TWI487189B - A metamaterial antenna and preparation method thereof - Google Patents

A metamaterial antenna and preparation method thereof Download PDF

Info

Publication number
TWI487189B
TWI487189B TW100150010A TW100150010A TWI487189B TW I487189 B TWI487189 B TW I487189B TW 100150010 A TW100150010 A TW 100150010A TW 100150010 A TW100150010 A TW 100150010A TW I487189 B TWI487189 B TW I487189B
Authority
TW
Taiwan
Prior art keywords
man
substrate
metal microstructure
feed line
made metal
Prior art date
Application number
TW100150010A
Other languages
Chinese (zh)
Other versions
TW201238143A (en
Inventor
Ruopeng Liu
Songtao Yang
Yangyang Zhang
Original Assignee
Kuang Chi Inst Advanced Tech
Kuang Chi Innovative Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang Chi Inst Advanced Tech, Kuang Chi Innovative Tech Ltd filed Critical Kuang Chi Inst Advanced Tech
Publication of TW201238143A publication Critical patent/TW201238143A/en
Application granted granted Critical
Publication of TWI487189B publication Critical patent/TWI487189B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Landscapes

  • Details Of Aerials (AREA)

Description

一種超材料射頻天線及其製備方法Super material RF antenna and preparation method thereof

本發明涉及天線及其製備方法,尤其涉及一種超材料射頻天線及其製備方法。The invention relates to an antenna and a preparation method thereof, in particular to a metamaterial radio frequency antenna and a preparation method thereof.

習知通訊系統中的天線主要為偶極子天線和PIFA天線,此類天線尺寸、帶寬、增益等重要指標受到了基本物理原理的限制(固定尺寸下的增益極限、帶寬極限等)。這些指標極限的基本物理原理使得天線的小型化技術難度遠遠超過了其它器件,而由於射頻器件的電磁場分析的複雜性,逼近這些極限值都成為了巨大的技術挑戰。因此當在設計中遇到天線使用空間小、工作頻率低、工作在多模問題時,其就顯得力不從心。The antennas in the conventional communication system are mainly dipole antennas and PIFA antennas. The important indexes such as size, bandwidth, and gain of the antenna are limited by basic physical principles (gain limit, bandwidth limit, etc. at a fixed size). The basic physical principles of the limits of these indicators make the miniaturization of antennas far more difficult than other devices. Due to the complexity of electromagnetic field analysis of RF devices, approaching these limits has become a huge technical challenge. Therefore, when the antenna is used in the design, the use space is small, the working frequency is low, and the multi-mode problem is working, it is not enough.

為解決上述問題,習知技術的解決方案一般是通過在天線外部額外設置匹配線路來實現多模的輻射要求。在天線系統中加入匹配網絡後,功能上是可實現低頻、多模的工作要求,但是由於非常大的一部分能量損失在匹配網絡上,其輻射效率將極大的降低。In order to solve the above problems, the solution of the prior art generally achieves multimode radiation requirements by additionally providing matching lines outside the antenna. After adding a matching network to the antenna system, it is functionally possible to achieve low-frequency, multi-mode operation requirements, but since a very large part of the energy loss is on the matching network, the radiation efficiency will be greatly reduced.

因此,小型化、多模式的新型天線技術成為了當代電子集成系統的一個重要技術瓶頸。Therefore, the miniaturized, multi-mode new antenna technology has become an important technical bottleneck of contemporary electronic integrated systems.

本發明所要解決的技術問題在於,針對習知技術的上述不足,提出一種占用空間更小的超材料射頻天線及其製備方法。The technical problem to be solved by the present invention is to provide a super material radio frequency antenna with smaller space and a preparation method thereof according to the above-mentioned deficiencies of the prior art.

本發明提供一種超材料射頻天線,其包括金屬分支,金屬分支包括電氣相連的第一部分和第二部分,且金屬分支的第一部分和金屬分支的第二部分分別設置於不同的基片表面上,金屬分支在平面展開後構成饋線以及人造金屬微結構,饋線圍繞人造金屬微結構設置。The present invention provides a metamaterial radio frequency antenna comprising a metal branch, the metal branch including the first portion and the second portion electrically connected, and the first portion of the metal branch and the second portion of the metal branch are respectively disposed on different substrate surfaces, The metal branches are planarly unfolded to form a feed line and an artificial metal microstructure, the feed line being disposed around the man-made metal microstructure.

根據本發明一優選實施例,基片包括第一基片和第二基片,其中,第一基片的表面附著有人造金屬微結構的第一部分以及饋線的第一部分,第二基片的表面附著有人造金屬微結構的第二部分以及饋線的第二部分。According to a preferred embodiment of the present invention, the substrate comprises a first substrate and a second substrate, wherein the surface of the first substrate is attached with a first portion of the artificial metal microstructure and a first portion of the feed line, the surface of the second substrate A second portion of the man-made metal microstructure and a second portion of the feeder are attached.

根據本發明一優選實施例,人造金屬微結構的第一部分斷裂端點以及饋線的第一部分斷裂端點分別與人造金屬微結構的第二部分斷裂端點以及饋線的第二部分斷裂端點電連接。According to a preferred embodiment of the present invention, the first partial fracture end of the artificial metal microstructure and the first partial fracture end of the feed line are electrically connected to the second partial fracture end of the artificial metal microstructure and the second partial fracture end of the feed line, respectively. .

根據本發明一優選實施例,人造金屬微結構的第二部分從人造金屬微結構的第二部分斷裂端點在第二基片上延伸的方向與人造金屬微結構的第一部分從人造金屬微結構的第一部分斷裂端點在第一基片上延伸的方向一致。In accordance with a preferred embodiment of the present invention, the second portion of the man-made metal microstructure extends from the second portion of the man-made metal microstructure to the second substrate and the first portion of the man-made metal microstructure from the man-made metal microstructure The first portion of the fracture end extends in the same direction on the first substrate.

根據本發明一優選實施例,第一基片上還設置有第一金屬化通孔和第二金屬化通孔,第一金屬化通孔兩端對應於人造金屬微結構的第一部分斷裂端點與人造金屬微結構的第二部分斷裂端點,第二金屬化通孔兩端對應於饋線的第一部分斷裂端點與饋線的第二部分斷裂端點;人造金屬微結構的第一部分和人造金屬微結構的第二部分通過第一金屬化通孔電連接,饋線的第一部分和饋線的第二部分通過第二金屬化通孔電連接。According to a preferred embodiment of the present invention, the first substrate is further provided with a first metallized via and a second metallized via, the two ends of the first metallized via corresponding to the first end of the artificial metal microstructure a second portion of the fracture point of the man-made metal microstructure, the two ends of the second metallization via correspond to the first end of the feed line and the second end of the feed line; the first portion of the man-made metal microstructure and the man-made metal micro The second portion of the structure is electrically connected through the first metallized via, the first portion of the feed line and the second portion of the feed line being electrically connected through the second metallized via.

根據本發明一優選實施例,第一基片的側面設置有第一連接部和第二連接部,第一連接部兩端對應於人造金屬微結構的 第一部分斷裂端點與人造金屬微結構的第二部分斷裂端點,第二連接部兩端對應於饋線的第一部分斷裂端點與饋線的第二部分斷裂端點;人造金屬微結構的第一部分和人造金屬微結構的第二部分通過該第一連接部電連接,饋線的第一部分和饋線的第二部分通過第二連接部電連接。According to a preferred embodiment of the present invention, the side surface of the first substrate is provided with a first connecting portion and a second connecting portion, the two ends of the first connecting portion corresponding to the artificial metal microstructure a first portion of the fracture end and a second portion of the fracture point of the man-made metal microstructure, the two ends of the second connection portion corresponding to the first end of the feed line and the second end of the feed line; the first portion of the man-made metal microstructure And the second portion of the man-made metal microstructure is electrically connected by the first connection, the first portion of the feed line and the second portion of the feed line being electrically connected by the second connection.

根據本發明一優選實施例,人造金屬微結構的拓撲圖案為互補式開口諧振環結構、互補式螺旋線結構、開口螺旋環結構、雙開口螺旋環結構以及互補式彎折線結構中的一種,或者是通過前面五種結構的其中一種結構衍生、其中多種結構複合或其中一種結構組陣得到的結構。According to a preferred embodiment of the present invention, the topological pattern of the artificial metal microstructure is one of a complementary open resonant ring structure, a complementary spiral structure, an open spiral ring structure, a double open spiral ring structure, and a complementary bent line structure, or It is a structure derived from one of the first five structures, in which a plurality of structural composites or one of the structural arrays is obtained.

根據本發明一優選實施例,基片包括第一表面和與第一表面相對的第二表面,其中,基片的第一表面附著有人造金屬微結構的第一部分以及饋線的第一部分,基片的第二表面附著有人造金屬微結構的第二部分以及饋線的第二部分。In accordance with a preferred embodiment of the present invention, the substrate includes a first surface and a second surface opposite the first surface, wherein the first surface of the substrate is attached with the first portion of the man-made metal microstructure and the first portion of the feed line, the substrate The second surface is attached with a second portion of the man-made metal microstructure and a second portion of the feed line.

根據本發明一優選實施例,人造金屬微結構的第一部分斷裂端點以及饋線的第一部分斷裂端點分別與人造金屬微結構的第二部分斷裂端點以及饋線的第二部分斷裂端點電連接。According to a preferred embodiment of the present invention, the first partial fracture end of the artificial metal microstructure and the first partial fracture end of the feed line are electrically connected to the second partial fracture end of the artificial metal microstructure and the second partial fracture end of the feed line, respectively. .

根據本發明一優選實施例,人造金屬微結構的第二部分從人造金屬微結構的第二部分斷裂端點在基片的第二表面上延伸的方向與人造金屬微結構的第一部分從人造金屬微結構的第一部分斷裂端點在基片的第一表面上延伸的方向一致。In accordance with a preferred embodiment of the present invention, the second portion of the man-made metal microstructure extends from the second portion of the man-made metal microstructure to the second end of the substrate and the first portion of the man-made metal microstructure from the man-made metal The first portion of the microstructure has a fracture end that extends in the same direction on the first surface of the substrate.

根據本發明一優選實施例,基片上還設置有第一金屬化通孔和第二金屬化通孔,第一金屬化通孔兩端對應於人造金屬微結構的第一部分斷裂端點與人造金屬微結構的第二部分斷裂端點,第二金屬化通孔兩端對應於饋線的第一部分斷裂端點與 饋線的第二部分斷裂端點;人造金屬微結構的第一部分和人造金屬微結構的第二部分通過第一金屬化通孔電連接,饋線的第一部分和饋線的第二部分通過第二金屬化通孔電連接。According to a preferred embodiment of the present invention, the substrate is further provided with a first metallized via and a second metallized via, the two ends of the first metallized via corresponding to the first end of the artificial metal microstructure and the artificial metal The second portion of the microstructure is broken at the end point, and the two ends of the second metallized through hole correspond to the first end of the feed line a second portion of the feed line is broken; the first portion of the man-made metal microstructure and the second portion of the man-made metal microstructure are electrically connected by the first metallized via, the first portion of the feed line and the second portion of the feed line being passed through the second metallization The through holes are electrically connected.

根據本發明一優選實施例,基片的側面設置有第一連接部和第二連接部,第一連接部兩端對應於人造金屬微結構的第一部分斷裂端點與人造金屬微結構的第二部分斷裂端點,第二連接部兩端對應於饋線的第一部分斷裂端點與饋線的第二部分斷裂端點;人造金屬微結構的第一部分和人造金屬微結構的第二部分通過該第一連接部電連接,饋線的第一部分和饋線的第二部分通過第二連接部電連接。According to a preferred embodiment of the present invention, the side surface of the substrate is provided with a first connecting portion and a second connecting portion, the two ends of the first connecting portion corresponding to the first portion of the artificial metal microstructure and the second portion of the artificial metal microstructure a portion of the fracture end, the two ends of the second connection portion correspond to a first portion of the fracture end of the feed line and a second portion of the fracture end of the feed line; the first portion of the artificial metal microstructure and the second portion of the man-made metal microstructure pass the first The connection portion is electrically connected, and the first portion of the feed line and the second portion of the feed line are electrically connected by the second connection portion.

根據本發明一優選實施例,人造金屬微結構的拓撲圖案為互補式開口諧振環結構、互補式螺旋線結構、開口螺旋環結構、雙開口螺旋環結構以及互補式彎折線結構中的一種,或者是通過前面五種結構的其中一種結構衍生、其中多種結構複合或其中一種結構組陣得到的結構。According to a preferred embodiment of the present invention, the topological pattern of the artificial metal microstructure is one of a complementary open resonant ring structure, a complementary spiral structure, an open spiral ring structure, a double open spiral ring structure, and a complementary bent line structure, or It is a structure derived from one of the first five structures, in which a plurality of structural composites or one of the structural arrays is obtained.

根據本發明一優選實施例,基片由陶瓷、高分子聚合物、鐵電材料、鐵氧材料或鐵磁材料製成。According to a preferred embodiment of the invention, the substrate is made of ceramic, high molecular polymer, ferroelectric material, ferrite material or ferromagnetic material.

根據本發明一優選實施例,基片的截面圖形為圓形、橢圓形或多邊形。According to a preferred embodiment of the invention, the cross-sectional pattern of the substrate is circular, elliptical or polygonal.

本發明提供一種超材料射頻天線的製備方法,其包括以下步驟:S1:製作基片;S2:在基片表面附著所需金屬分支;S3:電連接基片表面的金屬分支;步驟S3包括:S311:在需要電連接的金屬分支末端通過數控鑽床鑽孔、數控衝床沖孔或激光打孔方式在基片上形成通孔;S312:通過絲網印刷、掩膜印刷或者通孔鑄漿方式將液態金屬填充於通孔。The invention provides a method for preparing a metamaterial radio frequency antenna, which comprises the following steps: S1: fabricating a substrate; S2: attaching a desired metal branch on the surface of the substrate; S3: electrically connecting metal branches on the surface of the substrate; and step S3 comprises: S311: forming a through hole on the substrate by a numerically controlled drilling machine drilling, a numerically controlled punch punching or a laser drilling method at a metal branch end requiring electrical connection; S312: liquidating by screen printing, mask printing or through hole casting The metal is filled in the through holes.

根據本發明一優選實施例,在步驟S1至步驟S3中,基片為陶瓷基片。According to a preferred embodiment of the invention, in steps S1 to S3, the substrate is a ceramic substrate.

根據本發明一優選實施例,步驟S1具體包括:S11:混合有機載體和玻璃陶瓷粉;S12:流延。According to a preferred embodiment of the present invention, step S1 specifically includes: S11: mixing the organic vehicle and the glass ceramic powder; and S12: casting.

根據本發明一優選實施例,製備方法還包括步驟S4:將多個基片壓制為一體。According to a preferred embodiment of the present invention, the preparation method further comprises the step S4 of pressing the plurality of substrates into one body.

根據本發明一優選實施例,製備方法還包括步驟S5:將步驟S4中壓制一體的多個基片燒結。According to a preferred embodiment of the present invention, the preparation method further comprises the step S5 of sintering the plurality of substrates integrally pressed in the step S4.

根據本發明一優選實施例,在步驟S5中燒結溫度低於1000度。According to a preferred embodiment of the invention, the sintering temperature is below 1000 degrees in step S5.

本發明將平面天線結構立體化、空間化,通過將平面金屬微結構和饋線附著於基片上電連接,並且設置於不同的基片表面上的部分金屬微結構和部分饋線使得天線整體占用平面空間更小,充分利用了天線所處空間,使得天線更加小型化。進一步地,本發明採用陶瓷材料作為本發明基片的材料,使得本發明具有易於實現、工藝簡單、電磁參數優良的有益效果。The invention planarizes and spatializes the planar antenna structure, and electrically connects the planar metal microstructure and the feed line to the substrate, and a part of the metal microstructure and part of the feeder line disposed on different substrate surfaces make the antenna occupy the plane space as a whole. Smaller, making full use of the space where the antenna is located, making the antenna more compact. Further, the present invention employs a ceramic material as the material of the substrate of the present invention, so that the present invention has the beneficial effects of being easy to implement, simple in process, and excellent in electromagnetic parameters.

圖1所示的習知技術的天線結構包括饋線2和人造金屬微結構1,其中人造金屬微結構1的拓撲圖案是多種多樣的,分別如圖2至圖6所示。圖中各種圖案均為平面圖案,占用空間較大,因此均可以利用本發明設計思想改進。下面選取其中一種圖案進行詳細說明,但應知利用本發明的原理將能輕易地得知其他圖案的設計。The antenna structure of the prior art shown in FIG. 1 includes a feed line 2 and an artificial metal microstructure 1, wherein the topographical pattern of the artificial metal microstructure 1 is various, as shown in FIGS. 2 to 6, respectively. The various patterns in the figure are flat patterns and occupy a large space, so that they can be improved by using the design idea of the present invention. One of the patterns is selected below for detailed description, but it should be understood that the design of other patterns can be easily known using the principles of the present invention.

同時,為了適應電子設備內部給天線預留的平面空間形 狀,本發明的基片的截面形狀可設計為各種形狀,如圓形、橢圓形、多邊形等。下面所述實施例為使圖示方便均使用截面形狀為四邊形基片為例加以說明。At the same time, in order to adapt to the planar space shape reserved for the antenna inside the electronic device In the shape, the cross-sectional shape of the substrate of the present invention can be designed into various shapes such as a circle, an ellipse, a polygon, and the like. The embodiments described below are described by way of example in which the cross-sectional shape is a quadrilateral substrate for convenience of illustration.

如圖7所示,圖7為本發明超材料射頻天線的第一實施例的結構示意圖,其包括第一基片101和第二基片102。其中第一基片101上印刷有人造金屬微結構的第一部分1011和饋線的第一部分1012,人造金屬微結構的第一部分1011和饋線的第一部分1012的末端均設置有金屬化通孔1013和1014。第二基片102上印刷有人造金屬微結構的第二部分1021和饋線的第二部分1022。金屬化通孔1013兩端分別對應於人造金屬微結構的第一部分1011的斷裂端點1011a與人造金屬微結構的第二部分1021的斷裂端點1021a,金屬化通孔1014兩端分別對應於饋線的第一部分1012斷裂端點1012a與饋線的第二部分1022斷裂端點1022a。人造金屬微結構的第二部分1021從人造金屬微結構的第二部分斷裂端點1021a在第二基片102上延伸的方向與人造金屬微結構的第一部分1011從人造金屬微結構的第一部分斷裂端點1011a在第一基片101上延伸的方向一致。第一基片101和第二基片102上印刷的所有的金屬結構平面展開後即構成了圖1所示的天線結構。由於採用空間立體結構設計超材料射頻天線使得其所占平面面積減少了1/2。As shown in FIG. 7, FIG. 7 is a schematic structural view of a first embodiment of a metamaterial radio frequency antenna according to the present invention, which includes a first substrate 101 and a second substrate 102. Wherein the first substrate 101 is printed with a first portion 1011 of the artificial metal microstructure and a first portion 1012 of the feed line, the first portion 1011 of the artificial metal microstructure and the end of the first portion 1012 of the feed line are provided with metallized through holes 1013 and 1014 . A second portion 1021 of the man-made metal microstructure and a second portion 1022 of the feed line are printed on the second substrate 102. The two ends of the metallized through hole 1013 respectively correspond to the fracture end point 1011a of the first portion 1011 of the artificial metal microstructure and the fracture end point 1021a of the second portion 1021 of the artificial metal microstructure, and the two ends of the metallized through hole 1014 respectively correspond to the feed line The first portion 1012 of the break end 1012a and the second portion 1022 of the feed line break the end point 1022a. The second portion 1021 of the man-made metal microstructure breaks from the first portion of the man-made metal microstructure and the first portion 1011 of the man-made metal microstructure from the first portion of the man-made metal microstructure 1011 from the second portion of the man-made metal microstructure. The direction in which the end points 1011a extend on the first substrate 101 coincides. The metal structures printed on the first substrate 101 and the second substrate 102 are planarly developed to form the antenna structure shown in FIG. Due to the spatial stereo structure, the super-material RF antenna is designed to reduce the planar area by 1/2.

當天線尺寸要求更小時,可以進一步利用立體空間,如圖8所示。圖8為本發明超材料射頻天線的第二實施例的結構示意圖。其與第一實施例的區別在於其沒有在兩片基片上設置金屬化通孔,而是在基片的側邊上印刷連接上下金屬結構的連接部1015和1016,連接部的材質與與其連接的饋線部分和人造 金屬微結構部分材質相同且連接部1015的兩端分別對應於人造金屬微結構第一部分1011的斷裂端點和人造金屬微結構第二部分1021的斷裂端點,連接部1016的兩端分別對應於饋線第一部分1012的斷裂端點和饋線第二部分1022的斷裂端點。人造金屬微結構第二部分1021從人造金屬微結構第二部分斷裂端點在第二基片102上延伸的方向與人造金屬微結構的第一部分1011從人造金屬微結構第一部分斷裂端點在第一基片101上延伸的方向一致。此不僅節省成本而且還使得陶瓷天線整體更為小型化,更為重要的是,由於採用連接部連接相鄰基片的人造金屬微結構各部分使得天線整體抗干擾能力更强、電磁兼容能力亦更强。When the antenna size requirement is smaller, the three-dimensional space can be further utilized, as shown in FIG. FIG. 8 is a schematic structural view of a second embodiment of a metamaterial radio frequency antenna according to the present invention. The difference from the first embodiment is that instead of providing metallized through holes on the two substrates, the connecting portions 1015 and 1016 connecting the upper and lower metal structures are printed on the sides of the substrate, and the material of the connecting portion is connected thereto. Feeder part and man-made The metal microstructure portions are made of the same material and the two ends of the connecting portion 1015 respectively correspond to the fracture end of the first portion 1011 of the artificial metal microstructure and the fracture end of the second portion 1021 of the artificial metal microstructure, and the two ends of the connection portion 1016 respectively correspond to The break end of the first portion 1012 of the feed line and the break end of the second portion 1022 of the feed line. The second portion 1021 of the artificial metal microstructure is extended from the second portion of the artificial metal microstructure to the second substrate 102 and the first portion 1011 of the artificial metal microstructure is separated from the first portion of the artificial metal microstructure. The direction in which a substrate 101 extends is uniform. This not only saves cost but also makes the ceramic antenna as a whole more compact. More importantly, due to the use of the connecting portion to connect the various parts of the artificial metal microstructure of the adjacent substrate, the overall anti-interference ability of the antenna is stronger and the electromagnetic compatibility is also improved. Stronger.

如圖9所示,圖9為本發明超材料射頻天線的第三實施例的結構示意圖。與前兩個實施例相比,第三實施例主要的區別在於其僅包括一個基片200,將人造金屬微結構進行拆分並將其分布於基片200的上下表面。具體而言,基片200包括第一表面201和與第一表面201相對的第二表面202。其中第一表面201上印刷有人造金屬微結構的第一部分2011和饋線的第一部分2012,人造金屬微結構的第一部分2011和饋線的第一部分2012的末端均設置有金屬化通孔2013和2014。第二表面202上印刷有人造金屬微結構的第二部分2021和饋線的第二部分2022。金屬化通孔2013兩端分別對應於人造金屬微結構的第一部分2011的斷裂端點2011a與人造金屬微結構第二部分2021的斷裂端點2021a,金屬化通孔2014兩端分別對應於饋線的第一部分2012斷裂端點2012a與饋線的第二部分2022斷裂端點2022a。人造金屬微結構的第二部分2021從人 造金屬微結構的第二部分斷裂端點2021a在第二表面202上延伸的方向與人造金屬微結構的第一部分2011從人造金屬微結構的第一部分斷裂端點2011a在第一表面201上延伸的方向一致。第一表面201和第二表面202上印刷的所有的金屬結構平面展開後即構成了圖1所示的天線結構。由於採用空間立體結構設計超材料射頻天線使得其所占平面面積減少了1/2。As shown in FIG. 9, FIG. 9 is a schematic structural view of a third embodiment of a metamaterial radio frequency antenna according to the present invention. The main difference of the third embodiment compared to the first two embodiments is that it includes only one substrate 200, and the artificial metal microstructure is split and distributed on the upper and lower surfaces of the substrate 200. Specifically, the substrate 200 includes a first surface 201 and a second surface 202 opposite the first surface 201. The first surface 201 is printed with a first portion 2011 of the man-made metal microstructure and the first portion 2012 of the feeder, the first portion 2011 of the man-made metal microstructure and the end of the first portion 2012 of the feeder are provided with metallized through holes 2013 and 2014. A second portion 2021 of the man-made metal microstructure and a second portion 2022 of the feed line are printed on the second surface 202. The two ends of the metallized through hole 2013 respectively correspond to the fracture end point 2011a of the first portion 2011 of the man-made metal microstructure and the fracture end point 2021a of the second portion 2021 of the man-made metal microstructure, and the two ends of the metallized through hole 2014 respectively correspond to the feeder line The first portion 2012 break end point 2012a and the second portion 2022 of the feed line break the end point 2022a. The second part of the man-made metal microstructure 2021 from people A second portion of the metal-forming microstructure extends over the second surface 202 in a direction extending from the second surface 202 and a first portion 2011 of the man-made metal microstructure extends from the first portion fracture end point 2011a of the man-made metal microstructure on the first surface 201 The direction is the same. The planar structure shown in Fig. 1 is formed after all of the metal structures printed on the first surface 201 and the second surface 202 are unfolded. Due to the spatial stereo structure, the super-material RF antenna is designed to reduce the planar area by 1/2.

當天線尺寸要求更小時,可以進一步利用立體空間,如圖10所示。圖10為本發明超材料射頻天線的第四實施例的結構示意圖。其與第三實施例的區別在於其沒有在基片上設置金屬化通孔,而是在基片的側邊上印刷連接上下金屬結構的連接部2015和2016,連接部的材質與與其連接的饋線部分和人造金屬微結構部分材質相同且連接部2015的兩端分別對應於人造金屬微結構第一部分2011的斷裂端點和人造金屬微結構第二部分2021的斷裂端點,連接部2016的兩端分別對應於饋線第一部分2012的斷裂端點和饋線第二部分2022的斷裂端點。人造金屬微結構第二部分2021從人造金屬微結構第二部分2021斷裂端點在第二表面202上延伸的方向與人造金屬微結構的第一部分2011從人造金屬微結構第一部分斷裂端點在第一表面201上延伸的方向一致。由此不僅節省成本而且還使得陶瓷天線整體更為小型化,更為重要的是,由於採用連接部連接設置於相鄰不同表面的人造金屬微結構的各部分,使得天線整體抗干擾能力更强、電磁兼容能力亦更强。When the antenna size requirement is smaller, the three-dimensional space can be further utilized, as shown in FIG. FIG. 10 is a schematic structural view of a fourth embodiment of a metamaterial radio frequency antenna according to the present invention. The difference from the third embodiment is that it does not provide a metallized through hole on the substrate, but prints the connecting portions 2015 and 2016 connecting the upper and lower metal structures on the side of the substrate, and the material of the connecting portion and the feeding line connected thereto The portion and the artificial metal microstructure portion are made of the same material and the two ends of the joint portion 2015 correspond to the fracture end point of the first portion 2011 of the artificial metal microstructure and the fracture end point of the second portion 2021 of the artificial metal microstructure, and the two ends of the joint portion 2016 Corresponding to the fracture end of the first portion of the feeder line 2012 and the fracture end of the second portion 2022 of the feed line, respectively. The second portion 2021 of the man-made metal microstructure 2021 extends from the fracture end of the second portion 2021 of the man-made metal microstructure on the second surface 202 with the first portion of the man-made metal microstructure 2011 from the fracture end of the first portion of the man-made metal microstructure at The direction of extension on a surface 201 is uniform. This not only saves cost but also makes the ceramic antenna as a whole more compact. More importantly, since the connecting portion is connected to each part of the artificial metal microstructure disposed on different adjacent surfaces, the overall anti-interference ability of the antenna is stronger. The electromagnetic compatibility is also stronger.

本發明的基片材質可採用陶瓷、高分子聚合物、鐵電材料、鐵氧材料或鐵磁材料製成。其中高分子聚合物優選採用FR-4或F4B材料。更優選地,本發明的基片採用陶瓷基片, 由於陶瓷材料優良的電磁特性使得本發明超材料射頻天線具有優良的電磁參數。The substrate material of the present invention can be made of ceramic, high molecular polymer, ferroelectric material, ferrite material or ferromagnetic material. Among them, the high molecular polymer is preferably a FR-4 or F4B material. More preferably, the substrate of the present invention uses a ceramic substrate, Due to the excellent electromagnetic properties of the ceramic material, the supermaterial RF antenna of the present invention has excellent electromagnetic parameters.

接下來詳細描述本發明超材料射頻天線的製備方法。如圖11所示,具有多層基片的超材料射頻天線的製備過程包括:S1:製作基片;S2:在基片表面附著所需金屬分支;S3:電連接基片表面的金屬分支。Next, a method of preparing the metamaterial radio frequency antenna of the present invention will be described in detail. As shown in FIG. 11, a preparation process of a metamaterial radio frequency antenna having a multilayer substrate includes: S1: fabricating a substrate; S2: attaching a desired metal branch to the surface of the substrate; and S3: electrically connecting metal branches on the surface of the substrate.

其中,S3步驟電連接基片表面的金屬分支可通在基片上形成金屬化通孔以電連接基片表面的金屬分支,或者通過在基片側邊印刷連接部以電連接基片表面的金屬分支。如圖14所示,其中步驟S3還包括:S311:在需要電連接的金屬分支末端打孔,通孔直徑為0.1至0.5mm,打孔可選用數控鑽床鑽孔、數控衝床沖孔以及激光打孔等多種方式;S312:通孔填充,通孔填充可採用絲網印刷、掩膜印刷以及通孔鑄漿等多種方式將液態金屬填充於小孔中,其中通孔鑄漿為較優方式。Wherein, the metal branch on the surface of the substrate electrically connected to the step S3 can form a metalized via hole on the substrate to electrically connect the metal branch on the surface of the substrate, or electrically connect the metal on the surface of the substrate by printing a connection portion on the side of the substrate. Branch. As shown in FIG. 14, the step S3 further includes: S311: punching holes at the ends of the metal branches that need to be electrically connected, the diameter of the through holes is 0.1 to 0.5 mm, and the drilling can be performed by using a numerically controlled drilling machine, a numerically punching machine, and a laser punching. Holes and other methods; S312: through-hole filling, through-hole filling can be filled with liquid metal in a variety of ways, such as screen printing, mask printing and through-hole casting, wherein through-hole casting is a better way.

當採用多個基片,採用陶瓷材料作為本發明基片材料時,本發明製備工藝如圖12所示,根據天線電磁參數需求,圖11中的方法還包括:步驟S4:將多個基片壓制為一體;S5:將步驟S4中壓制一體的多個基片燒結。When a plurality of substrates are used and a ceramic material is used as the substrate material of the present invention, the preparation process of the present invention is as shown in FIG. 12. According to the electromagnetic parameter requirements of the antenna, the method in FIG. 11 further includes: step S4: multiple substrates are used. Pressing is integrated; S5: sintering a plurality of substrates pressed in step S4.

其中,S5步驟中燒結溫度低於1000度。同時,製備陶瓷基片的步驟如圖13所示,S1步驟更包括:S11:混合有機載體和玻璃陶瓷粉,混合後的混合物將有助於提高陶瓷基片的品 質因素並使得陶瓷基片的相對介電常數範圍為5至30;S12:流延而製成多個陶瓷基片。Wherein, the sintering temperature in the step S5 is less than 1000 degrees. Meanwhile, the step of preparing the ceramic substrate is as shown in FIG. 13, and the step S1 further comprises: S11: mixing the organic carrier and the glass ceramic powder, and the mixed mixture will contribute to the improvement of the ceramic substrate. The quality factor causes the ceramic substrate to have a relative dielectric constant ranging from 5 to 30; S12: casting to form a plurality of ceramic substrates.

綜上所述,本發明的超材料射頻天線及其製備方法利用超材料設計中的電磁耦合原理在基片加上對稱或不對稱的金屬微結構,此種金屬微結構可以是傳統超材料設計中使用的任意拓撲結構,即:金屬微結構的拓撲結構包括但不限於為互補式開口諧振環結構、互補式螺旋線結構、開口螺旋環結構、雙開口螺旋環結構以及互補式彎折線結構中的一種,或者是通過前面五種結構的其中一種結構衍生、其中多種結構複合或其中一種結構組陣得到的結構,然後通過打孔或連接部將金屬微結構的第一部分和第二部分電連接接在一起,這樣在基片上形成了折叠的金屬微結構。此種設計充分利用了天線的空間面積,在等效的面積內加大了天線的電長度。這樣一來就可以在極小的空間內設計出工作在極低工作頻率上的超材料小天線。由於此種設計增加了天線的結構類型,使得天線非常容易產生多模諧振,這樣一來同時滿足了天線小體積、低工作頻率、寬帶多模的要求。In summary, the metamaterial radio frequency antenna of the present invention and the preparation method thereof use the electromagnetic coupling principle in the design of the metamaterial to add a symmetric or asymmetric metal microstructure to the substrate, and the metal microstructure can be a traditional metamaterial design. Any topology used in the structure, that is, the topology of the metal microstructure includes, but is not limited to, a complementary open resonant ring structure, a complementary spiral structure, an open spiral ring structure, a double open spiral ring structure, and a complementary bent line structure. Or a structure derived from one of the first five structures, wherein the plurality of structures are composited or one of the structures is arrayed, and then the first portion and the second portion of the metal microstructure are electrically connected through a perforation or joint. Together, this forms a folded metal microstructure on the substrate. This design makes full use of the space area of the antenna and increases the electrical length of the antenna within the equivalent area. In this way, a small material antenna with a very low operating frequency can be designed in a very small space. Since this design increases the structure type of the antenna, the antenna is very easy to generate multi-mode resonance, which simultaneously satisfies the requirements of small antenna size, low operating frequency, and wideband multimode.

儘管上文藉由較佳實施例揭示了本發明,但並不意圖限制本發明。本領域熟知此項技藝者可在不脫離本發明的精神及範圍的情況下進行一些潤飾及變化。因而,本發明的保護範圍落入所附的申請專利範圍內。Although the invention has been disclosed above by way of preferred embodiments, it is not intended to limit the invention. Those skilled in the art will be able to make some modifications and variations without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is intended to fall within the scope of the appended claims.

1‧‧‧人造金屬微結構1‧‧‧Artificial metal microstructure

2‧‧‧饋線2‧‧‧ feeder

101‧‧‧第一基片101‧‧‧First substrate

102‧‧‧第二基片102‧‧‧Second substrate

1011‧‧‧人造金屬微結構的第一部分1011‧‧ The first part of the artificial metal microstructure

1011a‧‧‧人造金屬微結構的第一部分1011的斷裂端點1011a‧‧ The fracture end of the first part 1011 of the man-made metal microstructure

1012‧‧‧饋線的第一部分1012‧‧‧The first part of the feeder

1012a‧‧‧饋線的第一部分1012斷裂端點1012a‧‧‧ The first part of the feeder 1012 break end

1013‧‧‧金屬化通孔1013‧‧‧Metalized through holes

1014‧‧‧金屬化通孔1014‧‧‧Metalized through holes

1015‧‧‧連接部1015‧‧‧Connecting Department

1016‧‧‧連接部1016‧‧‧Connecting Department

1021‧‧‧人造金屬微結構的第二部分1021‧‧ The second part of the artificial metal microstructure

1021a‧‧‧人造金屬微結構的第二部分1021的斷裂端點1021a‧‧ The fracture end of the second part 1021 of the man-made metal microstructure

1022‧‧‧饋線的第二部分1022‧‧‧Part 2 of the feeder

1022a‧‧‧饋線的第二部分1022斷裂端點1022a‧‧‧ The second part of the feeder 1022 breaks the end

200‧‧‧基片200‧‧‧ substrates

201‧‧‧第一表面201‧‧‧ first surface

202‧‧‧第二表面202‧‧‧ second surface

2011‧‧‧人造金屬微結構的第一部分2011‧‧‧The first part of the artificial metal microstructure

2011a‧‧‧人造金屬微結構的第一部分2011的斷裂端點2011a‧‧ The break point of the first part of the artificial metal microstructure 2011

2012‧‧‧饋線的第一部分The first part of the 2012‧‧ ‧ feeder

2012a‧‧‧饋線的第一部分2012斷裂端點2012a‧‧‧ The first part of the feeder line 2012 breakpoint

2013‧‧‧金屬化通孔2013‧‧‧Metalized through hole

2014‧‧‧金屬化通孔2014‧‧‧Metalized through hole

2015‧‧‧連接部2015‧‧‧Connecting Department

2016‧‧‧連接部2016‧‧‧Connecting Department

2021‧‧‧人造金屬微結構第二部分2021‧‧Man-made metal microstructures part two

2021a‧‧‧人造金屬微結構的第一部分2011的斷裂端點2021a‧‧ The break point of the first part of the man-made metal microstructure 2011

2022‧‧‧與饋線的第二部分2022‧‧‧ with the second part of the feeder

2022a‧‧‧與饋線的第二部分2022斷裂端點2022a‧‧‧ with the second part of the feeder 2022 broken end

為了更清楚地說明本發明實施例中的技術方案,下面將對 實施例描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖僅僅是本發明的一些實施例,對於本領域普通技術人員來講,在不付出創造性勞動的前提下,還可以根據這些附圖獲得其他的附圖。其中:圖1為習知技術天線結構示意圖;圖2~ 圖6為習知技術天線人造金屬微結構拓撲圖案;圖7為本發明超材料射頻天線的第一實施例的結構示意圖;圖8為本發明超材料射頻天線的第二實施例的結構示意圖;圖9為本發明超材料射頻天線的第三實施例的結構示意圖;圖10為本發明超材料射頻天線的第四實施例的結構示意圖;圖11為本發明超材料射頻天線的製備工藝流程圖;圖12為本發明超材料射頻天線採用陶瓷基片製備的工藝流程圖;圖13為本發明超材料射頻天線採用陶瓷基片製備工藝S1步驟的具體實施流程圖;圖14為本發明超材料射頻天線製備工藝S3步驟的具體實施流程圖。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings used in the description of the embodiments will be briefly described below. It is obvious that the drawings in the following description are only some embodiments of the present invention. Other drawings may also be obtained from those of ordinary skill in the art in light of the inventive work. 1 is a schematic diagram of a conventional antenna structure; FIG. 2 to FIG. 6 are schematic diagrams of a conventional artificial metal microstructure topology; FIG. 7 is a schematic structural view of a first embodiment of a metamaterial RF antenna according to the present invention; FIG. 9 is a schematic structural view of a third embodiment of a metamaterial radio frequency antenna according to the present invention; FIG. 10 is a schematic structural view of a fourth embodiment of a metamaterial radio frequency antenna according to the present invention; 11 is a flow chart of a preparation process of a super material radio frequency antenna according to the present invention; FIG. 12 is a flow chart of a process for preparing a super material radio frequency antenna using a ceramic substrate according to the present invention; and FIG. 13 is a process for preparing a super material radio frequency antenna using a ceramic substrate according to the present invention; FIG. 14 is a flowchart of a specific implementation of the S3 step of the super material RF antenna preparation process of the present invention.

101...第一基片101. . . First substrate

102...第二基片102. . . Second substrate

1011...人造金屬微結構的第一部分1011. . . The first part of the man-made metal microstructure

1011a...人造金屬微結構的第一部分1011的斷裂端點1011a. . . The fracture end of the first part 1011 of the man-made metal microstructure

1012...饋線的第一部分1012. . . The first part of the feeder

1012a...饋線的第一部分1012的斷裂端點1012a. . . The fracture endpoint of the first portion 1012 of the feeder

1013...金屬化通孔1013. . . Metalized through hole

1014...金屬化通孔1014. . . Metalized through hole

1021...人造金屬微結構的第二部分1021. . . The second part of the man-made metal microstructure

1021a...人造金屬微結構的第二部分1021的斷裂端點1021a. . . Break end of the second part 1021 of the man-made metal microstructure

1022...饋線的第二部分1022. . . The second part of the feeder

1022a...饋線的第二部分1022斷裂端點1022a. . . The second part of the feeder, 1022, breaks the end point

Claims (21)

一種超材料射頻天線,其中,所述超材料射頻天線包括金屬分支,所述金屬分支包括電氣相連的第一部分和第二部分,且所述金屬分支的第一部分和所述金屬分支的第二部分分別設置於不同的基片表面上,所述金屬分支在平面展開後構成饋線以及人造金屬微結構,所述饋線圍繞所述人造金屬微結構設置。 A metamaterial radio frequency antenna, wherein the metamaterial radio frequency antenna comprises a metal branch, the metal branch comprising a first portion and a second portion electrically connected, and a first portion of the metal branch and a second portion of the metal branch Separately disposed on different substrate surfaces, the metal branches are planarly developed to form a feed line and an artificial metal microstructure, the feed line being disposed around the artificial metal microstructure. 根據申請專利範圍第1項所述之超材料射頻天線,其中,所述基片包括第一基片和第二基片,其中,所述第一基片的表面附著有所述人造金屬微結構的第一部分以及所述饋線的第一部分,所述第二基片的表面附著有所述人造金屬微結構的第二部分以及所述饋線的第二部分。 The metamaterial radio frequency antenna according to claim 1, wherein the substrate comprises a first substrate and a second substrate, wherein the surface of the first substrate is attached with the artificial metal microstructure A first portion of the feed line and a first portion of the feed line, a second portion of the man-made metal microstructure and a second portion of the feed line attached to a surface of the second substrate. 根據申請專利範圍第2項所述之超材料射頻天線,其中,所述人造金屬微結構的第一部分斷裂端點以及所述饋線的第一部分斷裂端點分別與所述人造金屬微結構的第二部分斷裂端點以及所述饋線的第二部分斷裂端點電連接。 The metamaterial radio frequency antenna according to claim 2, wherein the first portion of the fracture point of the man-made metal microstructure and the first portion of the fracture line of the feed line are respectively opposite to the second portion of the man-made metal microstructure The partial break end and the second partial break end of the feed line are electrically connected. 根據申請專利範圍第3項所述之超材料射頻天線,其中,所述人造金屬微結構的第二部分從所述人造金屬微結構的第二部分斷裂端點在所述第二基片上延伸的方向與所述人造金屬微結構的第一部分從所述人造金屬微結構的第一部分斷裂端點在所述第一基片上延伸的方向一致。 The metamaterial radio frequency antenna according to claim 3, wherein the second portion of the man-made metal microstructure extends from the second portion of the fracture point of the man-made metal microstructure on the second substrate The direction coincides with a direction in which the first portion of the man-made metal microstructure extends from the first portion of the fracture point of the man-made metal microstructure on the first substrate. 根據申請專利範圍第4項所述之超材料射頻天線,其中,所述第一基片上還設置有第一金屬化通孔和第二金屬化通孔,所述第一金屬化通孔兩端對應於所述人造金屬微結構的第 一部分斷裂端點與所述人造金屬微結構的第二部分斷裂端點,所述第二金屬化通孔兩端對應於所述饋線的第一部分斷裂端點與所述饋線的第二部分斷裂端點;所述人造金屬微結構的第一部分和所述人造金屬微結構的第二部分通過所述第一金屬化通孔電連接,所述饋線的第一部分和所述饋線的第二部分通過所述第二金屬化通孔電連接。 The super material radio frequency antenna according to claim 4, wherein the first substrate is further provided with a first metallized through hole and a second metalized through hole, and the first metalized through hole has two ends Corresponding to the man-made metal microstructure a portion of the fracture end and a second portion of the artificial metal microstructure fracture end, the second metallization via having two ends corresponding to the first portion of the feed line and the second end of the feed line a first portion of the man-made metal microstructure and a second portion of the man-made metal microstructure are electrically connected by the first metallized via, a first portion of the feed line and a second portion of the feed line The second metallized via is electrically connected. 根據申請專利範圍第4項所述之超材料射頻天線,其中,所述第一基片的側面設置有第一連接部和第二連接部,所述第一連接部兩端對應於所述人造金屬微結構的第一部分斷裂端點與所述人造金屬微結構的第二部分斷裂端點,所述第二連接部兩端對應於所述饋線的第一部分斷裂端點與所述饋線的第二部分斷裂端點;所述人造金屬微結構的第一部分和所述人造金屬微結構的第二部分通過該第一連接部電連接,所述饋線的第一部分和所述饋線的二部分通過所述第二連接部電連接。 The metamaterial radio frequency antenna according to claim 4, wherein a side surface of the first substrate is provided with a first connecting portion and a second connecting portion, and both ends of the first connecting portion correspond to the artificial a first portion of the metal microstructure and a second portion of the fracture point of the man-made metal microstructure, the second portion of the second portion corresponding to the first portion of the feed line and the second end of the feed line a portion of the fracture end; the first portion of the man-made metal microstructure and the second portion of the man-made metal microstructure are electrically connected by the first connection, the first portion of the feed line and the two portions of the feed line The second connection portion is electrically connected. 根據申請專利範圍第2項所述之超材料射頻天線,其中,所述人造金屬微結構的拓撲圖案為互補式開口諧振環結構、互補式螺旋線結構、開口螺旋環結構、雙開口螺旋環結構以及互補式彎折線結構中的一種,或者是通過前面五種結構的其中一種結構衍生、其中多種結構複合或其中一種結構組陣得到的結構。 The metamaterial radio frequency antenna according to claim 2, wherein the topological pattern of the man-made metal microstructure is a complementary open resonant ring structure, a complementary spiral structure, an open spiral ring structure, and a double-open spiral ring structure. And one of the complementary bent line structures, or a structure obtained by one of the first five structures, wherein the plurality of structures are composited or one of the structures is arrayed. 根據申請專利範圍第1項所述之超材料射頻天線,其中,所述基片包括第一表面和與所述第一表面相對的第二表面,其中,所述基片的第一表面附著有所述人造金屬微結構的第一部分以及所述饋線的第一部分,所述基片的第二表面附著 有所述人造金屬微結構的第二部分以及所述饋線的第二部分。 The metamaterial radio frequency antenna according to claim 1, wherein the substrate comprises a first surface and a second surface opposite to the first surface, wherein the first surface of the substrate is attached a first portion of the man-made metal microstructure and a first portion of the feed line, a second surface of the substrate attached There is a second portion of the man-made metal microstructure and a second portion of the feed line. 根據申請專利範圍第8項所述之超材料射頻天線,其中,所述人造金屬微結構的第一部分斷裂端點以及所述饋線的第一部分斷裂端點分別與所述人造金屬微結構的第二部分斷裂端點以及所述饋線的第二部分斷裂端點電連接。 The metamaterial radio frequency antenna according to claim 8, wherein the first portion of the fracture point of the man-made metal microstructure and the first portion of the fracture end of the feed line are respectively opposite to the second portion of the man-made metal microstructure The partial break end and the second partial break end of the feed line are electrically connected. 根據申請專利範圍第9項所述之超材料射頻天線,其中,所述人造金屬微結構的第二部分從所述人造金屬微結構的第二部分斷裂端點在所述基片的第二表面上延伸的方向與所述人造金屬微結構的第一部分從所述人造金屬微結構的第一部分斷裂端點在所述基片的第一表面上延伸的方向一致。 The metamaterial radio frequency antenna of claim 9, wherein the second portion of the man-made metal microstructure breaks from a second portion of the man-made metal microstructure at a second surface of the substrate The direction of the upper extension coincides with the direction in which the first portion of the man-made metal microstructure extends from the first portion of the fracture end of the man-made metal microstructure on the first surface of the substrate. 根據申請專利範圍第10項所述之超材料射頻天線,其中,所述基片上還設置有第一金屬化通孔和第二金屬化通孔,所述第一金屬化通孔兩端對應於所述人造金屬微結構的第一部分斷裂端點與所述人造金屬微結構的第二部分斷裂端點,所述第二金屬化通孔兩端對應於所述饋線的第一部分斷裂端點與所述饋線的第二部分斷裂端點;所述人造金屬微結構的第一部分和所述人造金屬微結構的第二部分通過所述第一金屬化通孔電連接,所述饋線的第一部分和所述饋線的第二部分通過所述第二金屬化通孔電連接。 The super material radio frequency antenna according to claim 10, wherein the substrate is further provided with a first metallized through hole and a second metallized through hole, wherein the two ends of the first metallized through hole correspond to a first portion of the fracture point of the man-made metal microstructure and a second portion of the fracture point of the man-made metal microstructure, and the two ends of the second metallization hole correspond to a first portion of the fracture end of the feed line a second portion of the fracture line of the feed line; a first portion of the man-made metal microstructure and a second portion of the man-made metal microstructure are electrically connected by the first metallized via, the first portion of the feed line The second portion of the feed line is electrically connected through the second metallized via. 根據申請專利範圍第10項所述之超材料射頻天線,其中,所述基片的側面設置有第一連接部和第二連接部,所述第一連接部兩端對應於所述人造金屬微結構的第一部分斷裂端點與所述人造金屬微結構的第二部分斷裂端點,所述第二連接部兩端對應於所述饋線的第一部分斷裂端點與所述饋線的第二部分斷裂端點;所述人造金屬微結構的第一部分和所述人 造金屬微結構的第二部分通過該第一連接部電連接,所述饋線的第一部分和所述饋線的第二部分通過所述第二連接部電連接。 The metamaterial radio frequency antenna according to claim 10, wherein a side surface of the substrate is provided with a first connecting portion and a second connecting portion, and the two ends of the first connecting portion correspond to the artificial metal micro a first portion of the fracture end of the structure and a second portion of the fracture point of the man-made metal microstructure, the second portion of the second connection portion corresponding to a fracture of the first portion of the feed line and a second portion of the feed line An end point; the first portion of the man-made metal microstructure and the person A second portion of the metal-forming microstructure is electrically connected by the first connection, the first portion of the feed line and the second portion of the feed line being electrically connected by the second connection. 根據申請專利範圍第8項所述之超材料射頻天線,其中,所述人造金屬微結構的拓撲圖案為互補式開口諧振環結構、互補式螺旋線結構、開口螺旋環結構、雙開口螺旋環結構以及互補式彎折線結構中的一種,或者是通過前面五種結構的其中一種結構衍生、其中多種結構複合或其中一種結構組陣得到的結構。 The metamaterial radio frequency antenna according to claim 8, wherein the topological pattern of the man-made metal microstructure is a complementary open resonant ring structure, a complementary spiral structure, an open spiral ring structure, and a double-open spiral ring structure. And one of the complementary bent line structures, or a structure obtained by one of the first five structures, wherein the plurality of structures are composited or one of the structures is arrayed. 根據申請專利範圍第1項所述之超材料射頻天線,其中,所述基片由陶瓷、高分子聚合物、鐵電材料、鐵氧材料或鐵磁材料製成。 The metamaterial radio frequency antenna according to claim 1, wherein the substrate is made of ceramic, high molecular polymer, ferroelectric material, ferrite material or ferromagnetic material. 根據申請專利範圍第1項所述之超材料射頻天線,其中,所述基片的截面圖形為圓形、橢圓形或多邊形。 The metamaterial radio frequency antenna according to claim 1, wherein the cross-sectional pattern of the substrate is circular, elliptical or polygonal. 一種超材料射頻天線的製備方法,其中:所述製備方法包括以下步驟:S1:製作基片;S2:在所述基片表面附著所需金屬分支;S3:電連接所述基片表面的所述金屬分支;其中,所述步驟S3包括:S311:在需要電連接的所述金屬分支末端通過數控鑽床鑽孔、數控衝床沖孔或激光打孔方式在所述基片上形成通孔;S312:通過絲網印刷、掩膜印刷或者通孔鑄漿方式將液態金屬填充於所述通孔。 A method for preparing a metamaterial radio frequency antenna, wherein: the preparation method comprises the following steps: S1: fabricating a substrate; S2: attaching a desired metal branch to the surface of the substrate; and S3: electrically connecting the surface of the substrate The metal branch; wherein the step S3 comprises: S311: forming a through hole on the substrate by a numerically controlled drilling machine drilling, a numerically controlled punch punching or a laser drilling method at the end of the metal branch that requires electrical connection; S312: Liquid metal is filled in the through holes by screen printing, mask printing, or through-hole casting. 根據申請專利範圍第16項所述之製備方法,其中, 在所述步驟S1至所述步驟S3中,所述基片為陶瓷基片。 According to the preparation method of claim 16, wherein In the step S1 to the step S3, the substrate is a ceramic substrate. 根據申請專利範圍第17項所述之製備方法,其中,所述步驟S1具體包括:S11:混合有機載體和玻璃陶瓷粉;S12:流延(flow casting)。 The preparation method according to claim 17, wherein the step S1 specifically comprises: S11: mixing an organic vehicle and a glass ceramic powder; and S12: flow casting. 根據申請專利範圍第17項所述之製備方法,其中,所述製備方法還包括步驟S4:將多個所述基片壓制為一體。 The preparation method according to claim 17, wherein the preparation method further comprises the step S4: pressing the plurality of the substrates into one body. 根據申請專利範圍第19項所述之製備方法,其中,所述製備方法還包括步驟S5:將所述步驟S4中壓制一體的多個所述基片燒結。 The production method according to claim 19, wherein the preparation method further comprises a step S5 of sintering a plurality of the substrates integrally pressed in the step S4. 根據申請專利範圍第20項所述之製備方法,其中,在所述步驟S5中燒結溫度低於1000度。 The production method according to claim 20, wherein the sintering temperature is lower than 1000 degrees in the step S5.
TW100150010A 2011-03-14 2011-12-30 A metamaterial antenna and preparation method thereof TWI487189B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100621978A CN102683806A (en) 2011-03-14 2011-03-14 Small foldable metamaterial radio-frequency antenna

Publications (2)

Publication Number Publication Date
TW201238143A TW201238143A (en) 2012-09-16
TWI487189B true TWI487189B (en) 2015-06-01

Family

ID=46815402

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100150010A TWI487189B (en) 2011-03-14 2011-12-30 A metamaterial antenna and preparation method thereof

Country Status (3)

Country Link
CN (1) CN102683806A (en)
TW (1) TWI487189B (en)
WO (1) WO2012122795A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033778A1 (en) * 2000-05-18 2002-03-21 Makoto Yoshinomoto Chip antenna, radio communications terminal and radio communications system using the same and method for production of the same
US20070279285A1 (en) * 2004-02-18 2007-12-06 Achim Hilgers Antenna
TW200950208A (en) * 2008-05-30 2009-12-01 Vanskee Entpr S Pte Ltd Radio Frequency (RF) antenna and its manufacturing method
CN201490377U (en) * 2009-05-25 2010-05-26 蔡周贤 Electric connector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201025630Y (en) * 2007-02-14 2008-02-20 东南大学 Wide frequency band small printing antenna
KR100952977B1 (en) * 2007-10-10 2010-04-15 한국전자통신연구원 Radio frequency identification tag antenna using proximity coupling for attaching to metal
CN101355195A (en) * 2008-08-29 2009-01-28 浙江大学 UHF RF dual-frequency-recognizing metal-resistance label antenna
CN101740862B (en) * 2008-11-20 2014-04-30 深圳光启创新技术有限公司 Dipole antenna of RF chip
CN201490337U (en) * 2009-08-31 2010-05-26 深圳市启汉科技有限公司 Monopole radio-frequency antenna
CN201508905U (en) * 2009-09-08 2010-06-16 中兴通讯股份有限公司 Antennae applied for handheld reader and handheld reader

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033778A1 (en) * 2000-05-18 2002-03-21 Makoto Yoshinomoto Chip antenna, radio communications terminal and radio communications system using the same and method for production of the same
US20070279285A1 (en) * 2004-02-18 2007-12-06 Achim Hilgers Antenna
TW200950208A (en) * 2008-05-30 2009-12-01 Vanskee Entpr S Pte Ltd Radio Frequency (RF) antenna and its manufacturing method
CN201490377U (en) * 2009-05-25 2010-05-26 蔡周贤 Electric connector

Also Published As

Publication number Publication date
WO2012122795A1 (en) 2012-09-20
TW201238143A (en) 2012-09-16
CN102683806A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2019218590A1 (en) Filtering antenna for wearable apparatus
EP3012910A1 (en) Broadband dual-polarization four-leaf clover planar aerial
CN105027352B (en) Antenna and terminal
CN102760941B (en) A kind of radiofrequency antenna made of metamaterial with multi layer substrate and preparation method thereof
CN108682969A (en) A kind of anti-metal RFID tag of passive chipless
CN104821427A (en) Indirect coupled antenna unit
CN106025532A (en) Double-layer antenna
CN107181058A (en) A kind of new dualbeam directed radiation MIMO paster antennas and mobile terminal
TWI502807B (en) Antenna device
TWI487189B (en) A metamaterial antenna and preparation method thereof
CN103094665B (en) A kind of radiofrequency antenna made of metamaterial and preparation method thereof
CN206907919U (en) A kind of unmanned plane of dual-band microstrip antenna and the application antenna
CN107871926A (en) A kind of cutler feed medium resonator antenna
CN106099343A (en) Dual-layer atenna
CN105261831B (en) A kind of double frequency button antenna that clothing can be integrated in applied to body area network communication
CN205069861U (en) It can integrate in dual -frenquency button antenna of clothing to be applied to body area network communication
TWI517492B (en) Antenna and wireless communication device
CN208226081U (en) A kind of low frequency radiating element
CN106099344A (en) Dual-layer atenna with isolation micro-strip arm
CN206180104U (en) Antenna device
CN103187622B (en) A kind of asymmetrical antenna and there is the mimo antenna of this asymmetrical antenna
TWI501468B (en) Asymmetric antenna and a mimo antenna
CN205406715U (en) Broadband antenna who possesses wide band characteristic
CN205069880U (en) Multifrequency section microstrip antenna
CN103298166B (en) Mobile communication base station based on Super-material antenna