TWI486373B - Polyalkylene glycol-lactic acid based nano-composite and preparation method thereof - Google Patents

Polyalkylene glycol-lactic acid based nano-composite and preparation method thereof Download PDF

Info

Publication number
TWI486373B
TWI486373B TW102131683A TW102131683A TWI486373B TW I486373 B TWI486373 B TW I486373B TW 102131683 A TW102131683 A TW 102131683A TW 102131683 A TW102131683 A TW 102131683A TW I486373 B TWI486373 B TW I486373B
Authority
TW
Taiwan
Prior art keywords
lactic acid
polyalkylene glycol
glycol lactic
polymer
experimental example
Prior art date
Application number
TW102131683A
Other languages
Chinese (zh)
Other versions
TW201509985A (en
Inventor
Jiunn Yih Lee
Hsin Jiant Liu
Pai Chieh Wang
Po Tsun Wu
Original Assignee
Univ Nat Taiwan Science Tech
Univ Vanung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Science Tech, Univ Vanung filed Critical Univ Nat Taiwan Science Tech
Priority to TW102131683A priority Critical patent/TWI486373B/en
Publication of TW201509985A publication Critical patent/TW201509985A/en
Application granted granted Critical
Publication of TWI486373B publication Critical patent/TWI486373B/en

Links

Description

聚烷二醇乳酸系奈米複合材料及其製備方法Polyalkylene glycol lactic acid-based nano composite material and preparation method thereof

本發明是有關於一種奈米複合材料,且特別是有關於一種聚烷二醇乳酸系奈米複合材料及其製備方法。The present invention relates to a nano composite material, and more particularly to a polyalkylene glycol lactic acid based nano composite material and a preparation method thereof.

近年來,塑膠製品總產出量的41%使用在包裝工業中,其中的47%則應用在食品的包裝上,而這些塑膠是由聚乙烯(Polyethylene,PE)、聚丙烯(Polypropylene,PP)、聚苯乙烯(Polystyrene,PS)、聚氯乙烯(Poly vinyl chloride,PVC)等聚烯類所製成,原料是來由石油,若任意丟棄到環境中,結果自然就成為不可分解(undegradable)的廢棄物。這也就代表,約有40%的塑膠廢物永遠存在地球,而如何處理這些塑膠廢棄物就成全球環境問題。In recent years, 41% of the total output of plastic products has been used in the packaging industry, of which 47% is used in food packaging, which is made of polyethylene (Polyethylene, PE) and polypropylene (PP). Made of polystyrene (Polystyrene, PS), polyvinyl chloride (PVC), etc., the raw material is made of petroleum. If it is disposed of in the environment, it will naturally become undegradable. Waste. This means that about 40% of plastic waste will always exist on Earth, and how to deal with these plastic wastes becomes a global environmental problem.

目前有兩種方式可以處理這些廢棄物,第一種是以掩埋方式處理塑膠廢棄物,但可能有塑膠不易分解與掩埋場地不足的問題。在另一方面來說:將今天的問題掩埋起來,往後子孫後代仍要承受前人遺留來的棘手問題。另一方式是以焚化或回收以達到減量目的,但焚化塑膠會產生大量的二氧化碳溫室效應氣體, 造成全球暖化,產生的高熱會破壞焚化爐,而折損焚化設備的使用壽命,再者,燃燒分解出的毒性氣體與毒性物質也對人體健康有害。There are two ways to deal with these wastes. The first one is to dispose of plastic waste in a buried manner, but there may be problems in that the plastic is not easily decomposed and the site is insufficient. On the other hand: burying today's problems, future generations will still have to bear the thorny problems left by the predecessors. Another way is to incinerate or recycle to achieve the purpose of reduction, but incinerating plastics will produce a large amount of greenhouse gases, As a result of global warming, the high heat generated will destroy the incinerator, and the service life of the incineration equipment will be damaged. In addition, the toxic gases and toxic substances decomposed by combustion are also harmful to human health.

回收看似乎能夠解決這個問題,但其需要耗費大量人力與能源:將塑膠從垃圾堆中分離出來,再對不同的塑膠加以分類、清洗、乾燥再碾磨,重覆上述步驟,最後才得到所要的產品。所以回收再製的成本昂貴,且品質較差。至於一般在鼓勵或宣導的廢塑膠回收再使用方式,如果考量到整體能源成本(total energy cost),就很難使其急速成長。Recycling seems to solve this problem, but it takes a lot of manpower and energy: separating the plastic from the garbage, sorting, cleaning, drying and grinding the different plastics, repeating the above steps, and finally getting what you want. The product. Therefore, the cost of recycling is expensive and the quality is poor. As for the recycling and recycling of waste plastics that are generally encouraged or promoted, it is difficult to make rapid growth if the total energy cost is considered.

基於上述理由,目前的處理方法均有諸多問題而非最佳的選擇,亟於迫切需要發展綠色高分子材料(green polymeric materials),避免在製程中使用有毒或有害成份,並且可在天然環境中可分解的材料。直至今日,生物可分解材料的發展,在材料科學領域仍具有挑戰性的研究主題。因此尋求具有廢棄可分解性的材質,尤其是生物可分解性塑膠就日漸受到重視。For the above reasons, the current treatment methods have many problems rather than the best choices. It is urgent to develop green polymeric materials to avoid the use of toxic or harmful components in the process, and in the natural environment. Decomposable material. To this day, the development of biodegradable materials remains a challenging research topic in the field of materials science. Therefore, the search for materials with waste decomposability, especially biodegradable plastics, has received increasing attention.

本發明提供一種聚烷二醇乳酸系奈米複合材料的製備方法,藉由此方法製備的聚烷二醇乳酸系奈米複合材料,以及使用該聚烷二醇乳酸系奈米複合材料的生物可分解性材料、生醫材料、包裝材料及紙。本發明的聚烷二醇乳酸系奈米複合材料具有優異的生物可分解性、生物可相容性、親水性及熱穩定性,且具 有廣泛的應用性。The invention provides a preparation method of a polyalkylene glycol lactic acid-based nano composite material, a polyalkylene glycol lactic acid-based nano composite material prepared by the method, and a living organism using the polyalkylene glycol lactic acid-based nano composite material Decomposable materials, biomedical materials, packaging materials and paper. The polyalkylene glycol lactic acid-based nano composite material of the invention has excellent biodegradability, biocompatibility, hydrophilicity and thermal stability, and has Has a wide range of applications.

本發明的聚烷二醇乳酸系奈米複合材料的製備方法包括將經有機改質劑改質的無機奈米材料混摻於聚烷二醇乳酸系聚合物之單體、聚烷二醇乳酸系聚合物之預聚物、或聚烷二醇乳酸系聚合物基質中而形成,其中有機改質劑包括具有C6 -C40 長鏈烷基或C6 -C40 芳香基之界面活性劑,無機奈米材料為親水性,以及聚烷二醇乳酸系聚合物包括聚烷二醇乳酸聚合物、聚烷二醇之均聚物、聚乳酸系聚合物或其衍生聚合物。The preparation method of the polyalkylene glycol lactic acid-based nano composite material of the invention comprises mixing the inorganic nano material modified by the organic modifier into the monomer of the polyalkylene glycol lactic acid polymer, and the polyalkylene glycol lactic acid. Formed in a prepolymer of a polymer or a polyalkylene glycol lactic acid based polymer matrix, wherein the organic modifier comprises a surfactant having a C 6 -C 40 long chain alkyl group or a C 6 -C 40 aromatic group The inorganic nanomaterial is hydrophilic, and the polyalkylene glycol lactic acid-based polymer includes a polyalkylene glycol lactic acid polymer, a homopolymer of a polyalkylene glycol, a polylactic acid-based polymer or a derivative thereof.

在本發明的一實施例中,上述的聚烷二醇乳酸系聚合物包括聚乙二醇乳酸系聚合物或聚丙二醇乳酸系聚合物。In one embodiment of the present invention, the polyalkylene glycol lactic acid-based polymer includes a polyethylene glycol lactic acid polymer or a polypropylene glycol lactic acid polymer.

在本發明的一實施例中,上述的聚乳酸系聚合物包括聚乳酸(polylactic acid,PLA)或聚乳酸與聚甘醇酸(polyglycolic acid,PGA)之共聚物(lactide-co-gycolide,PLGA),其中聚乳酸分為L-形式聚乳酸(PLLA)、D-形式聚乳酸(PDLA)及D,L形式聚乳酸(PDLLA)。In an embodiment of the invention, the polylactic acid-based polymer comprises polylactic acid (PLA) or a copolymer of polylactic acid and polyglycolic acid (PGA) (lactide-co-gycolide, PLGA). ), wherein the polylactic acid is classified into L-form polylactic acid (PLLA), D-form polylactic acid (PDLA), and D, L form polylactic acid (PDLLA).

在本發明的一實施例中,上述的有機改質劑使無機奈米材料疏水化,以使無機奈米材料與聚烷二醇乳酸系聚合物之間的分散性及相容性增加。In an embodiment of the invention, the organic modifying agent hydrophobizes the inorganic nanomaterial to increase dispersibility and compatibility between the inorganic nanomaterial and the polyalkylene glycol lactic acid polymer.

在本發明的一實施例中,上述的有機改質劑是選自陽離子型界面活性劑、陰離子型界面活性劑、非離子界型面活性劑及兩性界面活性劑所組成的族群中的至少一者。In an embodiment of the invention, the organic modifier is at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, a nonionic boundary surfactant, and an amphoteric surfactant. By.

在本發明的一實施例中,上述的有機改質劑包括C6 -C40 長鏈烷基四級銨鹽(quaternary alkylammonium salt)、C6 -C40 長鏈苯基四級銨鹽(quaternary alkylphenylammonium salt)、月桂硫酸鈉、月桂基酸三乙醇胺、月桂醯基胺酸鈉、氯化苯烷銨、聚氧乙烯椰子油脂肪酸醯胺、椰子油脂肪酸單乙醇醯胺、硬脂酸二乙醇醯胺、硬脂酸單乙醇醯胺、C14 H29 SO4 Na、C16 H33 SO4 Na、C18 H37 SO4 Na、C12 H25 SO4 N(C4 H9 )4 、C12 H25 SO4 N(CH3 )3 C12 H25 、C12 H25 CH(COO)N(CH3 )、(C4 H9 )2 CHCH2 (OC2 H4 )9 OH及n-C12 H25 (OC2 H4 )31 OH或其混合物。In an embodiment of the invention, the above organic modifying agent comprises a C 6 -C 40 long chain alkyl quaternary ammonium salt, a C 6 -C 40 long chain phenyl quaternary ammonium salt (quaternary) Alkylphenylammonium salt), sodium lauryl sulfate, triethanolamine laurylamine, sodium lauryl amide, phenylammonium chloride, polyoxyethylene coconut oil fatty acid decylamine, coconut oil fatty acid monoethanol guanamine, stearic acid diethanol hydrazine Amine, stearic acid monoethanolamine, C 14 H 29 SO 4 Na, C 16 H 33 SO 4 Na, C 18 H 37 SO 4 Na, C 12 H 25 SO 4 N(C 4 H 9 ) 4 , C 12 H 25 SO 4 N(CH 3 ) 3 C 12 H 25 , C 12 H 25 CH(COO)N(CH 3 ), (C 4 H 9 ) 2 CHCH 2 (OC 2 H 4 ) 9 OH and nC 12 H 25 (OC 2 H 4 ) 31 OH or a mixture thereof.

在本發明的一實施例中,上述的無機奈米材料是選自黏土、蒙脫土、雲母、矽酸鹽、矽石及金屬氧化物所組成的族群中的至少一者。In an embodiment of the invention, the inorganic nanomaterial is at least one selected from the group consisting of clay, montmorillonite, mica, silicate, vermiculite, and metal oxide.

在本發明的一實施例中,以上述的聚烷二醇乳酸系奈米複合材料之總重量計,經有機改質劑改質的無機奈米材料的添加量為0.01wt%至10wt%。In an embodiment of the present invention, the amount of the inorganic nano-material modified by the organic modifier is from 0.01% by weight to 10% by weight based on the total weight of the polyalkylene glycol lactic acid-based nano composite.

在本發明的一實施例中,上述的聚烷二醇乳酸系聚合物的聚合方法包括縮合聚合法和開環聚合法、溶液聚合法、懸浮聚合法、乳化聚合法、原位插層聚合法或熔融插層聚合法。In one embodiment of the present invention, the polymerization method of the above polyalkylene glycol lactic acid polymer includes a condensation polymerization method, a ring-opening polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, and an in-situ intercalation polymerization method. Or melt intercalation polymerization.

在本發明的一實施例中,上述的將經有機改質劑改質的無機奈米材料混摻於聚烷二醇乳酸系聚合物之單體、聚烷二醇乳酸系聚合物之預聚物、或聚烷二醇乳酸系聚合物基質中的方法包括以下步驟。首先,利用溶劑使經有機改質劑改質的無機奈米材料膨潤。接著,混合聚烷二醇乳酸系聚合物或其預聚物及膨潤後 的無機奈米材料,其中所氧烷二醇乳酸系聚合物或其預聚物的高分子鏈將插層於無機奈米材料,而溶劑存在於所述無機奈米材料的層間。之後,將溶劑去除。In an embodiment of the invention, the inorganic nano material modified by the organic modifier is mixed with the monomer of the polyalkylene glycol lactic acid polymer and the prepolymerization of the polyalkylene glycol lactic acid polymer. The method in the article, or the polyalkylene glycol lactic acid based polymer matrix, comprises the following steps. First, the inorganic nanomaterial modified by the organic modifier is swollen with a solvent. Next, the polyalkylene glycol lactic acid polymer or its prepolymer is mixed and swelled. The inorganic nanomaterial in which the polymer chain of the oxyalkylene glycol lactic acid polymer or its prepolymer is intercalated into the inorganic nano material, and the solvent is present between the layers of the inorganic nano material. After that, the solvent is removed.

在本發明的一實施例中,上述的將經有機改質劑改質的無機奈米材料混摻於聚烷二醇乳酸系聚合物之單體、聚烷二醇乳酸系聚合物之預聚物、或聚烷二醇乳酸系聚合物基質中的方法包括以下步驟。首先,將經有機改質劑改質的無機奈米材料膨潤。接著,將膨潤後的無機奈米材料置於液態的聚烷二醇乳酸系聚合物的單體中或含有聚烷二醇乳酸系聚合物的單體的溶液中,其中聚烷二醇乳酸系聚合物的單體在層間進行聚合反應。In an embodiment of the invention, the inorganic nano material modified by the organic modifier is mixed with the monomer of the polyalkylene glycol lactic acid polymer and the prepolymerization of the polyalkylene glycol lactic acid polymer. The method in the article, or the polyalkylene glycol lactic acid based polymer matrix, comprises the following steps. First, the inorganic nanomaterial modified by the organic modifier is swollen. Next, the swollen inorganic nano material is placed in a monomer of a liquid polyalkylene glycol lactic acid polymer or a solution of a monomer containing a polyalkylene glycol lactic acid polymer, wherein the polyalkylene glycol lactic acid is The monomers of the polymer are polymerized between the layers.

在本發明的一實施例中,上述的將經有機改質劑改質的無機奈米材料混摻於聚烷二醇乳酸系聚合物之單體、聚烷二醇乳酸系聚合物之預聚物、或聚烷二醇乳酸系聚合物基質中的方法包括以下步驟。首先,將聚烷二醇乳酸系聚合物的單體及預聚物加熱,以形成熔融的聚烷二醇乳酸系聚合物。接著,在使熔融的聚烷二醇乳酸系聚合物冷卻後或是使熔融的聚烷二醇乳酸系聚合物在一剪切力作用下,將熔融的聚烷二醇乳酸系聚合物和經有機改質劑改質的無機奈米材料混合。In an embodiment of the invention, the inorganic nano material modified by the organic modifier is mixed with the monomer of the polyalkylene glycol lactic acid polymer and the prepolymerization of the polyalkylene glycol lactic acid polymer. The method in the article, or the polyalkylene glycol lactic acid based polymer matrix, comprises the following steps. First, a monomer and a prepolymer of a polyalkylene glycol lactic acid polymer are heated to form a molten polyalkylene glycol lactic acid-based polymer. Next, the molten polyalkylene glycol lactic acid-based polymer is cooled or the molten polyalkylene glycol lactic acid-based polymer is subjected to a shearing force to melt the polyalkylene glycol lactic acid-based polymer and The inorganic modifier material modified by the organic modifier is mixed.

在本發明的一實施例中,上述的聚烷二醇乳酸系奈米複合材料的製備方法更包括利用等溫熱處理程序,以提高聚烷二醇乳酸系聚合物的結晶度及物理特性。In an embodiment of the present invention, the method for preparing the polyalkylene glycol lactic acid-based nano composite material further comprises using an isothermal heat treatment procedure to increase the crystallinity and physical properties of the polyalkylene glycol lactic acid-based polymer.

本發明的聚烷二醇乳酸系奈米複合材料是由前述的聚烷 二醇乳酸系奈米複合材料的製備方法所製備。The polyalkylene glycol lactic acid-based nano composite material of the present invention is composed of the aforementioned polyalkane It is prepared by a method for preparing a glycol lactic acid-based nano composite.

本發明的生物可分解性材料包括前述的聚烷二醇乳酸系奈米複合材料。The biodegradable material of the present invention includes the aforementioned polyalkylene glycol lactic acid-based nano composite material.

本發明的生醫材料包括前述的聚烷二醇乳酸系奈米複合材料。The biomedical material of the present invention includes the aforementioned polyalkylene glycol lactic acid-based nano composite material.

本發明的包裝材料包括前述的聚烷二醇乳酸系奈米複合材料。The packaging material of the present invention includes the aforementioned polyalkylene glycol lactic acid-based nanocomposite.

本發明的紙是由前述的聚烷二醇乳酸系奈米複合材料塗覆於纖維基材上所構成。The paper of the present invention is composed of the above-mentioned polyalkylene glycol lactic acid-based nano composite material coated on a fibrous base material.

基於上述,本發明所提出的聚烷二醇乳酸系奈米複合材料的製備方法,透過使經有機改質劑改質之無機奈米材料均勻分散在聚烷二醇乳酸系聚合物基質中,可製備出一系列具有優異的生物可分解性、生物可相容性、親水性及熱穩定性的奈米複合材料。Based on the above, the method for preparing a polyalkylene glycol lactic acid-based nano composite material according to the present invention, by uniformly dispersing an inorganic nano-material modified by an organic modifier in a polyalkylene glycol lactic acid-based polymer matrix, A series of nanocomposites with excellent biodegradability, biocompatibility, hydrophilicity and thermal stability can be prepared.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1是黏土結構的示意圖。Figure 1 is a schematic view of a clay structure.

圖2是實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4與比較例1的TGA分析結果。2 is a TGA analysis result of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, Experimental Example 1-4, and Comparative Example 1.

圖3是實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4與比較例1的熔融曲線圖。3 is a melting graph of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, Experimental Example 1-4, and Comparative Example 1.

圖4是實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4與比較例1的結晶曲線圖。4 is a crystallization graph of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, Experimental Example 1-4, and Comparative Example 1.

圖5a至圖5d分別為實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的TEM圖。5a to 5d are TEM images of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4, respectively.

圖6a及圖6b分別為比較例1的結晶開始圖及結晶完成圖。6a and 6b are a crystallization start diagram and a crystallization completion diagram of Comparative Example 1, respectively.

圖7a及圖7b分別為實驗例1-1的結晶開始圖及結晶完成圖。7a and 7b are a crystallization start diagram and a crystallization completion diagram of Experimental Example 1-1, respectively.

圖8a及圖8b分別為實驗例1-2的結晶開始圖及結晶完成圖。8a and 8b are a crystallization start diagram and a crystallization completion diagram of Experimental Example 1-2, respectively.

圖9a及圖9b分別為實驗例1-3的結晶開始圖及結晶完成圖。9a and 9b are a crystallization start diagram and a crystallization completion diagram of Experimental Example 1-3, respectively.

圖10a及圖10b分別為實驗例1-4的結晶開始圖及結晶完成圖。10a and 10b are a crystallization start diagram and a crystallization completion diagram of Experimental Example 1-4, respectively.

圖11a為實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4與比較例1在結晶峰起始溫度下的WXRD圖。Fig. 11a is a WXRD chart of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 and Comparative Example 1 at the crystallization peak onset temperature.

圖11b為實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4與比較例1在結晶峰最高點溫度下的WXRD圖。Fig. 11b is a WXRD chart of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 and Comparative Example 1 at the highest point temperature of the crystallization peak.

圖12是實驗例2-1、實驗例2-2及實驗例2-3與比較例2的TGA分析結果。Fig. 12 shows the results of TGA analysis of Experimental Example 2-1, Experimental Example 2-2, Experimental Example 2-3, and Comparative Example 2.

圖13是實驗例2-1、實驗例2-2及實驗例2-3與比較例2之非等溫結晶後的熔融曲線圖。Fig. 13 is a graph showing the melting curves of Experimental Example 2-1, Experimental Example 2-2, Experimental Example 2-3, and Comparative Example 2 after non-isothermal crystallization.

圖14是實驗例2-1、實驗例2-2及實驗例2-3與比較例2之非等溫結晶後的結晶曲線圖。14 is a crystal graph of the non-isothermal crystallization of Experimental Example 2-1, Experimental Example 2-2, Experimental Example 2-3, and Comparative Example 2.

圖15a是比較例2之在不同結晶溫度下之等溫結晶後的熔融曲線圖。Fig. 15a is a graph showing the melting curve of isothermal crystallization at different crystallization temperatures of Comparative Example 2.

圖15b是實驗例2-1之在不同結晶溫度下之等溫結晶後的熔融曲線圖。Fig. 15b is a graph showing the melting curve of the experimental example 2-1 after isothermal crystallization at different crystallization temperatures.

圖15c是實驗例2-2之在不同結晶溫度下之等溫結晶後的熔融曲線圖。Fig. 15c is a graph showing the melting curve of the experimental example 2-2 after isothermal crystallization at different crystallization temperatures.

圖15d是實驗例2-3之在不同結晶溫度下之等溫結晶後的熔融曲線圖。Fig. 15d is a melting curve of the experimental example 2-3 after isothermal crystallization at different crystallization temperatures.

圖16a至圖16c分別是實驗例2-1、實驗例2-2及實驗例2-3的TEM圖。16a to 16c are TEM images of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3, respectively.

圖17a及圖17b分別為比較例2在結晶溫度T1 及結晶溫度T5 下的POM結晶圖。17a and 17b are POM crystal diagrams of Comparative Example 2 at the crystallization temperature T 1 and the crystallization temperature T 5 , respectively.

圖18a及圖18b分別為實驗例2-1在結晶溫度T1 及結晶溫度T5 下的POM結晶圖。18a and 18b are POM crystal diagrams of Experimental Example 2-1 at the crystallization temperature T 1 and the crystallization temperature T 5 , respectively.

圖19a及圖19b分別為實驗例2-2在結晶溫度T1 及結晶溫度T5 下的POM結晶圖。19a and 19b are POM crystal diagrams of Experimental Example 2-2 at the crystallization temperature T 1 and the crystallization temperature T 5 , respectively.

圖20a及圖20b分別為實驗例2-3在結晶溫度T1 及結晶溫度T5 下的POM結晶圖。20a and 20b are POM crystal diagrams of Experimental Example 2-3 at the crystallization temperature T 1 and the crystallization temperature T 5 , respectively.

圖21a為實驗例2-1、實驗例2-2及實驗例2-3與比較例2在結晶溫度T1 下的WXRD圖。Fig. 21a is a WXRD chart of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3 and Comparative Example 2 at a crystallization temperature T 1 .

圖21b為實驗例2-1、實驗例2-2及實驗例2-3與比較例2在結晶溫度T2 下的WXRD圖。21b is a WXRD pattern of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3 and Comparative Example 2 at a crystallization temperature T 2 .

圖21c為實驗例2-1、實驗例2-2及實驗例2-3與比較例2在結晶溫度T3 下的WXRD圖。21c is a WXRD pattern of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3 and Comparative Example 2 at a crystallization temperature T 3 .

圖21d為實驗例2-1、實驗例2-2及實驗例2-3與比較例2在結晶溫度T4 下的WXRD圖。21d is a WXRD pattern of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3 and Comparative Example 2 at a crystallization temperature T 4 .

圖21e為實驗例2-1、實驗例2-2及實驗例2-3與比較例2在結晶溫度T5 下的WXRD圖。21e is a WXRD pattern of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3 and Comparative Example 2 at a crystallization temperature T 5 .

本發明提供一種聚烷二醇乳酸系奈米複合材料的製備方法,包括將經有機改質劑改質的無機奈米材料混摻於聚烷二醇乳酸系聚合物之單體、聚烷二醇乳酸系聚合物之預聚物、或聚烷二醇乳酸系聚合物基質中。也就是說,在此製備方法中,所述無機奈米材料可在聚烷二醇乳酸系聚合物的聚合過程中加入,或是在聚烷二醇乳酸系聚合物已聚合完成後再加入。The invention provides a preparation method of a polyalkylene glycol lactic acid-based nano composite material, which comprises mixing an inorganic nano material modified by an organic modifier into a monomer of a polyalkylene glycol lactic acid polymer, and a polyalkane A prepolymer of a alcoholic lactic acid polymer or a polyalkylene glycol lactic acid polymer matrix. That is, in the preparation method, the inorganic nanomaterial may be added during the polymerization of the polyalkylene glycol lactic acid-based polymer or may be added after the polyalkylene glycol lactic acid-based polymer has been polymerized.

另外,經有機改質劑改質的無機奈米材料可透過多種不同的方法來混摻於聚烷二醇乳酸系聚合物之單體、預聚物或聚烷二醇乳酸系聚合物基質中,以下將藉由多種實施例來詳細說明。In addition, the inorganic nano-material modified by the organic modifier can be blended into the monomer, prepolymer or polyalkylene glycol lactic acid polymer matrix of the polyalkylene glycol lactic acid polymer through a variety of different methods. The following will be explained in detail by various embodiments.

在一實施例中,經有機改質劑改質的無機奈米材料混摻於聚烷二醇乳酸系聚合物之單體、預聚物或聚烷二醇乳酸系聚合物基質中的方法包括以下步驟。首先,利用溶劑使經有機改質劑改質的無機奈米材料膨潤。接著,混合聚烷二醇乳酸系聚合物或其預聚物及膨潤後的無機奈米材料,其中聚烷二醇乳酸系聚合物 或其預聚物的高分子鏈將插層於無機奈米材料中,而溶劑存在於無機奈米材料的層間。之後,將溶劑去除。In one embodiment, the method of blending an organic modifier-modified inorganic nanomaterial into a monomer, a prepolymer or a polyalkylene glycol lactic acid polymer matrix of a polyalkylene glycol lactic acid polymer comprises The following steps. First, the inorganic nanomaterial modified by the organic modifier is swollen with a solvent. Next, a polyalkylene glycol lactic acid-based polymer or a prepolymer thereof and a swelled inorganic nano-material, wherein the polyalkylene glycol lactic acid-based polymer is mixed The polymer chains of the prepolymers thereof or the prepolymers are intercalated in the inorganic nanomaterial, and the solvent is present between the layers of the inorganic nanomaterial. After that, the solvent is removed.

詳細而言,上述製備方法是以溶劑為系統,因而聚烷二醇乳酸系聚合物或其預聚物必需是可以被溶劑所溶解,且無機奈米材料是可以被溶劑所膨潤。溶劑例如是水、甲苯或氯仿。更詳細而言,在上述製備方法中,聚烷二醇乳酸系聚合物的聚合方法是以溶液聚合法來實現。In detail, the above preparation method is a solvent system, and therefore the polyalkylene glycol lactic acid-based polymer or its prepolymer must be dissolved by a solvent, and the inorganic nano-material can be swollen by a solvent. The solvent is, for example, water, toluene or chloroform. More specifically, in the above production method, the polymerization method of the polyalkylene glycol lactic acid-based polymer is carried out by a solution polymerization method.

在此實施例中,聚烷二醇乳酸系聚合物例如包括聚烷二醇乳酸聚合物、聚烷二醇之均聚物、聚乳酸系聚合物或其衍生聚合物,其中以聚烷二醇乳酸聚合物為主。另外,在此實施例中,聚烷二醇乳酸系聚合物例如是聚乙二醇乳酸系聚合物或聚丙二醇乳酸系聚合物。也就是說,當聚烷二醇乳酸系聚合物是聚乙二醇乳酸系聚合物時,其包括聚乙二醇乳酸聚合物、聚乙二醇之均聚物或聚乳酸系聚合物。同樣的,當聚烷二醇乳酸系聚合物是聚丙二醇乳酸系聚合物時,其包括聚丙二醇乳酸聚合物、聚丙二醇之均聚物或聚乳酸系聚合物。In this embodiment, the polyalkylene glycol lactic acid-based polymer includes, for example, a polyalkylene glycol lactic acid polymer, a homopolymer of a polyalkylene glycol, a polylactic acid-based polymer or a derivative thereof, wherein a polyalkylene glycol is used. Lactic acid polymers are dominant. Further, in this embodiment, the polyalkylene glycol lactic acid-based polymer is, for example, a polyethylene glycol lactic acid polymer or a polypropylene glycol lactic acid polymer. That is, when the polyalkylene glycol lactic acid-based polymer is a polyethylene glycol lactic acid-based polymer, it includes a polyethylene glycol lactic acid polymer, a homopolymer of polyethylene glycol, or a polylactic acid-based polymer. Similarly, when the polyalkylene glycol lactic acid-based polymer is a polypropylene glycol lactic acid-based polymer, it includes a polypropylene glycol lactic acid polymer, a polypropylene glycol homopolymer or a polylactic acid-based polymer.

另外,聚乳酸系聚合物包括聚乳酸或聚乳酸與聚甘醇酸之共聚物。詳細而言,聚乳酸或聚乳酸與聚甘醇酸之共聚物具有優良的生物可相容性、生物可分解性和適當的材料物化性質。然而,本發明並不以此為限,在其他的實施例中,聚乳酸系聚合物亦可以是聚乳酸與脂族酸聚酯(aliphatic polyester)、聚丙烯酸氰基酯(polycyano acrylate)、聚醯胺(poly(amides))、聚原酸酯 (poly(orthoesters,POE)、聚酐類(polyanhydrides,PAH)或聚縮醛(poly acetals)之共聚物。進一步而言,聚乳酸具有不對稱的碳原子提供光學活性中心,其中包含了R及S兩種光學異構組態立體異構物,因此依聚合單體分子的不同,聚乳酸可分為L-形式聚乳酸(PLLA)、D-形式聚乳酸(PDLA)及D,L形式聚乳酸(PDLLA)。Further, the polylactic acid-based polymer includes polylactic acid or a copolymer of polylactic acid and polyglycolic acid. In detail, polylactic acid or a copolymer of polylactic acid and polyglycolic acid has excellent biocompatibility, biodegradability, and appropriate material physicochemical properties. However, the present invention is not limited thereto. In other embodiments, the polylactic acid-based polymer may also be a polylactic acid, an aliphatic polyester, a polycyano acrylate, or a poly Poly(amides), polyorthoesters (Poly(orthoesters, POE), polyanhydrides (PAH) or polyacetal copolymers. Further, polylactic acid has an asymmetric carbon atom to provide an optically active center, which contains R and S two kinds of optical isomer configuration stereoisomers, so depending on the monomer molecules, polylactic acid can be divided into L-form polylactic acid (PLLA), D-form polylactic acid (PDLA) and D, L form poly Lactic acid (PDLLA).

從另一觀點而言,聚烷二醇乳酸系聚合物的聚合方法例如是以開環聚合法或縮合聚合法來實現。舉例而言,當聚烷二醇乳酸系聚合物是聚乙二醇乳酸系聚合物時,聚烷二醇乳酸系聚合物的聚合反應可在較高溫度且真空條件下,透過將聚乙二醇與作為單體的丙交酯(Lactide)混合,且在辛酸亞錫(stannous octoate)的催化下進行,如以下式1所示,其中x及y為1~2000。From another point of view, the polymerization method of the polyalkylene glycol lactic acid-based polymer is achieved, for example, by a ring-opening polymerization method or a condensation polymerization method. For example, when the polyalkylene glycol lactic acid-based polymer is a polyethylene glycol lactic acid-based polymer, the polymerization reaction of the polyalkylene glycol lactic acid-based polymer can be carried out at a higher temperature and under vacuum conditions. The alcohol is mixed with Lactide as a monomer, and is catalyzed by stannous octoate, as shown in the following formula 1, wherein x and y are from 1 to 2,000.

同樣的,當聚烷二醇乳酸系聚合物是聚丙二醇乳酸系聚合物時,聚烷二醇乳酸系聚合物的聚合反應可在較高溫度且真空條件下,透過將聚丙二醇與作為單體的丙交酯混合,且在辛酸亞錫的催化下進行,如以下式2所示,其中x及y為1~2000。 Similarly, when the polyalkylene glycol lactic acid-based polymer is a polypropylene glycol lactic acid-based polymer, the polymerization of the polyalkylene glycol lactic acid-based polymer can be carried out by passing polypropylene glycol as a monomer at a relatively high temperature under vacuum. The lactide is mixed and catalyzed by stannous octoate, as shown in the following formula 2, wherein x and y are from 1 to 2,000.

詳細而言,上述式1及式2的聚合方法是以開環聚合法來實現。然而,本發明並不限於此。舉例而言,聚烷二醇乳酸系聚合物的聚合反應也可透過縮合聚合法,以乳酸(lactic acid)作為單體與聚乙二醇或聚丙二醇混合來進行。舉另一例而言,根據前文所揭露的內容可知,聚烷二醇乳酸系聚合物的聚合反應也可以聚乳酸與聚甘醇酸之共聚物與聚乙二醇或聚丙二醇混合來進行。Specifically, the polymerization methods of the above formulas 1 and 2 are carried out by a ring-opening polymerization method. However, the invention is not limited thereto. For example, the polymerization reaction of the polyalkylene glycol lactic acid-based polymer can also be carried out by a condensation polymerization method using lactic acid as a monomer and polyethylene glycol or polypropylene glycol. As another example, it is understood from the above that the polymerization reaction of the polyalkylene glycol lactic acid-based polymer can be carried out by mixing a copolymer of polylactic acid and polyglycolic acid with polyethylene glycol or polypropylene glycol.

在此實施例中,以聚烷二醇乳酸系奈米複合材料之總重量計,經有機改質劑改質的無機奈米材料的添加量例如是0.01wt%至10wt%,較佳是0.5wt%至2wt%。In this embodiment, the amount of the inorganic nano-material modified by the organic modifier is, for example, 0.01% by weight to 10% by weight, preferably 0.5, based on the total weight of the polyalkylene glycol lactic acid-based nano composite material. Wt% to 2wt%.

另外,在此實施例中,無機奈米材料為親水性的無機奈米材料。詳細而言,由於聚合物及其單體或預聚物大多屬於親油性,所以在無機奈米材料和親油性的聚合物及其單體或預聚物混和前,通常需經過改質處理。鑒於此,在本發明的聚烷二醇乳酸系奈米複合材料的製備方法中,透過使用有機改質劑使無機奈米材料疏水化,以使無機奈米材料與聚烷二醇乳酸系聚合物之間的分散性及相容性增加。Further, in this embodiment, the inorganic nanomaterial is a hydrophilic inorganic nanomaterial. In detail, since the polymer and its monomer or prepolymer are mostly lipophilic, it is usually subjected to modification treatment before the inorganic nano material and the lipophilic polymer and its monomer or prepolymer are mixed. In view of this, in the preparation method of the polyalkylene glycol lactic acid-based nano composite material of the present invention, the inorganic nano material is hydrophobized by using an organic modifier to polymerize the inorganic nano material and the polyalkyl glycol lactic acid. The dispersibility and compatibility between the substances increases.

在此實施例中,有機改質劑例如是具有C6 -C40 烷基或 C6 -C40 芳香基之界面活性劑。界面活性劑種類不特別限定,其例如是選自陽離子型界面活性劑、陰離子型界面活性劑、非離子界型面活性劑及兩性界面活性劑所組成的族群中的至少一者。舉例而言,有機改質劑的實例包括C6 -C40 烷基四級銨鹽(quaternary alkylammonium salt),例如氯化硬脂酸三甲基銨、月桂醯二甲基胺基醋酸三甲基銨內酯、C12 H25 N(CH3 )3 Br、C14 H29 N(CH3 )3 Br、C16 H33 N(CH3 )3 Br、(C2 H25 )2 (CH3 )2 NBr、C12 H25 SO4 N(C4 H9 )4 或C12 H25 SO4 N(CH3 )3 C12 H25 ;C6 -C40 烷基苯基四級銨鹽(quaternary alkylphenylammonium salt),例如氯化硬脂酸二甲基苯甲基銨;氯化苯烷銨;月桂硫酸鈉;月桂基酸三乙醇胺;月桂醯基胺酸鈉;聚氧乙烯椰子油脂肪酸醯胺;椰子油脂肪酸單乙醇醯胺;硬脂酸二乙醇醯胺;硬脂酸單乙醇醯胺;C14 H29 SO4 Na;C16 H33 SO4 Na;C18 H37 SO4 Na;C12 H25 CH(COO)N(CH3 );(C4 H9 )2 CHCH2 (OC2 H4 )9 OH;n-C12 H25 (OC2 H4 )31 OH或其混合物,其中較佳為C6 -C40 烷基四級銨鹽,且特別是C12 H25 N(CH3 )3 Br、C14 H29 N(CH3 )3 Br、C16 H33 N(CH3 )3 Br或(C2 H25 )2 (CH3 )2 NBr。In this embodiment, the organic modifier is, for example, a surfactant having a C 6 -C 40 alkyl group or a C 6 -C 40 aromatic group. The type of the surfactant is not particularly limited, and is, for example, at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, a nonionic boundary surfactant, and an amphoteric surfactant. For example, examples of the organic modifier include a C 6 -C 40 alkyl quaternary ammonium salt such as trimethylammonium citrate, lauryl dimethylaminoacetate trimethyl acetate. Ammonium lactone, C 12 H 25 N(CH 3 ) 3 Br, C 14 H 29 N(CH 3 ) 3 Br, C 16 H 33 N(CH 3 ) 3 Br, (C 2 H 25 ) 2 (CH 3 2 NBr, C 12 H 25 SO 4 N(C 4 H 9 ) 4 or C 12 H 25 SO 4 N(CH 3 ) 3 C 12 H 25 ; C 6 -C 40 alkylphenyl quaternary ammonium salt ( Quaternary alkylphenylammonium salt), such as dimethylbenzylammonium chloride stearate; benzalkonium chloride; sodium lauryl sulfate; triethanolamine lauryl acid; sodium lauryl sulfate; polyoxyethylene coconut oil fatty acid guanamine ; coconut oil fatty acid monoethanol decylamine; stearic acid diethanol decylamine; stearic acid monoethanol decylamine; C 14 H 29 SO 4 Na; C 16 H 33 SO 4 Na; C 18 H 37 SO 4 Na; 12 H 25 CH(COO)N(CH 3 ); (C 4 H 9 ) 2 CHCH 2 (OC 2 H 4 ) 9 OH; nC 12 H 25 (OC 2 H 4 ) 31 OH or a mixture thereof, preferably Is a C 6 -C 40 alkyl quaternary ammonium salt, and especially C 12 H 25 N(CH 3 ) 3 Br, C 14 H 29 N(CH 3 ) 3 Br, C 16 H 33 N (C H 3 ) 3 Br or (C 2 H 25 ) 2 (CH 3 ) 2 NBr.

另外,在此實施例中,無機奈米材料例如是選自黏土、蒙脫土、雲母、矽酸鹽、矽石及金屬氧化物所組成的族群中的至少一者,且較佳是黏土或蒙脫土。舉例而言,請參照圖1,本發明所使用的黏土本身為具有矽酸鹽的無機物,且具有由兩層SiO2 四面體包夾著一層Al2 O3 八面體所形成的層狀結構。此外,在所述黏土的層間具有可置換且易行水和反應的金屬離子(亦即陽離子)。 鑒於此,如上文所述,本實施例的方法可透過溶劑(例如水)使無機奈米材料膨潤,以增加無機奈米材料的層間距離,使體積膨脹數十倍。Further, in this embodiment, the inorganic nanomaterial is, for example, at least one selected from the group consisting of clay, montmorillonite, mica, silicate, vermiculite, and metal oxide, and is preferably clay or Montmorillonite. For example, referring to FIG. 1, the clay used in the present invention is an inorganic substance having a niobate, and has a layered structure formed by sandwiching a layer of Al 2 O 3 octahedron with two layers of SiO 2 tetrahedron. . Further, there are metal ions (i.e., cations) which are replaceable and easy to carry out water and reaction between the layers of the clay. In view of this, as described above, the method of the present embodiment can swell the inorganic nano material by a solvent such as water to increase the interlayer distance of the inorganic nano material and expand the volume by several tens of times.

進一步而言,在本實施例中,除了上述透過無機奈米材料本身的特性來達到其層間距離增加的效果外,透過有機改質劑亦可使得無機奈米材料的層間距離進一步擴大,以利於聚烷二醇乳酸系聚合物及其單體或預聚物進入其層間。也就是說,有機改質劑除了可使無機奈米材料疏水化外,亦可使得無機奈米材料的層間距離增加。Further, in the present embodiment, in addition to the above-described effect of increasing the interlayer distance by the characteristics of the inorganic nanomaterial itself, the organic modifier can further enlarge the interlayer distance of the inorganic nano material to facilitate the interlayer distance. The polyalkylene glycol lactic acid-based polymer and its monomer or prepolymer enter its interlayer. That is to say, in addition to hydrophobizing the inorganic nanomaterial, the organic modifier can also increase the interlayer distance of the inorganic nanomaterial.

以下,將以有機改質劑為C6 -C40 烷基四級銨鹽為例來說明。藉由C6 -C40 烷基四級銨鹽的親水端與無機奈米材料中的陽離子進行離子交換,致使C6 -C40 烷基四級銨鹽的烷基部分進入無機奈米材料的層間,以達到將無機奈米材料的層間距離擴大的效果。此時,透過C6 -C40 烷基四級銨鹽的烷基部分進入無機奈米材料的層間,無機奈米材料的層間可因而具有親油性。如此一來,在本實施例的方法中,聚烷二醇乳酸系聚合物或其預聚物的高分子鏈與存在於無機奈米材料的層間的烷基部分(親油端)會產生相容作用,以使無機奈米材料與聚烷二醇乳酸系聚合物之間的分散性及相容性增加。另外,由於在相同操作條件下,無機奈米材料的層間距離的變化會因有機改質劑的種類不同而有所改變,因此領域中具有通常知識者應理解,根據實際上製備條件的不同,可選擇適當的有機改質劑來進行無機奈米材料的表面改質,以使 其層間距離變大。Hereinafter, an organic modifying agent will be described as an example of a C 6 -C 40 alkyl quaternary ammonium salt. By ion exchange of the hydrophilic end of the C 6 -C 40 alkyl quaternary ammonium salt with the cation in the inorganic nano material, the alkyl portion of the C 6 -C 40 alkyl quaternary ammonium salt enters the inorganic nano material The effect of expanding the interlayer distance of the inorganic nanomaterial is achieved between the layers. At this time, the alkyl portion passing through the C 6 -C 40 alkyl quaternary ammonium salt enters the interlayer of the inorganic nano material, and the interlayer of the inorganic nano material may thus have lipophilicity. As a result, in the method of the present embodiment, the polymer chain of the polyalkylene glycol lactic acid-based polymer or its prepolymer and the alkyl moiety (lipophilic end) existing between the layers of the inorganic nanomaterial are phase-produced. The capacity is increased to increase the dispersibility and compatibility between the inorganic nanomaterial and the polyalkylene glycol lactic acid polymer. In addition, since the change in the interlayer distance of the inorganic nanomaterial may vary depending on the type of the organic modifier under the same operating conditions, it is understood by those having ordinary knowledge in the field that, depending on the actual preparation conditions, A suitable organic modifier can be used to modify the surface of the inorganic nanomaterial to increase the interlayer distance.

一般來說,無機材料的補強效果決定於其分散在有機材料中的程度,然而傳統機械式的分散效果有限,僅能將無機材料分散到微米級(~10-6 m)。基於此,為達到良好補強效果以提高有機材料的物理性質,可針對無機材料本身的特性而產生更佳分散效果,亦即分散到奈米級(nanometer,10-7 ~10-9 m)。一般來說,無機材料的尺寸越小,於有機材料中的分散效果和界面作用力越好,進而補強效果越佳。鑒於上述,在本實施例中,透過使用有機改質劑對無機奈米材料進行改質,致使聚烷二醇乳酸系聚合物或其預聚物因相容性而進入無機奈米材料的層間,以達到奈米級的分散效果,進而提高聚烷二醇乳酸系聚合物的物理性質,例如熱穩定性、機械強度等。In general, the reinforcing effect of inorganic materials is determined by the degree of dispersion in organic materials. However, the traditional mechanical dispersion has limited effect and can only disperse inorganic materials to the micron order (~10 -6 m). Based on this, in order to achieve a good reinforcing effect to improve the physical properties of the organic material, a better dispersion effect can be produced for the characteristics of the inorganic material itself, that is, dispersed to a nanometer (nanometer, 10 -7 to 10 -9 m). In general, the smaller the size of the inorganic material, the better the dispersion effect and the interfacial force in the organic material, and the better the reinforcing effect. In view of the above, in the present embodiment, the inorganic nano material is modified by using an organic modifier, so that the polyalkylene glycol lactic acid polymer or its prepolymer enters the interlayer of the inorganic nano material due to compatibility. In order to achieve the nanometer-level dispersion effect, the physical properties of the polyalkylene glycol lactic acid-based polymer, such as thermal stability, mechanical strength, and the like, are further improved.

從另一觀點而言,在本實施例中,隨著無機奈米材料於聚烷二醇乳酸系聚合物或其預聚物基質中達到奈米級的分散效果,無機奈米材料足以充當結晶時的晶核,而提高聚烷二醇乳酸系聚合物的結晶速率及結晶度。From another point of view, in the present embodiment, the inorganic nano material is sufficient to act as a crystal as the inorganic nanomaterial reaches a nano-scale dispersion effect in the polyalkylene glycol lactic acid-based polymer or its prepolymer matrix. At the time of the crystal nucleus, the crystallization rate and crystallinity of the polyalkylene glycol lactic acid-based polymer are increased.

在另一實施例中,經有機改質劑改質的無機奈米材料混摻於聚烷二醇乳酸系聚合物之單體、預聚物或聚烷二醇乳酸系聚合物基質中的方法包括以下步驟。首先,將經有機改質劑改質的無機奈米材料膨潤。接著,將膨潤後的所述無機奈米材料置於液態的聚烷二醇乳酸系聚合物的單體中或含有聚烷二醇乳酸系聚合物的單體的溶液中,其中所述聚烷二醇乳酸系聚合物的單體在層 間進行聚合反應。詳細而言,在上述製備方法中,聚烷二醇乳酸系聚合物的聚合反應是以原位插層聚合法來實現。從另一觀點而言,根據上文所揭露的內容可知,在本實施例中,聚烷二醇乳酸系聚合物的聚合反應可以上述式1或式2的方式來進行。另外,在本實施例中,利用聚烷二醇乳酸系聚合物之單體進行聚合反應時所激發出來的爆發力,可進一步將無機奈米材料的層間距離增加至達插層分散(Intercalation)或脫層分散(Exfoliation)型態的分散效果。另外,此製備方法中各組成的材料、形成方法、特性或含量等已於上述實施例中進行詳盡地說明,故於此不再贅述。In another embodiment, the inorganic modifier material modified by the organic modifier is blended into a monomer, a prepolymer or a polyalkylene glycol lactic acid polymer matrix of a polyalkylene glycol lactic acid polymer. Includes the following steps. First, the inorganic nanomaterial modified by the organic modifier is swollen. Next, the swollen inorganic nanomaterial is placed in a monomer of a liquid polyalkylene glycol lactic acid polymer or a solution of a monomer containing a polyalkylene glycol lactic acid polymer, wherein the polyalkane Monomer of diol lactic acid polymer in layer The polymerization was carried out. In detail, in the above production method, the polymerization reaction of the polyalkylene glycol lactic acid-based polymer is carried out by an in-situ intercalation polymerization method. From another point of view, it is understood from the above that in the present embodiment, the polymerization reaction of the polyalkylene glycol lactic acid-based polymer can be carried out in the manner of the above formula 1 or formula 2. Further, in the present embodiment, the explosive force excited by the polymerization reaction of the monomer of the polyalkylene glycol lactic acid polymer can further increase the interlayer distance of the inorganic nano material to intercalation or Dispersion effect of the effusion type. In addition, the materials, formation methods, characteristics, contents, and the like of the respective compositions in the preparation method have been described in detail in the above embodiments, and thus will not be described herein.

在又一實施例中,經有機改質劑改質的無機奈米材料混摻於聚烷二醇乳酸系聚合物之單體、預聚物或聚烷二醇乳酸系聚合物基質中的方法包括以下步驟。首先,將聚烷二醇乳酸系聚合物的單體及預聚物加熱,以形成熔融的聚烷二醇乳酸系聚合物。接著,在使熔融的所述聚烷二醇乳酸系聚合物冷卻後或是使熔融的所述聚烷二醇乳酸系聚合物在一剪切力作用下,將熔融的所述聚烷二醇乳酸系聚合物和經有機改質劑改質的所述無機奈米材料混合。詳細而言,上述製備方法是在無溶劑的狀態下進行,因而溫度必須達到聚烷二醇乳酸系聚合物的熔融溫度以上。更詳細而言,在上述製備方法中,聚烷二醇乳酸系聚合物的聚合方法是以熔融插層聚合法來實現。從另一觀點而言,根據上文所揭露的內容可知,在本實施例中,聚烷二醇乳酸系聚合物的聚合反應可以上述式1或式2的方式來進行。另外,此製備方法中各組成的材 料、形成方法、特性或含量等已於上述實施例中進行詳盡地說明,故於此不再贅述。In still another embodiment, the inorganic modifier material modified by the organic modifier is blended into the monomer, prepolymer or polyalkylene glycol lactic acid polymer matrix of the polyalkylene glycol lactic acid polymer. Includes the following steps. First, a monomer and a prepolymer of a polyalkylene glycol lactic acid polymer are heated to form a molten polyalkylene glycol lactic acid-based polymer. Next, after the molten polyalkylene glycol lactic acid-based polymer is cooled or the molten polyalkylene glycol lactic acid-based polymer is melted, the polyalkylene glycol is melted. The lactic acid-based polymer is mixed with the inorganic nano-material modified by an organic modifier. Specifically, the above production method is carried out in a solvent-free state, and therefore the temperature must be equal to or higher than the melting temperature of the polyalkylene glycol lactic acid-based polymer. More specifically, in the above production method, the polymerization method of the polyalkylene glycol lactic acid-based polymer is carried out by a melt intercalation polymerization method. From another point of view, it is understood from the above that in the present embodiment, the polymerization reaction of the polyalkylene glycol lactic acid-based polymer can be carried out in the manner of the above formula 1 or formula 2. In addition, the materials of the respective components in the preparation method Materials, formation methods, characteristics or contents, etc. have been described in detail in the above embodiments, and thus will not be described again.

另外,本發明之聚烷二醇乳酸系奈米複合材料的製備方法更包括進行等溫熱處理程序,以進一步提高聚烷二醇乳酸系聚合物的結晶度及物理特性。Further, the method for producing a polyalkylene glycol lactic acid-based nanocomposite of the present invention further comprises an isothermal heat treatment procedure to further increase the crystallinity and physical properties of the polyalkylene glycol lactic acid-based polymer.

此外,在上文中,雖然以三個實施例的方法來說明本發明之聚烷二醇乳酸系奈米複合材料的製備方法,但本發明並不以此為限。在其他實施例中,本發明之聚烷二醇乳酸系奈米複合材料的製備方法也可透過懸浮聚合法或乳化聚合法等合適的聚合方法來進行。Further, in the above, although the preparation method of the polyalkylene glycol lactic acid-based nano composite material of the present invention is explained by the method of the three examples, the present invention is not limited thereto. In other embodiments, the method for preparing the polyalkylene glycol lactic acid-based nanocomposite of the present invention can also be carried out by a suitable polymerization method such as a suspension polymerization method or an emulsion polymerization method.

本發明還提供一種聚烷二醇乳酸系奈米複合材料,其由前述本發明之聚烷二醇乳酸系奈米複合材料的製備方法所製得。詳細而言,由於聚乳酸有良好的生物可分解性、生物可相容性及機械性質,以及聚烷二醇具有良好的親水性、且可溶於水和許多有機溶劑中及無毒性,因此本發明的聚烷二醇乳酸系奈米複合材料具有優異的生物可分解性、生物可相容性及親水性。另外,由於本發明的聚烷二醇乳酸系奈米複合材料是以經有機改質劑改質的無機奈米材料均勻地分散在聚烷二醇乳酸系聚合物基質中的形態存在,故本發明的聚烷二醇乳酸系奈米複合材料具有良好的物理性質及結晶度。The present invention also provides a polyalkylene glycol lactic acid-based nanocomposite which is produced by the above-described method for producing a polyalkylene glycol lactic acid-based nanocomposite of the present invention. In detail, since polylactic acid has good biodegradability, biocompatibility and mechanical properties, and polyalkylene glycol has good hydrophilicity, is soluble in water and many organic solvents, and is non-toxic, The polyalkylene glycol lactic acid-based nanocomposite of the present invention has excellent biodegradability, biocompatibility and hydrophilicity. Further, since the polyalkylene glycol lactic acid-based nano composite material of the present invention is in a form in which an inorganic nano-material modified by an organic modifier is uniformly dispersed in a polyalkylene glycol lactic acid-based polymer matrix, The polyalkylene glycol lactic acid-based nanocomposite of the invention has good physical properties and crystallinity.

因此,基於本發明的聚烷二醇乳酸系奈米複合材料的生物可相容性極佳,故可廣泛應用於生醫材料,例如:手術縫合線; 可吸收性之骨折固定器材,諸如骨釘、骨板;藥物釋放之載體;或組織工程支架等。另外,基於本發明的聚烷二醇乳酸系奈米複合材料具有良好的生物可分解性,不會對環境造成污染及傷害,故可廣泛應用於日常生活用品,亦可應用於包裝材料或紙之塗覆材料等,相當具有產業利用性。Therefore, the polyalkylene glycol lactic acid-based nano composite material based on the present invention has excellent biocompatibility, and thus can be widely applied to biomedical materials, for example, surgical sutures; Absorbable fracture fixation devices, such as bone nails, bone plates; carriers for drug release; or tissue engineering stents. In addition, the polyalkylene glycol lactic acid-based nano composite material based on the invention has good biodegradability and does not cause pollution and damage to the environment, so it can be widely applied to daily necessities, and can also be applied to packaging materials or paper. The coating materials and the like are quite industrially useful.

〈實驗〉<experiment>

下文將參照實驗例1-1至實驗例1-4及實驗例2-1至實驗例2-3,更具體地描述本發明的各種特徵與效果。雖然描述了以下實驗例,但是在不逾越本發明範疇之情況下,可適當地改變所用材料、其量及比率、處理條件以及細節流程等等。因此,本發明並不限於以下的實驗例。Various features and effects of the present invention will be more specifically described below with reference to Experimental Example 1-1 to Experimental Example 1-4 and Experimental Example 2-1 to Experimental Example 2-3. Although the following experimental examples are described, the materials used, the amounts and ratios thereof, the processing conditions, the details of the flow, and the like can be appropriately changed without departing from the scope of the invention. Therefore, the present invention is not limited to the following experimental examples.

實驗例1-1至實驗例1-4Experimental Example 1-1 to Experimental Example 1-4

製備聚烷二醇乳酸系奈米複合材料使用之主要材料的資訊如下所示。The information on the main materials used in the preparation of polyalkylene glycol lactic acid-based nanocomposites is as follows.

聚烷二醇乳酸系聚合物:聚乙二醇乳酸聚合物(polyethylene glycol-lactic acid copolymer,PLLA-PEG copolymer)Polyalkyl glycol-lactic acid copolymer (PLLA-PEG copolymer)

來源:自行合成,其中所使用的聚乙二醇分子量為600Source: Self-synthesis, the molecular weight of the polyethylene glycol used is 600

重量平均分子量:10000至1000000Weight average molecular weight: 10,000 to 1000000

分子結構:如前述式1所示。Molecular structure: as shown in the above formula 1.

無機奈米材料:PK805蒙脫土Inorganic nanomaterial: PK805 montmorillonite

來源:Paikong製造Source: manufactured by Paikong

離子交換容量(CEC):98meq/100gIon exchange capacity (CEC): 98meq/100g

有機改質劑:DilaurylDimethyl Ammonium Bromide(DMAB)Organic modifier: DilaurylDimethyl Ammonium Bromide (DMAB)

來源:TCI製造Source: TCI Manufacturing

化學式:(C12 H25 )2 (CH3 )2 NBrChemical formula: (C 12 H 25 ) 2 (CH 3 ) 2 NBr

溶劑:三氯甲烷(chloroform)Solvent: chloroform

來源:日本試藥製造Source: Japan Pharmaceutical Manufacturing

〈經有機改質劑改質的無機奈米材料的製備〉<Preparation of Inorganic Nanomaterials Modified by Organic Modifiers>

製備經有機改質劑改質的無機奈米材料的步驟如下:The steps for preparing the inorganic nanomaterial modified by the organic modifier are as follows:

1.取PK805蒙脫土5g置於800ml蒸餾水中,在室溫下攪拌24小時,以使蒙脫土完全膨潤。1. Take 5 g of PK805 montmorillonite in 800 ml of distilled water and stir at room temperature for 24 hours to completely swell the montmorillonite.

2.依據PK805蒙脫土的離子交換容量計算所需之DMAB的量為6.4g,其公式如下:98/100 x 5g x 1.2=(X/DMAB的重量平均分子量)x 1 x 1000。2. The amount of DMAB required to calculate the ion exchange capacity of PK805 montmorillonite was 6.4 g, and the formula was as follows: 98/100 x 5g x 1.2 = (weight average molecular weight of X/DMAB) x 1 x 1000.

3.將6.4g的DMAB溶入20mL的蒸餾水中,攪拌30分鐘。3. 6.4 g of DMAB was dissolved in 20 mL of distilled water and stirred for 30 minutes.

4.將步驟3之DMAB水溶液加入步驟1之已膨潤的PK805蒙脫土水溶液中,在室溫下攪拌24小時,以使DMAB水溶液與PK805蒙脫土水溶液均勻混核。4. Add the DMAB aqueous solution of step 3 to the swollen PK805 montmorillonite aqueous solution of step 1, and stir at room temperature for 24 hours to uniformly mix the DMAB aqueous solution with the PK805 montmorillonite aqueous solution.

5.將步驟4之水溶液進行過濾後,以蒸餾水清洗數次,直到以硝酸銀溶液滴定時,無白色沈澱物產生為止。5. After filtering the aqueous solution of the step 4, it was washed several times with distilled water until the white nitrate solution was titrated, and no white precipitate was produced.

6.將步驟5所得到的產物置入100℃真空烘箱中,烘乾後研磨成粉末。6. The product obtained in step 5 was placed in a vacuum oven at 100 ° C, dried and ground to a powder.

7.將步驟6所得到的粉末以325網目(mesh)的篩子過篩,以得到改質過的PK805蒙脫土,其粒徑大小約40μm。7. The powder obtained in the step 6 was sieved through a 325 mesh sieve to obtain a modified PK805 montmorillonite having a particle size of about 40 μm.

〈聚烷二醇乳酸系奈米複合材料的製備〉<Preparation of polyalkylene glycol lactic acid-based nanocomposites>

首先,將聚乙二醇乳酸聚合物置於真空烘箱中,設定溫度80℃烘烤12小時除去水氣備用。接著,將改質過的PK805蒙脫土以0.5wt%的比例溶於三氯甲烷中進行膨潤分散。之後,將烘烤後的聚乙二醇乳酸聚合物加入上述溶液中,於室溫下攪拌6小時。在攪拌均勻後,將加入有聚乙二醇乳酸聚合物的上述溶液倒入鐵氟龍圓盤,並放入真空烘箱中,80℃乾燥12小時,使三氯甲烷完全去除,以得到實驗例1-1的聚烷二醇乳酸系奈米複合材料,即聚乙二醇乳酸奈米複合材料。First, the polyethylene glycol lactic acid polymer was placed in a vacuum oven and baked at a set temperature of 80 ° C for 12 hours to remove moisture. Next, the modified PK805 montmorillonite was dissolved in chloroform at a ratio of 0.5% by weight to carry out swelling and dispersion. Thereafter, the baked polyethylene glycol lactic acid polymer was added to the above solution, and stirred at room temperature for 6 hours. After stirring uniformly, the above solution containing polyethylene glycol lactic acid polymer was poured into a Teflon disk, and placed in a vacuum oven, and dried at 80 ° C for 12 hours to completely remove chloroform to obtain an experimental example. A polyalkylene glycol lactic acid-based nanocomposite of 1-1, that is, a polyethylene glycol lactate nano composite.

針對實驗例1-1的聚乙二醇乳酸奈米複合材料,使用熱重分析儀(Thermogravimetry Analysis,TGA,TA-Q500)及微差熱掃描分析儀(Differential Scanning Calorimeter,DSC,Perkin-Elmer series 6 DSC)等分析儀器進行熱性質分析,以及使用偏光顯微鏡(polarized optical microscopy,POM,OLYMPUS BX51)、廣角X光繞射分析儀(Wide-Angle X-ray Diffraction,WXRD,Thermo Electron ARL X’TRAS)、穿透式電子顯微鏡(Transmission Electron Microscope,TEM,JEOLJEM2010)等分析儀器進行分散情形、 結晶性質與型態等鑑定。下文將詳細說明這些測試的步驟、實驗條件以及測試結果。For the polyethylene glycol lactate nanocomposite of Experimental Example 1-1, Thermogravimetry Analysis (TGA, TA-Q500) and Differential Scanning Calorimeter (DSC, Perkin-Elmer series) were used. 6 DSC) and other analytical instruments for thermal properties analysis, and using polarized optical microscopy (POM, OLYMPUS BX51), Wide-Angle X-ray Diffraction (WXRD, Thermo Electron ARL X'TRAS) ), an analytical instrument such as a Transmission Electron Microscope (TEM, JEOLJEM2010) for dispersion, Identification of crystalline properties and forms. The steps, experimental conditions, and test results of these tests are detailed below.

以相同方式製備實驗例1-2、實驗例1-3及實驗例1-4的聚乙二醇乳酸奈米複合材料,差異僅在於改質過的PK805蒙脫土的添加量,其中實驗例1-2的添加量為1wt%、實驗例1-3的添加量為1.5wt%以及實驗例1-4的添加量為2wt%。The polyethylene glycol lactic acid nanocomposites of Experimental Example 1-2, Experimental Example 1-3 and Experimental Example 1-4 were prepared in the same manner, and the difference was only in the amount of modified PK805 montmorillonite, wherein the experimental example The addition amount of 1-2 was 1 wt%, the addition amount of Experimental Example 1-3 was 1.5 wt%, and the addition amount of Experimental Example 1-4 was 2 wt%.

〈熱性質分析-熱重分析〉<Thermal property analysis - thermogravimetric analysis>

利用熱重分析儀分別秤取10mg之聚乙二醇乳酸聚合物(比較例1)與實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的聚乙二醇乳酸奈米複合材料,並分別置入白金盤放置儀器中,以紀錄溫度與重量的變化。實驗條件:N2 流速為20mL/min;偵測溫度範圍為30~500℃;升溫速率為20℃/min。測試結果如圖2所示。圖2顯示聚乙二醇乳酸聚合物(比較例1)的熱裂解溫度約為274.1℃,而實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的聚乙二醇乳酸奈米複合材料隨改質過的PK805蒙脫土的添加量提高而逐漸提高。也就是說,與改質過的PK805蒙脫土混掺後有助於提高聚乙二醇乳酸聚合物的熱穩定性。10 mg of polyethylene glycol lactic acid polymer (Comparative Example 1) and Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 were respectively weighed by a thermogravimetric analyzer. Alcoholic lactate nanocomposites were placed in a platinum plate and placed in the instrument to record changes in temperature and weight. Experimental conditions: N 2 flow rate was 20 mL / min; detection temperature range was 30 ~ 500 ° C; heating rate was 20 ° C / min. The test results are shown in Figure 2. 2 shows that the thermal cracking temperature of the polyethylene glycol lactic acid polymer (Comparative Example 1) was about 274.1 ° C, and the polymerization of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4. The ethylene glycol lactate nanocomposite gradually increased with the addition of the modified PK805 montmorillonite. That is to say, blending with the modified PK805 montmorillonite helps to improve the thermal stability of the polyethylene glycol lactic acid polymer.

〈熱性質分析-微差熱掃描分析〉<Thermal property analysis - differential thermal scanning analysis>

利用微差熱掃描分析儀分別秤取10mg之聚乙二醇乳酸聚合物(比較例1)與實驗例1-1、實驗例1-2、實驗例1-3及實驗 例1-4的聚乙二醇乳酸奈米複合材料,並分別置入鋁盤中。接著,進行兩個升降溫循環(第一循環及第二循環),並以第二循環所偵測到的升溫曲線圖及降溫曲線圖來取得上述各者的熔融溫度(Tm1 、Tm2 )、熔融焓(△Hm、△Hm1 、△Hm2 )、結晶溫度(Tc)及結晶焓(△Hc),其中Tm1 及Tm2 分別為上述各者之第一熔融峰及第二熔融峰的溫度,以及△Hm1 、△Hm2 分別為當上述各者加溫至第一熔融峰及第二熔融峰的溫度時的熔解焓,而△Hm為△Hm1 及△Hm2 的總和。實驗條件如下。第一循環:在25℃下定溫1min後,以20℃/min升溫至190℃再定溫3min,接著再以10℃/min降溫至25℃;第二循環:在25℃下定溫3min後,以20℃/min升溫至190℃再定溫3min,接著再以5℃/min降溫至25℃。測試結果如圖3、圖4及表1所示。10 mg of polyethylene glycol lactic acid polymer (Comparative Example 1) and Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 were respectively weighed by a differential thermal scanning analyzer. Glycol lactate nanocomposites were placed in aluminum pans. Then, two temperature rise and fall cycles (first cycle and second cycle) are performed, and the temperature rise curve (Tm 1 , Tm 2 ) of each of the above is obtained by the temperature rise curve and the temperature drop profile detected by the second cycle. And melting enthalpy (ΔHm, ΔHm 1 , ΔHm 2 ), crystallization temperature (Tc), and crystallization enthalpy (ΔHc), wherein Tm 1 and Tm 2 are respectively the first melting peak and the second melting peak of each of the above The temperature, and ΔHm 1 and ΔHm 2 are the melting enthalpy when each of the above is heated to the temperature of the first melting peak and the second melting peak, and ΔHm is the sum of ΔHm 1 and ΔHm 2 . The experimental conditions are as follows. The first cycle: after setting the temperature at 25 ° C for 1 min, the temperature is raised to 190 ° C at 20 ° C / min and then fixed for 3 min, and then cooled to 25 ° C at 10 ° C / min; the second cycle: after fixing at 25 ° C for 3 min, The temperature was raised to 190 ° C at 20 ° C / min and then fixed for 3 min, and then cooled to 25 ° C at 5 ° C / min. The test results are shown in Figure 3, Figure 4 and Table 1.

圖3及表1顯示與聚乙二醇乳酸聚合物(比較例1)的熔融溫度(Tm1 、Tm2 )相比,實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的聚乙二醇乳酸奈米複合材料的熔融溫度皆提高,且 熔融溫度Tm2 更為明顯。3 and Table 1 show Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and the melting temperature (Tm 1 , Tm 2 ) of the polyethylene glycol lactic acid polymer (Comparative Example 1). The melting temperatures of the polyethylene glycol lactic acid nanocomposites of Experimental Examples 1-4 were all increased, and the melting temperature Tm 2 was more pronounced.

另外,圖4及表1顯示聚乙二醇乳酸聚合物(比較例1)的結晶溫度為127.74℃,而實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的聚乙二醇乳酸奈米複合材料的結晶溫度落在106℃至108℃的範圍內。也就是說,與聚乙二醇乳酸聚合物(比較例1)相比,當添加不同比例的改質過的PK805蒙脫土時,聚乙二醇乳酸聚合物的結晶溫度會降低及擁有更為廣闊結晶的溫度區域。另外,圖4及表1顯示與聚乙二醇乳酸聚合物(比較例1)相比,實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的結晶峰皆較為尖銳,且其中實驗例1-3及實驗例1-4的結晶峰更為尖銳,此表示添加改質過的PK805蒙脫土可以提高聚乙二醇乳酸聚合物的結晶速度及結晶性。4 and Table 1 show that the crystallization temperature of the polyethylene glycol lactic acid polymer (Comparative Example 1) was 127.74 ° C, and Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1 The crystallization temperature of the polyethylene glycol lactic acid nanocomposite of 4 falls within the range of 106 ° C to 108 ° C. That is, compared with the polyethylene glycol lactic acid polymer (Comparative Example 1), when different proportions of the modified PK805 montmorillonite were added, the crystallization temperature of the polyethylene glycol lactic acid polymer was lowered and the possession was more It is a temperature zone with a broad crystallization. 4 and Table 1 show the crystallization peaks of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 as compared with the polyethylene glycol lactic acid polymer (Comparative Example 1). They are all sharp, and the crystallization peaks of Experimental Examples 1-3 and Experimental Examples 1-4 are sharper, which means that the addition of modified PK805 montmorillonite can improve the crystallization rate and crystallinity of the polyethylene glycol lactic acid polymer. .

另外,可藉由DSC的偵測結果分析熔點變化與結晶型態關係。利用以下式3計算比較例1、實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的結晶度(表1中表示為Xc): 其中,△Hm為熔融熱,f為重量分率,為理想結晶熔融熱94J/g。由表1可知,與比較例1相比,實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的結晶度隨改質過的PK805蒙脫土的添加量越多而上升。另外,圖3顯示與比較例1相比,實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的第二熔融峰明顯許多,其中實驗例1-3及實驗例1-4的第二熔融峰尤其明顯,並且搭配表1中 △Hm2/△Hm1之比值可知,第二熔融峰因改質過的PK805蒙脫土添加比例提高而越來越明顯,此表示添加改質過的PK805蒙脫土後有助於在熔融溫度Tm2 時的晶核成長。In addition, the relationship between the melting point change and the crystalline form can be analyzed by the DSC detection result. The crystallinity of Comparative Example 1, Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 was calculated by the following Formula 3 (indicated as Xc in Table 1): Where ΔHm is the heat of fusion and f is the weight fraction. It is ideal crystal heat of fusion 94J/g. As is clear from Table 1, the crystallinity of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 was higher than that of the modified PK805 montmorillonite as compared with Comparative Example 1. The more you rise. In addition, FIG. 3 shows that the second melting peaks of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 were significantly higher than Comparative Example 1, in which Experimental Examples 1-3 and The second melting peak of Experimental Example 1-4 is particularly obvious, and it can be seen that the ratio of ΔHm2/ΔHm1 in Table 1 shows that the second melting peak is more and more obvious due to the increased proportion of modified PK805 montmorillonite. It indicates that the addition of the modified PK805 montmorillonite contributes to the growth of crystal nuclei at the melting temperature Tm 2 .

〈分散情形-穿透式電子顯微鏡〉<Dispersion situation - transmission electron microscope>

使用穿透式電子顯微鏡觀察確定實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的聚乙二醇乳酸奈米複合材料中的改質過的PK805蒙脫土是否均勻分散。實驗條件:燈源為六硼化鑭,加速電壓為200kv,倍率為10000x~50000x。結果如圖5a至圖5d所示。圖5a至圖5d顯示改質過的PK805蒙脫土是均勻分散在聚乙二醇乳酸聚合物基質內,因此呈現雲狀分布。The modified PK805 montmorillonite in the polyethylene glycol lactic acid nanocomposite of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 was observed using a transmission electron microscope. Whether the soil is evenly dispersed. Experimental conditions: The lamp source is lanthanum hexaboride, the acceleration voltage is 200kv, and the magnification is 10000x~50000x. The results are shown in Figures 5a to 5d. Figures 5a to 5d show that the modified PK805 montmorillonite is uniformly dispersed in the polyethylene glycol lactic acid polymer matrix and thus exhibits a cloud-like distribution.

〈結晶性質及型態-偏光顯微鏡〉<Crystal Properties and Types - Polarizing Microscope>

利用偏光顯微鏡觀察聚乙二醇乳酸聚合物(比較例1)與實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的聚乙二醇乳酸奈米複合材料之球晶生長的情形及時間。首先,將分別秤取約3mg聚乙二醇乳酸聚合物(比較例1)與實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的聚乙二醇乳酸奈米複合材料。接著,將上述各者放置於載玻片上,並以蓋玻片覆蓋後放入高溫載台內升溫至190℃,恆溫5min後瞬間冷卻至結晶溫度(Tc)且恆溫,觀察其結晶情形並拍照及記錄其結晶完全的時間。拍攝結果如圖6a、圖6b、圖7a、圖7b、圖8a、圖8b、圖9a、圖9b、圖10a及圖10b 所示,其中圖6a為比較例1之結晶開始圖;圖7a、圖8a、圖9a及圖10a為實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4之結晶開始圖;圖6b為比較例1之結晶完成圖以及;圖7b、圖8b、圖9b及圖10b、為實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4之結晶完成圖。The polyethylene glycol lactic acid polymer (Comparative Example 1) and the polyethylene glycol lactate nanocomposites of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 were observed by a polarizing microscope. The situation and time of spherulite growth. First, about 3 mg of polyethylene glycol lactic acid polymer (Comparative Example 1) and polyethylene glycol lactic acid of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 were separately weighed. Nano composites. Then, each of the above was placed on a glass slide, covered with a cover glass, placed in a high temperature stage and heated to 190 ° C, and then cooled to a crystallization temperature (Tc) and kept at a constant temperature for 5 minutes, and the crystal was observed and photographed. And record the time when the crystal is complete. The shooting results are shown in Figures 6a, 6b, 7a, 7b, 8a, 8b, 9a, 9b, 10a and 10b. 6a is a crystallization start diagram of Comparative Example 1; FIGS. 7a, 8a, 9a, and 10a are Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4. FIG. 6b is a crystallization completion diagram of Comparative Example 1 and FIG. 7b, FIG. 8b, FIG. 9b and FIG. 10b, Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example The crystallization of 1-4 is completed.

圖6a至圖10b顯示與聚乙二醇乳酸聚合物(比較例1)相比,實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的聚乙二醇乳酸奈米複合材料的晶核變多且晶球變小。另外,圖6a至圖10b亦顯示隨著改質過的PK805蒙脫土添加比例越多,晶核越多,將導致結晶速度變快且結晶時間減短。此表示添加改質過的PK805蒙脫土有助於結晶性質的提升,並且改質過的PK805蒙脫土是作為有效率的親核基,以增強聚乙二醇乳酸聚合物的結晶速率。6a to 10b show polyethylene glycol of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 as compared with polyethylene glycol lactic acid polymer (Comparative Example 1). The crystal nucleus of the lactic acid nanocomposite material is increased and the crystal ball is small. In addition, Figures 6a to 10b also show that the more the modified PK805 montmorillonite addition ratio, the more crystal nuclei, the faster the crystallization rate and the shorter the crystallization time. This means that the addition of modified PK805 montmorillonite contributes to the improvement of crystalline properties, and the modified PK805 montmorillonite acts as an efficient nucleophilic group to enhance the crystallization rate of the polyethylene glycol lactic acid polymer.

〈分散情形、結晶性質及型態-廣角X光繞射分析〉<Dispersion, Crystal Properties and Types - Wide-angle X-ray Diffraction Analysis>

首先,利用廣角X光繞射分析儀(CuKα,λ =1.541Å),確定Clay之層間距,依Bragg’s law:d=λ/2sinθ計算改質過的PK805蒙脫土的層間距離(d-spacing)。接著,分別在結晶峰起始溫度及結晶峰最高點溫度下,利用廣角X光繞射分析儀掃描等溫結晶完成後的聚乙二醇乳酸聚合物(比較例1)與實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的聚乙二醇乳酸奈米複合材料,觀察改質過的PK805蒙脫土在比較例1與實驗例1-1、實驗例1-2、實驗例 1-3及實驗例1-4的聚乙二醇乳酸聚合物中之分散情形,及觀察結晶型態及晶面位移的程度。實驗條件:掃瞄角度範圍為2θ=10°~25°;掃瞄速度為1.5deg/min。掃描結果如圖11a、圖11b及表2所示,其中表2中的T1 為結晶峰起始溫度、T2 為結晶峰最高點溫度。First, the wide-angle X-ray diffraction analyzer (CuKα, λ = 1.541 Å) is used to determine the layer spacing of Clay, and the interlayer distance of the modified PK805 montmorillonite is calculated according to Bragg's law: d = λ/2 sin θ (d-spacing). ). Next, the polyethylene glycol lactic acid polymer after completion of isothermal crystallization (Comparative Example 1) and Experimental Example 1-1 were scanned by a wide-angle X-ray diffraction analyzer at the crystallization peak starting temperature and the crystallization peak highest temperature, respectively. , Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4 of polyethylene glycol lactate nanocomposite, observed modified PK805 montmorillonite in Comparative Example 1 and Experimental Example 1-1, experiment The dispersion of the polyethylene glycol lactic acid polymer of Example 1-2, Experimental Example 1-3, and Experimental Example 1-4, and the degree of observation of the crystal form and crystal plane displacement. Experimental conditions: The scanning angle range is 2θ=10°~25°; the scanning speed is 1.5deg/min. Scanning results are shown in 11a, Fig. 11b and Table 2, where in Table 2 T 1 is the initial crystallization peak temperature, T 2 is the highest crystallization peak temperature.

由圖11a、圖11b及表2可知,在不同溫度下,聚乙二醇乳酸聚合物(比較例1)以及實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的聚乙二醇乳酸奈米複合材料皆產生約在2θ為16.79和19.15之尖銳的繞射峰(晶面(200)/(110)及晶面(203)的繞射峰),其相對應表示層間距離為0.53和0.46nm。這些結果指出改質過的PK805蒙脫土完全分散在有機材料中且結構沒有改變。11a, 11b, and 2, polyethylene glycol lactic acid polymer (Comparative Example 1) and Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1 were observed at different temperatures. The -4 polyethylene glycol lactic acid nanocomposite produces sharp diffraction peaks (diffraction peaks of crystal planes (200)/(110) and crystal planes (203)) at about 2θ of 16.79 and 19.15. Corresponding means that the interlayer distance is 0.53 and 0.46 nm. These results indicate that the modified PK805 montmorillonite is completely dispersed in the organic material and the structure is unchanged.

另外,由表2可知,雖然比較例1的繞射峰訊號與實驗例1-1、實驗例1-2、實驗例1-3及實驗例1-4的繞射峰訊號相似, 但實驗例1-2之晶面(101)的繞射峰訊號消失,實驗例1-3及實驗例1-4之晶面(203)的繞射峰訊號發生微小的向右位移,晶面(101)的繞射峰訊號些微的向左位移,而晶面(015)的繞射峰訊號發生微小的向右位移。此表示添加不同比例的改質過的PK805蒙脫土僅會些微影響晶面(101)、晶面(015)的晶面位移。也就是說,添加改質過的PK805蒙脫土後並不完全影響聚乙二醇乳酸聚合物原來的晶形,甚至會提高其結晶度。Further, as is clear from Table 2, although the diffraction peak signal of Comparative Example 1 is similar to the diffraction peak signals of Experimental Example 1-1, Experimental Example 1-2, Experimental Example 1-3, and Experimental Example 1-4, However, the diffraction peak signal of the crystal face (101) of Experimental Example 1-2 disappeared, and the diffraction peak signal of the crystal face (203) of Experimental Example 1-3 and Experimental Example 1-4 was slightly shifted to the right, and the crystal face was crystallized. The diffraction peak signal of (101) is slightly shifted to the left, and the diffraction peak signal of the crystal plane (015) is slightly shifted to the right. This means that the addition of different proportions of the modified PK805 montmorillonite only slightly affects the crystal plane displacement of the crystal plane (101) and the crystal plane (015). That is to say, the addition of the modified PK805 montmorillonite does not completely affect the original crystal form of the polyethylene glycol lactic acid polymer, and even increases its crystallinity.

實驗例2-1至實驗例2-3Experimental Example 2-1 to Experimental Example 2-3

製備聚烷二醇乳酸系奈米複合材料使用之主要材料的資訊如下所示。The information on the main materials used in the preparation of polyalkylene glycol lactic acid-based nanocomposites is as follows.

聚烷二醇乳酸系聚合物:聚丙二醇乳酸聚合物(polypropylene glycol-lactic acid copolymer,PLLA-PPG copolymer)Polyalkyl glycol-lactic acid copolymer (PLLA-PPG copolymer)

來源:自行合成,其中所使用的聚丙二醇分子量為1000Source: Self-synthesis, the polypropylene glycol used has a molecular weight of 1000

重量平均分子量:10000至1000000Weight average molecular weight: 10,000 to 1000000

分子結構:如前述式2所示。Molecular structure: as shown in the above formula 2.

無機奈米材料:蒙脫土Inorganic nanomaterial: montmorillonite

來源:Paikong製造Source: manufactured by Paikong

離子交換容量(CEC):98meq/100gIon exchange capacity (CEC): 98meq/100g

有機改質劑:DilaurylDimethyl Ammonium Bromide(DMAB)Organic modifier: DilaurylDimethyl Ammonium Bromide (DMAB)

來源:TCI製造Source: TCI Manufacturing

化學式:(C12 H25 )2 (CH3 )2 NBrChemical formula: (C 12 H 25 ) 2 (CH 3 ) 2 NBr

溶劑:三氯甲烷(chloroform)Solvent: chloroform

來源:日本試藥製造Source: Japan Pharmaceutical Manufacturing

〈經有機改質劑改質的無機奈米材料的製備〉<Preparation of Inorganic Nanomaterials Modified by Organic Modifiers>

製備經有機改質劑改質的無機奈米材料的步驟如下:The steps for preparing the inorganic nanomaterial modified by the organic modifier are as follows:

1.取蒙脫土5g置於800ml蒸餾水中,在室溫下攪拌24小時,以使蒙脫土完全膨潤。1. 5 g of montmorillonite was placed in 800 ml of distilled water and stirred at room temperature for 24 hours to completely swell the montmorillonite.

2.依據蒙脫土的離子交換容量計算所需之DMAB的量為6.4g,其公式如下:98/100 x 5g x 1.2=(X/DMAB的重量平均分子量)x 1 x 1000。2. The amount of DMAB required to calculate the ion exchange capacity of montmorillonite is 6.4 g, and the formula is as follows: 98/100 x 5g x 1.2 = (weight average molecular weight of X/DMAB) x 1 x 1000.

3.將6.4g的DMAB溶入20mL的蒸餾水中,攪拌30分鐘。3. 6.4 g of DMAB was dissolved in 20 mL of distilled water and stirred for 30 minutes.

4.將步驟3之DMAB水溶液加入步驟1之已膨潤的蒙脫土水溶液中,在室溫下攪拌24小時,以使DMAB水溶液與蒙脫土水溶液均勻混核。4. The DMAB aqueous solution of the step 3 is added to the swollen montmorillonite aqueous solution of the step 1, and stirred at room temperature for 24 hours to uniformly mix the DMAB aqueous solution with the montmorillonite aqueous solution.

5.將步驟4之水溶液進行過濾後,以蒸餾水清洗數次,直到以硝酸銀溶液滴定時,無白色沈澱物產生為止。5. After filtering the aqueous solution of the step 4, it was washed several times with distilled water until the white nitrate solution was titrated, and no white precipitate was produced.

6.將步驟5所得到的產物置入100℃真空烘箱中,烘烤12小時後研磨成粉末。6. The product obtained in step 5 was placed in a vacuum oven at 100 ° C, and baked for 12 hours and then ground into a powder.

7.將步驟6所得到的粉末以325網目(mesh)的篩子過 篩,以得到改質過的蒙脫土,其粒徑大小約40μm。7. The powder obtained in step 6 is passed through a 325 mesh sieve. Sieve to obtain a modified montmorillonite having a particle size of about 40 μm.

〈聚烷二醇乳酸系奈米複合材料的製備〉<Preparation of polyalkylene glycol lactic acid-based nanocomposites>

首先,將聚丙二醇乳酸聚合物置於真空烘箱中,設定溫度80℃烘烤12小時除去水氣備用。接著,將改質過的蒙脫土以0.5wt%的比例溶於三氯甲烷中進行膨潤分散。之後,將聚丙二醇乳酸聚合物加入上述溶液中,於60℃下攪拌24小時。在攪拌均勻後,將加入有聚丙二醇乳酸聚合物的上述溶液倒入鐵氟龍圓盤,並放入真空烘箱中,以60℃乾燥24小時,使三氯甲烷完全去除,以得到實驗例2-1的聚烷二醇乳酸系奈米複合材料,亦即聚丙二醇乳酸聚合物/蒙脫土的奈米複合材料。First, the polypropylene glycol lactic acid polymer was placed in a vacuum oven and baked at a set temperature of 80 ° C for 12 hours to remove moisture. Next, the modified montmorillonite was dissolved in chloroform at a ratio of 0.5% by weight to carry out swelling and dispersion. Thereafter, a polypropylene glycol lactic acid polymer was added to the above solution, and stirred at 60 ° C for 24 hours. After stirring uniformly, the above solution containing the polypropylene glycol lactic acid polymer was poured into a Teflon disk, and placed in a vacuum oven, and dried at 60 ° C for 24 hours to completely remove chloroform to obtain Experimental Example 2 A polyalkylene glycol lactic acid-based nanocomposite of -1, that is, a polypropylene composite of polypropylene glycol lactic acid polymer/montmorillonite.

針對實驗例2-1的聚烷二醇乳酸系奈米複合材料,使用熱重分析儀(TGA,TA-Q500)及微差熱掃描分析儀(DSC,Perkin-Elmer DSC 4000)等分析儀器進行熱性質分析,以及使用偏光顯微鏡(POM,OLYMPUS BX51)、廣角X光繞射分析儀(WXRD,Thermo Electron ARL X’TRAS)、穿透式電子顯微鏡(TEM,JEOLJEM2010)等分析儀器進行分散情形、結晶性質與型態等鑑定。下文將詳細說明這些測試的步驟、實驗條件以及測試結果。The polyalkylene glycol lactic acid-based nanocomposite of Experimental Example 2-1 was subjected to an analytical instrument such as a thermogravimetric analyzer (TGA, TA-Q500) and a differential thermal scanning analyzer (DSC, Perkin-Elmer DSC 4000). Analysis of thermal properties, and dispersion using a polarizing microscope (POM, OLYMPUS BX51), wide-angle X-ray diffraction analyzer (WXRD, Thermo Electron ARL X'TRAS), and transmission electron microscope (TEM, JEOL JEM2010) Identification of crystalline properties and forms. The steps, experimental conditions, and test results of these tests are detailed below.

以相同方式製備實驗例2-2及實驗例2-3的聚烷二醇乳酸系奈米複合材料,差異僅在於改質過的蒙脫土的添加量,其中實驗例2-2的添加量為1wt%以及實驗例2-3的添加量為1.5wt%。The polyalkylene glycol lactic acid-based nanocomposites of Experimental Example 2-2 and Experimental Example 2-3 were prepared in the same manner except that the amount of modified montmorillonite was added, and the amount of the experimental example 2-2 was added. The amount added was 1 wt% and Experimental Example 2-3 was 1.5 wt%.

〈熱性質分析-熱重分析〉<Thermal property analysis - thermogravimetric analysis>

利用熱重分析儀分別秤取10mg之聚丙二醇乳酸聚合物(比較例2)與實驗例2-1、實驗例2-2及實驗例2-3的聚丙二醇乳酸奈米複合材料,並分別置入白金盤放置儀器中,以紀錄溫度與重量的變化。實驗條件:N2 流速為20mL/min;偵測溫度範圍為30~500℃;升溫速率為20℃/min。測試結果如圖12所示。圖12顯示隨著改質過的蒙脫土的添加比例越多,聚丙二醇乳酸聚合物的熱裂解溫度有增加趨勢。另外,在約330℃時,可看到殘留的重量也隨著改質過的蒙脫土的添加比例而增加。此表示與改質過的蒙脫土混掺後有助於提高聚丙二醇乳酸聚合物的熱穩定性。10 mg of the polypropylene glycol lactic acid polymer (Comparative Example 2) and the polypropylene glycol lactic acid nanocomposites of Experimental Example 2-1, Experimental Example 2-2 and Experimental Example 2-3 were separately weighed by a thermogravimetric analyzer and separately placed. Place the platinum plate in the instrument to record changes in temperature and weight. Experimental conditions: N 2 flow rate was 20 mL / min; detection temperature range was 30 ~ 500 ° C; heating rate was 20 ° C / min. The test results are shown in Figure 12. Figure 12 shows that as the proportion of modified montmorillonite is increased, the thermal cracking temperature of the polypropylene glycol lactic acid polymer tends to increase. Further, at about 330 ° C, it can be seen that the residual weight also increases with the addition ratio of the modified montmorillonite. This means that the blending with the modified montmorillonite helps to increase the thermal stability of the polypropylene glycol lactic acid polymer.

〈熱性質分析-微差熱掃描分析〉<Thermal property analysis - differential thermal scanning analysis>

利用微差熱掃描分析儀分別秤取10mg之聚丙二醇乳酸聚合物(比較例2)與實驗例2-1、實驗例2-2及實驗例2-3的聚丙二醇乳酸奈米複合材料,並分別置入鋁盤中。接著,分別進行非等溫結晶實驗及等溫結晶實驗,其詳細步驟及說明如下。10 mg of the polypropylene glycol lactic acid polymer (Comparative Example 2) and the polypropylene glycol lactic acid nanocomposites of Experimental Example 2-1, Experimental Example 2-2 and Experimental Example 2-3 were respectively weighed by a differential thermal scanning analyzer, and Place them in an aluminum pan. Next, non-isothermal crystallization experiments and isothermal crystallization experiments were carried out, and detailed steps and descriptions thereof are as follows.

非等溫結晶實驗:以每分鐘20℃的升溫速率從25℃升溫至190℃後恆溫1分鐘,再從190℃以每分鐘1度速率降溫至25℃,恆溫一分鐘,再以每分鐘20℃速率升溫至190℃。測試結果如圖13及表3、以及圖14及表4所示,其中Tm1 、Tm2 、△Hm、△Hm1 、△Hm2 、Xc、Tc及△Hc的定義皆與上述實驗例中各者的定 義相同。Non-isothermal crystallization experiment: heat from 25 ° C to 190 ° C at a temperature increase rate of 20 ° C per minute, then thermostat for 1 minute, then from 190 ° C at a rate of 1 degree per minute to 25 ° C, constant temperature for one minute, and then 20 minutes per minute The temperature was raised to 190 ° C at °C. The test results are shown in Fig. 13 and Table 3, and Fig. 14 and Table 4, wherein Tm 1 , Tm 2 , ΔHm, ΔHm 1 , ΔHm 2 , Xc, Tc and ΔHc are defined in the above experimental examples. The definition of each is the same.

於此,同樣利用式3來計算結晶度(Xc): 其中,△Hm為熔融熱,f為重量分率,為聚丙二醇乳酸聚合物之理想結晶熔解熱94J/g。Here, the crystallinity (Xc) is also calculated using Equation 3: Where ΔHm is the heat of fusion and f is the weight fraction. The ideal crystal melting heat of the polypropylene glycol lactic acid polymer is 94 J/g.

圖13及表3顯示在熔融時,聚丙二醇乳酸聚合物(比較例2)與實驗例2-1、實驗例2-2及實驗例2-3的聚丙二醇乳酸奈米複合材料皆呈現出雙重熔融峰,而隨著改質過的蒙脫土添加的比例不同,雙重熔融峰之形狀會改變。此表示改質過的蒙脫土的添加會影響聚丙二醇乳酸奈米複合材料之結晶性。13 and Table 3 show that the polypropylene glycol lactic acid polymer (Comparative Example 2) and the polypropylene glycol lactic acid nanocomposites of Experimental Example 2-1, Experimental Example 2-2 and Experimental Example 2-3 exhibited a double when molten. The melting peak, and the shape of the double melting peak changes as the proportion of the modified montmorillonite is different. This indicates that the addition of modified montmorillonite affects the crystallinity of the polypropylene glycol lactic acid nanocomposite.

由表3可知,隨著添加不同比例的改質過的蒙脫土,實驗例2-1、實驗例2-2及實驗例2-3的△Hm值先下降後上升,而 熔融溫度(Tm1 與Tm2 )及△Hm1 和△Hm2 則是降低。結晶度是與△Hm值變化有關,與比較例2相比,實驗例2-1及實驗例2-2的△Hm是下降的,然而實驗例2-3的結晶度開始上升。As can be seen from Table 3, the ΔHm values of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3 first decreased and then increased with the addition of different proportions of modified montmorillonite, and the melting temperature (Tm) 1 and Tm 2 ) and ΔHm 1 and ΔHm 2 are reduced. The crystallinity was related to the change in the ΔHm value. Compared with Comparative Example 2, the ΔHm of Experimental Example 2-1 and Experimental Example 2-2 decreased, but the crystallinity of Experimental Example 2-3 began to rise.

由上述熱焓變化情形來看,添加改質過的蒙脫土後的確有改變聚丙二醇乳酸奈米複合材料的結晶性,並且隨著改質過的蒙脫土添加比例上升,結晶性也會有所提升。From the above-mentioned enthalpy change situation, the addition of the modified montmorillonite does change the crystallinity of the polypropylene glycol lactic acid nanocomposite, and the crystallinity will increase as the proportion of the modified montmorillonite increases. Improved.

另外,圖14顯示比較例2的結晶峰較圓滑且較寬,而實驗例2-1、實驗例2-2及實驗例2-3的結晶峰相對變尖銳。此外,由表4可知,結晶溫度(Tc)隨著改質過的蒙脫土添加比例越高而上升,而t1/2 與結晶時間則是縮短,尤其是實驗例2-1的聚丙二醇乳酸奈米複合材料下降幅度最為明顯。此現象表示改質過的是作為有效率的親核基,以增強聚丙二醇乳酸聚合物的結晶速率。In addition, FIG. 14 shows that the crystallization peak of Comparative Example 2 is relatively smooth and wide, and the crystallization peaks of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3 are relatively sharp. Further, as is clear from Table 4, the crystallization temperature (Tc) increases as the proportion of the modified montmorillonite is increased, and t 1/2 and the crystallization time are shortened, especially the polypropylene glycol of Experimental Example 2-1. Lactic acid nanocomposites have the most significant decline. This phenomenon indicates that the modified nucleophilic group is modified to enhance the crystallization rate of the polypropylene glycol lactic acid polymer.

等溫結晶實驗步驟:以每分鐘20℃的升溫速率從25℃升溫至190℃後恆溫1分鐘,再以每分鐘40℃速率快速降溫至所取之結晶溫度(T1 、T2 、T3 、T4 、T5 ),其中此五個溫度為非等溫結晶實驗中的熔融峰之前半部由低到高所取之平均五點。待結晶完成後,以每分鐘5℃速率升溫至190℃。測試結果如圖15a至圖15d及表5至表8所示。Isothermal crystallization experimental procedure: heating from 25 ° C to 190 ° C at a temperature increase rate of 20 ° C per minute, then thermostating for 1 minute, and then rapidly cooling at a rate of 40 ° C per minute to the crystallization temperature (T 1 , T 2 , T 3 ) , T 4 , T 5 ), wherein the five temperatures are the average five points taken from the low to the high in the first half of the melting peak in the non-isothermal crystallization experiment. After the crystallization was completed, the temperature was raised to 190 ° C at a rate of 5 ° C per minute. The test results are shown in Figures 15a to 15d and Tables 5 to 8.

圖15a至圖15d及表5至表8顯示聚丙二醇乳酸聚合物的熔融溫度(Tm1和Tm2)隨著結晶溫度的改變也會有所不同,而△Hm1與△Hm2在溫度改變時呈現出一種趨勢:結晶溫度越高△Hm2值越低;相反的△Hm1值則是隨結晶溫度升高而增加,此表示在不同的結晶溫度下聚丙二醇乳酸聚合物的結晶型態也不同。15a to 15d and Tables 5 to 8 show that the melting temperatures (Tm1 and Tm2) of the polypropylene glycol lactic acid polymer vary with the crystallization temperature, and ΔHm1 and ΔHm2 exhibit a change in temperature. Trend: The higher the crystallization temperature, the lower the ΔHm2 value; the opposite ΔHm1 value increases with increasing crystallization temperature, which means that the crystalline form of the polypropylene glycol lactic acid polymer is different at different crystallization temperatures.

另外,造成雙重熔融峰比例改變的原因是在低溫下成核速率快,而使晶體成長受到限制。在趨近高溫段結晶所需時間延長,且使晶體有重組増厚的驅動力。隨著時間與溫度增加,晶體也趨近於穩定隨著成晶溫度增加而提升熔融溫度,且位於高溫處的熔融峰被位於低溫處的熔融峰所取代而消失。In addition, the reason for the change in the ratio of the double melting peak is that the nucleation rate is fast at a low temperature, and the crystal growth is limited. The time required for crystallization to approach the high temperature section is prolonged, and the crystal has a driving force for recombination and thickening. As time and temperature increase, the crystal also approaches stability, and the melting temperature increases as the crystal temperature increases, and the melting peak at a high temperature is replaced by a melting peak located at a low temperature.

此外,針對△Hm值與結晶度方面,由表5至表8可知,與比較例2相比,實驗例2-1及實驗例2-2的△Hm是下降的,然而實驗例2-3的結晶度開始上升。鑒於此,改質過的蒙脫土對於聚丙二醇乳酸聚合物來說是良好的成核劑,可提高其結晶度。Further, from the viewpoints of ΔHm value and crystallinity, as shown in Tables 5 to 8, the ΔHm of Experimental Example 2-1 and Experimental Example 2-2 was decreased as compared with Comparative Example 2, but Experimental Example 2-3 The crystallinity began to rise. In view of this, the modified montmorillonite is a good nucleating agent for the polypropylene glycol lactic acid polymer, which can increase the crystallinity thereof.

〈分散情形-穿透式電子顯微鏡〉<Dispersion situation - transmission electron microscope>

使用穿透式電子顯微鏡觀察確定實驗例2-1、實驗例2-2及實驗例2-3的聚丙二醇乳酸奈米複合材料中的改質過的蒙脫土是否均勻分散。實驗條件:燈源為六硼化鑭,加速電壓為200kv,倍率為10000x~50000x。結果如圖16a至圖16c所示。圖16a至圖16c顯示改質過的蒙脫土是均勻分散在聚丙二醇乳酸聚合物基質 內,因此呈現雲狀分布。The modified montmorillonite in the polypropylene glycol lactic acid composite material of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3 was uniformly observed by a transmission electron microscope to determine whether or not the modified montmorillonite was uniformly dispersed. Experimental conditions: The lamp source is lanthanum hexaboride, the acceleration voltage is 200kv, and the magnification is 10000x~50000x. The results are shown in Figures 16a to 16c. Figures 16a to 16c show that the modified montmorillonite is uniformly dispersed in a polypropylene glycol lactic acid polymer matrix Inside, it presents a cloud-like distribution.

〈結晶性質及型態-偏光顯微鏡〉<Crystal Properties and Types - Polarizing Microscope>

利用偏光顯微鏡觀察聚丙二醇乳酸聚合物(比較例2)與實驗例2-1、實驗例2-2及實驗例2-3的聚丙二醇乳酸奈米複合材料之球晶生長的情形。實驗條件為在微差熱掃描分析之等溫結晶實驗中所取結晶溫度(T1 、T2 、T3 、T4 、T5 )下拍攝晶體成長過程,升降溫速率與等溫結晶實驗相同。拍攝結果如圖17a、圖17b、圖18a、圖18b、圖19a、圖19b、圖20a及圖20b所示,其中圖17a為比較例2在結晶溫度T1 下的POM結晶圖;圖18a、圖19a及圖20a為實驗例2-1、實驗例2-2及實驗例2-3在結晶溫度T1 下的POM結晶圖;圖17b為比較例2在結晶溫度T5 下的POM結晶圖;圖18b、圖19b及圖20b為實驗例2-1、實驗例2-2及實驗例2-3在結晶溫度T5 下的之POM結晶圖。The spherulite growth of the polypropylene glycol lactic acid polymer (Comparative Example 2) and the polypropylene glycol lactic acid nanocomposite of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3 was observed by a polarizing microscope. The experimental conditions are the crystal growth process under the crystallization temperature (T 1 , T 2 , T 3 , T 4 , T 5 ) taken in the isothermal crystallization experiment of differential thermal scanning analysis, and the temperature rise and fall rate is the same as that of the isothermal crystallization experiment. . The results of the photographing are shown in Figs. 17a, 17b, 18a, 18b, 19a, 19b, 20a and 20b, wherein Fig. 17a is a POM crystal diagram of Comparative Example 2 at the crystallization temperature T 1 ; 19a and 20a are POM crystal diagrams of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3 at the crystallization temperature T 1 ; and FIG. 17b is a POM crystal diagram of Comparative Example 2 at the crystallization temperature T 5 18b, 19b, and 20b are POM crystal diagrams of Experimental Example 2-1, Experimental Example 2-2, and Experimental Example 2-3 at a crystallization temperature T 5 .

圖17a至圖20b顯示在較低溫度(結晶溫度T1 )時,晶核成核速率較快,而呈現晶體較小、晶核數目多散亂結晶;而隨著溫度升高(結晶溫度T5 )時,晶體為馬爾它十字型結晶,而因結晶溫度提高,晶核數較少晶體成長空間變大,結晶晶體也隨之增大。另外,圖17a至圖20b也顯示隨著改質過的蒙脫土添加比例的增加,在結晶溫度T5 時的晶體數目會亦增加,此表示添加改質過的蒙脫土後的晶核數變多,使得聚丙二醇乳酸聚合物的結晶性質提升。17a to 20b show that at a lower temperature (crystallization temperature T 1 ), the nucleation rate of the crystal nucleus is faster, but the crystal is smaller and the number of crystal nuclei is more scattered and crystallized; and as the temperature increases (crystallization temperature T 5 ), the crystal is a Maltese cross-type crystal, and as the crystallization temperature increases, the number of crystal nuclei decreases, and the crystal growth space increases. In addition, Figures 17a to 20b also show that as the proportion of modified montmorillonite increases, the number of crystals increases at the crystallization temperature T 5 , which means that the nucleus after the modified montmorillonite is added The number is increased, which increases the crystalline properties of the polypropylene glycol lactic acid polymer.

〈分散情形、結晶性質及型態-廣角X光繞射分析〉<Dispersion, Crystal Properties and Types - Wide-angle X-ray Diffraction Analysis>

首先,利用廣角X光繞射分析儀,確定Clay之層間距,依Bragg’s law:d=λ/2sinθ計算改質過的蒙脫土的層間距離。接著,分別在微差熱掃描分析之等溫結晶實驗中所取結晶溫度(T1 、T2 、T3 、T4 、T5 )下,利用廣角X光繞射分析儀掃描等溫結晶完成後的聚丙二醇乳酸聚合物(比較例2)與實驗例2-1、實驗例2-2及實驗例2-3的聚丙二醇乳酸奈米複合材料。實驗條件:CuKα,λ =1.541Å;掃瞄角度範圍為2θ=10°~25°;掃瞄速度為1.5deg/min。掃描結果如圖21a至圖21e及表9至表13所示。First, the wide-angle X-ray diffraction analyzer was used to determine the layer spacing of Clay, and the interlayer distance of the modified montmorillonite was calculated according to Bragg's law:d=λ/2sinθ. Then, under the crystallization temperature (T 1 , T 2 , T 3 , T 4 , T 5 ) taken in the isothermal crystallization experiment of the differential thermal scanning analysis, the isothermal crystallization is completed by scanning with a wide-angle X-ray diffraction analyzer. The polypropylene glycol lactic acid polymer (Comparative Example 2) and the polypropylene glycol lactic acid nanocomposite of Experimental Example 2-1, Experimental Example 2-2 and Experimental Example 2-3 were used. Experimental conditions: CuKα, λ = 1.541 Å; scanning angle range is 2θ = 10 ° ~ 25 °; scanning speed is 1.5 deg / min. The scanning results are shown in Figures 21a to 21e and Tables 9 to 13.

表11:結晶溫度T3 Table 11: Crystallization temperature T 3

由圖21a至圖21e及表9至表16可知,在添加不同比例的改質過的蒙脫土後,聚丙二醇乳酸奈米複合材料的2θ值、層間距離(d)及強度都有改變,利用公式nλ=2dsinθ,可以算出其n值。另外,結晶的大小、形狀不同都會影響繞射峰之2θ值,因此由表9至表16可知,在不同的結晶溫度與添加不同比例之改質過的蒙脫土之聚丙二醇乳酸奈米複合材料的結晶行為亦會有所改變。From Fig. 21a to Fig. 21e and Tables 9 to 16, it can be seen that the 2θ value, the interlayer distance (d) and the strength of the polypropylene glycol lactic acid nanocomposite change after adding different proportions of the modified montmorillonite. The n value can be calculated using the formula nλ=2dsinθ. In addition, the size and shape of the crystals will affect the 2θ value of the diffraction peak. Therefore, it can be seen from Table 9 to Table 16 that the polypropylene glycol composite material of modified montmorillonite is added at different crystallization temperatures and different ratios. The crystallization behavior will also change.

雖然本發明已以實施例揭露如上,然其並非用以限定本 發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by way of example, it is not intended to limit the present invention. The scope of the present invention is defined by the scope of the appended claims, which are defined by the scope of the appended claims, without departing from the spirit and scope of the invention. quasi.

Claims (10)

一種聚烷二醇乳酸系奈米複合材料的製備方法,包括將經有機改質劑改質的無機奈米材料混摻於聚烷二醇乳酸系聚合物之單體、聚烷二醇乳酸系聚合物之預聚物、或聚烷二醇乳酸系聚合物基質中而形成,其中所述有機改質劑包括具有C6 -C40 烷基或C6 -C40 芳香基之界面活性劑,所述無機奈米材料為親水性,所述聚烷二醇乳酸系聚合物包括聚烷二醇乳酸聚合物或聚烷二醇乳酸聚合物的衍生聚合物。A method for preparing a polyalkylene glycol lactic acid-based nano composite material, comprising mixing an inorganic nano-material modified by an organic modifier into a monomer of a polyalkylene glycol lactic acid polymer, and a polyalkylene glycol lactic acid system Formed in a prepolymer of a polymer or a polyalkylene glycol lactic acid based polymer matrix, wherein the organic modifier comprises a surfactant having a C 6 -C 40 alkyl group or a C 6 -C 40 aryl group, The inorganic nano-material is hydrophilic, and the polyalkylene glycol lactic acid-based polymer includes a polyalkylene glycol lactic acid polymer or a derivative polymer of a polyalkylene glycol lactic acid polymer. 如申請專利範圍第1項所述的聚烷二醇乳酸系奈米複合材料的製備方法,其中所述聚烷二醇乳酸系聚合物包括聚乙二醇乳酸系聚合物或聚丙二醇乳酸系聚合物。 The method for producing a polyalkylene glycol lactic acid-based nano composite according to claim 1, wherein the polyalkylene glycol lactic acid polymer comprises a polyethylene glycol lactic acid polymer or a polypropylene glycol lactic acid polymer. Things. 如申請專利範圍第1項所述的聚烷二醇乳酸系奈米複合材料的製備方法,其中所述有機改質劑使所述無機奈米材料疏水化,以使所述無機奈米材料與所述聚烷二醇乳酸系聚合物之間的分散性及相容性增加。 The method for preparing a polyalkylene glycol lactic acid-based nano composite material according to claim 1, wherein the organic modifying agent hydrophobizes the inorganic nano material to make the inorganic nano material and The dispersibility and compatibility between the polyalkylene glycol lactic acid-based polymers are increased. 如申請專利範圍第1項所述的聚烷二醇乳酸系奈米複合材料的製備方法,其中所述有機改質劑包括C6 -C40 烷基四級銨鹽、C6 -C40 烷基苯基四級銨鹽、月桂硫酸鈉、月桂基酸三乙醇胺、月桂醯基胺酸鈉、氯化苯烷銨、聚氧乙烯椰子油脂肪酸醯胺、椰子油脂肪酸單乙醇醯胺、硬脂酸二乙醇醯胺、硬脂酸單乙醇醯胺、C14 H29 SO4 Na、C16 H33 SO4 Na、C18 H37 SO4 Na、C12 H25 SO4 N(C4 H9 )4 、C12 H25 SO4 N(CH3 )3 C12 H25 、C12 H25 CH(COO)N(CH3 )、 (C4 H9 )2 CHCH2 (OC2 H4 )9 OH及n-C12 H25 (OC2 H4 )31 OH或其混合物。The method for preparing a polyalkylene glycol lactic acid-based nano composite according to claim 1, wherein the organic modifier comprises a C 6 -C 40 alkyl quaternary ammonium salt, a C 6 -C 40 alkane. Phenyl quaternary ammonium salt, sodium lauryl sulfate, triethanolamine laurylamine, sodium lauryl amide, phenylammonium chloride, polyoxyethylene coconut oil fatty acid decylamine, coconut oil fatty acid monoethanol amide, hard fat Acid diethanolamine, stearic acid monoethanolamine, C 14 H 29 SO 4 Na, C 16 H 33 SO 4 Na, C 18 H 37 SO 4 Na, C 12 H 25 SO 4 N (C 4 H 9 4 , C 12 H 25 SO 4 N(CH 3 ) 3 C 12 H 25 , C 12 H 25 CH(COO)N(CH 3 ), (C 4 H 9 ) 2 CHCH 2 (OC 2 H 4 ) 9 OH and nC 12 H 25 (OC 2 H 4 ) 31 OH or a mixture thereof. 如申請專利範圍第1項所述的聚烷二醇乳酸系奈米複合材料的製備方法,其中以所述聚烷二醇乳酸系奈米複合材料之總重量計,經有機改質劑改質的所述無機奈米材料的添加量為0.01wt%至10wt%。 The method for preparing a polyalkylene glycol lactic acid-based nano composite material according to claim 1, wherein the organic modifier is modified by the total weight of the polyalkylene glycol lactic acid-based nano composite material. The inorganic nano material is added in an amount of from 0.01% by weight to 10% by weight. 如申請專利範圍第1項所述的聚烷二醇乳酸系奈米複合材料的製備方法,其中將經有機改質劑改質的所述無機奈米材料混摻於所述聚烷二醇乳酸系聚合物之單體、所述聚烷二醇乳酸系聚合物之預聚物、或所述聚烷二醇乳酸系聚合物基質中的方法包括:利用溶劑使經有機改質劑改質的所述無機奈米材料膨潤;混合所述聚烷二醇乳酸系聚合物或其預聚物及膨潤後的所述無機奈米材料,其中所述聚烷二醇乳酸系聚合物或其預聚物的高分子鏈將插層於所述無機奈米材料,而所述溶劑存在於所述無機奈米材料的層間;以及將所述溶劑去除。 The method for preparing a polyalkylene glycol lactic acid-based nano composite material according to claim 1, wherein the inorganic nano-material modified by an organic modifier is blended with the polyalkylene glycol lactic acid The method of the polymer monomer, the polyalkylene glycol lactic acid polymer prepolymer, or the polyalkylene glycol lactic acid polymer matrix comprises: modifying the organic modifier with a solvent Swelling the inorganic nano material; mixing the polyalkylene glycol lactic acid polymer or a prepolymer thereof, and the swelled inorganic nano material, wherein the polyalkylene glycol lactic acid polymer or prepolymerization thereof The polymer chain of the substance will be intercalated into the inorganic nanomaterial, and the solvent is present between the layers of the inorganic nanomaterial; and the solvent is removed. 如申請專利範圍第1項所述的聚烷二醇乳酸系奈米複合材料的製備方法,其中將經有機改質劑改質的所述無機奈米材料混摻於所述聚烷二醇乳酸系聚合物之單體、所述聚烷二醇乳酸系聚合物之預聚物、或所述聚烷二醇乳酸系聚合物基質中的方法包括:將經有機改質劑改質的所述無機奈米材料膨潤;將膨潤後的所述無機奈米材料置於液態的所述聚烷二醇乳酸系聚合物的單體中或含有所述聚烷二醇乳酸系聚合物的單體的溶 液中,其中所述聚烷二醇乳酸系聚合物的單體在所述無機奈米材料的層間進行聚合反應。 The method for preparing a polyalkylene glycol lactic acid-based nano composite material according to claim 1, wherein the inorganic nano-material modified by an organic modifier is blended with the polyalkylene glycol lactic acid The polymer monomer, the polyalkylene glycol lactic acid polymer prepolymer, or the polyalkylene glycol lactic acid polymer matrix method includes: modifying the organic modifier Inflating the inorganic nano material; placing the swollen inorganic nano material in a monomer of the liquid polyalkylene glycol lactic acid polymer or a monomer containing the polyalkyl glycol lactic acid polymer Dissolve In the liquid, the monomer of the polyalkylene glycol lactic acid polymer is polymerized between the layers of the inorganic nanomaterial. 如申請專利範圍第1項所述的聚烷二醇乳酸系奈米複合材料的製備方法,其中將經有機改質劑改質的所述無機奈米材料混摻於所述聚烷二醇乳酸系聚合物之單體、所述聚烷二醇乳酸系聚合物之預聚物、或所述聚烷二醇乳酸系聚合物基質中的方法包括:將所述聚烷二醇乳酸系聚合物的單體及預聚物加熱,以形成熔融的所述聚烷二醇乳酸系聚合物;在使熔融的所述聚烷二醇乳酸系聚合物冷卻後或是使熔融的所述聚烷二醇乳酸系聚合物在一剪切力作用下,將熔融的所述聚烷二醇乳酸系聚合物和經有機改質劑改質的所述無機奈米材料混合。 The method for preparing a polyalkylene glycol lactic acid-based nano composite material according to claim 1, wherein the inorganic nano-material modified by an organic modifier is blended with the polyalkylene glycol lactic acid The monomer of the polymer, the prepolymer of the polyalkylene glycol lactic acid polymer, or the method of the polyalkylene glycol lactic acid polymer matrix comprises: the polyalkylene glycol lactic acid polymer Heating the monomer and the prepolymer to form the molten polyalkylene glycol lactic acid polymer; after cooling the molten polyalkylene glycol lactic acid polymer or melting the polyalkane The alcoholic lactic acid-based polymer mixes the molten polyalkylene glycol lactic acid-based polymer and the inorganic nano-material modified with an organic modifier by a shearing force. 如申請專利範圍第1項所述的聚烷二醇乳酸系奈米複合材料的製備方法,更包括利用等溫熱處理程序,以提高聚烷二醇乳酸系聚合物的結晶度。 The method for preparing a polyalkylene glycol lactic acid-based nanocomposite according to claim 1, further comprising using an isothermal heat treatment procedure to increase the crystallinity of the polyalkylene glycol lactic acid-based polymer. 一種聚烷二醇乳酸系奈米複合材料,由如申請專利範圍第1至9項中任一項所述的聚烷二醇乳酸系奈米複合材料的製備方法所製備。A polyalkylene glycol lactic acid-based nano composite material prepared by the method for producing a polyalkylene glycol lactic acid-based nano composite material according to any one of claims 1 to 9.
TW102131683A 2013-09-03 2013-09-03 Polyalkylene glycol-lactic acid based nano-composite and preparation method thereof TWI486373B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102131683A TWI486373B (en) 2013-09-03 2013-09-03 Polyalkylene glycol-lactic acid based nano-composite and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102131683A TWI486373B (en) 2013-09-03 2013-09-03 Polyalkylene glycol-lactic acid based nano-composite and preparation method thereof

Publications (2)

Publication Number Publication Date
TW201509985A TW201509985A (en) 2015-03-16
TWI486373B true TWI486373B (en) 2015-06-01

Family

ID=53186597

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102131683A TWI486373B (en) 2013-09-03 2013-09-03 Polyalkylene glycol-lactic acid based nano-composite and preparation method thereof

Country Status (1)

Country Link
TW (1) TWI486373B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1097967A2 (en) * 1999-11-02 2001-05-09 Nippon Shokubai Co., Ltd. Biodegradable resin composition and its molded product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1097967A2 (en) * 1999-11-02 2001-05-09 Nippon Shokubai Co., Ltd. Biodegradable resin composition and its molded product

Also Published As

Publication number Publication date
TW201509985A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
Khan et al. Functionalized multi-walled carbon nanotubes and hydroxyapatite nanorods reinforced with polypropylene for biomedical application
Krikorian et al. Poly (L-lactic acid)/layered silicate nanocomposite: fabrication, characterization, and properties
Krikorian et al. Unusual crystallization behavior of organoclay reinforced poly (L-lactic acid) nanocomposites
Abdalkarim et al. Thermo and light-responsive phase change nanofibers with high energy storage efficiency for energy storage and thermally regulated on–off drug release devices
Hoidy et al. Preparation and characterization of polylactic acid/polycaprolactone clay nanocomposites
Thomas et al. Design and applications of nanostructured polymer blends and nanocomposite systems
Hoidy et al. Mechanical and thermal properties of PLLA/PCL modified clay nanocomposites
Van Horn et al. Recent progress in block copolymer crystallization
Kose et al. Size effects of cellulose nanofibers for enhancing the crystallization of poly (lactic acid)
Huang et al. Crystallization behavior of poly (l‐lactic acid)/montmorillonite nanocomposites
Amirian et al. Effect of functionalized multiwalled carbon nanotubes on thermal stability of poly (L-LACTIDE) biodegradable polymer
Ha et al. Deformation behavior of a roll-cast layered-silicate/lamellar triblock copolymer nanocomposite
Yang et al. Synergistic effect of poly (ethylene glycol) and graphene oxides on the crystallization behavior of poly (l‐lactide)
Amini et al. Designing a polymer blend nanocomposite with triple shape memory effects
Fujisawa et al. Cellulose nanofibrils as templates for the design of poly (L-lactide)-nucleating surfaces
Bouakaz et al. Effect of combinations of nanofillers on rheology-structure relations in biodegradable poly (ε-caprolactone) nanocomposites
Wang et al. Self-Seeding of Oligo (p-phenylenevinylene)-b-poly (2-vinylpyridine) Micelles: Effect of Metal Ions
Alvarez et al. Effect of different inorganic filler over isothermal and non-isothermal crystallization of polypropylene homopolymer
Im et al. In situ homologous polymerization of l-lactide Having a stereocomplex crystal
Pan et al. Improved performance and crystallization behaviors of bimodal HDPE/UHMWPE blends assisted by ultrasonic oscillations
Nam et al. The dispersion behavior of clay particles in poly (l‐lactide)/organo‐modified montmorillonite hybrid systems
He et al. Living Crystallization-Driven Self-Assembly of Polymeric Amphiphiles: Low-Dispersity Fiber-like Micelles from Crystallizable Phosphonium-Capped Polycarbonate Homopolymers
Gumel et al. Nanocomposites of polyhydroxyalkanoates (PHAs)
Gonzalez-Alvarez et al. How a Small Modification of the Corona-Forming Block Redirects the Self-Assembly of Crystalline–Coil Block Copolymers in Solution
Bibi et al. Novel strategy of lactide polymerization leading to stereocomplex polylactide nanoparticles using supercritical fluid technology

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees