TWI487689B - White organic light-emitting device and manufacturing method thereof - Google Patents

White organic light-emitting device and manufacturing method thereof Download PDF

Info

Publication number
TWI487689B
TWI487689B TW103101920A TW103101920A TWI487689B TW I487689 B TWI487689 B TW I487689B TW 103101920 A TW103101920 A TW 103101920A TW 103101920 A TW103101920 A TW 103101920A TW I487689 B TWI487689 B TW I487689B
Authority
TW
Taiwan
Prior art keywords
organic light
layer
emitting
light
white
Prior art date
Application number
TW103101920A
Other languages
Chinese (zh)
Other versions
TW201529532A (en
Inventor
mei ying Chang
Hsin Yi Wen
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW103101920A priority Critical patent/TWI487689B/en
Application granted granted Critical
Publication of TWI487689B publication Critical patent/TWI487689B/en
Publication of TW201529532A publication Critical patent/TW201529532A/en

Links

Description

白光有機發光元件及其製備方法White light organic light-emitting element and preparation method thereof

本發明係有關於白光有機發光元件及其製備方法。特別是有關於單一發光材料所形成之白光有機發光元件及其製備方法。The present invention relates to a white light organic light-emitting element and a method of producing the same. In particular, there are a white organic light-emitting element formed of a single luminescent material and a method of preparing the same.

近年來,有機發光二極體(organic light-emitting diodes,OLEDs)的發展受到學術界與產業界的高度重視。主要是因為有機發光二極體不僅具有輕薄短小、自發光、廣視角、反應時間短、高亮度等優點,更具有發展成大面積顯示器或可撓式薄膜裝置之潛力。然而,元件之壽命、效率、發光光色純度等仍存在許多需要克服的難題。習知之有機發光材料或元件,通常藉由以下幾種方式達到調變發光顏色之目的:(1)共蒸鍍摻雜物(dopant)材料,藉由能量轉移機制達到顏色調變之目的;(2)經由化學合成,於發光分子主鏈上接上不同之官能基;(3)使用含有兩層發光材料之元件,藉由不同電壓調控載子複合區以達到顏色調變之目的。以上之方法須使用兩種或兩種以上之發光材料,或須經化學合成或相關反應步驟,增加了製程上的困難。In recent years, the development of organic light-emitting diodes (OLEDs) has been highly valued by academics and industry. The main reason is that the organic light-emitting diode has the advantages of being light and thin, self-luminous, wide viewing angle, short reaction time, high brightness, and the like, and has the potential to develop into a large-area display or a flexible thin film device. However, there are still many problems that need to be overcome in terms of component lifetime, efficiency, luminescent color purity, and the like. Conventional organic light-emitting materials or components, usually by the following ways to achieve the purpose of modulating the color of light: (1) co-evaporation of dopant materials, through the energy transfer mechanism to achieve color modulation; 2) via chemical synthesis, different functional groups are attached to the main chain of the luminescent molecule; (3) using a component containing two layers of luminescent materials, the carrier recombination zone is regulated by different voltages to achieve color modulation. The above method requires the use of two or more luminescent materials, or chemical synthesis or related reaction steps, which increases the difficulty of the process.

白光有機發光技術除了可應用於顯示器之外,隨其發光效率的持續提升,白光有機發光元件在照明的應用日益重要。目前白光有機發光二極體多由光之三原色(紅、綠、藍)或 由兩種互補色混合而成。常見之白光有機發光二極體裝置包括:(1)經由連續蒸鍍而成之多層發光層裝置,且每一發光層發出單一色光;(2)單層高分子混摻裝置,其將所有發光成份混合於單一層間;及(3)將可發不同色光之客發光體摻雜於主發光體之單層結構。以上之方法在製程中需要多種的蒸鍍源數目,且有多種材料互相污染之疑慮。相較於含有數種發光成份之白光有機發光二極體,使用單一發光體之白光有機發光二極體具有高穩定性及再現性、製程簡便等優點。因此,開發單一材料可發白光之有機發光技術仍有其必要性存在。In addition to being applicable to displays, white light organic light-emitting technology has become increasingly important in lighting applications as its luminous efficiency continues to increase. At present, the white organic light-emitting diodes are mostly composed of the three primary colors of light (red, green, blue) or It is a mixture of two complementary colors. A common white light organic light emitting diode device comprises: (1) a plurality of light emitting layer devices formed by continuous evaporation, and each light emitting layer emits a single color light; (2) a single layer polymer mixing device, which will emit all the light The composition is mixed between the single layers; and (3) the guest illuminant capable of emitting different color lights is doped into the single layer structure of the main illuminant. The above method requires a plurality of types of vapor deposition sources in the process, and there are many kinds of materials that are contaminated with each other. Compared with a white organic light-emitting diode containing several kinds of luminescent components, a white light organic light-emitting diode using a single illuminant has the advantages of high stability and reproducibility, and simple process. Therefore, it is still necessary to develop an organic light-emitting technology in which a single material can emit white light.

本發明提供一種白光有機發光元件,包括:陽極;有機發光層位於陽極上,以及陰極位於有機發光層上,其中上述之有機發光層基本上由2,2',7,7'-四笓基-9,9'-旋環雙芴(TPSBF)所組成。The present invention provides a white organic light-emitting element comprising: an anode; an organic light-emitting layer on the anode; and a cathode on the organic light-emitting layer, wherein the organic light-emitting layer is substantially composed of 2, 2', 7, 7'-tetradecyl It consists of -9,9'-ring double bismuth (TPSBF).

本發明更提供一種白光有機發光元件之製備方法,包括以下步驟:提供基底;形成陽極於基底上;形成有機發光層於陽極上,其中有機發光層基本上由2,2',7,7'-四笓基-9,9'-旋環雙芴(TPSBF)所組成,以及形成陰極於發光層上。The invention further provides a method for preparing a white organic light-emitting element, comprising the steps of: providing a substrate; forming an anode on the substrate; forming an organic light-emitting layer on the anode, wherein the organic light-emitting layer is substantially composed of 2, 2', 7, 7' - Tetrakidenyl-9,9'-cyclohexane (TPSBF) is formed, and a cathode is formed on the light-emitting layer.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:The above and other objects, features and advantages of the present invention will become more <RTIgt;

100‧‧‧白光有機發光元件100‧‧‧White organic light-emitting elements

110‧‧‧基底110‧‧‧Base

120‧‧‧陽極120‧‧‧Anode

130‧‧‧有機發光單元130‧‧‧Organic lighting unit

131‧‧‧電洞注入層131‧‧‧ hole injection layer

132‧‧‧電洞傳輸層132‧‧‧ hole transport layer

133‧‧‧功能層133‧‧‧ functional layer

135‧‧‧有機發光層135‧‧‧ Organic light-emitting layer

136‧‧‧電子傳輸層136‧‧‧Electronic transport layer

137‧‧‧電子注入層137‧‧‧electron injection layer

138‧‧‧功能層138‧‧‧ functional layer

140‧‧‧陰極140‧‧‧ cathode

200‧‧‧製造方法200‧‧‧Manufacture method

210、220、230、240‧‧‧步驟210, 220, 230, 240 ‧ ‧ steps

第1圖為2,2',7,7'-四笓基-9,9'-旋環雙芴(2,2',7,7'-tetra-(pyren-1-yl)-9,9'-spirobifluorene,TPSBF)之分子結構。Figure 1 shows 2,2',7,7'-tetradecyl-9,9'-cyclohexane (2,2',7,7'-tetra-(pyren-1-yl)-9, Molecular structure of 9'-spirobifluorene, TPSBF).

第2圖為不同厚度之2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜光致發光光譜。Figure 2 is a photoluminescence spectrum of 2,2',7,7'-tetradecyl-9,9'-cyclonic bifluoride film of different thickness.

第2A圖為2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜(厚度為30nm)之光致發光光譜波形分解圖。Fig. 2A is an exploded view of the photoluminescence spectrum of a 2,2',7,7'-tetradecyl-9,9'-cyclohexane double iridium film (thickness: 30 nm).

第2B圖為2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜(厚度為50nm)之光致發光光譜波形分解圖。Fig. 2B is an exploded view of the photoluminescence spectrum of the 2,2',7,7'-tetradecyl-9,9'-cyclohexane double ruthenium film (thickness: 50 nm).

第2C圖為2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜(厚度為70nm)之光致發光光譜波形分解圖。Figure 2C is an exploded view of the photoluminescence spectrum of a 2,2',7,7'-tetradecyl-9,9'-cyclohexane bismuth film (thickness 70 nm).

第3圖為白光有機發光裝置示意圖。Figure 3 is a schematic diagram of a white light organic light-emitting device.

第4圖為白光有機發光元件製造方法之製程流程圖。Fig. 4 is a flow chart showing the process of manufacturing a white organic light emitting device.

第5圖為白光有機發光裝置I之配置及能階示意圖。FIG. 5 is a schematic diagram showing the configuration and energy level of the white organic light-emitting device 1.

第6圖為2T-NATA、NPB及Alq3 之分子結構。Figure 6 shows the molecular structure of 2T-NATA, NPB and Alq 3 .

第7圖為白光有機發光裝置I、II及III之電致發光光譜。Figure 7 is an electroluminescence spectrum of white organic light-emitting devices I, II and III.

第8A圖為白光有機發光裝置II之電致發光效率-電流密度變化圖。Fig. 8A is a graph showing the electroluminescence efficiency-current density change of the white organic light-emitting device II.

第8B圖為白光有機發光裝置II之功率效率-電流密度變化圖。Fig. 8B is a graph showing the power efficiency-current density change of the white organic light-emitting device II.

第8C圖為白光有機發光裝置II之電流密度-電壓變化圖。Fig. 8C is a current density-voltage change diagram of the white organic light-emitting device II.

第8D圖為白光有機發光裝置II之電致發光亮度-電流密度變化圖。Fig. 8D is a graph showing the electroluminescence luminance-current density change of the white organic light-emitting device II.

第9圖為白光有機發光裝置IV-VII之電致發光光譜。Figure 9 is an electroluminescence spectrum of a white organic light-emitting device IV-VII.

以下針對本發明之白光有機發光元件作詳細說明。應了解的是,以下敘述提供許多不同的實施例或例子以實施本發明之不同樣態。以下所述特定的元件及排列方式乃為簡單描述本發明,其僅用以舉例而非本發明之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本發明,不代表所討論之不同實施例及/或結構之間具有任何關連性。再者,當述及第一材料層位於第二材料層上或之上時,包括第一材料層與第二材料層直接接觸之情形。或者,亦可能間隔有一或更多其他材料層之情形,在此情形中,第一材料層與第二材料層之間可能不直接接觸。The white organic light-emitting device of the present invention will be described in detail below. It will be appreciated that the following description provides many different embodiments or examples to implement the invention. The specific elements and arrangements described below are intended to be illustrative of the invention and are merely illustrative and not limiting. Moreover, repeated numbers or labels may be used in different embodiments. These repetitions are merely for the purpose of simplicity and clarity of the invention and are not to be construed as a limitation of the various embodiments and/or structures discussed. Furthermore, when the first material layer is on or above the second material layer, the first material layer is in direct contact with the second material layer. Alternatively, it is also possible to have one or more layers of other materials interposed, in which case there may be no direct contact between the first material layer and the second material layer.

在本文中,「約」、「大約」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內。在此給定的數量為大約的數量,意即在沒有特定說明的情況下,仍可隱含「約」、「大約」之含義。As used herein, the terms "about" and "about" are generally meant to be within 20%, preferably within 10%, and more preferably within 5% of a given value or range. The quantity given here is an approximate quantity, meaning that the meaning of "about" or "about" may be implied without specific explanation.

本發明提供一種白光有機發光元件及其製備方法。上述白光有機發光元件之有機發光層基本上由2,2',7,7'-四笓基-9,9'-旋環雙芴(2,2',7,7'-tetra-(pyren-1-yl)-9,9'-spirobifluorene,TPSBF)所組成,並可經由不同之製程條件控制有機發光層中2,2',7,7'-四笓基-9,9'-旋環雙芴之型態,製得僅含單一發光材料之高效率及高穩定度之白光有機發光元件。The invention provides a white organic light-emitting element and a preparation method thereof. The organic light-emitting layer of the above white organic light-emitting element is substantially composed of 2,2',7,7'-tetradecyl-9,9'-cyclocyclic guanidine (2,2',7,7'-tetra-(pyren) -1-yl)-9,9'-spirobifluorene, TPSBF), and can control 2,2',7,7'-tetradecyl-9,9'-rotation in organic light-emitting layer through different process conditions The shape of the ring double bismuth produces a white light organic light-emitting element which contains only a single luminescent material with high efficiency and high stability.

第1圖顯示2,2',7,7'-四笓基-9,9'-旋環雙芴(2,2',7,7'-tetra-(pyren-1-yl)-9,9'-spirobifluorene,TPSBF)之分子結構。本發明之2,2',7,7'-四笓基-9,9'-旋環雙芴可由Suzuki偶合反應而得,其相關製備方法及特性分析已公開於ECS Journal of Solid State Science and Technology,1(3)R203-R107,2012及ChemPlusChem Volume 78,issue 10,page 1288-1295,其公開內容將完整地納入本案作為參考。舉例而言,可將芘硼酸(pyrene boronic acid)與2,2',7,7'-四溴-9,9'-旋環雙芴(2,2',7,7'-Tetrabromo-9,9'-spirobifluorene)溶於甲苯(Toluene)及乙醇(Ethanol)混合溶劑中,加入碳酸鈉溶液(Na2 CO3 )及催化劑進行反應,反應後經萃取純化可得2,2',7,7'-四笓基-9,9'-旋環雙芴。表1列出2,2',7,7'-四笓基-9,9'-旋環雙芴相關之物理性質。Figure 1 shows 2,2',7,7'-tetradecyl-9,9'-cyclohexane (2,2',7,7'-tetra-(pyren-1-yl)-9, Molecular structure of 9'-spirobifluorene, TPSBF). The 2,2',7,7'-tetradecyl-9,9'-cyclocyclic biguanide of the present invention can be obtained by Suzuki coupling reaction, and the related preparation method and characteristic analysis have been disclosed in ECS Journal of Solid State Science and Technology, 1 (3) R203-R107, 2012 and ChemPlus Chem Volume 78, issue 10, page 1288-1295, the disclosure of which is incorporated herein by reference in its entirety. For example, pyrene boronic acid can be combined with 2,2',7,7'-tetrabromo-9,9'-cyclocyclic guanidine (2,2',7,7'-Tetrabromo-9 , 9'-spirobifluorene) is dissolved in toluene (Toluene) and ethanol (Ethanol) mixed solvent, adding sodium carbonate solution (Na 2 CO 3 ) and a catalyst to carry out the reaction, and then extracting and purifying to obtain 2, 2', 7, 7'-tetradecyl-9,9'-coiled bivalve. Table 1 lists the physical properties associated with 2,2',7,7'-tetradecyl-9,9'-cyclohexane.

LUMO:最低未佔有分子軌域(lowest unoccupied molecular orbital) LUMO: lowest unoccupied molecular orbital

上述λmax (UV)、λmax (PL)及ΦF 是將2,2',7,7'-四笓基-9,9'-旋環雙芴溶於氯仿(CHCl3 ),濃度為4×10-3 M下測得。最高佔有分子軌域及最低未佔有分子軌域是使用Rilken KeiKi AC-2光電分光儀測得。The above λ max (UV), λ max (PL) and Φ F are 2,2′,7,7′-tetradecyl-9,9′-cyclohexafluorene dissolved in chloroform (CHCl 3 ) at a concentration of Measured at 4×10 -3 M. The highest occupied molecular orbital and the lowest unoccupied molecular orbital were measured using a Rilken KeiKi AC-2 photoelectric spectrometer.

2,2',7,7'-四笓基-9,9'-旋環雙芴係以旋環雙芴(spirobifluorene)作為結構中心,並於碳號2,2',7,7'的位置接上笓基官能基(pyrene),其旋環雙芴核心含有剛硬的芳香環,具有極佳的立體障礙,可減少分子間作用,提供高熱穩定性;笓基則具有高螢光發光效率及電子傳輸能力,並經由與旋環雙芴核心形成共價鍵降低其結晶性,使2,2',7,7'-四笓基-9,9'-旋環雙芴材料具有高發光效率及高玻璃轉移溫度。因此,2,2',7,7'-四笓基-9,9'-旋環雙芴之分子結構設計不僅可表現出優異的電荷傳輸和發光能力,亦可確保其於有機發光元件製備過程及後續應用之材料穩定性。2,2',7,7'-tetradecyl-9,9'-cyclocyclic fluorene is composed of spirobifluorene as the structural center and carbon number 2,2',7,7' The position is attached to a pyrene group, and the core of the cyclodane has a rigid aromatic ring, which has excellent steric hindrance, reduces intermolecular action and provides high thermal stability, and has a high fluorescence luminous efficiency. Electron transport capability and reduction of crystallinity by forming a covalent bond with the cyclopentadienyl core, resulting in high luminous efficiency of the 2,2',7,7'-tetradecyl-9,9'-cyclocyclic bisulfonium material And high glass transfer temperature. Therefore, the molecular structure design of 2,2',7,7'-tetradecyl-9,9'-cyclohexane is not only excellent in charge transport and luminescence, but also in the preparation of organic light-emitting elements. Material stability for the process and subsequent applications.

發明人將上述2,2',7,7'-四笓基-9,9'-旋環雙芴製備成不同厚度之薄膜,並分析其光致發光(Photoluminescence,PL)光譜。發現在2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜中存在三種放光機制,分別為:(a)分子本身放光,主要受分子內作用力影響,其放光波段約介於440nm~470nm(約為藍光);(b)分子聚集放光,主要受分子間作用力影響,其放光波段約介於490nm~510nm(約為綠光);(c)共軛波長較長之分子放光,主要受層與層之間作用力的影響,其放光波段約介於540nm~560 nm(約為黃綠光)。因此,只要精確控制有機發光層之各項鍍膜參數,調整較短波段及較長波段於有機發光層中之含量,即可達成以2,2',7,7'-四笓基-9,9'-旋環雙芴單一材料發出白光之目的。The inventors prepared the above 2,2',7,7'-tetradecyl-9,9'-cyclohexane fluorene into films of different thicknesses and analyzed their photoluminescence (PL) spectra. It is found that there are three kinds of luminescence mechanisms in the 2,2',7,7'-tetradecyl-9,9'-cyclocyclic bifluorene film, which are: (a) the molecule itself emits light, mainly by intramolecular force The effect is that the emission band is between 440 nm and 470 nm (about blue light); (b) the molecular concentration and the light are mainly affected by the intermolecular force, and the emission band is about 490 nm to 510 nm (about green light). (c) Molecular emission with longer conjugate wavelength, mainly affected by the interaction between layers, and its emission band is about 540nm~560 Nm (approximately yellow-green light). Therefore, as long as the coating parameters of the organic light-emitting layer are precisely controlled, and the content of the shorter wavelength band and the longer wavelength band in the organic light-emitting layer is adjusted, 2, 2', 7, 7'-tetradecyl-9 can be achieved. The 9'-ring double bismuth single material emits white light.

第2圖分別為2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜厚度為30nm、50nm及70nm之光致發光光譜(照光波長為358nm)。比較不同2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜厚度的光致發光光譜可知,每一光致發光光譜應包括至少三個重疊峰,且其主要放光波長分別位於456nm、500nm及550nm,而隨2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜厚度逐漸增加,其較長波之放光強度亦逐漸增加。Fig. 2 is a photoluminescence spectrum (illumination wavelength of 358 nm) of 2,2',7,7'-tetradecyl-9,9'-cyclohexane bismuth film with thicknesses of 30 nm, 50 nm and 70 nm, respectively. Comparing the photoluminescence spectra of different 2,2',7,7'-tetradecyl-9,9'-cyclocyclic bifluorene film thicknesses, each photoluminescence spectrum should include at least three overlapping peaks, and The main emission wavelengths are located at 456nm, 500nm and 550nm, respectively, and the thickness of the 2,2',7,7'-tetradecyl-9,9'-cyclohexane double ruthenium film is gradually increased, and the long-wavelength of the light is also increased. gradually increase.

假定每一個放光波段均為高斯分佈,更進一步將上述之光致發光光譜分解成三個放光波長的波形。第2A-2C圖分別為2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜厚度為30nm、50nm及70nm之光致發光光譜波形分解圖。由上述之波形分解圖中可發現,較長波之訊號強度隨2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜厚度成長,使得2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜之放光現象隨薄膜厚度增加產生紅位移(red shift)現象,且不同放光波長所觀察到的放光強度,可根據沈積條件或樣品(2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜)厚度產生變化。因此,可藉由不同之製程條件來控制2,2',7,7'-四笓基-9,9'-旋環雙芴之發光型態,甚至可於特定製程條件下得到寬頻譜之白光光譜。Assuming that each of the light-emitting bands has a Gaussian distribution, the above-mentioned photoluminescence spectrum is further decomposed into three light-emitting wavelength waveforms. Fig. 2A-2C is an exploded view of the photoluminescence spectrum of the 2,2',7,7'-tetradecyl-9,9'-cyclohexane double iridium film with thicknesses of 30 nm, 50 nm and 70 nm, respectively. It can be found from the above waveform decomposition diagram that the signal intensity of the longer wave grows with the thickness of the 2,2',7,7'-tetrameryl-9,9'-spin bicyclic film, making 2,2',7 , 7'-tetramercapto-9,9'-spin-ring double-twist film release phenomenon with red film shift due to the increase of film thickness, and the intensity of light observed at different emission wavelengths, according to deposition The thickness of the condition or sample (2,2',7,7'-tetradecyl-9,9'-cyclocyclic bifluorene film) varies. Therefore, the illumination pattern of the 2,2',7,7'-tetradecyl-9,9'-spin-ring double oxime can be controlled by different process conditions, and even a wide spectrum can be obtained under specific process conditions. White light spectrum.

第3圖為根據本揭露實施例之白光有機發光元件100之示意圖。白光有機發光元件100包括:基底110、陽極120 形成於基底110上、有機發光單元130形成於陽極120上、及陰極140形成於有機發光單元130上。其中,有機發光單元130包括基本上由2,2',7,7'-四笓基-9,9'-旋環雙芴所組成之有機發光層135。易言之,有機發光層135基本上只由2,2',7,7'-四笓基-9,9'-旋環雙芴所構成,即有機發光層135實質上不包括其他發光成份或可影響、改變2,2',7,7'-四笓基-9,9'-旋環雙芴發光型態之摻雜質。FIG. 3 is a schematic diagram of a white light organic light emitting device 100 according to an embodiment of the present disclosure. The white light organic light emitting element 100 includes a substrate 110 and an anode 120 Formed on the substrate 110, the organic light emitting unit 130 is formed on the anode 120, and the cathode 140 is formed on the organic light emitting unit 130. Wherein, the organic light emitting unit 130 includes an organic light emitting layer 135 consisting essentially of 2,2',7,7'-tetradecyl-9,9'-cyclohexane. In other words, the organic light-emitting layer 135 is basically composed only of 2,2',7,7'-tetradecyl-9,9'-cyclohexane, that is, the organic light-emitting layer 135 does not substantially include other light-emitting components. Or it can affect and change the doping of the 2,2',7,7'-tetradecyl-9,9'-cyclocyclic bifluorene type.

有機發光單元130在陽極120及有機發光層135之間可額外包括電洞注入層(hole injection layer,HIL)131及/或電洞傳輸層(hole transporting layer,HTL)132及/或其他一層或多層之功能層133(例如:同時具有電洞注入功能和電洞傳輸功能的功能層、緩衝層或電子阻擋層)。在一些實施例中,有機發光單元130可額外包括電洞注入層131位於陽極120上,以及電洞傳輸層132位於電洞注入層131上。The organic light emitting unit 130 may additionally include a hole injection layer (HIL) 131 and/or a hole transporting layer (HTL) 132 and/or another layer between the anode 120 and the organic light emitting layer 135 or A multi-layered functional layer 133 (for example, a functional layer, a buffer layer or an electron blocking layer having both a hole injection function and a hole transmission function). In some embodiments, the organic light emitting unit 130 may additionally include a hole injection layer 131 on the anode 120 and a hole transport layer 132 on the hole injection layer 131.

有機發光單元130在有機發光層135及陰極140之間亦可額外包括電子傳輸層(electron transporting layer,ETL)136及/或電子注入層(electron injection layer,EIL)137及/或其他一層或多層之功能層138(例如:電洞阻擋層或同時具有電子傳輸功能和電子注入功能的功能層),位於有機發光層135及陰極140之間。在一些實施例中,有機發光單元130可額外包括電子傳輸層136位於有機發光層135上,以及電子注入層137位於電子傳輸層136上。The organic light emitting unit 130 may additionally include an electron transport layer (ETL) 136 and/or an electron injection layer (EIL) 137 and/or another layer or layers between the organic light emitting layer 135 and the cathode 140. The functional layer 138 (for example, a hole blocking layer or a functional layer having both an electron transport function and an electron injecting function) is located between the organic light emitting layer 135 and the cathode 140. In some embodiments, the organic light emitting unit 130 may additionally include an electron transport layer 136 on the organic light emitting layer 135 and an electron injection layer 137 on the electron transport layer 136.

第4圖為根據本揭露實施例之白光有機發光元件製造方法200之製程流程圖。必須了解的是:亦可提供額外的 步驟於製造方法200之前、中、後,而在本揭露各實施例中,亦可取代或移除部分以下所描述的步驟。FIG. 4 is a flow chart of a process for fabricating a white light organic light emitting device 200 according to an embodiment of the present disclosure. It must be understood that additional The steps are before, during, and after the manufacturing method 200, and in the embodiments of the present disclosure, some of the steps described below may also be replaced or removed.

根據第4圖白光有機發光元件製造方法200,步驟210為提供基底。基底可使用有機發光元件中常用的各種剛性及可撓性基底,如:玻璃基底、塑膠基底、或金屬基底,但不限於此。在一實施例中,基底為玻璃基底。在一實施例中,基底於使用前可先經超聲波清洗及氧氣電漿(O2 plasma)處理。According to the white light organic light emitting device manufacturing method 200 of Fig. 4, step 210 is to provide a substrate. The substrate may use various rigid and flexible substrates commonly used in organic light-emitting elements, such as a glass substrate, a plastic substrate, or a metal substrate, but is not limited thereto. In an embodiment, the substrate is a glass substrate. In one embodiment, the substrate may be first ultrasonically cleaned and treated with oxygen plasma (O 2 plasma) prior to use.

根據第4圖白光有機發光元件製造方法200,接續步驟220為形成陽極。以第3圖為例,形成陽極120於基底110上。陽極為正向電壓的連接層,應具有較好的導電性能、可見光透明性以及較高的功函數。陽極120之材料包括金屬、透明導電氧化物、導電聚合物或其複合材料與層疊結構、或其他本領域已知材料。陽極120可具有單層或者兩層以上的多層結構。舉例而言,陽極材料可包括但不限於:透明導電氧化物。其中,透明導電氧化物可以是至少一種選自銦(In)、錫(Sn)、鋅(Zn)、鎵(Ga)、鈰(Ce)、鎘(Cd)、鎂(Mg)、鈹(Be)、銀(Ag)、鉬(Mo)、釩(V)、銅(Cu)、銥(Ir)、銠(Rh)、釕(Ru)、鎢(W)、鈷(Co)、鎳(Ni)、錳(Mn)、鋁(Al)和鑭(La)的氧化物。陽極120之材料較佳包括氧化銦錫(ITO)或氧化銦鋅(IZO),亦可使用覆有透明導電氧化物之基板以省去形成陽極120之步驟。在一實施例中,基底為覆有氧化銦錫之玻璃基底。According to the white light organic light emitting device manufacturing method 200 of Fig. 4, the subsequent step 220 is to form an anode. Taking FIG. 3 as an example, the anode 120 is formed on the substrate 110. The anode is a connection layer of forward voltage, which should have good electrical conductivity, visible light transparency and high work function. The material of the anode 120 includes a metal, a transparent conductive oxide, a conductive polymer or a composite thereof and a laminated structure, or other materials known in the art. The anode 120 may have a single layer or a multilayer structure of two or more layers. For example, the anode material can include, but is not limited to, a transparent conductive oxide. Wherein, the transparent conductive oxide may be at least one selected from the group consisting of indium (In), tin (Sn), zinc (Zn), gallium (Ga), cerium (Ce), cadmium (Cd), magnesium (Mg), and cerium (Be). ), silver (Ag), molybdenum (Mo), vanadium (V), copper (Cu), iridium (Ir), rhenium (Rh), ruthenium (Ru), tungsten (W), cobalt (Co), nickel (Ni ), oxides of manganese (Mn), aluminum (Al) and lanthanum (La). The material of the anode 120 preferably includes indium tin oxide (ITO) or indium zinc oxide (IZO), and a substrate coated with a transparent conductive oxide may be used to omit the step of forming the anode 120. In one embodiment, the substrate is a glass substrate coated with indium tin oxide.

陽極120可經由以下任一方法形成:物理氣相沉積(PVD),如:金屬蒸鍍或濺鍍、化學氣相沉積(CVD)、金屬有機化學氣相沉積法(MOCVD)、電漿輔助化學氣相沉積 (PECVD)、常壓化學氣相沉積(APCVD)、低壓化學氣相沉積(LPCVD)、高密度電漿化學氣相沉積(HDPCVD)、原子層化學氣相沉積(ALCVD),但不限於此。The anode 120 can be formed by any of the following methods: physical vapor deposition (PVD), such as: metal evaporation or sputtering, chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), plasma-assisted chemistry Vapor deposition (PECVD), atmospheric pressure chemical vapor deposition (APCVD), low pressure chemical vapor deposition (LPCVD), high density plasma chemical vapor deposition (HDPCVD), atomic layer chemical vapor deposition (ALCVD), but are not limited thereto.

根據第4圖白光有機發光元件製造方法200,接續步驟230形成有機發光單元。以第3圖為例,形成有機發光單元130於陽極120上。According to the white light organic light emitting device manufacturing method 200 of FIG. 4, the organic light emitting unit is formed in the subsequent step 230. Taking FIG. 3 as an example, the organic light emitting unit 130 is formed on the anode 120.

有機發光單元130包括有機發光層135,其基本上由2,2',7,7'-四笓基-9,9'-旋環雙芴所組成。The organic light emitting unit 130 includes an organic light emitting layer 135 which is substantially composed of 2,2',7,7'-tetradecyl-9,9'-cyclocyclic double fluorene.

有機發光單元130可額外包括電洞注入層131及/或電洞傳輸層132及/或其他一層或多層之功能層133(例如:同時具有電洞注入功能和電洞傳輸功能的功能層、緩衝層或電子阻擋層),位於陽極120及有機發光層135之間。The organic light emitting unit 130 may additionally include a hole injection layer 131 and/or a hole transport layer 132 and/or other one or more functional layers 133 (eg, a functional layer having both a hole injection function and a hole transfer function, buffering) A layer or an electron blocking layer) is located between the anode 120 and the organic light-emitting layer 135.

為有助於電洞注入有機發光層,電洞注入層的材料以具有大功函的材料為佳。電洞注入層131之材料可選用已知之電洞注入材料,其具體實例包括:DNTPD(N1,N1'-(biphenyl-4,4'-diyl)bis(N1-phenyl-N4,N4-di-m-tolylbenzene-1,4-diamine))、4,4'4"-三(N,N-二苯基氨基)三苯基胺(TDATA)、4,4',4"-三[2-萘基苯基氨基]三苯基胺(4,4',4"-Tris[N-(2-naphthyl)-N-phenylamino]triphenylamine,2T-NATA)、聚苯胺/十二基苯橫酸(Polyaniline/Dodecylbenzenesulfonic acid,Pani/DBSA)、聚(3,4-乙烯基二氧噻吩)/聚(4-苯乙烯橫酸鹽)[Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate),PEDOT/PSS]、聚苯胺/樟腦橫酸(PolyaniIine/Camphor sulfonicacid,Pani/CSA)或聚苯胺/聚(4-苯乙烯橫酸鹽[(Polyaniline)/Poly(4-styrenesulfonate),PANI/PSS]等,但不限於此。In order to facilitate the injection of the hole into the organic light-emitting layer, the material of the hole injection layer is preferably a material having a large work function. The material of the hole injection layer 131 may be selected from known hole injection materials, and specific examples thereof include: DNTPD (N1, N1'-(biphenyl-4, 4'-diyl) bis (N1-phenyl-N4, N4-di- M-tolylbenzene-1,4-diamine)), 4,4'4"-tris(N,N-diphenylamino)triphenylamine (TDATA), 4,4',4"-three [2- Naphthylphenylamino]triphenylamine (4,4',4"-Tris[N-(2-naphthyl)-N-phenylamino]triphenylamine, 2T-NATA), polyaniline/dodecylbenzene Polyaniline/Dodecylbenzenesulfonic acid, Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfate),Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate), PEDOT/PSS], polyaniline/camphoric acid (PolyaniIine/Camphor) Sulfonic acid, Pani/CSA) or polyaniline/poly (4-styrenesulfonate), PANI/PSS, etc., but is not limited thereto.

電洞傳輸層132之材料可選用已知之電洞傳輸材料,其具體實例包括:雙胺(diamine)化合物、芳香族胺基化合物、三芳香胺衍生物(triarylamine derivatives)、二苯基二萘基朕苯二胺(NPB)系列、N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-聯苯-4,4'-二胺(TPD)、雙雙酚苯(Spiro-NPB)、聚(3,4-乙烯基二氧噻吩)/聚(4-苯乙烯橫酸鹽)[Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate),PEDOT/PSS],但不限於此。The material of the hole transport layer 132 may be a known hole transport material, and specific examples thereof include a diamine compound, an aromatic amine compound, a triarylamine derivative, and a diphenylnaphthyl group. Indole phenylenediamine (NPB) series, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD ), bisphenol phenol (Spiro-NPB), poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) [Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate) , PEDOT/PSS], but not limited to this.

有機發光單元130亦可額外包括電子傳輸層136及/或電子注入層137及/或其他一層或多層之功能層138(例如:電洞阻擋層或同時具有電子傳輸功能和電子注入功能的功能層),位於有機發光層135及陰極140之間。The organic light emitting unit 130 may additionally include an electron transport layer 136 and/or an electron injection layer 137 and/or another one or more functional layers 138 (eg, a hole blocking layer or a functional layer having both an electron transport function and an electron injection function) ) is located between the organic light-emitting layer 135 and the cathode 140.

電子注入層137之材料具體實例可包括:金屬,如:鎂(Mg)、鈣(Ca)、鈉(Na)、鉀(K)、鈦(Ti)、銦(In)、釔(Y)、鋰(Li)、鎵(Ga)、鋁(Al)、銀(Ag)、錫(Sn)、鉛(Pb)或其合金;多層結構的材料,如:LiF/Al或LiO2 /Al等,亦可以使用與電洞注入層131相同的材料,但不限於此。Specific examples of the material of the electron injecting layer 137 may include: metals such as magnesium (Mg), calcium (Ca), sodium (Na), potassium (K), titanium (Ti), indium (In), ytterbium (Y), Lithium (Li), gallium (Ga), aluminum (Al), silver (Ag), tin (Sn), lead (Pb) or alloys thereof; materials of a multilayer structure such as LiF/Al or LiO 2 /Al, The same material as the hole injection layer 131 may be used, but is not limited thereto.

電子傳輸層136的材料是能夠從電子注入層137接收電子並將電子輸送到發光層135的材料,較合適的是具有高電子遷移率的材料。其具體實例包括:8-羥基喹啉(8-hydroxyquinoline)的鋁錯合物、包含三(8-羥基喹啉)鋁(Alq3 ) 的錯合物、有機基團化合物、羥基黃酮-金屬錯合物等,但不限於此。The material of the electron transport layer 136 is a material capable of receiving electrons from the electron injection layer 137 and transporting the electrons to the light emitting layer 135, and is more suitably a material having high electron mobility. Specific examples thereof include: an aluminum complex of 8-hydroxyquinoline, a complex containing tris(8-hydroxyquinoline)aluminum (Alq 3 ), an organic group compound, and a hydroxyflavone-metal complex. Compounds, etc., but are not limited thereto.

有機發光單元130可透過沉積方法形成,例如可經由以下任一方法形成:物理氣相沉積(PVD),如:金屬蒸鍍或濺鍍、化學氣相沉積(CVD)、金屬有機化學氣相沉積法(MOCVD)、電漿輔助化學氣相沉積(PECVD)、常壓化學氣相沉積(APCVD)、低壓化學氣相沉積(LPCVD)、高密度電漿化學氣相沉積(HDPCVD)、原子層化學氣相沉積(ALCVD),但不限於此。有機發光單元130亦可使用如旋塗法、浸塗法、噴墨印刷法等方法形成。The organic light emitting unit 130 can be formed by a deposition method, for example, by any of the following methods: physical vapor deposition (PVD), such as metal evaporation or sputtering, chemical vapor deposition (CVD), metal organic chemical vapor deposition. Method (MOCVD), plasma assisted chemical vapor deposition (PECVD), atmospheric pressure chemical vapor deposition (APCVD), low pressure chemical vapor deposition (LPCVD), high density plasma chemical vapor deposition (HDPCVD), atomic layer chemistry Gas phase deposition (ALCVD), but is not limited thereto. The organic light-emitting unit 130 can also be formed by a method such as a spin coating method, a dip coating method, or an inkjet printing method.

在一些實施例中,形成有機發光層135之方法為蒸鍍,並可經由調整鍍膜速率、鍍膜厚度、蒸鍍源預熱條件等參數,達到調控光色之目的。In some embodiments, the method of forming the organic light-emitting layer 135 is vapor deposition, and the color light can be adjusted by adjusting parameters such as coating rate, coating thickness, and evaporation source preheating conditions.

在一些實施例中,有機發光層135可具有介於10nm~100nm之厚度,例如:厚度為10nm~90nm,再例如:厚度為30nm~70nm。若有激發光層厚度小於5nm,則2,2',7,7'-四笓基-9,9'-旋環雙芴分子於基板上呈顆粒相,可能造成膜層不均勻,或是導致電子傳輸層與電動傳輸層直接接觸,造成激子衰減;若有激發光層厚度大於100nm可能導致光色偏離白光區,或是激子再結合區域脫離發光層導致效率下降。In some embodiments, the organic light-emitting layer 135 may have a thickness of 10 nm to 100 nm, for example, a thickness of 10 nm to 90 nm, and further, for example, a thickness of 30 nm to 70 nm. If the thickness of the excitation layer is less than 5 nm, the 2,2',7,7'-tetradecyl-9,9'-cyclohexane molecule may be in a particulate phase on the substrate, which may cause unevenness of the film layer, or The direct contact between the electron transport layer and the electromotive transport layer causes exciton attenuation; if the thickness of the excitation light layer is greater than 100 nm, the light color may deviate from the white light region, or the exciton recombination region may be decoupled from the light emitting layer, resulting in a decrease in efficiency.

在一些實施例中,有機發光層135可經由介於0.01nm/sec~0.5nm/sec之鍍膜速率蒸鍍而成,例如:鍍膜速率介於0.01nm/sec~0.4nm/sec,再例如:鍍膜速率介於0.02nm/sec~0.35nm/sec。在一些實施例中,蒸鍍速率越慢,2,2',7,7'-四 笓基-9,9'-旋環雙芴受熱時間越長,具有較充足的時間形成分子聚集,可使較長波段之發光強度逐漸增強。反之,蒸鍍速率越快,2,2',7,7'-四笓基-9,9'-旋環雙芴分子聚集行為較不明顯,其較長波之發光強度較弱。若蒸鍍速率小於0.01nm/sec目前機台無法進行偵測;而蒸鍍速率大於0.5nm/sec可能超出材料裂解溫度,導致材料變性。In some embodiments, the organic light-emitting layer 135 can be deposited by a deposition rate between 0.01 nm/sec and 0.5 nm/sec, for example, a coating rate of between 0.01 nm/sec and 0.4 nm/sec, for example: The coating rate is between 0.02 nm/sec and 0.35 nm/sec. In some embodiments, the slower the evaporation rate, 2, 2', 7, 7'-four The longer the heating time of the thiol-9,9'-ring ring is, the more time it takes to form molecular aggregation, which can gradually increase the luminous intensity of the longer band. On the contrary, the faster the evaporation rate, the 2,2',7,7'-tetradecyl-9,9'-cyclohexane fluorene molecular aggregation behavior is less obvious, and the longer wavelength luminescence intensity is weaker. If the evaporation rate is less than 0.01 nm/sec, the machine cannot detect it; and the evaporation rate of more than 0.5 nm/sec may exceed the material cracking temperature, resulting in material denaturation.

在一些實施例中,蒸鍍有機發光層135前可先以介於300℃-550℃之間的溫度預熱蒸鍍源。例如:預熱溫度介於350℃-540℃之間,再例如:預熱溫度介於400℃-530℃之間。在一些實施例中,預熱蒸鍍源與減緩鍍膜速率具有類似之效果,經由預熱將2,2',7,7'-四笓基-9,9'-旋環雙芴材料溫度加熱至接近或高於其昇華溫度(約450℃),則有助於2,2',7,7'-四笓基-9,9'-旋環雙芴分子進行排列聚集,待其分子團變大後再進行蒸鍍,可使較長波段之發光強度增強。若預熱溫度小於300℃則無法有效加熱2,2',7,7'-四笓基-9,9'-旋環雙芴材料接近或高於其昇華溫度;而加熱溫度高於550℃,則2,2',7,7'-四笓基-9,9'-旋環雙芴形成之聚集分子團過大,不利於蒸鍍,亦可能超出材料裂解溫度,導致材料變性。In some embodiments, the vapor deposition source may be preheated at a temperature between 300 ° C and 550 ° C prior to evaporation of the organic light emissive layer 135 . For example, the preheating temperature is between 350 ° C and 540 ° C, and for example: the preheating temperature is between 400 ° C and 530 ° C. In some embodiments, the preheated evaporation source has a similar effect as slowing the coating rate, and the temperature of the 2,2',7,7'-tetradecyl-9,9'-ring bimetallic material is heated by preheating. To near or above its sublimation temperature (about 450 ° C), it helps the 2,2',7,7'-tetradecyl-9,9'-cyclocyclic bisulfon molecule to be arranged and aggregated, and its molecular group After the enlargement is carried out, evaporation is performed to increase the luminous intensity of the longer wavelength band. If the preheating temperature is less than 300 °C, the 2,2',7,7'-tetradecyl-9,9'-cyclohexane bismuth material can not be effectively heated to be close to or higher than its sublimation temperature; and the heating temperature is higher than 550 °C. Then, the 2,2',7,7'-tetradecyl-9,9'-cyclohexane double oxime formed an aggregated molecular group that is too large, which is not conducive to evaporation, and may exceed the material cracking temperature, resulting in material denaturation.

在一些實施例中,有機發光層135可具有介於450nm~620nm的發光峰值,例如:發光峰值介於450nm~600nm,再例如:發光峰值介於470nm~570nm。在一實施例中,有機發光層135具有介於440nm~470nm的發光峰值。另一實施例中,有機發光層135具有介於470nm~490nm的發光峰值。再一實施例中,有機發光層135具有介於490nm~520nm 的發光峰值。又一實施例中,有機發光層135具有介於540nm~560nm的發光峰值。In some embodiments, the organic light-emitting layer 135 may have an emission peak between 450 nm and 620 nm, for example, an emission peak between 450 nm and 600 nm, and another example, an emission peak between 470 nm and 570 nm. In an embodiment, the organic light-emitting layer 135 has an emission peak of between 440 nm and 470 nm. In another embodiment, the organic light-emitting layer 135 has an emission peak of between 470 nm and 490 nm. In still another embodiment, the organic light-emitting layer 135 has a wavelength between 490 nm and 520 nm. The luminescence peak. In still another embodiment, the organic light-emitting layer 135 has an emission peak of between 540 nm and 560 nm.

根據第4圖白光有機發光元件製造方法200,接續步驟240形成陰極。以第3圖為例,形成陰極140於有機發光單元130上。According to the white light organic light emitting device manufacturing method 200 of Fig. 4, the cathode is formed in the subsequent step 240. Taking FIG. 3 as an example, a cathode 140 is formed on the organic light emitting unit 130.

陰極140之材料應具有較好的導電性能和較低的功函數,其具體實例可包括金屬、透明導電氧化物、導電聚合物或其複合材料與層疊結構、或其他本領域已知材料。陰極140可具有單層或者兩層以上的多層結構。舉例而言,陰極140之材料可包括但不限於:鎂(Mg)、鈣(Ca)、鈉(Na)、鉀(K)、鈦(Ti)、銦(In)、釔(Y)、鋰(Li)、鎵(Ga)、鋁(Al)、錫(Sn)、鉛(Pb)、上述與銅(Cu)、金(Au)或銀(Ag)之合金、緩衝絕緣層[如:氟化鋰(LiF)]及其組合。陰極較佳可由鋁(Al)或氟化鋰/鋁(LiF/Al)形成。在一些實施例中,陰極材料包括氟化鋰/鋁(LiF/Al)。The material of the cathode 140 should have good electrical conductivity and a low work function, and specific examples thereof may include a metal, a transparent conductive oxide, a conductive polymer or a composite thereof and a laminated structure, or other materials known in the art. The cathode 140 may have a single layer or a multilayer structure of two or more layers. For example, the material of the cathode 140 may include, but is not limited to, magnesium (Mg), calcium (Ca), sodium (Na), potassium (K), titanium (Ti), indium (In), yttrium (Y), lithium. (Li), gallium (Ga), aluminum (Al), tin (Sn), lead (Pb), the above alloy with copper (Cu), gold (Au) or silver (Ag), buffer insulation layer [eg: fluorine Lithium (LiF)] and combinations thereof. The cathode is preferably formed of aluminum (Al) or lithium fluoride/aluminum (LiF/Al). In some embodiments, the cathode material comprises lithium fluoride/aluminum (LiF/Al).

陰極140可經由以下任一方法形成:物理氣相沉積(PVD),如:金屬蒸鍍或濺鍍、化學氣相沉積(CVD)、金屬有機化學氣相沉積法(MOCVD)、電漿輔助化學氣相沉積(PECVD)、常壓化學氣相沉積(APCVD)、低壓化學氣相沉積(LPCVD)、高密度電漿化學氣相沉積(HDPCVD)、原子層化學氣相沉積(ALCVD),但不限於此。The cathode 140 can be formed by any of the following methods: physical vapor deposition (PVD), such as: metal evaporation or sputtering, chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), plasma assisted chemistry. Vapor deposition (PECVD), atmospheric pressure chemical vapor deposition (APCVD), low pressure chemical vapor deposition (LPCVD), high density plasma chemical vapor deposition (HDPCVD), atomic layer chemical vapor deposition (ALCVD), but not Limited to this.

在一些實施例中,陽極、有機發光元件及陰極是經由連續蒸鍍的方式形成。In some embodiments, the anode, the organic light emitting element, and the cathode are formed by continuous evaporation.

綜上所述,根據本發明所提供之白光有機發光元件,其發光層主要由2,2',7,7'-四笓基-9,9'-旋環雙芴所組成。 2,2',7,7'-四笓基-9,9'-旋環雙芴小分子螢光發光材料具有三個主要放光波段約介於440nm~470nm、490nm~510nm及540nm~560nm,且2,2',7,7'-四笓基-9,9'-旋環雙芴於不同聚集型態下具有不同之放光行為,可在不摻雜其他材料下形成單層、單一材料之白光有機發光元件,在較佳實施例中其最大亮度高於45,000cd/m2 ,較佳高於55,000cd/m2 ,而發光效率高於5.5cd/A,較佳高於6cd/A。In summary, according to the white light organic light-emitting element provided by the present invention, the light-emitting layer is mainly composed of 2,2',7,7'-tetradecyl-9,9'-cyclodane. The 2,2',7,7'-tetradecyl-9,9'-cyclohexane big molecule fluorescent luminescent material has three main emission bands of about 440 nm to 470 nm, 490 nm to 510 nm, and 540 nm to 560 nm. And 2,2',7,7'-tetradecyl-9,9'-cyclohexane has different light-releasing behaviors under different aggregation patterns, and can form a single layer without doping other materials. A white light organic light-emitting element of a single material, in a preferred embodiment, has a maximum luminance of more than 45,000 cd/m 2 , preferably more than 55,000 cd/m 2 , and a luminous efficiency of more than 5.5 cd/A, preferably higher than 6 cd. /A.

【製備例】合成2,2',7,7'-四笓基-9,9'-旋環雙芴[Preparation Example] Synthesis of 2,2',7,7'-tetradecyl-9,9'-cyclocyclic guanidine

將4.06mmol(1.00g)芘硼酸(pyrene boronic acid)與0.79mmol(0.51g)2,2',7,7'-四溴-9,9'-旋環雙芴(2,2',7,7'-Tetrabromo-9,9'-spirobifluorene)溶於甲苯(Toluene)及乙醇(Ethanol)體積比為5:3之混合溶劑中,加入4.80mmol(2.40ml)濃度為2M之碳酸鈉溶液(Na2 CO3 )及47mg(4.0mol%)四(三苯基磷)化鈀[Tetrakis(triphenylphosphine)palladium,Pd(PPh3 )4 ],於氮氣環境下加熱迴流。反應24小時後,停止加熱並加入100ml的水,待其冷卻後以氯仿萃取產物,最後清洗純化得到2,2',7,7'-四笓基-9,9'-旋環雙芴。4.06 mmol (1.00 g) of pyrene boronic acid and 0.79 mmol (0.51 g) of 2,2',7,7'-tetrabromo-9,9'-cyclocyclic guanidine (2,2',7 , 7'-Tetrabromo-9, 9'-spirobifluorene) was dissolved in a mixed solvent of toluene and ethanol (Ethanol) in a volume ratio of 5:3, and 4.80 mmol (2.40 ml) of a 2 M sodium carbonate solution was added ( Na 2 CO 3 ) and 47 mg (4.0 mol%) of tetrakis(triphenylphosphine)palladium, Pd(PPh 3 ) 4 ], were heated under reflux under a nitrogen atmosphere. After 24 hours of reaction, the heating was stopped and 100 ml of water was added, and after cooling, the product was extracted with chloroform, and finally washed and purified to obtain 2,2',7,7'-tetradecyl-9,9'-cyclocyclobiguanide.

【實施例1】[Example 1]

使用玻璃基底,其上覆有片電阻約為10Ω.cm,厚度為170nm之氧化銦錫(indium tin oxide,ITO)。進行沉積之前,基底先於異丙醇(isopropanol)和去離子水中超聲波清洗,隨後經氧氣電漿(O2 plasma)處理。接著將基底置入沈積室中, 在10-6 托(torr)之壓力下依序將2T-NATA、NPB、2,2',7,7'-四笓基-9,9'-旋環雙芴、Alq3 、氟化鋰(LiF)及鋁(Al)蒸鍍到基底上,過程中不破真空,形成結構為ITO(170nm)/2T-NATA(15nm)/NPB(65nm)/TPSBF(30nm)/Alq3 (30nm)/LiF(0.8nm)/Al(200nm)之白光有機發光裝置I,其中2,2',7,7'-四笓基-9,9'-旋環雙芴是以固定鍍膜速率0.1nm/sec蒸鍍而成。第5圖為上述白光有機發光裝置I之配置及能階示意圖。第6圖顯示2T-NATA、NPB及Alq3 之分子結構,其分別作為此白光有機發光元件之電洞注入層、電洞傳輸層及電子傳輸層,而ITO及LiF/Al則分別作為陽極及陰極。A glass substrate is used which is covered with a sheet resistance of about 10 Ω. Cm, indium tin oxide (ITO) having a thickness of 170 nm. Prior to deposition, the substrate was ultrasonically cleaned prior to isopropanol and deionized water followed by oxygen plasma (O 2 plasma). The substrate is then placed in a deposition chamber, and 2T-NATA, NPB, 2,2', 7,7'-tetradecyl-9,9'-rings are sequentially placed under a pressure of 10 -6 torr. Bismuth, Alq 3 , lithium fluoride (LiF) and aluminum (Al) are evaporated onto the substrate without breaking the vacuum, and the structure is ITO (170 nm) / 2T-NATA (15 nm) / NPB (65 nm) / TPSBF ( White light organic light-emitting device I of 30 nm)/Alq 3 (30 nm)/LiF (0.8 nm)/Al (200 nm), wherein 2,2',7,7'-tetradecyl-9,9'-ring ring It is formed by vapor deposition at a fixed coating rate of 0.1 nm/sec. FIG. 5 is a schematic diagram showing the configuration and energy level of the white organic light-emitting device 1. Figure 6 shows the molecular structures of 2T-NATA, NPB, and Alq 3 , which serve as a hole injection layer, a hole transport layer, and an electron transport layer of the white organic light-emitting device, respectively, and ITO and LiF/Al serve as anodes, respectively. cathode.

【實施例2】[Example 2]

使用玻璃基底,其上覆有片電阻約為10Ω.cm,厚度為170nm之氧化銦錫(indium tin oxide,ITO)。進行沉積之前,基底先於異丙醇(isopropanol)和去離子水中超聲波清洗,隨後經氧氣電漿(O2 plasma)處理。接著將基底置入沈積室中,在10-6 托(torr)之壓力下依序將2T-NATA、NPB、2,2',7,7'-四笓基-9,9'-旋環雙芴、Alq3 、氟化鋰(LiF)及鋁(Al)蒸鍍到基底上,過程中不破真空,形成結構為ITO(170nm)/2T-NATA(15nm)/NPB(65nm)/TPSBF(50nm)/Alq3 (30nm)/LiF(0.8nm)/Al(200nm)之白光有機發光裝置II,其中2,2',7,7'-四笓基-9,9'-旋環雙芴是以固定鍍膜速率0.1nm/sec蒸鍍而成。A glass substrate is used which is covered with a sheet resistance of about 10 Ω. Cm, indium tin oxide (ITO) having a thickness of 170 nm. Prior to deposition, the substrate was ultrasonically cleaned prior to isopropanol and deionized water followed by oxygen plasma (O 2 plasma). The substrate is then placed in a deposition chamber, and 2T-NATA, NPB, 2,2', 7,7'-tetradecyl-9,9'-ring is sequentially placed under a pressure of 10 -6 torr. Bismuth, Alq 3 , lithium fluoride (LiF) and aluminum (Al) are evaporated onto the substrate without breaking the vacuum, and the structure is ITO (170 nm) / 2T-NATA (15 nm) / NPB (65 nm) / TPSBF ( White light organic light-emitting device II of 50 nm)/Alq 3 (30 nm)/LiF (0.8 nm)/Al (200 nm), wherein 2,2',7,7'-tetradecyl-9,9'-ring ring It is formed by vapor deposition at a fixed coating rate of 0.1 nm/sec.

【實施例3】[Example 3]

使用玻璃基底,其上覆有片電阻約為10Ω.cm,厚度為170nm之氧化銦錫(indium tin oxide,ITO)。進行沉積之前,基底先於異丙醇(isopropanol)和去離子水中超聲波清洗,隨後經氧氣電漿(O2 plasma)處理。接著將基底置入沈積室中,在10-6 托(torr)之壓力下依序將2T-NATA、NPB、2,2',7,7'-四笓基-9,9'-旋環雙芴、Alq3 、氟化鋰(LiF)及鋁(Al)蒸鍍到基底上,過程中不破真空,形成結構為ITO(170nm)/2T-NATA(15nm)/NPB(65nm)/TPSBF(70nm)/Alq3 (30nm)/LiF(0.8nm)/Al(200nm)之白光有機發光裝置III,其中2,2',7,7'-四笓基-9,9'-旋環雙芴是以固定鍍膜速率0.1nm/sec蒸鍍而成。A glass substrate is used which is covered with a sheet resistance of about 10 Ω. Cm, indium tin oxide (ITO) having a thickness of 170 nm. Prior to deposition, the substrate was ultrasonically cleaned prior to isopropanol and deionized water followed by oxygen plasma (O 2 plasma). The substrate is then placed in a deposition chamber, and 2T-NATA, NPB, 2,2', 7,7'-tetradecyl-9,9'-ring is sequentially placed under a pressure of 10 -6 torr. Bismuth, Alq 3 , lithium fluoride (LiF) and aluminum (Al) are evaporated onto the substrate without breaking the vacuum, and the structure is ITO (170 nm) / 2T-NATA (15 nm) / NPB (65 nm) / TPSBF ( White light organic light-emitting device III of 70 nm)/Alq 3 (30 nm)/LiF (0.8 nm)/Al (200 nm), wherein 2,2',7,7'-tetradecyl-9,9'-ring ring It is formed by vapor deposition at a fixed coating rate of 0.1 nm/sec.

第7圖為白光有機發光裝置I、II及III之電致發光(Electroluminescence,EL)光譜,表2列有白光有機發光裝置I、II及III之各項性質。Fig. 7 is an electroluminescence (EL) spectrum of white organic light-emitting devices I, II and III, and Table 2 lists various properties of white organic light-emitting devices I, II and III.

其中,ηext 、ηc* 、ηL* 及ηp* 為各裝置之最大值,ηc、ηL及ηp為各裝置於電流密度為20mA/cm2 下之測量值。電致發光CIE座標於電壓為7V下測得。Here, η ext , ηc * , ηL * and ηp * are the maximum values of the respective devices, and ηc, ηL and ηp are measured values of the respective devices at a current density of 20 mA/cm 2 . The electroluminescence CIE coordinates were measured at a voltage of 7V.

由上述結果可知,將2,2',7,7'-四笓基-9,9'-旋環雙芴製作成有機發光元件後,元件之電致發光光譜比2,2',7,7'-四笓基-9,9'-旋環雙芴薄膜之光致發光光譜更為寬廣,且波長介於500nm~600nm之發光強度隨鍍膜厚度上升逐漸增強。當固定鍍膜速率為0.1nm/sec,蒸鍍2,2',7,7'-四笓基-9,9'-旋環雙芴厚度為30nm、50nm及70nm所製得之有機發光裝置均可發出白光,尤其白光有機發光裝置II之CIE色度為(0.29,0.36),且第8A圖為白光有機發光裝置II之電致發光效率-電流密度變化圖,其顯示於5.4mA/cm2 之電流密度下,電致發光效率最高可達6.51cd/A;第8B圖為白光有機發光裝置II之功率效率-電流密度變化圖及第8C圖為白光有機發光裝置II之電流密度及電壓變化圖,兩者顯示於4.5V之電壓下,功率效率最高可達4.07lm/W;第8D圖為白光有機發光裝置II之電致發光亮度-電流密 度變化圖,其顯示於12V之電壓下,電致發光亮度最高可達57,680cd/m2From the above results, it is known that after the 2,2',7,7'-tetradecyl-9,9'-cyclohexane is produced as an organic light-emitting element, the electroluminescence spectrum of the element is 2, 2', 7, The photoluminescence spectrum of 7'-tetradecyl-9,9'-cyclonic bifluorene film is wider, and the luminescence intensity with wavelength between 500nm and 600nm increases with the increase of coating thickness. When the fixed coating rate is 0.1 nm/sec, the organic light-emitting devices prepared by vapor-depositing 2,2',7,7'-tetradecyl-9,9'-cyclohexane double iridium thicknesses of 30 nm, 50 nm and 70 nm are all obtained. White light can be emitted, especially the CIE chromaticity of the white organic light-emitting device II is (0.29, 0.36), and FIG. 8A is an electroluminescence efficiency-current density change diagram of the white organic light-emitting device II, which is shown at 5.4 mA/cm 2 At the current density, the electroluminescence efficiency is up to 6.51 cd/A; the 8B is the power efficiency-current density change diagram of the white organic light-emitting device II and the 8C is the current density and voltage change of the white organic light-emitting device II The figure shows that the power efficiency is up to 4.07 lm/W at a voltage of 4.5 V; the 8D is a graph of the electroluminescence brightness-current density change of the white organic light-emitting device II, which is shown at a voltage of 12V. The electroluminescence brightness is up to 57,680 cd/m 2 .

【實施例4】[Embodiment 4]

使用玻璃基底,其上覆有片電阻約為10Ω.cm,厚度為170nm之氧化銦錫(indium tin oxide,ITO)。進行沉積之前,基底先於異丙醇(isopropanol)和去離子水中超聲波清洗,隨後經氧氣電漿(O2 plasma)處理。接著將基底置入沈積室中,在10-6 托(torr)之壓力下依序將2T-NATA、NPB、2,2',7,7'-四笓基-9,9'-旋環雙芴、Alq3 、氟化鋰(LiF)及鋁(Al)蒸鍍到基底上,過程中不破真空,形成結構為ITO(170nm)/2T-NATA(15nm)/NPB(65nm)/TPSBF(30nm)/Alq3 (30nm)/LiF(0.8nm)/Al(200nm)之白光有機發光裝置IV,其中2,2',7,7'-四笓基-9,9'-旋環雙芴是以固定鍍膜速率0.02nm/sec蒸鍍而成。A glass substrate is used which is covered with a sheet resistance of about 10 Ω. Cm, indium tin oxide (ITO) having a thickness of 170 nm. Prior to deposition, the substrate was ultrasonically cleaned prior to isopropanol and deionized water followed by oxygen plasma (O 2 plasma). The substrate is then placed in a deposition chamber, and 2T-NATA, NPB, 2,2', 7,7'-tetradecyl-9,9'-ring is sequentially placed under a pressure of 10 -6 torr. Bismuth, Alq 3 , lithium fluoride (LiF) and aluminum (Al) are evaporated onto the substrate without breaking the vacuum, and the structure is ITO (170 nm) / 2T-NATA (15 nm) / NPB (65 nm) / TPSBF ( White light organic light-emitting device IV of 30 nm)/Alq 3 (30 nm)/LiF (0.8 nm)/Al (200 nm), wherein 2,2',7,7'-tetradecyl-9,9'-ring ring It is formed by vapor deposition at a fixed coating rate of 0.02 nm/sec.

【實施例5】[Embodiment 5]

使用玻璃基底,其上覆有片電阻約為10Ω.cm,厚度為170nm之氧化銦錫(indium tin oxide,ITO)。進行沉積之前,基底先於異丙醇(isopropanol)和去離子水中超聲波清洗,隨後經氧氣電漿(O2 plasma)處理。接著將基底置入沈積室中,在10-6 托(torr)之壓力下依序將2T-NATA、NPB、2,2',7,7'-四笓基-9,9'-旋環雙芴、Alq3 、氟化鋰(LiF)及鋁(Al)蒸鍍到基底上,過程中不破真空,形成結構為ITO(170nm)/2T-NATA(15nm)/NPB(65nm)/TPSBF(30nm)/Alq3 (30nm)/LiF(0.8nm)/ Al(200nm)之白光有機發光裝置V,其中2,2',7,7'-四笓基-9,9'-旋環雙芴是以固定鍍膜速率0.15nm/sec蒸鍍而成。A glass substrate is used which is covered with a sheet resistance of about 10 Ω. Cm, indium tin oxide (ITO) having a thickness of 170 nm. Prior to deposition, the substrate was ultrasonically cleaned prior to isopropanol and deionized water followed by oxygen plasma (O 2 plasma). The substrate is then placed in a deposition chamber, and 2T-NATA, NPB, 2,2', 7,7'-tetradecyl-9,9'-ring is sequentially placed under a pressure of 10 -6 torr. Bismuth, Alq 3 , lithium fluoride (LiF) and aluminum (Al) are evaporated onto the substrate without breaking the vacuum, and the structure is ITO (170 nm) / 2T-NATA (15 nm) / NPB (65 nm) / TPSBF ( White light organic light-emitting device V of 30 nm)/Alq 3 (30 nm)/LiF (0.8 nm) / Al (200 nm), wherein 2,2',7,7'-tetradecyl-9,9'-ring ring It is formed by vapor deposition at a fixed coating rate of 0.15 nm/sec.

【實施例6】[Embodiment 6]

使用玻璃基底,其上覆有片電阻約為10Ω.cm,厚度為170nm之氧化銦錫(indium tin oxide,ITO)。進行沉積之前,基底先於異丙醇(isopropanol)和去離子水中超聲波清洗,隨後經氧氣電漿(O2 plasma)處理。接著將基底置入沈積室中,在10-6 托(torr)之壓力下依序將2T-NATA、NPB、2,2',7,7'-四笓基-9,9'-旋環雙芴、Alq3 、氟化鋰(LiF)及鋁(Al)蒸鍍到基底上,過程中不破真空,形成結構為ITO(170nm)/2T-NATA(15nm)/NPB(65nm)/TPSBF(30nm)/Alq3 (30nm)/LiF(0.8nm)/Al(200nm)之白光有機發光裝置VI,其中2,2',7,7'-四笓基-9,9'-旋環雙芴是以固定鍍膜速率0.35nm/sec蒸鍍而成。A glass substrate is used which is covered with a sheet resistance of about 10 Ω. Cm, indium tin oxide (ITO) having a thickness of 170 nm. Prior to deposition, the substrate was ultrasonically cleaned prior to isopropanol and deionized water followed by oxygen plasma (O 2 plasma). The substrate is then placed in a deposition chamber, and 2T-NATA, NPB, 2,2', 7,7'-tetradecyl-9,9'-ring is sequentially placed under a pressure of 10 -6 torr. Bismuth, Alq 3 , lithium fluoride (LiF) and aluminum (Al) are evaporated onto the substrate without breaking the vacuum, and the structure is ITO (170 nm) / 2T-NATA (15 nm) / NPB (65 nm) / TPSBF ( White light organic light-emitting device VI of 30 nm)/Alq 3 (30 nm)/LiF (0.8 nm)/Al (200 nm), wherein 2,2',7,7'-tetradecyl-9,9'-ring ring It is formed by vapor deposition at a fixed coating rate of 0.35 nm/sec.

【實施例7】[Embodiment 7]

使用玻璃基底,其上覆有片電阻約為10Ω.cm,厚度為170nm之氧化銦錫(indium tin oxide,ITO)。進行沉積之前,基底先於異丙醇(isopropanol)和去離子水中超聲波清洗,隨後經氧氣電漿(O2 plasma)處理。接著將基底置入沈積室中,在10-6 托(torr)之壓力下依序將2T-NATA、NPB、2,2',7,7'-四笓基-9,9'-旋環雙芴、Alq3 、氟化鋰(LiF)及鋁(Al)蒸鍍到基底上,過程中不破真空,形成結構為ITO(170nm)/2T-NATA(15nm)/NPB(65nm)/TPSBF(30nm)/Alq3 (30nm)/LiF(0.8nm)/ Al(200nm)之白光有機發光裝置VII,其中2,2',7,7'-四笓基-9,9'-旋環雙芴是先以480℃之溫度預熱蒸鍍源25分鐘,再以固定鍍膜速率0.02nm/sec蒸鍍而成。A glass substrate is used which is covered with a sheet resistance of about 10 Ω. Cm, indium tin oxide (ITO) having a thickness of 170 nm. Prior to deposition, the substrate was ultrasonically cleaned prior to isopropanol and deionized water followed by oxygen plasma (O 2 plasma). The substrate is then placed in a deposition chamber, and 2T-NATA, NPB, 2,2', 7,7'-tetradecyl-9,9'-ring is sequentially placed under a pressure of 10 -6 torr. Bismuth, Alq 3 , lithium fluoride (LiF) and aluminum (Al) are evaporated onto the substrate without breaking the vacuum, and the structure is ITO (170 nm) / 2T-NATA (15 nm) / NPB (65 nm) / TPSBF ( White light organic light-emitting device VII of 30 nm)/Alq 3 (30 nm)/LiF (0.8 nm) / Al (200 nm), wherein 2,2',7,7'-tetradecyl-9,9'-ring ring The vapor deposition source was preheated at a temperature of 480 ° C for 25 minutes, and then vapor deposited at a fixed coating rate of 0.02 nm / sec.

【實施例8】[Embodiment 8]

使用玻璃基底,其上覆有片電阻約為10Ω.cm,厚度為170nm之氧化銦錫(indium tin oxide,ITO)。進行沉積之前,基底先於異丙醇(isopropanol)和去離子水中超聲波清洗,隨後經氧氣電漿(O2 plasma)處理。接著將基底置入沈積室中,在10-6 托(torr)之壓力下依序將2T-NATA、NPB、2,2',7,7'-四笓基-9,9'-旋環雙芴、Alq3 、氟化鋰(LiF)及鋁(Al)蒸鍍到基底上,過程中不破真空,形成結構為ITO(170nm)/2T-NATA(15nm)/NPB(65nm)/TPSBF(30nm)/Alq3 (30nm)/LiF(0.8nm)/Al(200nm)之白光有機發光裝置,其中2,2',7,7'-四笓基-9,9'-旋環雙芴是先在蒸鍍源不預熱之情況下,固定鍍膜速率0.02nm/sec蒸鍍至膜厚之一半後停止蒸鍍,接著以480℃之溫度預熱蒸鍍源25分鐘,再以固定鍍膜速率0.02nm/sec蒸鍍而成。A glass substrate is used which is covered with a sheet resistance of about 10 Ω. Cm, indium tin oxide (ITO) having a thickness of 170 nm. Prior to deposition, the substrate was ultrasonically cleaned prior to isopropanol and deionized water followed by oxygen plasma (O 2 plasma). The substrate is then placed in a deposition chamber, and 2T-NATA, NPB, 2,2', 7,7'-tetradecyl-9,9'-ring is sequentially placed under a pressure of 10 -6 torr. Bismuth, Alq 3 , lithium fluoride (LiF) and aluminum (Al) are evaporated onto the substrate without breaking the vacuum, and the structure is ITO (170 nm) / 2T-NATA (15 nm) / NPB (65 nm) / TPSBF ( White light organic light-emitting device of 30 nm)/Alq 3 (30 nm)/LiF (0.8 nm)/Al (200 nm), wherein 2,2',7,7'-tetradecyl-9,9'-ring ring is First, after the evaporation source is not preheated, the deposition rate is fixed at 0.02 nm/sec to one-half of the film thickness, and the evaporation is stopped. Then, the evaporation source is preheated at a temperature of 480 ° C for 25 minutes, and then at a fixed coating rate. It is formed by vapor deposition at 0.02 nm/sec.

第9圖為白光有機發光裝置IV-VII之電致發光光譜,由其結果可知,以不同速率蒸鍍2,2',7,7'-四笓基-9,9'-旋環雙芴確實可對元件光色造成明顯之影響。蒸鍍速率越慢,2,2',7,7'-四笓基-9,9'-旋環雙芴於加熱源內受熱時間越長,具有較多的時間產生材料聚集行為,進而影響最後所製得之有機發光裝置放光光譜產生紅位移之現象(光色由藍光偏移至黃光)。而預熱蒸鍍源(例如:預熱TPSBF)亦有類似之效果,只要將材 料加熱至接近或高於昇華溫度,使材料於加熱源內預先排列聚集,導致分子團變大後再進行蒸鍍,膜層必呈現較長波之黃光光譜。由於2,2',7,7'-四笓基-9,9'-旋環雙芴分子具有可於不同聚集型態下發出較短波及較長波之特性,因此,只要精確控制有機發光層之各項鍍膜參數,調整較短波及較長波於有機發光層中之含量,即可達成以2,2',7,7'-四笓基-9,9'-旋環雙芴單一材料發出白光之目的。Figure 9 is an electroluminescence spectrum of a white organic light-emitting device IV-VII. From the results, it can be seen that the 2,2',7,7'-tetradecyl-9,9'-cyclohexane is vapor-deposited at different rates. It does have a significant impact on the color of the component. The slower the evaporation rate, the longer the heating time of the 2,2',7,7'-tetradecyl-9,9'-ring bisulfon in the heating source, the more time it takes to produce the material aggregation behavior, and thus the influence Finally, the emission spectrum of the organic light-emitting device produced has a red shift phenomenon (light color is shifted from blue light to yellow light). The preheated evaporation source (for example, preheating TPSBF) has a similar effect, as long as the material is The material is heated to near or above the sublimation temperature, so that the material is pre-aligned and aggregated in the heating source, so that the molecular group becomes larger and then evaporated, and the film layer must exhibit a longer wavelength yellow light spectrum. Since the 2,2',7,7'-tetradecyl-9,9'-cyclobiguanide molecule has the characteristics of emitting shorter waves and longer waves in different aggregation modes, therefore, as long as the organic light-emitting layer is precisely controlled The coating parameters of the short-wave and longer-wavelength in the organic light-emitting layer can be achieved by a single material of 2,2',7,7'-tetradecyl-9,9'-spin-ring double bond. The purpose of white light.

雖然本發明已經以數個較佳實施例揭露如上,然其並非用以限定本發明。任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above in several preferred embodiments, it is not intended to limit the invention. The scope of the present invention is defined by the scope of the appended claims, unless otherwise claimed.

110‧‧‧基底110‧‧‧Base

120‧‧‧陽極120‧‧‧Anode

130‧‧‧有機發光單元130‧‧‧Organic lighting unit

131‧‧‧電洞注入層131‧‧‧ hole injection layer

132‧‧‧電洞傳輸層132‧‧‧ hole transport layer

135‧‧‧有機發光層135‧‧‧ Organic light-emitting layer

136‧‧‧電子傳輸層136‧‧‧Electronic transport layer

137‧‧‧電子注入層137‧‧‧electron injection layer

140‧‧‧陰極140‧‧‧ cathode

Claims (12)

一種白光有機發光元件,包括:一陽極;一有機發光層位於該陽極上,其中該有機發光層基本上由2,2',7,7'-四笓基-9,9'-旋環雙芴(TPSBF)所組成,以及一陰極,位於該有機發光層上。 A white light organic light-emitting element comprises: an anode; an organic light-emitting layer is disposed on the anode, wherein the organic light-emitting layer is substantially composed of 2, 2', 7, 7'-tetradecyl-9, 9'-ring double The composition of ruthenium (TPSBF) and a cathode are located on the organic light-emitting layer. 如申請專利範圍第1項所述之白光有機發光元件,更包括:一電洞注入層及/或一電洞傳輸層,介於該陽極及該有機發光層之間。 The white light organic light emitting device of claim 1, further comprising: a hole injection layer and/or a hole transport layer interposed between the anode and the organic light emitting layer. 如申請專利範圍第1項所述之白光有機發光元件,更包括:一電子注入層及/或一電子傳輸層,介於該有機發光層及該陰極之間。 The white light organic light-emitting device of claim 1, further comprising: an electron injection layer and/or an electron transport layer interposed between the organic light-emitting layer and the cathode. 如申請專利範圍第1項所述之白光有機發光元件,更包括:一電洞注入層,位於該陽極上,介於該陽極及該有機發光層之間;一電洞傳輸層,位於該電洞注入層上,介於該電洞注入層及該有機發光層之間;以及一電子傳輸層,位於該有機發光層上,介於該有機發光層及該陰極之間。 The white light organic light emitting device of claim 1, further comprising: a hole injection layer on the anode between the anode and the organic light emitting layer; and a hole transport layer located in the electricity a hole injection layer between the hole injection layer and the organic light-emitting layer; and an electron transport layer on the organic light-emitting layer between the organic light-emitting layer and the cathode. 如申請專利範圍第4項所述之白光有機發光元件,其中該電洞注入層為2T-NATA,該電洞傳輸層為NPB,以及該 電子傳輸層為Alq3The white light organic light-emitting device of claim 4, wherein the hole injection layer is 2T-NATA, the hole transport layer is NPB, and the electron transport layer is Alq 3 . 如申請專利範圍第1項所述之白光有機發光元件,其中該有機發光層具有介於470nm~570nm之發光峰值。 The white light organic light-emitting device of claim 1, wherein the organic light-emitting layer has an emission peak of between 470 nm and 570 nm. 如申請專利範圍第1項所述之白光有機發光元件,其中該有機發光層具有介於440nm~470nm及540nm~560nm之發光峰值。 The white light organic light-emitting device according to claim 1, wherein the organic light-emitting layer has an emission peak of 440 nm to 470 nm and 540 nm to 560 nm. 如申請專利範圍第1項所述之白光有機發光元件,其中該有機發光層具有5nm~100nm之間的厚度。 The white light organic light-emitting device according to claim 1, wherein the organic light-emitting layer has a thickness of between 5 nm and 100 nm. 一種白光有機發光元件之製備方法,包括以下步驟:提供一基底;形成一陽極於該基底上;形成一有機發光層於該陽極上,其中該有機發光層基本上由2,2',7,7'-四笓基-9,9'-旋環雙芴(TPSBF)所組成,以及形成一陰極於該發光層上。 A method for preparing a white light organic light emitting device, comprising the steps of: providing a substrate; forming an anode on the substrate; forming an organic light emitting layer on the anode, wherein the organic light emitting layer is substantially 2, 2', 7, 7'-tetradecyl-9,9'-cyclocyclic bisulfonium (TPSBF) is formed, and a cathode is formed on the luminescent layer. 如申請專利範圍第9項所述之白光有機發光元件之製備方法,其中該有機發光層之厚度介於5nm~100nm之間。 The method for preparing a white organic light-emitting device according to claim 9, wherein the organic light-emitting layer has a thickness of between 5 nm and 100 nm. 如申請專利範圍第9項所述之白光有機發光元件之製備方法,其中該有機發光層係以介於0.01nm/sec~0.5nm/sec之間的固定鍍膜速率蒸鍍而成。 The method for producing a white light organic light-emitting device according to claim 9, wherein the organic light-emitting layer is deposited by a fixed plating rate of between 0.01 nm/sec and 0.5 nm/sec. 如申請專利範圍第11項所述之白光有機發光元件之製備方法,更包括於蒸鍍該有機發光層之前,先以介於300℃-550℃之間的溫度預熱一蒸鍍源。 The method for preparing a white organic light-emitting device according to claim 11, further comprising preheating a vapor deposition source at a temperature between 300 ° C and 550 ° C before evaporating the organic light-emitting layer.
TW103101920A 2014-01-20 2014-01-20 White organic light-emitting device and manufacturing method thereof TWI487689B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103101920A TWI487689B (en) 2014-01-20 2014-01-20 White organic light-emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103101920A TWI487689B (en) 2014-01-20 2014-01-20 White organic light-emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI487689B true TWI487689B (en) 2015-06-11
TW201529532A TW201529532A (en) 2015-08-01

Family

ID=53937853

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103101920A TWI487689B (en) 2014-01-20 2014-01-20 White organic light-emitting device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI487689B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087363A (en) * 2002-08-28 2004-03-18 Canon Inc Organic light-emitting device
EP1491610A2 (en) * 2003-06-27 2004-12-29 Canon Kabushiki Kaisha Organic electroluminescent device
US20070207346A1 (en) * 2006-03-02 2007-09-06 Canon Kabushiki Kaisha Organic light-emitting device
CN101220034A (en) * 2008-01-11 2008-07-16 山东大学 Inverse V type ultra-gees alkali derivant electroluminescent organic material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087363A (en) * 2002-08-28 2004-03-18 Canon Inc Organic light-emitting device
EP1491610A2 (en) * 2003-06-27 2004-12-29 Canon Kabushiki Kaisha Organic electroluminescent device
US20070207346A1 (en) * 2006-03-02 2007-09-06 Canon Kabushiki Kaisha Organic light-emitting device
CN101220034A (en) * 2008-01-11 2008-07-16 山东大学 Inverse V type ultra-gees alkali derivant electroluminescent organic material

Also Published As

Publication number Publication date
TW201529532A (en) 2015-08-01

Similar Documents

Publication Publication Date Title
Singh et al. Electroluminescent materials: Metal complexes of 8-hydroxyquinoline-A review
TWI478410B (en) An organic electroluminescent element
Zhu et al. Solution-processable single-material molecular emitters for organic light-emitting devices
TWI334741B (en) Cascaded organic electroluminescent devices
TWI290441B (en) Organic EL device and display
JP4511024B2 (en) Highly transparent non-metallic cathode
JP5231188B2 (en) Organic electroluminescence device
TWI357774B (en)
CN110492005B (en) Organic electroluminescent device with exciplex as main material
TW201722977A (en) Organic electrophosphorescence device
TW200937695A (en) White OLED with blue light-emitting layers
TW200936545A (en) Organic electroluminescent device
JP4364201B2 (en) Organic electroluminescence device
CN110492009B (en) Electroluminescent device based on exciplex system matched with boron-containing organic compound
CN110838549B (en) Organic electroluminescent device based on exciplex and exciplex system
TW200808116A (en) Organic electroluminescent device
TW200915915A (en) High-performance tandem white OLED
CN107123749B (en) A kind of high color rendering index (CRI) white light organic electroluminescent device and preparation method thereof
Kumar et al. White organic light emitting diodes based on DCM dye sandwiched in 2-methyl-8-hydroxyquinolinolatolithium
JP6379338B2 (en) Organic electroluminescent device, display device, and method of manufacturing organic electroluminescent device
CN107452886A (en) A kind of laminated film and Organic Light Emitting Diode and preparation method thereof
CN101540375A (en) Organic electroluminescence device
TW201114320A (en) Organic electroluminescent element
JP2004047442A (en) Organic electroluminescent element and display device
CN111100129A (en) Organic electroluminescent material and device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees