物、工業高溫製程(如水泥窯爐、瀝青拌合廠、煉鋼廠、非鐵金屬熔融冶煉、鑄造廠等)、電力能源相關(如電廠燃油燃燒、車輛燃料燃燒等)、廢棄物焚化過程、及其他人為的燃燒行為(如露天燃燒、火災、抽煙等)所產生。
由於戴奧辛類化合物的強化學穩定性、疏水性 及脂溶性等特性,使得該類化合物在自然環境中難以被降解,而存留在空氣、土壤及底泥中,因此被稱為世紀之毒。而這些留存在環境中的戴奧辛化合物,經生物累積及食物鏈層層放大後累積在大型的或高等動物體內無法代謝,加上戴奧辛化合物屬於環境賀爾蒙的一種,低濃度下即對細胞的生化代謝機制造成重大影響,並且於高等動物的肝臟、神經、以及生殖系統造成毒性,甚至引發畸胎及致癌,顯見戴奧辛對人體的危害甚大。
戴奧辛化合物性質穩定不易破壞,目前以熱處理法為最成熟可行的處理方法,研究顯示當戴奧辛污染物處理溫度達1000℃時,戴奧辛的破壞去除率可達99.9%,因此過去對於戴奧辛汙染土壤大多採用熱處理方式進行整治,其中,旋轉窯更可達到99.9999%的去除率。
但上述的熱處理方法所費不貲且對於環境會造成二次汙染。因此近年來科學家也開始嘗試各種不同的方法進行戴奧辛汙染土壤的整治,譬如土壤萃取法、還原脫氯法、鹼性催化分解法、電動力學法等物化處理方法,甚至採用生物整治方法利用微生物分解戴奧辛,但大部分尚在研究發展階段,在整治效果上還有很大的進步空間。
其中,利用生物復育(bioremediation)整治戴奧辛汙染的可能性最受世人期待。原因在於相較於物理、化學的整治方法,生物復育方法對於環境的衝擊大幅降低,並且使大規模汙染土壤進行整治的想法化為可能。即使生物復育整治戴奧辛汙染的想法備受期待,但在生物復育過 程中的所遭遇的挑戰也帶來許多不確定的因素,左右生物復育的成敗:譬如,微生物雖然能夠代謝有機化合物,提供本身所需之養分及能量,並在消化過程中會將污染物分解為二氧化碳及水分。在這過程中,污染物提供了微生物生長所需之養分及能量,但隨著污染物被消化減少,微生物的數量亦會因養分及能量之缺乏而減少或消失,使得生物復育的效果大打折扣。
再者,目前對於戴奧辛生物復育的課題仍然侷限於低氯戴奧辛的好氧降解以及厭氧脫氯作用的範疇,至於高氯戴奧辛的生物降解研究報告相當少,且根據過去研究,雖然微生物具有降解戴奧辛的能力,但僅對低氯數戴奧辛有較佳之效果,而含有四個氯以上的戴奧辛同源物微生物難以藉由好氧微生物分解而進行生物整治復育。然而,高氯同源物是實際環境中戴奧辛污染最主要的貢獻者,因此高氯戴奧辛的降解是真正應該解決的問題。
本發明之一目的在於提供一種降解戴奧辛同源物或類戴奧辛同源物之反應系統,該反應系統特別適用於降解4至8個氯原子之戴奧辛,有效地降低多氯戴奧辛對環境造成的汙染。
本發明之另一目的在於提供一種降解戴奧辛同源物或類戴奧辛同源物之方法,藉由控制如間歇曝氣及營養液之循環條件,使高氯分子,特別是4至8個氯原子之戴奧辛同源物,能夠快速且有效地降解。
為達成上述目的,本發明提供一種降解戴奧辛同源物或類戴奧辛同源物之反應系統,包括:一反應槽,其係用於容納一含有戴奧辛同源物或類戴奧辛同源物污染之樣本;一曝氣裝置,其係組設於該反應槽中,以間歇性地提供一含氧氣體至該反應槽中;一儲存槽,係與該反應槽連接,且儲存一包括營養液之水溶液;以及一循環裝置,其一端係與該反應槽連接且另一端與該儲存槽連接,以將該儲存槽中之該包括營養液之水溶液注入該反應槽中。
於本發明中,厭氧環境時,原本穩定的高氯戴奧辛同源物脫氯成為具有較少氯原子之戴奧辛同源物,接著該具有較少氯原子之戴奧辛同源物於好氧環境下,其環狀結構易被破壞而分解,此微生物分解原理不僅適用於高氯數戴奧辛同源物,亦可適用於其他含氯的類戴奧辛同源物。因此,於本案之反應系統中,該組設於反應槽之曝氣裝置係透過一定時器控制,以間歇性地提供一含氧氣體至該反應槽中,維持反應系統之厭氧/好氧環境交替循環。具體而言,本發明之曝氣裝置之供氣:不供氣之時間比係1:5至1:2之間,且較佳為1:4至1:3之間,於本發明一較佳實施例中,曝氣裝置之供氣:不供氣之時間比係1:3,然而上述供氣:不供氣之時間比可依據實際情況調整,本發明並不限於此。
除了曝氣裝置之外,本發明之反應槽並與儲存槽連接,於該儲存槽中儲存包括營養液之水溶液。上述之營養液係指習知可支持微生物生長及代謝作用之成分,譬 如碳源、氮源、磷源、鹽類(諸如含有Ca、Zn、Mn、Cu、Fe、Mg、Mo、或S之鹽類)等、或是上述任一營養源或兩種以上營養源之組合,亦可使用譬如LB培養基(Luria-Bertani broth)、營養培養基(Nutrient broth)、糖蜜等商規培養基。於本發明中可依據實際情況選擇適當之營養液之組成成份而無特別限制。
至於該包括營養液之水溶液與該含有戴奧辛同源物或類戴奧辛同源物之該樣本之重量比,較佳為1:5至1:2,並且以1:4至1:3更佳,倘若該包括營養液之水溶液太少,則難以達到預期中將樣本之戴奧辛同源物或類戴奧辛同源物分解之效果,然而,上述重量比可根據實際情況調整,本發明並不限於此。
於本發明中更提供一循環裝置,該循環裝置的其中一端與該反應槽連接,並且將該循環裝置的另一端與該儲存槽連接,並可進一步由譬如幫浦推動該包括營養液之水溶液的循環。經由上述循環裝置,儲存槽中包括營養液之水溶液可以以一特定的循環頻率,將包括營養液之水溶液提供至該反應槽中。
而上述所謂「特定的循環頻率」,係指譬如該包括營養液之水溶液每隔1至4小時於該循環裝置中動作3至15分鐘,以達到較佳的戴奧辛同源物或類戴奧辛同源物分解效果,然而可根據實際情況調整,本發明並不限於此。於本案發明一較佳實施例中,該包括營養液之水溶液係以每隔2小時於該循環裝置中動作3至5分鐘之頻率於該反 應系統中循環。
為了測量該含有戴奧辛同源物或類戴奧辛同源物之樣本之氧氣濃度,本發明更包括一氧化還原電位監視裝置,該氧化還原電位監視裝置組設於該反應槽中,以作為曝氣裝置維持反應系統之厭氧/好氧環境交替循環之依據。
本發明之反應系統中,更包括一可分解戴奧辛同源物或類戴奧辛同源物之生物試劑,該生物試劑係指可分解戴奧辛之微生物。本發明中,所使用之微生物種類並無特別限制,只要能夠分解戴奧辛即可,具體舉例可為一種或以上選自下列菌株之組合:放線菌(Actinobacteria )、擬桿菌(Bacteroidetes )、變形菌(Proteobacteria )、厚壁菌(Firmicutes )、假單胞菌屬菌株(Pseudomonas chlororaphis )、紅球菌屬菌株(Rhodococcus erythropolis )、藤黃微球菌屬菌株(Micrococcus luteus )、桿菌屬菌株(Bacillus sp. )等,而其中的紅球菌屬菌株(Rhodococcus erythropolis )於生長代謝過程中產生諸如海藻糖脂(Trehalose lipids)之生物界面活性劑,有助於基質中疏水性污染物之移動,進而促進戴奧辛分解效率。
根據本發明所提供之反應系統,可有效地降解戴奧辛同源物或類戴奧辛同源物,特別是4至8個氯原子之戴奧辛同源物。該戴奧辛同源物舉例可為:2,3,7,8-四氯二苯并-p-戴奧辛(2,3,7,8-tetrachlorodibenzo-p-dioxin,2,3,7,8-TCDD)、1,2,3,7,8-五氯二苯并-p-戴奧辛 (1,2,3,7,8-pentachlorodibenzo-p-dioxin,1,2,3,7,8-PCDD)、1,2,3,4,7,8-六氯二苯并-p-戴奧辛(1,2,3,4,7,8-hexachlorodibenzo-p-dioxin,1,2,3,4,7,8-HxCDD)、1,2,3,6,7,8-六氯二苯并-p-戴奧辛(1,2,3,6,7,8-hexachlorodibenzo-p-dioxin,1,2,3,6,7,8-HxCDD)、1,2,3,7,8,9-六氯二苯并-p-戴奧辛(1,2,3,7,8,9-hexachlorodibenzo-p-dioxin,1,2,3,7,8,9-HxCDD),1,2,3,4,6,7,8-七氯二苯并-p-戴奧辛(1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin,1,2,3,4,6,7,8-HpCDD)、八氯二苯并-p-戴奧辛(octachlorodibenzo-p-dioxin)、2,3,7,8-四氯二苯并呋喃(2,3,7,8-tetrachlorodibenzofuran,2,3,7,8-TCDF)、1,2,3,7,8-五氯二苯并呋喃(1,2,3,7,8-pentachlorodibenzofuran,1,2,3,7,8-PCDF)、2,3,4,7,8-五氯二苯并呋喃(2,3,4,7,8-pentachlorodibenzofuran,2,3,4,7,8-PCDF)、1,2,3,4,7,8-六氯二苯并呋喃(1,2,3,4,7,8-hexachlorodibenzofuran,1,2,3,4,7,8-HxCDF)、1,2,3,6,7,8-六氯二苯并呋喃(1,2,3,6,7,8-hexachlorodibenzofuran,1,2,3,6,7,8-HxCDF)、1,2,3,7,8,9-六氯二苯并呋喃(1,2,3,7,8,9-hexachlorodibenzofuran,1,2,3,7,8,9-HxCDF)、2,3,4,6,7,8-六氯二苯并呋喃(2,3,4,6,7,8-hexachlorodibenzofuran,2,3,7,8-HxCDF)、1,2,3,4,6,7,8-七氯二苯并呋喃(1,2,3,4,6,7,8-heptachlorodibenzofuran, 1,2,3,4,6,7,8-HpCDF)、1,2,3,4,7,8,9-七氯二苯并呋喃(1,2,3,4,7,8,9-heptachlorodibenzofuran,1,2,3,4,7,8,9-HpCDF)及八氯二苯并呋喃(octachlorodibenzofuran,OCDF);而該類戴奧辛同源物舉例可為:二苯并-p-戴奧辛(dibenzo-p-dioxin)、二苯并呋喃(dibenzofuran)、多氯聯苯(polychlorinated biphenyl)、多溴二苯醚(polybrominated biphenyls)、多氯化萘(polychlorinated naphthalene)、咔唑(carbazole)、二苯醚(diphenyl ether)、二苯并噻吩(dibenzothiophene)、芴(fluorene)。
此外,本發明亦提供一種降解戴奧辛同源物或類戴奧辛同源物之方法,特別是能夠有效地降解基質中之高氯戴奧辛同源物或類戴奧辛同源物,包括:(a)將一含有戴奧辛同源物或類戴奧辛同源物之樣本放入一反應槽中;(b)間歇性地提供一含氧氣體至包括該含有戴奧辛同源物或類戴奧辛同源物之樣本之反應槽中;以及(c)將一包括營養液之水溶液注入包括該含有戴奧辛同源物或類戴奧辛同源物之樣本之反應槽中。
本發明之方法係間歇性地提供一含氧氣體至該反應槽中,以維持反應系統之厭氧/好氧環境交替循環。於上述降解戴奧辛同源物或類戴奧辛同源物之方法之步驟(b)中,係透過一曝氣裝置,間歇性地提供該含氧氣體至包括該含有戴奧辛同源物或類戴奧辛同源物之樣本之反應槽中,並利用定時器控制該曝氣裝置,使其供氣:不供氣之時間比較佳為1:5至1:2、較佳為1:4至1:3之間。於 本發明一較佳實施例中,曝氣裝置之供氣:不供氣之時間比係1:3,然而上述供氣:不供氣之時間比可依據實際情況調整,本發明並不限於此。
於步驟(c)中,該營養液係指習知可支持微生物生長及代謝作用之成分,譬如碳源、氮源、磷源、鹽類(諸如含有Ca、Zn、Mn、Cu、Fe、Mg、Mo、或S之鹽類)等、或是上述任一營養源或兩種以上營養源之組合,亦可使用譬如LB培養基(Luria-Bertani broth)、營養培養基(Nutrient broth)、糖蜜等商規培養基。於本發明中可依據實際情況任意選擇營養液之組成成分而無特別限制。為了能使該營養液充分地與該含有戴奧辛同源物或類戴奧辛同源物之樣本接觸,於步驟(c)中,該包括營養液之水溶液與該含有戴奧辛同源物或類戴奧辛同源物之該樣本之重量比較佳為1:5至1:2,且更佳為1:4至1:3。然而,上述重量比可根據實際情況調整,本發明並不限於此。
除此之外,步驟(c)之該包括營養液之水溶液更利用一循環裝置,以一循環頻率將包括營養液之水溶液提供至該反應槽中。且為了達到較佳的戴奧辛同源物或類戴奧辛同源物分解效果,該包括營養液之水溶液較佳為每隔1至4小時於該循環裝置中動作3至15分鐘之循環頻率於該循環系統中循環,然而可根據實際情況調整,本發明並不限於此。於本案發明一較佳實施例中,該包括營養液之水溶液係以每隔2小時於該循環裝置中動作3至5分鐘之頻率於該反應系統中循環。
為了測量該含有戴奧辛同源物或類戴奧辛同源物之樣本之氧氣濃度,於步驟(b)中,可利用一氧化還原電位監視裝置並測量該含有戴奧辛同源物或類戴奧辛同源物之樣本之氧氣濃度,以作為曝氣裝置維持反應系統之厭氧/好氧環境交替循環之依據。
本發明之降解戴奧辛同源物或類戴奧辛同源物之方法中,更可於步驟(c)中加入可分解戴奧辛同源物或類戴奧辛同源物之生物試劑,該生物試劑係指可分解戴奧辛之微生物。本發明中,所使用之微生物種類並無特別限制,只要能夠分解戴奧辛即可,具體舉例可為一種或以上選自下列菌株之組合:放線菌(Actinobacteria )、擬桿菌(Bacteroidetes )、變形菌(Proteobacteria )、厚壁菌(Firmicutes )、假單胞菌屬菌株(Pseudomonas chlororaphis )、紅球菌屬菌株(Rhodococcus erythropolis )、藤黃微球菌屬菌株(Micrococcus luteus )、桿菌屬菌株(Bacillus sp. )等。
根據本發明所提供之降解戴奧辛同源物或類戴奧辛同源物之方法可有效地降解戴奧辛同源物或類戴奧辛同源物,特別是4至8個氯原子之戴奧辛同源物。該戴奧辛同源物舉例可為:2,3,7,8-四氯二苯并-p-戴奧辛(2,3,7,8-tetrachlorodibenzo-p-dioxin,2,3,7,8-TCDD)、1,2,3,7,8-五氯二苯并-p-戴奧辛(1,2,3,7,8-pentachlorodibenzo-p-dioxin,1,2,3,7,8-PCDD)、1,2,3,4,7,8-六氯二苯并-p-戴奧辛(1,2,3,4,7,8-hexachlorodibenzo-p-dioxin,1,2,3,4,7,8-HxCDD)、1,2,3,6,7,8-六氯二苯并-p-戴奧辛 (1,2,3,6,7,8-hexachlorodibenzo-p-dioxin,1,2,3,6,7,8-HxCDD)、1,2,3,7,8,9-六氯二苯并-p-戴奧辛(1,2,3,7,8,9-hexachlorodibenzo-p-dioxin,1,2,3,7,8,9-HxCDD),1,2,3,4,6,7,8-七氯二苯并-p-戴奧辛(1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin,1,2,3,4,6,7,8-HpCDD)、八氯二苯并-p-戴奧辛(octachlorodibenzo-p-dioxin)、2,3,7,8-四氯二苯并呋喃(2,3,7,8-tetrachlorodibenzofuran,2,3,7,8-TCDF)、1,2,3,7,8-五氯二苯并呋喃(1,2,3,7,8-pentachlorodibenzofuran,1,2,3,7,8-PCDF)、2,3,4,7,8-五氯二苯并呋喃(2,3,4,7,8-pentachlorodibenzofuran,2,3,4,7,8-PCDF)、1,2,3,4,7,8-六氯二苯并呋喃(1,2,3,4,7,8-hexachlorodibenzofuran,1,2,3,4,7,8-HxCDF)、1,2,3,6,7,8-六氯二苯并呋喃(1,2,3,6,7,8-hexachlorodibenzofuran,1,2,3,6,7,8-HxCDF)、1,2,3,7,8,9-六氯二苯并呋喃(1,2,3,7,8,9-hexachlorodibenzofuran,1,2,3,7,8,9-HxCDF)、2,3,4,6,7,8-六氯二苯并呋喃(2,3,4,6,7,8-hexachlorodibenzofuran,2,3,7,8-HxCDF)、1,2,3,4,6,7,8-七氯二苯并呋喃(1,2,3,4,6,7,8-heptachlorodibenzofuran,1,2,3,4,6,7,8-HpCDF)、1,2,3,4,7,8,9-七氯二苯并呋喃(1,2,3,4,7,8,9-heptachlorodibenzofuran,1,2,3,4,7,8,9-HpCDF)及八氯二苯并呋喃(octachlorodibenzofuran,OCDF);而該類戴奧辛同源物舉例可為:二苯并-p-戴奧辛 (dibenzo-p-dioxin)、二苯并呋喃(dibenzofuran)、多氯聯苯(polychlorinated biphenyl)、多溴二苯醚(polybrominated biphenyls)、多氯化萘(polychlorinated naphthalene)、咔唑(carbazole)、二苯醚(diphenyl ether)、二苯并噻吩(dibenzothiophene)、芴(fluorene)。
1‧‧‧反應系統
11‧‧‧反應槽
12‧‧‧曝氣裝置
121、171‧‧‧幫浦
122‧‧‧曝氣管
123‧‧‧定時器
13‧‧‧儲存槽
14‧‧‧循環裝置
15‧‧‧氧化還原電位監視裝置
16‧‧‧多孔檔板
圖1係根據本發明之降解戴奧辛同源物或類戴奧辛同源物之反應系統之一示意圖。
圖2係根據本發明之實施例操作56天之戴奧辛(PCDD/Fs)毒性當量測試之結果。
圖3係根據本發明之實施例操作56天之戴奧辛同源物之濃度及去除率變化。
以下藉由具體實施例說明本發明之實施方式,熟知本領域之人士可由本說明書所揭示內容輕易地了解本發明之優點及功效。此外,本發明之實施例僅係為了方便說明而舉例而已,而非意圖限制本發明之範圍,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。此外,熟知本領域之人士在不悖離本發明之精神下可對本發明進行各種修飾與變更,亦可藉由其他不同的實施方式加以施行或應用。
圖1係根據本發明之降解戴奧辛同源物或類戴奧辛同源物之反應系統1之一態樣。含有受到戴奧辛同源物或類戴奧辛同源物汙染之樣本可容納於反應槽11之中, 並且,曝氣裝置12組設於反應槽11之中,且透過定時器123控制曝氣幫浦121供氣與不供氣之時間,間歇性地提供含氧氣體至該反應槽之中。此外,為了測量該含有戴奧辛同源物或類戴奧辛同源物之樣本之氧氣濃度,以作為曝氣裝置12維持反應系統1之厭氧/好氧環境交替循環之依據,本發明之反應系統1更包括氧化還原電位監視裝置15組設於該反應槽11之中。
反應槽11更連接有一儲存槽13。該儲存槽13中儲存著包括營養液之水溶液,其成分組成並無特別限制,只要能夠支持微生物生長及代謝作用之成分均可用以作為營養液之成分。
為了使儲存槽13中包括營養液之水溶液注入反應槽11中,本發明之反應系統1更設有循環裝置14,如圖1所示,該裝置的一端與反應槽11連接且另一端與儲存槽13連接,該包括營養液之水溶液可經由譬如幫浦注入反應槽11中,並且藉由重力流至該受到戴奧辛同源物或類戴奧辛同源物汙染之樣本之底層完成循環。
除此之外,於一實施態樣中,該曝氣裝置可進一步包括一曝氣管122插入該受到戴奧辛同源物或類戴奧辛同源物汙染之樣本中,以更精確地維持反應系統之厭氧/好氧交替之環境,此外,該儲存槽亦可額外組設另一曝氣裝置17,且該曝氣裝置17亦可由定時器123控制曝氣幫浦171供氣與不供氣之頻率。並且,為了避免大顆粒之受到戴奧辛同源物或類戴奧辛同源物汙染之樣本掉落,本發明之 反應系統於反應槽11及儲存槽13之間更可包括一多孔檔板16,然而,上述多孔檔板16之材質型態於本發明並無特別限制。
實施例1
由台灣南部某戴奧辛污染場址取得受戴奧辛同源物汙染之土壤樣本,經由篩分析選出10-60mesh之粒徑大小土壤做為實驗樣本以測試本發明降解戴奧辛同源物之反應系統之效果。將重量約為1.5公斤、酸鹼值係7.5且不添加任何戴奧辛降解菌劑之土壤樣本放入反應槽中。
接著,於本發明之反應系統之儲存槽中加入1公升的培養基作為營養液,具體而言,該培養基之組成成份係每公升含有10g的NaCl、10g的Tryptone及5g的酵母菌提取物(yeast extract)。並且於操作過程中,每7天由反應槽上部饋入100毫升上述之營養液。
最後,曝氣系統經由定時器之控制,供氣量約10L/min,並以供氣:不供氣=1小時:3小時的頻率使得本發明之反應系統達到好氧、厭氧交替之操作條件。並且經由氧化還原電位監視裝置監控測量該土壤樣本之氧氣濃度:供氣時,土壤的氧化還原電位(ORP)約0~+100mV,而不供氣時,土壤的ORP降為-400~-300mV。
實施例2
除了在實施例2額外添加了可降解高氯戴奧辛之菌株Rhodococcus sp.B11、Pseudomonas sp.B40_2、Micrococcus sp.B43 之外,其餘所使用樣本及操作條件均與 實施例1相同。上述三種菌株各自在培養基中培養3-5天以後,使菌的密度到達1010 CFU/mL,再將三種菌株以1:1:1等比例混合至1000毫升,並與戴奧辛汙染土壤充分混勻後再裝填至反應槽內。
實施例3
實施例3除了土壤之pH值調整至8.5之外,其餘所使用的樣本及操作條件均與實施例2相同。
本發明實施例1至3之操作條件已詳述如上,於下文中,將針對上述實施例戴奧辛同源物之分解情況加以分析。欲先說明的是,於下文之土壤戴奧辛的分析係參考美國環保署公告方法method 4025,利用method 4025中所使用的DF1 Dioxin/Furan Immunoassay Kit(CAPE Technologies,protocol:AN-0084/12/09)進行土染戴奧辛之萃取與前處理後,利用HRGC(Agilent 6890 Series gas,CA)搭配HRMS(JMS 700D,JEOL Ltd.,Japan)進行17種戴奧辛同源物之分析。
此外,為了將戴奧辛化合物的毒性進行量化,國際上依對於人體毒性最強之2,3,7,8-TCDD之相對比例,提出相對應的國際毒性當量因子(International Toxicity Equivalency Factor,I-TEF),將各戴奧辛同源物的濃度乘上相對應的毒性當量因子總和,可得到戴奧辛之國際毒性相當量(International Toxicity Equivalents,I-TEQ),並可依據此數值決定環境中戴奧辛對人體的危害程度。
實驗例1:戴奧辛(PCDD/Fs)毒性當量測試
圖2係實施例1至3操作約60天之戴奧辛(PCDD/Fs)毒性當量測試之結果。於圖2中可清楚發現,中性條件(pH7.5)且無添加降解菌劑之實施例1之土壤樣本中的戴奧辛毒性當量,在操作進行後14天內即可下降至46%,顯見根據本發明之降解戴奧辛同源物或類戴奧辛同源物之反應系統在不額外添加可分解戴奧辛同源物或類戴奧辛同源物之生物試劑的情況下即可達到優異的戴奧辛分解效果。
在實施例2(pH7.5且額外添加降解菌劑)中,由於初期反應槽中的微生物較無法適應環境導致一開始戴奧辛去毒化效果較差,但隨時間漸漸增加,亦可觀察到戴奧辛分解效果。
由於實施例2額外添加降戴奧辛解菌劑,本領域具有通常知識者應了解,為了提供菌劑中該些微生物最佳的作用環境以獲得最佳的效果,對於生長環境因子(譬如濕度、pH值等)可根據微生物種類加以調整。
經反覆嘗試後確認本發明實施例2所使用之菌劑在鹼性條件下(pH8.5)效果最佳,即本發明之實施例3。圖2中可清楚發現,於實施例3中,戴奧辛在14天內可非常快速地減少83%的毒性當量。
至於30日後觀察到PCDD/Fs剩餘毒性微幅上升的現象,係因各種不同的戴奧辛化合物其國際毒性當量因子(I-TEF)不同,譬如1,2,3,7,8,9-六氯二苯并呋喃(1,2,3,7,8,9-hexachlorodibenzofuran,1,2,3,7,8,9-HxCDF)之 I-TEF係0.1,而八氯二苯并呋喃(octachlorodibenzofuran,OCDF)係0.001,而將各戴奧辛同源物的濃度乘上相對應的毒性當量因子總和,可得到戴奧辛之國際毒性相當量(International Toxicity Equivalents,I-TEQ)。換言之,由於高氯戴奧辛經由反應系統一系列的處理後,譬如部分OCDF還原脫氯轉變為1,2,3,7,8,9-HxCDF(參見下述實驗例2),而兩者之I-TEF不同、且經轉換後濃度也不同的緣故,因此I-TEQ會在30日後出現略微回升的現象,但以綜合結果看來,本發明所有實施例之戴奧辛(PCDD/Fs)毒性當量均以相當顯著的幅度下降。
實驗例2:戴奧辛同源物之濃度及去除率變化
進一步針對中性條件下且無添加菌劑之實施例1及具有較佳戴奧辛解菌劑生長酸鹼值範圍之實施例3探討17種戴奧辛同源物之濃度及去除率變化,其中,17種戴奧辛同源物係指:2,3,7,8-四氯二苯并-p -戴奧辛(2,3,7,8-tetrachlorodibenzo-p -dioxin,2,3,7,8-TCDD)、1,2,3,7,8-五氯二苯并-p -戴奧辛(1,2,3,7,8-pentachlorodibenzo-p -dioxin,1,2,3,7,8-PCDD)、1,2,3,4,7,8-六氯二苯并-p -戴奧辛(1,2,3,4,7,8-hexachlorodibenzo-p -dioxin,1,2,3,4,7,8-HxCDD)、1,2,3,6,7,8-六氯二苯并-p -戴奧辛(1,2,3,6,7,8-hexachlorodibenzo-p -dioxin,1,2,3,6,7,8-HxCDD)、1,2,3,7,8,9-六氯二苯并-p -戴奧辛(1,2,3,7,8,9-hexachlorodibenzo-p -dioxin,1,2,3,7,8,9-HxCDD),1,2,3,4,6,7,8-七氯二苯并-p -戴奧辛 (1,2,3,4,6,7,8-heptachlorodibenzo-p -dioxin,1,2,3,4,6,7,8-HpCDD)、八氯二苯并-p -戴奧辛(octachlorodibenzo-p -dioxin)、2,3,7,8-四氯二苯并呋喃(2,3,7,8-tetrachlorodibenzofuran,2,3,7,8-TCDF)、1,2,3,7,8-五氯二苯并呋喃(1,2,3,7,8-pentachlorodibenzofuran,1,2,3,7,8-PCDF)、2,3,4,7,8-五氯二苯并呋喃(2,3,4,7,8-pentachlorodibenzofuran,2,3,4,7,8-PCDF)、1,2,3,4,7,8-六氯二苯并呋喃(1,2,3,4,7,8-hexachlorodibenzofuran,1,2,3,4,7,8-HxCDF)、1,2,3,6,7,8-六氯二苯并呋喃(1,2,3,6,7,8-hexachlorodibenzofuran,1,2,3,6,7,8-HxCDF)、1,2,3,7,8,9-六氯二苯并呋喃(1,2,3,7,8,9-hexachlorodibenzofuran,1,2,3,7,8,9-HxCDF)、2,3,4,6,7,8-六氯二苯并呋喃(2,3,4,6,7,8-hexachlorodibenzofuran,2,3,7,8-HxCDF)、1,2,3,4,6,7,8-七氯二苯并呋喃(1,2,3,4,6,7,8-heptachlorodibenzofuran,1,2,3,4,6,7,8-HpCDF)、1,2,3,4,7,8,9-七氯二苯并呋喃(1,2,3,4,7,8,9-heptachlorodibenzofuran,1,2,3,4,7,8,9-HpCDF)及八氯二苯并呋喃(octachlorodibenzofuran,OCDF)。
圖3係根據本發明之實施例操作56天之戴奧辛同源物之濃度及去除率變化,其中圖3A係實施例1之結果,其對於高氯(7至8氯)戴奧辛具有31至58%之去除效果,具體而言,OCDF之去除率係56%、OCDD為31%、H7CDF係55%、且H7CDD係56%;圖3B則是實施例3之 結果,其對於高氯戴奧辛均具有80%以上之去除效果,具體而言,OCDF之去除率係99%、OCDD為88%、H7CDF係100%、且H7CDD係99%。顯見在本發明無添加菌劑之反應系統確已具有優異的高氯戴奧辛去除效果,而若進一步添加適當的菌劑,並將環境之pH值依據微生物種類調整至適合之條件時,更能展現出極優異的高氯戴奧辛分解及去毒化效率。
實施例4:模廠系統
根據圖1之反應系統之組成擴大設計為1公尺見方之另一態樣,其反應槽可乘載土壤容量約1公噸,且儲存槽容量約為300公升,其中所儲存之包括營養液之水溶液(組成成份係每公升含有10g的NaCl、10g的Tryptone及5g的酵母菌提取物)以連續曝氣方式使溶氧達到飽和濃度(約8mg/L),並以沉水式幫浦以每2至4小時抽水約300公升至模槽頂部約3至5分鐘,隨後,該包括營養液之水溶液因重力向下流經土壤後匯集於該儲存槽中,土壤中的微生物因此可生長並共代謝土壤樣本中之戴奧辛汙染物,並可每30日額外添加戴奧辛降解菌劑20公升。該土壤樣本中戴奧辛同源物之濃度及去除率如表1所示。
表1中,P1係額外添加戴奧辛降解菌劑之控制組,而P2與P3模槽係添加戴奧辛降解菌劑之實驗組(於本實施例中,戴奧辛降解菌劑係等比例混合之Rhodococcus sp.B11、Pseudomonas sp.B40_2、Micrococcus sp.B43 ),而P1、P2及P3之包括營養液之水溶液之循環頻率分別係4小時、2小時、4小時。且為了避免實驗誤差,為避免採樣誤差,利用土壤採樣器分別在五個不同點採取五組土柱,將土柱中間部分均勻混合為一的土壤樣本,分析17種戴奧辛化合物的濃度。
由圖4可知,實驗初始土壤的戴奧辛毒性當量係28,200ng I-TEQ/kg,經過59天,P1槽(控制組)緩慢下降至23,600ng I-TEQ/kg,其戴奧辛去毒化效率約16%,顯示在本發明降解戴奧辛同源物或類戴奧辛同源物之反應系統之控制條件下,僅靠現地微生物即可去除部分戴奧辛毒 性當量。
至於P2及P3槽之土壤戴奧辛濃度在第31天分別為16,900及28,300ng I-TEQ/kg。第56天時,P2及P3槽的土壤戴奧辛濃度分別再下降至16,100及21,600ng I-TEQ/kg,毒性當量減少率分別達41%及29%。戴奧辛降解效率較控制組P1槽更為提升。
另外由P2及P3相比可發現在此系統中調控2小時水循環的間隔頻率較4小時水循環戴奧辛去毒化效果佳。
由實施例4可清楚得知,本案發明之降解戴奧辛同源物或類戴奧辛同源物之反應系統,在將實驗室規模反應系統之設計參數放大至實廠規模的模槽後,土壤中戴奧辛毒性當量亦能有效地進行生物降解,且在進一步添加戴奧辛降解菌時更可使戴奧辛毒性當量下降達到41%左右顯見將本發明建立之降解戴奧辛同源物或類戴奧辛同源物之反應系統應用於模廠規模戴奧辛污染土壤整治方面是可行的技術。
【生物材料寄存】
國內寄存資訊【請依寄存機構、日期、號碼順序註記】
1. 財團法人食品工業發展研究所,101年8月22日寄存:紅球菌Rhodococcus erythropolis B11 ,編號BCRC910559;2. 財團法人食品工業發展研究所,101年8月22日寄存:藤黃微球菌Micrococcus luteus B43 ,編號BCRC910560;
國外寄存資訊【請依寄存國家、機構、日期、號碼順序註記】
1‧‧‧反應系統
11‧‧‧反應槽
12‧‧‧曝氣裝置
121、171‧‧‧幫浦
122‧‧‧曝氣管
123‧‧‧定時器
13‧‧‧儲存槽
14‧‧‧循環裝置
15‧‧‧氧化還原電位監視裝置
16‧‧‧多孔檔板

Claims (18)

  1. 一種降解戴奧辛同源物或類戴奧辛同源物之反應系統,包括:一反應槽,其係用於容納一含有戴奧辛同源物或類戴奧辛同源物污染之樣本;一曝氣裝置,其係組設於該反應槽中,以間歇性地提供一含氧氣體至該反應槽中,其中,該曝氣裝置係透過一定時器控制,且其供氣:不供氣之時間比係1:5至1:2;一儲存槽,係與該反應槽連接,且儲存一包括營養液之水溶液;以及一循環裝置,其一端係與該反應槽連接且另一端與該儲存槽連接,以將該儲存槽中之該包括營養液之水溶液注入該反應槽中。
  2. 如申請專利範圍第1項所述之反應系統,其中,該營養液係包括下列至少一選自:一碳源、一氮源、一磷源、一鹽類、或其組合。
  3. 如申請專利範圍第1項所述之反應系統,其中,該包括營養液之水溶液與該含有戴奧辛同源物或類戴奧辛同源物之該樣本之重量比係1:5至1:2。
  4. 如申請專利範圍第1項所述之反應系統,其中,該循環系統係以一循環頻率將包括營養液之水溶液提供至該反應槽中。
  5. 如申請專利範圍第4項所述之反應系統,其中,該循環頻率係該包括營養液之水溶液每隔1至4小時於該循環裝置中動作3至15分鐘。
  6. 如申請專利範圍第1項所述之反應系統,其中,更包括一氧化還原電位監視裝置,其係組設於該反應槽中以測量該含有戴奧辛同源物或類戴奧辛同源物之樣本之含氧氣體濃度。
  7. 如申請專利範圍第1項所述之反應系統,其中,更包括一可分解戴奧辛同源物或類戴奧辛同源物之生物試劑,且該生物試劑係至少一選自:一假單胞菌屬菌株(Pseudomonas chlororaphis )、一紅球菌屬菌株(Rhodococcus erythropolis )、一藤黃微球菌屬菌株(Micrococcus luteus )、或其組合。
  8. 如申請專利範圍第1項所述之反應系統,其中,該反應系統係降解4至8個氯原子之該戴奧辛同源物。
  9. 如申請專利範圍第8項所述之反應系統,其中,該戴奧辛同源物係至少一選自由:2,3,7,8-四氯二苯并-p -戴奧辛(2,3,7,8-tetrachlorodibenzo-p -dioxin,2,3,7,8-TCDD)、1,2,3,7,8-五氯二苯并-p -戴奧辛(1,2,3,7,8-pentachlorodibenzo-p -dioxin,1,2,3,7,8-PCDD)、1,2,3,4,7,8-六氯二苯并-p -戴奧辛(1,2,3,4,7,8-hexachlorodibenzo-p -dioxin,1,2,3,4,7,8-HxCDD)、1,2,3,6,7,8-六氯二苯并-p -戴奧辛(1,2,3,6,7,8-hexachlorodibenzo-p -dioxin,1,2,3,6,7,8-HxCDD)、1,2,3,7,8,9-六氯二苯并-p -戴奧辛(1,2,3,7,8,9-hexachlorodibenzo-p -dioxin,1,2,3,7,8,9-HxCDD), 1,2,3,4,6,7,8-七氯二苯并-p -戴奧辛(1,2,3,4,6,7,8-heptachlorodibenzo-p -dioxin,1,2,3,4,6,7,8-HpCDD)、八氯二苯并-p -戴奧辛(octachlorodibenzo-p -dioxin)、2,3,7,8-四氯二苯并呋喃(2,3,7,8-tetrachlorodibenzofuran,2,3,7,8-TCDF)、1,2,3,7,8-五氯二苯并呋喃(1,2,3,7,8-pentachlorodibenzofuran,1,2,3,7,8-PCDF)、2,3,4,7,8-五氯二苯并呋喃(2,3,4,7,8-pentachlorodibenzofuran,2,3,4,7,8-PCDF)、1,2,3,4,7,8-六氯二苯并呋喃(1,2,3,4,7,8-hexachlorodibenzofuran,1,2,3,4,7,8-HxCDF)、1,2,3,6,7,8-六氯二苯并呋喃(1,2,3,6,7,8-hexachlorodibenzofuran,1,2,3,6,7,8-HxCDF)、1,2,3,7,8,9-六氯二苯并呋喃(1,2,3,7,8,9-hexachlorodibenzofuran,1,2,3,7,8,9-HxCDF)、2,3,4,6,7,8-六氯二苯并呋喃(2,3,4,6,7,8-hexachlorodibenzofuran,2,3,7,8-HxCDF)、1,2,3,4,6,7,8-七氯二苯并呋喃(1,2,3,4,6,7,8-heptachlorodibenzofuran,1,2,3,4,6,7,8-HpCDF)、1,2,3,4,7,8,9-七氯二苯并呋喃(1,2,3,4,7,8,9-heptachlorodibenzofuran,1,2,3,4,7,8,9-HpCDF)及八氯二苯并呋喃(octachlorodibenzofuran,OCDF)所組成之群組。
  10. 一種降解戴奧辛同源物或類戴奧辛同源物之方法,包括: (a)將一含有戴奧辛同源物或類戴奧辛同源物之樣本放入一反應槽中;(b)透過一曝氣裝置,間歇性地提供一含氧氣體至包括該含有戴奧辛同源物或類戴奧辛同源物之樣本之反應槽中,且該曝氣裝置係透過一定時器控制,其供氣:不供氣之時間比係1:5至1:2;以及(c)將一包括營養液之水溶液注入包括該含有戴奧辛同源物或類戴奧辛同源物之樣本之反應槽中。
  11. 如申請專利範圍第10項所述之方法,其中,步驟(c)之該營養液係包括下列至少一選自:一碳源、一氮源、一磷源、一鹽類、或其組合。
  12. 如申請專利範圍第10項所述之方法,其中,步驟(c)之該包括營養液之水溶液與該含有戴奧辛同源物或類戴奧辛同源物之該樣本之重量比係1:5至1:2。
  13. 如申請專利範圍第10項所述之方法,其中,步驟(c)之該包括營養液之水溶液係利用一循環裝置,以一循環頻率提供至該反應槽中。
  14. 如申請專利範圍第13項所述之反應系統,其中,該循環頻率係該包括營養液之水溶液每隔1至4小時於該循環裝置中動作3至15分鐘。
  15. 如申請專利範圍第10項所述之方法,其中,於步驟(b)中更包括利用一氧化還原電位監視裝置並測量該含有戴奧辛同源物或類戴奧辛同源物之樣本之含氧氣體濃度。
  16. 如申請專利範圍第10項所述之方法,其中,更包括利用一可分解戴奧辛同源物或類戴奧辛同源物之生物試劑,且該生物試劑係至少一選自:一假單胞菌屬菌株(Pseudomonas chlororaphis )、一紅球菌屬菌株(Rhodococcus erythropolis )、一藤黃微球菌屬菌株(Micrococcus luteus )、或其組合。
  17. 如申請專利範圍第10項所述之方法,其中,該方法係降解4至8個氯原子之該戴奧辛同源物。
  18. 如申請專利範圍第17項所述之方法,其中,該戴奧辛同源物係至少一選自由:2,3,7,8-四氯二苯并-p -戴奧辛(2,3,7,8-tetrachlorodibenzo-p -dioxin,2,3,7,8-TCDD)、1,2,3,7,8-五氯二苯并-p -戴奧辛(1,2,3,7,8-pentachlorodibenzo-p -dioxin,1,2,3,7,8-PCDD)、1,2,3,4,7,8-六氯二苯并-p -戴奧辛(1,2,3,4,7,8-hexachlorodibenzo-p -dioxin,1,2,3,4,7,8-HxCDD)、1,2,3,6,7,8-六氯二苯并-p -戴奧辛(1,2,3,6,7,8-hexachlorodibenzo-p -dioxin,1,2,3,6,7,8-HxCDD)、1,2,3,7,8,9-六氯二苯并-p -戴奧辛(1,2,3,7,8,9-hexachlorodibenzo-p -dioxin,1,2,3,7,8,9-HxCDD),1,2,3,4,6,7,8-七氯二苯并-p -戴奧辛(1,2,3,4,6,7,8-heptachlorodibenzo-p -dioxin,1,2,3,4,6,7,8-HpCDD)、八氯二苯并-p -戴奧辛(octachlorodibenzo-p -dioxin)、2,3,7,8-四氯二苯并呋喃(2,3,7,8-tetrachlorodibenzofuran,2,3,7,8-TCDF)、1,2,3,7,8-五氯二苯并呋喃(1,2,3,7,8-pentachlorodibenzofuran,1,2,3,7,8-PCDF)、2,3,4,7,8-五氯二苯并呋喃 (2,3,4,7,8-pentachlorodibenzofuran,2,3,4,7,8-PCDF)、1,2,3,4,7,8-六氯二苯并呋喃(1,2,3,4,7,8-hexachlorodibenzofuran,1,2,3,4,7,8-HxCDF)、1,2,3,6,7,8-六氯二苯并呋喃(1,2,3,6,7,8-hexachlorodibenzofuran,1,2,3,6,7,8-HxCDF)、1,2,3,7,8,9-六氯二苯并呋喃(1,2,3,7,8,9-hexachlorodibenzofuran,1,2,3,7,8,9-HxCDF)、2,3,4,6,7,8-六氯二苯并呋喃(2,3,4,6,7,8-hexachlorodibenzofuran,2,3,7,8-HxCDF)、1,2,3,4,6,7,8-七氯二苯并呋喃(1,2,3,4,6,7,8-heptachlorodibenzofuran,1,2,3,4,6,7,8-HpCDF)、1,2,3,4,7,8,9-七氯二苯并呋喃(1,2,3,4,7,8,9-heptachlorodibenzofuran,1,2,3,4,7,8,9-HpCDF)及八氯二苯并呋喃(octachlorodibenzofuran,OCDF)所組成之群組。
TW102136171A 2013-10-07 2013-10-07 降解戴奧辛同源物或類戴奧辛同源物之反應系統及方法 TWI487786B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102136171A TWI487786B (zh) 2013-10-07 2013-10-07 降解戴奧辛同源物或類戴奧辛同源物之反應系統及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102136171A TWI487786B (zh) 2013-10-07 2013-10-07 降解戴奧辛同源物或類戴奧辛同源物之反應系統及方法

Publications (2)

Publication Number Publication Date
TW201514296A TW201514296A (zh) 2015-04-16
TWI487786B true TWI487786B (zh) 2015-06-11

Family

ID=53437490

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102136171A TWI487786B (zh) 2013-10-07 2013-10-07 降解戴奧辛同源物或類戴奧辛同源物之反應系統及方法

Country Status (1)

Country Link
TW (1) TWI487786B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674154B (zh) * 2017-11-10 2019-10-11 中國石油化學工業開發股份有限公司 受汙染土壤之整治方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201125985A (en) * 2010-01-29 2011-08-01 Univ Nat Sun Yat Sen Inducement method for enhancing degradation efficiency of dioxin-degrading bacteria
TWM461305U (zh) * 2013-05-08 2013-09-11 Chih-Ming Kao 土壤整治用好氧性反應裝置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201125985A (en) * 2010-01-29 2011-08-01 Univ Nat Sun Yat Sen Inducement method for enhancing degradation efficiency of dioxin-degrading bacteria
TWM461305U (zh) * 2013-05-08 2013-09-11 Chih-Ming Kao 土壤整治用好氧性反應裝置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Potrawfke T et al., "Degradation of 1,2,3,4-Tetrachlorobenzene by Pseudomonas chlororaphis RW71", Applied and environmental microbiology, vol.64, no.10, p.3798-3806, 1998/10 *

Also Published As

Publication number Publication date
TW201514296A (zh) 2015-04-16

Similar Documents

Publication Publication Date Title
Kensa Bioremediation-an overview
Akhtar et al. Bioremediation of arsenic and lead by plants and microbes from contaminated soil
Harekrushna et al. A review on: bioremediation
Yañez-Ocampo et al. Removal of two organophosphate pesticides by a bacterial consortium immobilized in alginate or tezontle
CN110303039B (zh) 零价铁联合土著微生物原位修复有机氯污染土壤的方法
Pandey et al. Bioremediation technology: a new horizon for environmental clean-up
Lahel et al. Effect of process parameters on the bioremediation of diesel contaminated soil by mixed microbial consortia
Vásquez-Murrieta et al. Approaches for removal of PAHs in soils: Bioaugmentation, biostimulation and bioattenuation
JP2010269244A (ja) 鉱物油によって汚染された媒体を浄化するための添加剤及び浄化方法
Binh et al. Sequential anaerobic–aerobic biodegradation of 2, 3, 7, 8-TCDD contaminated soil in the presence of CMC-coated nZVI and surfactant
Kaszycki et al. Ex situ bioremediation of soil polluted with oily waste: the use of specialized microbial consortia for process bioaugmentation
Maheshwari et al. To decontaminate wastewater employing bioremediation technologies
Long et al. Degradation of polychlorinated biphenyls by sequential anaerobic–aerobic composting
Zeyaullah et al. Bioremediation: A tool for environmental cleaning
JP5186169B2 (ja) 帯水層中の土壌、地下水の浄化方法
TWI487786B (zh) 降解戴奧辛同源物或類戴奧辛同源物之反應系統及方法
JP3538643B1 (ja) 汚染された土壌、地下水或いは底質土の修復に使用する添加剤
Shinde Bioremediation. An overview
JP2005288276A (ja) 汚染された土壌、地下水或いは底質土の修復に使用する添加剤
Prasad et al. Decontamination of polluted water employing bioremediation processes: A Review
Akubude et al. Application of nanomaterials in the bioaugmentation of heavily polluted environment
JP3847154B2 (ja) 有機塩素系化合物で汚染された物質の浄化方法
Žukauskaitė et al. The impact of chemical additives on the process of biodegradation of oil products
Harshvardhan et al. Microbial Bioremediation: A sustainable approach for restoration of contaminated sites
Ward et al. Biodegradation and bioremediation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees