TWI485993B - Method for transmitting control information in wireless communication system and apparatus therefor - Google Patents

Method for transmitting control information in wireless communication system and apparatus therefor Download PDF

Info

Publication number
TWI485993B
TWI485993B TW100114924A TW100114924A TWI485993B TW I485993 B TWI485993 B TW I485993B TW 100114924 A TW100114924 A TW 100114924A TW 100114924 A TW100114924 A TW 100114924A TW I485993 B TWI485993 B TW I485993B
Authority
TW
Taiwan
Prior art keywords
information
information material
resource unit
corresponds
size
Prior art date
Application number
TW100114924A
Other languages
Chinese (zh)
Other versions
TW201210206A (en
Inventor
Jiwoong Jang
Moonil Lee
Jaehoon Chung
Seunghee Han
Hyunsoo Ko
Original Assignee
Lg Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Electronics Inc filed Critical Lg Electronics Inc
Publication of TW201210206A publication Critical patent/TW201210206A/en
Application granted granted Critical
Publication of TWI485993B publication Critical patent/TWI485993B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/136Reed-Muller [RM] codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0075Allocation using proportional fairness

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

在無線通訊系統中傳送控制資訊的方法及其裝置Method and device for transmitting control information in wireless communication system

本發明相關於無線通訊系統。且更具體言之,本發明相關於用於在無線通訊系統中傳送控制資訊的方法及其裝置。The invention relates to a wireless communication system. More specifically, the present invention relates to a method and apparatus for transmitting control information in a wireless communication system.

在行動通訊系統中,使用者設備可經由下行鏈路從基地台接收資訊,並可經由上行鏈路傳送資訊。使用者設備接收或傳送的資訊包含資料與多樣的控制資訊。且可根據使用者設備接收或傳送資訊的類型與目的,而存在各種實體通道。In a mobile communication system, a user equipment can receive information from a base station via a downlink and can transmit information via an uplink. The information received or transmitted by the user device contains information and various control information. And there are various physical channels depending on the type and purpose of the information received or transmitted by the user device.

第1圖圖示說明用於第三代合作夥伴計畫(3rd Generation Partnership;3GPP)長期演進技術(Long Term Evolution;LTE)系統的實體通道,3GPP LTE系統為一種行動通訊系統以及使用此系統的一般訊號傳送方法的範例。Figure 1 illustrates a Third Generation Partnership Project (3 rd Generation Partnership; 3GPP) Long Term Evolution (Long Term Evolution; LTE) physical channel system, 3GPP LTE system as a mobile communication system and the use of this system An example of a general signal transmission method.

在使用者設備的電力被關閉且隨後被開啟時,或在使用者設備剛進入(或存取)新的細胞服務區(cell)時,使用者設備施行初始細胞服務區搜尋程序,諸如在步驟S101將其自身與基地台同步化。對此,使用者設備可從基地台接收P-SCH(Primary Synchronization Channel;主要同步通道)與S-SCH(Secondary Synchronization Channel;次要同步通道),以保持與基地台同步,且使用者設備亦可獲取(acquire)諸如細胞服務區識別符(cell ID)的資訊。其後,使用者設備可接收實體廣播通道(Physical Broadcast Channel),以獲取細胞服務區中的廣播資訊。同時,在初始細胞服務區搜尋之步驟中使用者設備可接收下行鏈路參考訊號(Downlink Reference Signal;DL RS),以驗證(verify)下行鏈路通道狀態。When the power of the user device is turned off and subsequently turned on, or when the user device just enters (or accesses) a new cell service cell, the user device performs an initial cell service area search procedure, such as in steps S101 synchronizes itself with the base station. In this regard, the user equipment can receive a P-SCH (Primary Synchronization Channel) and an S-SCH (Secondary Synchronization Channel) from the base station to maintain synchronization with the base station, and the user equipment also Information such as a cell service area identifier (cell ID) can be acquired. Thereafter, the user equipment can receive a physical broadcast channel (Physical Broadcast Channel) to obtain broadcast information in the cell service area. At the same time, in the initial cell service area search step, the user equipment can receive a downlink reference signal (DL RS) to verify the downlink channel status.

在步驟S102,已完成初始細胞服務區搜尋的使用者設備可接收實體下行鏈路控制通道(PDCCH),並基於PDCCH資訊接收實體下行鏈路共享通道(Physical Downlink Shared Channel;PDSCH),以獲取更詳盡的系統資訊。In step S102, the user equipment that has completed the initial cell service area search may receive a physical downlink control channel (PDCCH), and receive a physical downlink shared channel (PDSCH) based on the PDCCH information to obtain more Detailed system information.

同時,尚未完成初始細胞服務區搜尋的使用者設備可施行隨機存取程序(Random Access Procedure),諸如在較後程序中的步驟S103與S106,以完成對基地台的存取。為此,使用者設備經由實體隨機存取通道(Physical Random Access Channel;PRACH)傳送特徵序列以作為前序訊號(preamble)(S103),且隨後使用者設備可經由PDCCH與其各別的PDSCH,接收各別於隨機存取的回應訊息(S104)。在基於競爭之隨機存取的情況中(但排除交遞情況),使用者設備可施行競爭解決程序(Contention Resolution Procedures),諸如傳送額外的PRACH(S105),並接收PDCCH與對應於PDCCH的PDSCH。Meanwhile, the user equipment that has not completed the initial cell service area search may perform a random access procedure, such as steps S103 and S106 in the later procedure, to complete access to the base station. To this end, the user equipment transmits the feature sequence as a preamble (S103) via a physical random access channel (PRACH), and then the user equipment can receive the PDCCH and its respective PDSCH. The response message is different from the random access (S104). In the case of contention based random access (but excluding handover), the user equipment may perform Contention Resolution Procedures, such as transmitting additional PRACH (S105), and receiving the PDCCH and the PDSCH corresponding to the PDCCH. .

在施行上述程序之後,使用者設備可接收PDCCH/PDSCH(S107),作為一般的上行鏈路/下行鏈路訊號傳送程序,且隨後可施行實體上行鏈路共享通道(Physical Uplink Shared Channel;PUSCH)/實體上行鏈路控制通道(Physical Uplink Control Channel;PUCCH)傳送(S108)。After performing the above procedure, the user equipment can receive the PDCCH/PDSCH (S107) as a general uplink/downlink signal transmission procedure, and then can implement a Physical Uplink Shared Channel (PUSCH). / Physical Uplink Control Channel (PUCCH) transmission (S108).

第2圖圖示說明由使用者設備施行以傳送上行鏈路訊號的訊號處理程序。Figure 2 illustrates a signal processing procedure performed by the user equipment to transmit an uplink signal.

為了傳送上行鏈路訊號,藉由使用使用者設備專用攪亂訊號,使用者設備的攪亂模組201可攪亂(scramble)傳送訊號。隨後,經攪亂訊號被輸入至調變映射器202,以基於傳送訊號類型及(或)通道狀態使用雙相移鍵控(Binary Phase Shift Keying;BPSK)方案、正交相移鍵控(Quadrature Phase Shift Keying;QPSK)方案、或16正交振幅調變(16 Quadrature Amplitude Modulation;16QAM)方案,將經攪亂訊號調變至複數符元。其後,經調變的複數符元由轉換預編碼器203處理,且隨後被輸入至資源單元映射器204。在此,資源單元映射器可將複數符元映射至時頻資源單元,其將在實際傳送中使用。經處理訊號隨後可通過單載波分頻多工(Single-carrier Frequency-Division Multiple Access;SC-FDMA)訊號產生器205,以經由天線發送至基地台。In order to transmit the uplink signal, the user equipment's shuffling module 201 can scramble the transmission signal by using the user equipment-specific scrambling signal. Subsequently, the scrambled signal is input to the modulation mapper 202 to use a Binary Phase Shift Keying (BPSK) scheme, quadrature phase shift keying (Quadrature Phase) based on the transmission signal type and/or channel state. The Shift Keying; QPSK scheme, or the 16 Quadrature Amplitude Modulation (16QAM) scheme, modulates the scrambled signal to a complex symbol. Thereafter, the modulated complex symbols are processed by the conversion precoder 203 and then input to the resource unit mapper 204. Here, the resource unit mapper can map the complex symbols to time-frequency resource units, which will be used in the actual transmission. The processed signal can then be transmitted to the base station via the antenna via a Single-Carrier Frequency-Division Multiple Access (SC-FDMA) signal generator 205.

第3圖圖示說明由基地台施行以發送下行鏈路訊號的訊號處理程序。Figure 3 illustrates a signal processing procedure performed by the base station to transmit downlink signals.

在3GPP LTE系統中,基地台可發送一或多個字碼(code word)。因此,此一或多個字碼之每一字碼可如上述對於第2圖之上行鏈路程序般,由擾亂模組301與調變映射器302處理為複數符元。隨後,複數符元之每一者可由分層映射器303映射至複數分層,且可由預編碼模組304將每一層乘上基於通道狀態選定的預定預編碼矩陣,藉以將每一層分配至每一傳送天線。各別於一天線之經處理傳送訊號之每一訊號,藉由各別的資源單元映射器305被映射至時頻資源單元,其將在實際傳送中使用。其後,每一經處理傳送訊號之通過正交分頻多重存取(Orthogonal Frequency Division Multiple Access;OFDMA)訊號產生器306,以經由每一天線傳送。In a 3GPP LTE system, a base station can transmit one or more code words. Therefore, each of the one or more words can be processed into a complex symbol by the scrambling module 301 and the modulation mapper 302 as described above for the uplink procedure of FIG. Subsequently, each of the complex symbols can be mapped by the layer mapper 303 to the complex layer, and each layer can be multiplied by a precoding module 304 to a predetermined precoding matrix selected based on the channel state, thereby assigning each layer to each A transmitting antenna. Each signal of the processed transmission signal, which is separate from an antenna, is mapped to the time-frequency resource unit by a respective resource unit mapper 305, which will be used in the actual transmission. Thereafter, each processed transmission signal is transmitted through an Orthogonal Frequency Division Multiple Access (OFDMA) signal generator 306 for transmission via each antenna.

在行動通訊系統中,使用者設備經由上行鏈路傳送訊號時的峰值功率比(Peak-to-Average Ratio;PAPR),可較基地台經由下行鏈路施行傳送要來得更不利。因此,如上文連同第2圖與第3圖所述,不像用於下行鏈路訊號傳送中的OFDMA方案,在上行鏈路訊號傳送中係使用SC-FDMA方案。In the mobile communication system, the Peak-to-Average Ratio (PAPR) when the user equipment transmits signals via the uplink can be more disadvantageous than the base station transmitting via the downlink. Therefore, as described above with respect to FIGS. 2 and 3, unlike the OFDMA scheme used in downlink signal transmission, the SC-FDMA scheme is used in uplink signal transmission.

第4圖圖示說明在行動通訊系統中用於傳送上行鏈路訊號的SC-FDMA方案,與用於傳送下行鏈路訊號的OFDMA方案。Figure 4 illustrates an SC-FDMA scheme for transmitting uplink signals in a mobile communication system, and an OFDMA scheme for transmitting downlink signals.

在此,用於上行鏈路訊號傳送的使用者裝備與用於下行鏈路訊號傳送的基地台具有一些相同之處:每一使用者設備與基地台包含序列至平行轉換器401、子載波(subcarrier)映射器403、M點反離散傅立葉轉換(M-point IDFT)模組404、循環字首(Cyclic Prefix;CP)加入模組406。Here, the user equipment for uplink signal transmission has some similarities with the base station for downlink signal transmission: each user equipment and base station includes a sequence to parallel converter 401, subcarriers ( The subcarrier mapper 403, the M-point inverse Fourier transform (M-point IDFT) module 404, and the Cyclic Prefix (CP) are added to the module 406.

然而,藉由使用SC-FDMA方案傳送訊號的使用者設備,額外包含了平行至序列轉換器405以及N點IDFT模組402。並且,在此N點IDFT模組402經配置以消除由M點IDFT模組所產生的IDFT處理效應的預定部分,以使傳送訊號可具有單載波性質。第5圖圖示說明用於滿足在頻域中之單載波特徵的時域訊號映射方法。在第5圖中,(a)代表定位(localized)映射方法,且(b)代表分散映射方法。定位映射方法已界定於當前的3GPP LTE系統中。However, the user equipment transmitting the signal by using the SC-FDMA scheme additionally includes a parallel to sequence converter 405 and an N point IDFT module 402. Moreover, the N-point IDFT module 402 is configured to eliminate a predetermined portion of the IDFT processing effect generated by the M-point IDFT module such that the transmitted signal can have a single carrier nature. Figure 5 illustrates a time domain signal mapping method for satisfying single carrier characteristics in the frequency domain. In Fig. 5, (a) represents a localized mapping method, and (b) represents a distributed mapping method. The positioning mapping method has been defined in the current 3GPP LTE system.

同時,現將說明叢集式SC-FDMA,其對應至SC-FDMA的經校準形式。在循序地在DFT程序與快速反傅立葉轉換(IFFT)程序之間施行子載波映射程序之中,叢集式SC-FDMA將DFT程序輸出取樣分成子群組,以使IFFT取樣輸入單元可將每一子群組映射至子載波區域(region),子載波區域彼此間隔排列。且在一些情況中,叢集式SC-FDMA可包含濾波程序與循環延伸程序。此時子群組可被稱為叢集,且循環延伸可涉及於交插保護區間(guard interval)於連序的(或相連的)符元之間之程序,保護區間係長於通道的最大延遲展頻,以防止在經由多路徑通道傳送每一子載波符元的同時產生符元間干擾(inter-symbol interference;ISI)。At the same time, a clustered SC-FDMA will now be described which corresponds to a calibrated form of SC-FDMA. Among the sequential subcarrier mapping procedures between the DFT program and the fast inverse Fourier transform (IFFT) program, the clustered SC-FDMA divides the DFT program output samples into subgroups so that the IFFT sampling input unit can The subgroups are mapped to subcarrier regions, and the subcarrier regions are spaced apart from each other. And in some cases, the clustered SC-FDMA may include a filter and a loop extension. At this time, the subgroup can be called a cluster, and the cyclic extension can involve the process of interpolating the guard interval between the consecutive (or connected) symbols, and the guard interval is longer than the maximum delay of the channel. Frequency to prevent inter-symbol interference (ISI) from being generated while transmitting each sub-carrier symbol via a multi-path channel.

因此,本發明係針對在無線通訊系統中用於在無線通訊系統中傳送控制資訊的方法及其裝置,其實質上排除了歸因於先前技術中之限制與缺點的一或多個問題。Accordingly, the present invention is directed to a method and apparatus for transmitting control information in a wireless communication system in a wireless communication system that substantially obviates one or more problems due to limitations and disadvantages of the prior art.

下文將描述本發明的一些部分額外優點、目的與特徵,而另一些部分由在本發明領域中具有通常知識者檢驗下文所述,或在實作本發明的過程中學習時,將為顯然。可從本文之書面說明、申請專利範圍與附加圖式特別指出的結構來理解並獲得本發明的目的與其他優點。Additional advantages, objects, and features of the invention will be set forth in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The objectives and other advantages of the present invention will be understood and attained by the <RTIgt;

為了根據本發明之目的達成此等與其他優點,在此實施並廣泛地描述一種藉由使用李得米勒編碼方案(Reed-Muller(RM) coding scheme)在無線通訊系統中傳送資訊資料的方法,用於傳送資訊資料的方法包含以下步驟:若該資訊資料的一位元大小O 係大於或等於一預定數量,則將該資訊資料分成第一資訊資料與第二資訊資料;應用RM編碼至該第一資訊資料與該第二資訊資料之每一者;串聯該經編碼第一資訊資料與該經編碼第二資訊資料;以及傳送該經串聯資訊資料。In order to achieve these and other advantages in accordance with the purpose of the present invention, a method for transmitting information in a wireless communication system by using a Reed-Muller (RM) coding scheme is widely practiced and widely described herein. The method for transmitting the information material includes the following steps: if the one-dimensional size O of the information material is greater than or equal to a predetermined quantity, the information material is divided into the first information material and the second information material; and the RM code is applied to Each of the first information material and the second information material; concatenating the encoded first information material and the encoded second information material; and transmitting the serialized information material.

在本發明的另一態樣中,在無線通訊系統的傳送裝置中,傳送裝置包含:一處理器,該處理器經配置以使得,若資訊資料的一位元大小O 係大於或等於一預定數量,則將該資訊資料分成第一資訊資料與第二資訊資料,且應用RM編碼至該第一資訊資料與該第二資訊資料之每一者,並串聯該經編碼第一資訊資料與該經編碼第二資訊資料;以及一傳送模組,該傳送模組經配置以傳送該經串聯經編碼第一資訊資料與經編碼第二資訊資料。In another aspect of the present invention, in a transmitting device of a wireless communication system, the transmitting device includes: a processor configured to cause a one-dimensional size O of the information material to be greater than or equal to a predetermined amount The quantity is divided into the first information material and the second information material, and the application RM is encoded to each of the first information material and the second information material, and the encoded first information material is connected in series with the Encoding the second information material; and a transmitting module configured to transmit the serially encoded first information material and the encoded second information material.

此外,該處理器可基於該資訊資料的一位元大小O ,配置一數量Q '個資源單元以傳送該資訊資料;可均等地分配該經計算數量Q '個資源單元,至用於該第一資訊資料的一第一數量Q 1 '個資源單元以及用於該第二資訊資料的一第二數量Q 2 '個資源單元;以及,可施行速率匹配以使該第一數量Q 1 '個資源單元可對應至該經編碼第一資訊資料,並施行速率匹配以使該第二數量Q 2 '個資源單元可對應至該經編碼第二資訊資料。此外,該傳送模組可藉由使用該預定數量Q '個資源單元,來傳送該經串聯第一資訊資料與第二資訊資料。In addition, the processor may allocate a quantity Q ′ resource units to transmit the information material based on a one-dimensional size O of the information material; the calculated quantity Q ′ resource units may be equally allocated to the first a first quantity Q 1 ' resource unit of the information material and a second quantity Q 2 ' resource unit for the second information material; and, rate matching can be performed to make the first quantity Q 1 ' The resource unit may correspond to the encoded first information material and perform rate matching such that the second quantity Q 2 ' resource units may correspond to the encoded second information material. In addition, the transmitting module can transmit the serialized first information material and the second information material by using the predetermined number of Q ′ resource units.

在此,該預定數量可對應至12位元,且其中該經編碼第一資訊資料與該經編碼第二資訊資料的每一位元大小對應至32位元。此外,該資訊資料可對應至上行鏈路控制資訊(Uplink Control Information;UCI),且其中可係經由一實體上行鏈路共享通道(PUSCH)傳送該上行鏈路控制資訊。且較佳地,該上行鏈路控制資訊可包含混合自動重傳請求(Hybrid Automatic Retransmission reQuest;HARQ)-肯定回應確認/否定回應確認(Acknowledgment/Negative Acknowledgment;ACK/NACK)資料或一等級指示(Rank Indicator;RI)。Here, the predetermined number may correspond to 12 bits, and wherein each bit size of the encoded first information material and the encoded second information material corresponds to 32 bits. In addition, the information material may correspond to Uplink Control Information (UCI), and the uplink control information may be transmitted via a physical uplink shared channel (PUSCH). And preferably, the uplink control information may include a Hybrid Automatic Retransmission reQuest (HARQ)-Acknowledgment/Negative Acknowledgment (ACK/NACK) data or a level indication ( Rank Indicator; RI).

更具體而言,較佳的是該第一資訊資料的一大小O 1 對應至位元,且其中該第二資訊資料的一大小O 2 對應至位元。再者,在該資源單元數量Q '為一偶數時,該第一資源單元數量Q 1 '與該第二資源單元數量Q 2 '的每一者可對應至。且,在該資源單元數量Q '為一奇數時,該第一資源單元數量Q 1 '可對應至(Q '+1)/2,且該第二資源單元數量Q 2 '可對應至(Q '-1)/2。More specifically, it is preferable that a size O 1 of the first information material corresponds to a bit, and wherein a size O 2 of the second information material corresponds to Bit. Each Further, the number of resource units in Q 'is an even number, the number of the first resource units. 1 Q' and Q number of the second resource unit 2 'may correspond to . Moreover, when the number of resource units Q ' is an odd number, the first resource unit number Q 1 ' may correspond to ( Q '+1)/2, and the second resource unit number Q 2 ' may correspond to ( Q '-1)/2.

應瞭解,本發明之上文一般概述與下文實施方式兩者皆為示例與解釋之用,且意為提供對所請發明的更進一步解釋。It is to be understood that both the foregoing general description of the invention,

現將詳盡參考本發明的較佳具體實施例,在附加圖式中圖示說明其範例。茲提供本發明實施方式以協助瞭解本發明的配置、作業與其他特徵,並提供對本發明之示例性具體實施例的描述。下文描述之本發明具體實施例對應至具有本發明之技術特徵應用於其中的示例性系統。為了簡單起見,將以IEEE 802.16系統作為本發明之範例來描述本發明。然而此僅為示例性,且因此本發明可應用至第三代合作夥伴計畫(3GPP)所包含之多樣的無線通訊系統。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments embodiments The embodiments of the present invention are provided to assist in understanding the configuration, the operation, and other features of the present invention, and the description of the exemplary embodiments of the present invention. The specific embodiments of the present invention described below correspond to an exemplary system to which the technical features of the present invention are applied. For the sake of simplicity, the present invention will be described with the IEEE 802.16 system as an example of the present invention. However, this is merely exemplary, and thus the present invention is applicable to various wireless communication systems included in the 3rd Generation Partnership Project (3GPP).

下文使用特定用詞描述本發明,以協助瞭解本發明。且因此,此種特定用詞的使用亦可變化為不同形式,而不脫離本發明的技術範圍與精神。The invention is described below using specific terms to assist in understanding the invention. Therefore, the use of such specific terms may also be varied in different forms without departing from the spirit and scope of the invention.

第6圖圖示說明根據本發明之一具體實施例之訊號處理程序,其中DFT程序輸出取樣在叢集式SC-FDMA中被映射至單載波。此外,第7圖與第8圖各別圖示說明根據本發明之一具體實施例之訊號處理程序,其中DFT程序輸出取樣在叢集式SC-FDMA中被映射至多載波(multi-carrier)。Figure 6 illustrates a signal processing procedure in accordance with an embodiment of the present invention in which DFT program output samples are mapped to a single carrier in a clustered SC-FDMA. In addition, Figures 7 and 8 each illustrate a signal processing procedure in accordance with an embodiment of the present invention in which DFT program output samples are mapped to a multi-carrier in a clustered SC-FDMA.

在此,第6圖對應至應用叢集式SC-FDMA於內載波(intra-carrier)中之範例。而第7圖與第8圖對應至應用叢集式SC-FDMA於交互載波(inter-carrier)中之範例。此外,第7圖代表在鄰近部件載波之間的子載波間隔為對齊時,經由單一IFFT區塊產生(或製造)訊號的情況,同時部件載波係相連地分配於頻域中。且第8圖代表因為部件載波未彼此鄰接,所以經由多個IFFT區塊產生訊號的情況,同時部件載波係不相連地分配於頻域中。Here, FIG. 6 corresponds to an example in which an application cluster SC-FDMA is applied to an intra-carrier. 7 and 8 correspond to an example of applying clustered SC-FDMA to an inter-carrier. Further, Fig. 7 represents a case where a signal is generated (or manufactured) via a single IFFT block when the subcarrier spacing between adjacent component carriers is aligned, while the component carriers are connected in the frequency domain in a connected manner. And Fig. 8 represents a case where signals are generated via a plurality of IFFT blocks because the component carriers are not adjacent to each other, and the component carriers are not allocated in the frequency domain.

分段SC-FDMA涉及於,在應用了與隨機DFT數量相同數量的IFFT時,根據DFT與IFFT之間具有一對一對應性(correspondence)的關係,簡單地施行傳統SC-FDMA的DFT展頻並延伸IFFT的頻率子載波映射配置,在此,分段SC-FDMA亦稱為NxSC-FDMA或NxDFT-s-OFDMA。在本發明描述中,此將一同被稱為分段SC-FDMA。Segmented SC-FDMA involves simple implementation of DFT spread spectrum of traditional SC-FDMA according to the one-to-one correspondence between DFT and IFFT when the same number of IFFTs as the number of random DFTs are applied. And extending the frequency subcarrier mapping configuration of the IFFT, where the segmented SC-FDMA is also referred to as NxSC-FDMA or NxDFT-s-OFDMA. In the description of the present invention, this will be collectively referred to as segmented SC-FDMA.

第9圖圖示說明根據本發明之一具體實施例的分段SC-FDMA系統中的訊號處理程序。如第9圖所圖示,分段SC-FDMA程序涉及於將整個時域調變符元分組成N個群組(其中N為大於1的整數),並以群組單位施行DFT程序的程序,來緩解單載波性質狀態(或規格)。Figure 9 illustrates a signal processing procedure in a segmented SC-FDMA system in accordance with an embodiment of the present invention. As illustrated in FIG. 9, the segmentation SC-FDMA program involves a process of grouping the entire time domain modulation symbols into N groups (where N is an integer greater than 1) and executing the DFT program in group units. To mitigate the single carrier nature state (or specification).

第10圖圖示說明用於經由上行鏈路傳送參考訊號(此後稱為RS)的訊號處理程序。如第10圖所圖示,資料從時域產生訊號,並經由DFT預編碼器進行頻率映射,以經由IFFT傳送。反之,RS跳過(bypass)DFT預編碼器且直接於頻域中產生(S11),並在由定位映射(S12)與IFFT(S13)程序循序處理之後被傳送,且隨後進行循環字首(CP)加入程序(S14)。Figure 10 illustrates a signal processing procedure for transmitting a reference signal (hereinafter referred to as RS) via the uplink. As illustrated in Figure 10, the data is generated from the time domain and frequency mapped via a DFT precoder for transmission via IFFT. Conversely, the RS bypasses the DFT precoder and generates directly in the frequency domain (S11), and is transmitted after being sequentially processed by the positioning map (S12) and IFFT (S13) programs, and then cyclically prefixes ( CP) is added to the program (S14).

第11圖圖示說明對於正常循環字首(CP)的情況,用於傳送RS的子訊框(subframe)結構。而第12圖圖示說明對於延伸循環字首(CP)的情況,用於傳送RS的子訊框結構。參照第11圖,係經由第四個與第十一個OFDM符元傳送RS。且參照第12圖,係經由第三個與第九個OFDM符元傳送RS。Figure 11 illustrates a sub-frame structure for transmitting RS for the case of a normal cyclic prefix (CP). And Fig. 12 illustrates the sub-frame structure for transmitting the RS for the case of extending the cyclic prefix (CP). Referring to Fig. 11, the RS is transmitted via the fourth and eleventh OFDM symbols. Referring to Fig. 12, the RS is transmitted via the third and ninth OFDM symbols.

同時,現將於下文描述作為傳送通道的上行鏈路共享頻道的處理結構。第13圖圖示說明圖示對於上行鏈路共享頻道之傳送通道的處理程序的方塊圖。如第13圖所圖示,與控制資訊多工(multiplex)的資料資訊將傳輸區塊(Transport Block,此後稱為「TB」)專用循環冗餘檢測碼(Cyclic Redundancy Check;CRC)加至TB,其將經由上行鏈路傳送(130)。隨後,根據TB大小,將經處理的傳輸區塊分割成複數個碼區塊(Code Blocks,此後稱為「CB」s),並將CB專用CRC加至複數個CBs(131)。其後,對結果值施行通道編碼(132)。隨後,對經通道編碼資料進行速率匹配(133),且隨後再次施行結合CBs(134)。其後,經結合CBs與通道品質資訊/預編碼矩陣索引(Channel Quality Information/Precoding Matrix Index;CQI/PMI)多工(135)。Meanwhile, a processing structure of an uplink shared channel as a transmission channel will now be described below. Figure 13 illustrates a block diagram illustrating the processing procedure for the transmit channel of the uplink shared channel. As shown in Figure 13, the data information of the control information multiplex is added to the TB of the Transport Block (hereinafter referred to as "TB") Cyclic Redundancy Check (CRC). It will be transmitted (130) via the uplink. Then, according to the TB size, the processed transport block is divided into a plurality of code blocks (hereinafter referred to as "CB"s), and the CB-dedicated CRC is added to a plurality of CBs (131). Thereafter, the resulting value is channel encoded (132). The channel encoded data is then rate matched (133) and then combined with CBs (134). Thereafter, the CBs are combined with the Channel Quality Information/Precoding Matrix Index (CQI/PMI) multiplex (135).

同時,對CQI/PMI施行與資料編碼程序分離的通道編碼程序(136)。隨後,經通道編碼CQI/PMI與資料多工(135)。At the same time, a channel coding procedure (136) separate from the data encoding procedure is performed on the CQI/PMI. Subsequently, the channel coded CQI/PMI and data multiplex (135).

再者,亦對等級指示(Rank Indication;RI)施行與資料編碼程序分離的通道編碼程序。Furthermore, a channel coding program separated from the data encoding program is also performed on the Rank Indication (RI).

對於肯定回應確認/否定回應確認(Acknowledgment/Negative Acknowledgment;ACK/NACK)的情況,施行與資料、CQI/PMI與RI的通道編碼程序分離的通道編碼程序(138)。將多工的資料與CQI/PMI、分離的經通道編碼RI、與ACK/NACK進行通道交插(channel interleaving),藉以產生輸出訊號(139)。For the case of Acknowledgment/Negative Acknowledgment (ACK/NACK), a channel coding procedure (138) separate from the data, CQI/PMI and RI channel coding procedures is implemented. The multiplexed data is channel interleaved with the CQI/PMI, the separated channel-coded RI, and the ACK/NACK to generate an output signal (139).

同時,將詳細說明在LTE上行鏈路系統中,用於資料與控制資訊的實體資源單元(此後稱之為「RE」s)。Meanwhile, an entity resource unit (hereinafter referred to as "RE" s) for data and control information in the LTE uplink system will be described in detail.

第14圖圖示說明用於上行鏈路資料與控制通道的實體資源映射方法。Figure 14 illustrates an entity resource mapping method for uplink data and control channels.

如第14圖所圖示,以時間優先(time-first)方法將CQI/PMI與資料映射在RE上。經編碼ACK/NACK被穿孔並插入於解調變參考訊號(DM RS)的周圍,且RI被映射至定位於具有ACK/NACK插入於其中之RE旁的RE。用於RI與ACK/NACK的資源最多可佔用(occupy)四個SC-FDMA符元。對於資料與控制資訊被同時傳送至上行鏈路共享通道的情況,映射順序可對應至RI、CQI/PMI與資料的串聯(concatenation)以及ACK/NACK的順序。更具體言之,藉由使用時間優先方法,首先映射RI,隨後映射CQI/PMI與資料的串聯至剩餘的REs,排除具有RI映射於其上的RE。藉由穿孔已映射至各別RE之CQI/PMI與資料的串聯來映射ACK/NACK。As illustrated in Figure 14, the CQI/PMI and data are mapped onto the RE in a time-first manner. The encoded ACK/NACK is punctured and inserted around the Demodulation Variable Reference Signal (DM RS), and the RI is mapped to the RE located next to the RE with the ACK/NACK inserted therein. Resources for RI and ACK/NACK can occupy up to four SC-FDMA symbols. For the case where the data and control information are simultaneously transmitted to the uplink shared channel, the mapping order may correspond to the sequence of RI, CQI/PMI and data concatenation and ACK/NACK. More specifically, by using the time-first method, the RI is first mapped, then the CQI/PMI and the data are concatenated to the remaining REs, and the RE having the RI mapped thereto is excluded. The ACK/NACK is mapped by puncturing the CQI/PMI mapped to the respective REs in tandem with the data.

如上所述,藉由使資料與上行鏈路控制資訊(UCI)(諸如CQI/PMI等等)多工,可滿足單載波性質。因此,可達成維持低立方量度(Cubic Metric;CM)的上行鏈路傳送。As described above, the single carrier property can be satisfied by multiplexing the data with uplink control information (UCI) such as CQI/PMI and the like. Therefore, uplink transmission maintaining a low cubic metric (CM) can be achieved.

在傳統系統之加強系統中(例如,LTE Rel-10),對於每一使用者設備,在於每一載波部件中的SC-FDMA與叢集DFTs OFDMA之兩個傳送方法之中,可對上行鏈路傳送應用至少一個傳送方法。且所應用之傳送方法可與上行鏈路多輸入多輸出(UL-MIMO)傳送一起應用。In the enhanced system of the legacy system (for example, LTE Rel-10), for each user equipment, among the two transmission methods of SC-FDMA and cluster DFTs OFDMA in each carrier component, the uplink may be Transfer the application at least one transfer method. And the applied transmission method can be applied together with uplink multiple input multiple output (UL-MIMO) transmission.

第15圖圖示說明圖示用於在上行鏈路共享通道內有效率地使資料與控制通道多工之方法的流程圖。Figure 15 illustrates a flow chart illustrating a method for efficiently multiplexing data and control channels within an uplink shared channel.

如第15圖所圖示,使用者設備認知到各別於實體上行鏈路共享通道(PUSCH)的資料之等級(S150)。隨後,使用者設備將上行鏈路控制通道(在此,控制通道涉及於上行鏈路控制資訊(UCI),諸如CQI、ACK/NACK、RI等等)的等級配置為與資料的等級相同(S151)。此外,使用者設備使資料與控制資訊多工(S152)。隨後,在藉由使用時間優先方法映射資料與CQI之後,可施行通道交插以將RI映射至指定的RE,且藉由穿孔在DM-RS周圍的REs以映射ACK/NACK(S153)。As illustrated in FIG. 15, the user equipment recognizes the level of data different from the physical uplink shared channel (PUSCH) (S150). Subsequently, the user equipment configures the level of the uplink control channel (here, the control channel relates to uplink control information (UCI), such as CQI, ACK/NACK, RI, etc.) to be the same level as the data (S151) ). Further, the user equipment multiplexes the data and the control information (S152). Subsequently, after mapping the data and the CQI by using the time-first method, channel interleaving may be performed to map the RI to the designated RE, and the ACK/NACK is mapped by puncturing the REs around the DM-RS (S153).

其後,資料與控制通道可根據MCS表被調變至QPSK、16QAM與64QAM等等(S154)。此時調變步驟可被移動(或移位)至另一位置。(例如,調變區塊可被移動(或移位)至在資料與控制通道之多工步驟之前的位置。)再者,通道交插可由字碼單位施行,或可由分層單位施行。Thereafter, the data and control channels can be modulated to QPSK, 16QAM and 64QAM, etc. according to the MCS table (S154). The modulation step can now be moved (or shifted) to another location. (For example, a modulation block can be moved (or shifted) to a position prior to the multiplex step of the data and control channels.) Again, channel interleaving can be performed by word units, or can be performed by hierarchical units.

第16圖圖示說明圖示用於產生資料與控制通道之傳送訊號之方法的方塊圖。Figure 16 illustrates a block diagram illustrating a method for generating a transmission signal for a data and control channel.

假定有兩個字碼,係對每一字碼施行通道編碼(160),且速率匹配係根據給定MCS位準與資源大小施行(161)。其後,可藉由使用細胞服務區專用方法、UE專用方法或字碼專用方法來攪亂經編碼位元(162)。Assuming two words, channel coding (160) is performed for each word, and rate matching is performed according to a given MCS level and resource size (161). Thereafter, the encoded bit (162) can be scrambled by using a cell service area specific method, a UE specific method, or a code specific method.

隨後,施行字碼至分層映射(163)。在此程序期間,可包含分層移位或排序(permutation)之作業。Subsequently, the word code is applied to the hierarchical map (163). During this procedure, a job of hierarchical shifting or permutation may be included.

第17圖圖示說明字碼至分層映射方法。可藉由使用第17圖圖示的規則來施行字碼至分層映射。第17圖圖示的預編碼位置可與第13圖所圖示的預編碼位置不同。Figure 17 illustrates the word-to-layer mapping method. The word-to-layer mapping can be performed by using the rules illustrated in FIG. The precoding position illustrated in Fig. 17 may be different from the precoding position illustrated in Fig. 13.

諸如CQI、RI與ACK/NACK之控制資訊基於給定規格(specification)被通道編碼(165)。此時可藉由使用對所有字碼相同的通道編碼,或對每一字碼不同的通道編碼來編碼CQI、RI與ACK/NACK。Control information such as CQI, RI, and ACK/NACK is channel encoded (165) based on a given specification. At this time, CQI, RI, and ACK/NACK can be encoded by using the same channel coding for all words, or encoding different channels for each word.

其後,可藉由位元大小控制器來變化數個經編碼位元(166)。位元大小控制器可與通道編碼區塊形成單一本體(body)(155)。從位元大小控制器輸出的訊號被攪亂(167)。此時,攪亂可被施行為細胞服務區專用、分層專用、字碼專用或UE專用。Thereafter, a plurality of encoded bits (166) can be varied by a bit size controller. The bit size controller can form a single body (155) with the channel coding block. The signal output from the bit size controller is shuffled (167). At this time, the scramble may be dedicated to the cell service area, dedicated to the layer, dedicated to the code, or dedicated to the UE.

位元大小控制器可施行下列作業。The bit size controller can perform the following operations.

(1) 控制器認知到各別於PUSCH的資料等級(n_rank_pusch)。(1) The controller recognizes the data level (n_rank_pusch) that is different from the PUSCH.

(2) 控制通道的等級(n_rank_control)經配置為與資料的等級相同(亦即,n_rank_control=n_rank_pusch),且各別於控制通道的數個位元與控制通道等級相乘,藉以延伸位元數。(2) The level of the control channel (n_rank_control) is configured to be the same as the level of the data (ie, n_rank_control=n_rank_pusch), and the number of bits separately from the control channel is multiplied by the control channel level, thereby extending the number of bits .

用於施行上述作業的方法中的一方法為,簡單地複製並重複控制通道。此時控制通道可對應至在由通道編碼處理之前的資訊位準,或對應至在由通道編碼處理之後的經編碼位元位準。更具體言之,例如,在控制通道[a0,a1,a2,a3]具有n_bit_crtl=4,且在n_rank_pusch=2時的情況下,延伸位元數(n_ext_crtl)可變成8位元[a0,a1,a2,a3,a0,a1,a2,a3]。One of the methods for performing the above operations is to simply copy and repeat the control channel. The control channel may now correspond to the information level prior to processing by the channel encoding, or to the encoded bit level after processing by the channel encoding. More specifically, for example, in the case where the control channel [a0, a1, a2, a3] has n_bit_crtl=4, and in the case of n_rank_pusch=2, the number of extension bits (n_ext_crtl) can be changed to 8 bits [a0, a1 , a2, a3, a0, a1, a2, a3].

對於位元大小控制器與通道編碼單元被配置為單一本體的情況,可藉由採取(adopt)通道編碼與速率匹配來產生經編碼位元,通道編碼與速率匹配係界定於傳統系統中(例如,LTE Rel-8)。For the case where the bit size controller and the channel coding unit are configured as a single body, the coded bits can be generated by adopting channel coding and rate matching, and the channel coding and rate matching are defined in a conventional system (for example, , LTE Rel-8).

此外,為了進一步對每一分層提供隨機化(randomization),可在位元大小控制器中施行位元位準交插程序。或者,作為上述方法的均等方法,亦可在調變符元位準處施行交插程序。Furthermore, to further provide randomization for each layer, a bit level interleaving procedure can be implemented in the bit size controller. Alternatively, as an equal method of the above method, an interleaving procedure may be performed at the level of the modulation symbol.

可藉由資料/控制多工器使各別於兩個字碼的CQI/PMI通道與資料多工(164)。接著,藉由使ACK/NACK資訊被映射至上行鏈路DM-RS周圍的REs,在子訊框中的每一槽孔(slot)中,通道交插器根據時間優先映射方法來映射CQI/PMI(168)。The CQI/PMI channel and data multiplex (164) can be separated by two data codes by means of a data/control multiplexer. Then, by making the ACK/NACK information mapped to the REs around the uplink DM-RS, in each slot of the subframe, the channel interleaver maps the CQI/ according to the time-first mapping method. PMI (168).

接著,對每一分層施行調變(169),且循序施行DFT預編碼(170)、MIMO預編碼(171)、RE映射(172)等等。其後,產生SC-FDMA訊號並經由天線埠傳送(173)。Next, modulation is performed on each layer (169), and DFT precoding (170), MIMO precoding (171), RE mapping (172), and the like are sequentially performed. Thereafter, an SC-FDMA signal is generated and transmitted via the antenna (173).

功能區塊並不限於第16圖所圖示之位置。且在一些情況中,可改變對應的位置。例如,攪亂區塊162與167可被安置在通道交插區塊之後。同樣的,字碼至分層映射區塊163可被安置在通道交插區塊168之後,或在調變映射器區塊169之後。The functional blocks are not limited to the positions illustrated in Fig. 16. And in some cases, the corresponding location can be changed. For example, the shuffling blocks 162 and 167 can be placed after the channel interleaving block. Likewise, the word-to-layer mapping block 163 can be placed after the channel interleave block 168 or after the modulation mapper block 169.

本發明針對在PUSCH上傳送UCI(諸如CQI、ACK/NACK與RI)的情況,提出用於UCI的通道編碼方法及其對應資源分配與傳送方法。雖然基本上係基於SU-MIMO環境內的傳送來描述本發明,但本發明亦可被應用至單天線傳送,其可對應為SU-MIMO的特定情況。The present invention is directed to a channel coding method for UCI and a corresponding resource allocation and transmission method thereof for transmitting UCI (such as CQI, ACK/NACK, and RI) on a PUSCH. Although the invention is described primarily based on transmissions within a SU-MIMO environment, the invention may also be applied to single antenna transmissions, which may correspond to the particular case of SU-MIMO.

在當前對應至SU-MIMO的UCI與資料係於PUSCH上傳送的情況下,可藉由使用下列方法來施行傳送。現將於下文描述在PUSCH內之UCI的位置。In the case where the UCI and data currently corresponding to SU-MIMO are transmitted on the PUSCH, the transmission can be performed by using the following method. The location of the UCI within the PUSCH will now be described below.

CQI係與資料串聯,且藉由時間優先映射方法以及與資料相同的調變階數與群集(constellation),被映射至剩餘的RE(排除具有RI映射於其中的RE)。對於SU-MIMO的情況,藉由將CQI散布至一個字碼,且在兩個字碼之中CQI被傳送至的字碼對應至具有較高MCS位準的字碼,來傳送CQI。且對於兩個字碼具有相同MCS位準的情況,CQI被傳送至字碼0。此外,藉由穿孔CQI與資料串聯以安置ACK/NACK,CQI與資料串聯已被映射至定位在參考訊號兩側的符元。且因為參考訊號被安置於第三個與第十個符元中,藉由開始於第二個、第四個、第九個與第十一個符元之最下方的子載波並往上進行,來施行映射程序。此時係由第二個、第十一個、第九個、第四個符元之順序來映射ACK/NACK符元。RI被映射至安置在ACK/NACK旁的符元,且較任何其他被傳送至PUSCH的資訊(資料、CQI、ACK/NACK)要早被映射。更具體言之,藉由開始於第一個、第五個、第八個與第十二個符元之最下方的子載波並往上進行,來施行RI的映射。此時係由第一個、第十二個、第八個、第五個符元之順序來映射RI符元。最特定的是,在資訊位元大小等於一個位元或兩個位元時,藉由使用QPSK方法並僅使用群集的四個角落來映射ACK/NACK與RI。且在資訊位元大小大於或等於三個位元時,可藉由使用與資料之調變階數相同的調變階數之所有群集來映射ACK/NACK與RI。再者,ACK/NACK與RI使用相同的資源,其對應至在每一分層內相同的位置,以傳送相同的資訊。The CQI is in series with the data and is mapped to the remaining REs (excluding REs with RI mappings therein) by a time-first mapping method and the same modulation order and constellation as the data. For the case of SU-MIMO, the CQI is transmitted by spreading the CQI to one word and the word to which the CQI is transferred among the two words corresponds to a word having a higher MCS level. And for the case where two words have the same MCS level, the CQI is transferred to the word code 0. In addition, by interpolating the CQI in series with the data to place the ACK/NACK, the CQI and data series are mapped to symbols located on both sides of the reference signal. And because the reference signal is placed in the third and tenth symbols, by starting at the bottom subcarriers of the second, fourth, ninth, and eleventh symbols and going up , to implement the mapping program. At this time, the ACK/NACK symbols are mapped in the order of the second, eleventh, ninth, and fourth symbols. The RI is mapped to symbols placed next to the ACK/NACK and is mapped earlier than any other information (material, CQI, ACK/NACK) that is transmitted to the PUSCH. More specifically, the mapping of the RI is performed by starting up the subcarriers at the bottom of the first, fifth, eighth, and twelfth symbols. At this time, the RI symbol is mapped by the order of the first, twelfth, eighth, and fifth symbols. Most specifically, when the information bit size is equal to one bit or two bits, ACK/NACK and RI are mapped by using the QPSK method and using only the four corners of the cluster. And when the information bit size is greater than or equal to three bits, ACK/NACK and RI can be mapped by using all clusters of the same modulation order as the modulation order of the data. Furthermore, ACK/NACK uses the same resources as the RI, which corresponds to the same location within each layer to convey the same information.

現將於下文描述計算用於在PUSCH中的UCI的資源單元數量的方法。首先,用於CQI與ACK/NACK(或RI)(其正於PUSCH中被傳送)的資源單元數量,可由下列方程式1與方程式2各別計算。A method of calculating the number of resource elements for UCI in the PUSCH will now be described below. First, the number of resource elements used for CQI and ACK/NACK (or RI) (which is being transmitted in the PUSCH) can be calculated by Equation 1 and Equation 2 below.

[方程式1][Equation 1]

[方程式2][Equation 2]

在此,用於CQI與ACK/NACK(或RI)的資源單元數量亦可被表示為數個經編碼調變符元。Here, the number of resource elements for CQI and ACK/NACK (or RI) may also be represented as a number of coded modulation symbols.

現將於下文描述用於在PUSCH中傳送的UCI的通道編碼方法。首先,對於CQI,在酬載(payload)大小係小於或等於11位元時,應用使用下列表1的RM編碼程序至輸入序列(亦即,資訊資料)o 0 ,o 1 ,o 2 ,...,o O -1 ,以產生32位元的輸出序列。此外,對於CQI的酬載大小超過11位元的情況,在加入8位元CRC之後,可應用尾端位元迴旋碼(Tail biting convolutional coding;TBCC)方法。The channel coding method for UCI transmitted in the PUSCH will now be described below. First, for CQI, when the payload size is less than or equal to 11 bits, the application uses the RM encoding procedure of Table 1 below to input the sequence (ie, information material) o 0 , o 1 , o 2 ,. .., o O -1 to produce a 32-bit output sequence. In addition, for the case where the CQI payload size exceeds 11 bits, the Tail biting convolutional coding (TBCC) method can be applied after the 8-bit CRC is added.

同時,現將描述用於正於PUSCH中傳送的ACK/NACK與RI的通道編碼方法。若ACK/NACK與RI的資訊資料大小等於1位元(亦即,若輸入序列為[]),則根據如下列表2所示之調變階數來施行通道編碼程序。此外,若ACK/NACK與RI的資訊資料大小等於2位元(亦即,若輸入序列為[]),則則根據如下列表3所示之調變階數來施行通道編碼程序。最特定地,參照表3,對應至用於字碼0的ACK/NACK或RI資料,對應至用於字碼1的ACK/NACK或RI資料,而對應至()mod2。更特定地,在表2與表3中,x代表值1,而y代表先前值的重複。Meanwhile, a channel coding method for ACK/NACK and RI transmitted in the PUSCH will now be described. If the size of the ACK/NACK and RI information is equal to 1 bit (ie, if the input sequence is [ ]), the channel coding procedure is performed according to the modulation order shown in Table 2 below. In addition, if the size of the ACK/NACK and RI information is equal to 2 bits (ie, if the input sequence is [ ]), then the channel coding procedure is performed according to the modulation order shown in Table 3 below. Most specifically, refer to Table 3, Corresponding to the ACK/NACK or RI data for word 0, Corresponds to ACK/NACK or RI data for word 1 Corresponding to ( ) mod2. More specifically, in Tables 2 and 3, x represents a value of 1, and y represents a repetition of a previous value.

或者,在ACK/NACK與RI的資訊資料大小於3位元至11位元之範圍內時,可應用使用下列表1的RM編碼方法,藉以產生32位元的輸出序列。Alternatively, when the information size of the ACK/NACK and RI is in the range of 3 to 11 bits, the RM encoding method of the following list 1 can be applied to generate a 32-bit output sequence.

[表1][Table 1]

[表2][Table 2]

[表3][table 3]

最特定地,對於使用表1施行RM編碼程序的情況,如下列方程式3所示表示輸出資料為b 0 ,b 1 ,b 2 ,b 3 ,...,b B -1 ,且B =32。Most specifically, for the case where the RM encoding program is performed using Table 1, the output data is represented as b 0 , b 1 , b 2 , b 3 , ..., b B -1 , and B = 32 as shown in the following Equation 3. .

[方程式3][Equation 3]

最後,UCI被編碼至B位元,亦即,ACK/NACK或RI資料可根據下列方程式4施行速率匹配,以被映射至Q' 個資源單元,其係根據方程式1與方程式2被計算出。Finally, the UCI is encoded into B bits, that is, the ACK/NACK or RI data can be rate matched according to Equation 4 below to be mapped to Q' resource elements, which are calculated according to Equation 1 and Equation 2.

[方程式4][Equation 4]

q i =b i mod B ,i =0,1,…,Q m ×Q '-1 q i = b i mod B , i =0,1,..., Q m × Q '-1

相關的通道編碼方法技術,係於在給定了單載波環境的假設下被瞭解。然而,對於應用了多載波方法的情況,如在LTE-A系統中,因為通常已知UCI係對應至每一部件載波,亦即,係由一部件載波階數來結合ACK/NACK或RI資料,UCI大小亦可隨著部件載波數量成比例增加。最特定地,對於RI的情況,傳統的單載波可具有3位元的最大資訊資料。然而,在可聚合五個部件載波的環境中,最大資訊資料大小可等於15位元。因此,因為可藉由使用當前所瞭解的RM編碼方案來編碼最大的11位元資訊資料,需要一種能夠在多載波環境中解碼UCI的新方案(或方法)。現將於下文特定地提出一種用於每一UCI大小的編碼方法與速率匹配方法。The associated channel coding method techniques are known under the assumption that a single carrier environment is given. However, for the case where the multi-carrier method is applied, as in the LTE-A system, since the UCI is generally known to correspond to each component carrier, that is, the ACK/NACK or RI data is combined by a component carrier order. The UCI size can also increase in proportion to the number of component carriers. Most specifically, for the case of RI, a conventional single carrier can have a maximum of 3 bits of information. However, in an environment where five component carriers can be aggregated, the maximum information size can be equal to 15 bits. Therefore, because a maximum 11-bit information material can be encoded by using the currently known RM coding scheme, a new scheme (or method) capable of decoding UCI in a multi-carrier environment is needed. An encoding method and rate matching method for each UCI size will now be specifically proposed below.

<第一具體實施例-在資訊資料大小小於或等於11位元時><First embodiment - when the size of the information material is less than or equal to 11 bits>

在單載波環境與多載波環境中,因為使用了RM編碼,在RI或ACK/NACK具有3位元或以上的大小時,經編碼輸出資料具有32位元的位元大小。然而,對於通道狀態為非常好的情況,以及在藉由使用方程式1與方程式2計算出資源單元的數量時,根據資訊資料的位元大小僅可分配非常小的資源單元數量。對此情況,在速率匹配步驟中(其係使用方程式4施行),經編碼字碼可因RM編碼而被過度穿孔,藉以導致效能降級。In a single carrier environment and a multi-carrier environment, since RM encoding is used, when the RI or ACK/NACK has a size of 3 bits or more, the encoded output data has a bit size of 32 bits. However, for the case where the channel state is very good, and when the number of resource units is calculated by using Equation 1 and Equation 2, only a very small number of resource units can be allocated according to the bit size of the information material. In this case, in the rate matching step (which is performed using Equation 4), the encoded word may be over-punctured due to the RM encoding, thereby causing performance degradation.

更具體而言,為了施行強健的傳送而不受通道狀態影響,因為RI或ACK/NACK傳送字碼(字碼係由RI或ACK/NACK藉由使用RM編碼方案來編碼),藉由僅使用群集點中之角落點,而非使用所有群集以施行調變,通常係已知僅有2位元被映射至單一資源單元。因此,為了傳送所有編碼至32位元的字碼,總共需要16個資源單元。且此時若計算出的資源單元數量係小於16,則可對字碼施行穿孔以作為速率匹配程序。然而在施行穿孔程序時,一接收端(receiving end)可將程序決定為一錯誤。因此,即使字碼具有值16(其對應至RM碼之碼之間的最小距離之最大值),在將對應至四個符元的資料之部分穿孔時,效能無法被保證。此外,因為穿孔程序係從字碼最後一位元開始以2-位元單位循序施行,為了維持穿孔程序的效能,效能的降級程度可被增加。在下文中,作為本發明之第一具體實施例,本發明提出用於防止由上述穿孔程序所導致的此種效能降級。More specifically, in order to perform robust transmission without being affected by the channel state, because RI or ACK/NACK transmits the word code (word code is encoded by RI or ACK/NACK by using the RM encoding scheme), by using only the cluster point Instead of using all clusters to perform modulation, it is generally known that only 2 bits are mapped to a single resource unit. Therefore, in order to transmit all the codes encoded to 32 bits, a total of 16 resource elements are required. At this time, if the calculated number of resource units is less than 16, the word code can be punctured as a rate matching program. However, when performing the puncturing procedure, a receiving end can determine the program as an error. Therefore, even if the word has a value of 16 (which corresponds to the maximum value of the minimum distance between the codes of the RM code), the performance cannot be guaranteed when the portion of the data corresponding to the four symbols is punctured. In addition, since the puncturing procedure is performed in a 2-bit unit starting from the last bit of the word, in order to maintain the performance of the puncturing process, the degree of degradation of the performance can be increased. In the following, as a first embodiment of the invention, the invention proposes to prevent such performance degradation caused by the perforation procedure described above.

1) 在ACK/NACK或RI具有對應於特定位元數量的資訊資料大小時,亦即,在ACK/NACK或RI對應至具有大於或等於3位元之大小的資訊資料時,本發明之第一具體實施例提出一種用於將最小值配置為正被分配至ACK/NACK或RI的資源單元數量的方法。例如,在ACK/NACK或RI的資訊資料大小大於或等於3位元時,正被分配以傳送ACK/NACK或RI之資訊資料的資源單元數量被配置為等於16位元之最小數量。在此,較佳的是資源單元(其分配至ACK/NACK或RI)數量的最小值,係大於或等於對應至資訊資料大小之位元數量的一半。更具體而言,正被分配至ACK/NACK與RI的RE數量,亦即,經編碼調變符元的數量,可由下列方程式6與方程式7計算出。1) When the ACK/NACK or RI has a size of information material corresponding to a specific number of bits, that is, when the ACK/NACK or RI corresponds to an information material having a size greater than or equal to 3 bits, the present invention A specific embodiment proposes a method for configuring the minimum value to the number of resource elements being allocated to an ACK/NACK or RI. For example, when the information size of the ACK/NACK or RI is greater than or equal to 3 bits, the number of resource units being allocated to transmit the information material of the ACK/NACK or RI is configured to be equal to the minimum number of 16 bits. Here, it is preferable that the minimum value of the number of resource units (which are allocated to ACK/NACK or RI) is greater than or equal to half the number of bits corresponding to the size of the information material. More specifically, the number of REs being allocated to ACK/NACK and RI, that is, the number of coded modulation symbols, can be calculated by Equation 6 and Equation 7 below.

[方程式5][Equation 5]

[方程式6][Equation 6]

正被分配至ACK/NACK或RI的資源單元數量Q 'min 的最小值,可根據下列方程式7以決定。Being allocated to the ACK / NACK resource units or RI number Q 'of the minimum value min, 7 can be determined according to the following equation.

[方程式7][Equation 7]

在此,O 代表ACK/NACK或RI的資訊資料位元大小,而Q m 對應至根據調變階數之每符元位元大小。對於QPSK的情況,Q m 係等於2,對於16QAM的情況,Q m 係等於4,而對於64QAM的情況,Q m 係等於6。Here, O represents the size of the information material bit of the ACK/NACK or RI, and Q m corresponds to the size of each symbol bit according to the modulation order. For the case of QPSK, Q m is equal to 2, for 16QAM, Q m is equal to 4, and for 64QAM, Q m is equal to 6.

同時,對於ACK/NACK與RI的情況,用於RM編碼程序的編碼速率標準為1/3。因此,正被分配至ACK/NACK或RI的資源單元數量的最小值Q 'min ,可由下列方程式8至方程式10來決定。Meanwhile, for the case of ACK/NACK and RI, the coding rate standard for the RM encoding procedure is 1/3. Therefore, the minimum value Q ' min of the number of resource units being allocated to ACK/NACK or RI can be determined by Equation 8 to Equation 10 below.

[方程式8][Equation 8]

[方程式9][Equation 9]

[方程式10][Equation 10]

下列表4至表7各別對應至藉由使用上述方程式7至方程式10,計算正被分配至ACK/NACK或RI的資源單元的數量之最小值Q 'min 的範例。The following Tables 4 to 7 respectively correspond to an example of calculating the minimum value Q ' min of the number of resource units being allocated to ACK/NACK or RI by using Equations 7 to 10 above.

[表4][Table 4]

[表5][table 5]

[表6][Table 6]

[表7][Table 7]

2) 此外,在本發明之第一具體實施例中,在由RM編碼編碼ACK/NACK或RI之後,在ACK/NACK或RI由速率匹配程序穿孔時,可考慮由預定並特定的階數來施行穿孔。更具體而言,在ACK/NACK或RI被分配至給定數量的資源單元時,分配階數可由將ACK/NACK或RI分組為1-位元、2-位元或特定數量位元單位,來決定分配階數,以使ACK/NACK或RI可由經決定的階數被分配至資源單元。例如,若輸出資料具有對應至c 0 ,c 1 ,…,c 31 的經編碼ACK/NACK或RI,則輸出資料可經由排序函數π(i ),i =0,1,…,31來重對準輸出資料,排序函數係對應至預定準則,以在施行穿孔程序時可呈現最佳的效能。隨後,根據排序階數,資源單元可被循序分配,或者穿孔程序可被循序施行,藉由索引階數或藉由反索引階數。更具體而言,在八個經編碼輸出資料被分配至資源單元時,經定位的資料成為c π(0) ,c π(1) ,…,c π(7) ,而非c 0 ,c 1 ,…,c 72) Further, in the first specific embodiment of the present invention, after ACK/NACK or RI is encoded by the RM code, when the ACK/NACK or RI is punctured by the rate matching procedure, it may be considered by a predetermined and specific order. Perform perforation. More specifically, when an ACK/NACK or RI is allocated to a given number of resource elements, the allocation order may be grouped by ACK/NACK or RI into 1-bit, 2-bit or a specific number of bit units. The allocation order is determined such that the ACK/NACK or RI can be assigned to the resource unit by the determined order. For example, if the output data has an encoded ACK/NACK or RI corresponding to c 0 , c 1 , . . . , c 31 , the output data can be weighted by the ordering function π( i ), i =0, 1, . . . , 31 Aligning the output data, the ranking function corresponds to a predetermined criterion to exhibit the best performance when performing the puncturing procedure. Then, depending on the order of the order, the resource units can be allocated sequentially, or the puncturing program can be executed sequentially, by indexing the order or by indexing the order. More specifically, when eight encoded output data are allocated to resource elements, the located data becomes c π(0) , c π(1) ,..., c π(7) instead of c 0 , c 1 ,..., c 7 .

3) 再者,根據本發明第一具體實施例,可根據各別於ACK/NACK與RI的資訊資料大小,使用不同的值。在穿孔經編碼輸出資料時(亦即使用RM編碼方案產生的字碼),穿孔程序的影響可根據資訊資料的位元大小而變化。因此,根據影響由穿孔程序所導致的字碼最小距離的影響程度,可配置不同的值。例如,在穿孔字碼時,對資訊資料最快的位元大小設定相對大的值,以使其最小距離值等於零。3) Furthermore, according to the first embodiment of the present invention, different information types may be used according to the size of the information materials different from ACK/NACK and RI. value. When puncturing the encoded output data (i.e., using the RM encoding scheme generated word), the effect of the puncturing procedure may vary depending on the bit size of the information material. Therefore, depending on the degree of influence affecting the minimum distance of the word caused by the perforation procedure, different configurations can be configured. value. For example, when punching a word, the fastest bit size of the information material is set relatively large. Value so that its minimum distance value is equal to zero.

雖然上述程序1)至3)描述了設定正被分配至UCI的資源單元數量之最小值的程序,為了達成相同目的,亦可設定在進行速率匹配之後的經編碼輸出資料的位元大小最小值。更具體而言,方程式5所示之最小值可由資源單元數量被配置為輸出資料的位元大小最小值,如下列方程式11所示。Although the above procedures 1) to 3) describe a procedure for setting the minimum value of the number of resource units to be allocated to the UCI, in order to achieve the same purpose, the minimum bit size of the encoded output data after rate matching may be set. . More specifically, the minimum value shown in Equation 5 can be configured by the number of resource units as the minimum bit size of the output material, as shown in Equation 11 below.

[方程式11][Equation 11]

Q 'min =2O Q ' min =2 O

<第二具體實施例-在資訊資料大小等於或大於12位元時><Second embodiment - when the size of the information material is equal to or greater than 12 bits>

對於ACK/NACK與RI的資訊資料大小等於或大於12位元時,PUSCH將資訊資料分組成相同位元大小或不同位元大小,其對應至少兩個以上的資料組。且可藉由由使用(32,0)RM編碼方案(其使用於每一PUSCH中),對每一經分組的資訊資料群組施行通道編碼。When the size of the information data of ACK/NACK and RI is equal to or greater than 12 bits, the PUSCH groups the information materials into the same bit size or different bit sizes, which corresponds to at least two data sets. Channel coding can be performed for each group of grouped information data by using a (32, 0) RM coding scheme (which is used in each PUSCH).

更具體而言,當在多載波環境中使UCI(諸如RI或ACK/NACK)與資料多工時,UCI的資訊資料位元被分組成至少兩個以上的群組,且每一群組可被編碼成單一字碼。對此情況,在資訊資料位元大小的範圍於3位元與11位元之間時,若包含在每一群組內的資訊資料位元大小係於6位元與10位元之間,則可對每一群組應用(32,0)RM編碼方案,亦即,雙RM編碼方案。在下文中,首先將描述用於將資訊資料分組的方法,且隨後將描述用於計算用以分配經編碼資訊資料之資源單元的數量的方法,以及用於在應用雙(32,0)RM編碼方案時施行速率匹配(亦即,編碼鏈)的方法。其後,將描述根據本發明第一具體實施例之,用於在應用雙(32,0)RM編碼方案時計算可被分配給每一字碼之資源單位的最小數量的方法。More specifically, when UCI (such as RI or ACK/NACK) is multiplexed with data in a multi-carrier environment, UCI information material bits are grouped into at least two groups, and each group can be It is encoded into a single word. In this case, when the size of the information material bit is between 3 bits and 11 bits, if the size of the information data contained in each group is between 6 bits and 10 bits, Then, a (32, 0) RM coding scheme can be applied to each group, that is, a dual RM coding scheme. Hereinafter, a method for grouping information materials will first be described, and a method for calculating the number of resource units for allocating encoded information materials, and for applying dual (32, 0) RM encoding will be described later. A method of performing rate matching (ie, coding chain) at the time of the scheme. Hereinafter, a method for calculating the minimum number of resource units that can be allocated to each word code when applying the dual (32, 0) RM coding scheme according to the first embodiment of the present invention will be described.

1) 在施行雙RM編碼時的資訊資料分組方法1) Information data grouping method when performing double RM encoding

首先,將參考第18圖與第19圖,描述用於將具有12位元以上之大小的資訊資料分組以應用雙(32,0)RM編碼方案的方法。First, a method for grouping information materials having a size of 12 bits or more to apply a dual (32, 0) RM encoding scheme will be described with reference to FIGS. 18 and 19.

(1) 第18圖圖示說明根據本發明第二具體實施例之,用於將資訊資料分組以應用雙(32,0)RM編碼方案的方法。(1) Figure 18 illustrates a method for grouping information materials to apply a dual (32, 0) RM encoding scheme in accordance with a second embodiment of the present invention.

參考第18圖,所有(或整個)資訊資料可被循序分配為用於雙(32,0)RM編碼方案之每一編碼器的輸入資料。例如,在由兩個RM編碼器編碼12位元資訊資料d 0 ,d 1 ,d 2 ,…,d 11 時,正被輸入至第一RM編碼器的資訊資料可對應至6位元d 0 ,d 2 ,d 4 ,…,d 10 ,其對應至偶數資訊資料位元。而正被輸入至第二(32,0)RM編碼器的資訊資料可對應至6位元d 1 ,d 3 ,d 5 ,…,d 11 ,其對應至奇數資訊資料位元。Referring to Fig. 18, all (or the entire) information material can be sequentially allocated as input data for each encoder of the dual (32,0) RM encoding scheme. For example, when the 12-bit information material d 0 , d 1 , d 2 , . . . , d 11 is encoded by two RM encoders, the information material being input to the first RM encoder can correspond to 6 bits d 0 . , d 2 , d 4 ,..., d 10 , which correspond to even information data bits. The information material being input to the second (32, 0) RM encoder may correspond to 6 bits d 1 , d 3 , d 5 , ..., d 11 , which correspond to odd information data bits.

更具體而言,對於給定資訊資料對應至o 0 ,o 1 ,o 2 ,…,o Q -1 的情況,在RM編碼器的輸入資料b 0 ,b 1 ,b 2 ,…,b Q -1 之中,若b 0 ,b 1 ,b 2 ,…,被各別輸入至第一RM編碼器與第二RM編碼器,當i 為一偶數時,則b i /2 =o i 。而在i 為一奇數時,則More specifically, for a given information material corresponding to o 0 , o 1 , o 2 , ..., o Q -1 , the input data b 0 , b 1 , b 2 ,..., b Q at the RM encoder -1 , if b 0 , b 1 , b 2 ,..., versus Each is input to the first RM encoder and the second RM encoder. When i is an even number, then b i /2 = o i . And when i is an odd number, then .

(2)第19圖圖示說明根據本發明之第二具體實施例之,另一種用於將資訊資料分組以應用雙(32,0)RM編碼方案的方法。(2) FIG. 19 illustrates another method for grouping information materials to apply a dual (32, 0) RM encoding scheme in accordance with a second embodiment of the present invention.

參照第19圖,所有資訊資料的一半部分可被分配為正被輸入至第一RM編碼器的資訊資料,且所有資訊資料的另一半部分可被分配為正被輸入至第二RM編碼器的資訊資料。例如,在由兩個RM編碼器編碼12位元資訊資料d 0 ,d 1 ,d 2 ,...,d 11 時,資訊資料的6位元d 0 ,d 1 ,d 2 ,...,d 5 可被輸入至第一RM編碼器,而資訊資料的6位元d 6 ,d 7 ,d 8 ,...,d 11 可被輸入至第二RM編碼器。Referring to Fig. 19, half of all information materials can be assigned as information material being input to the first RM encoder, and the other half of all information materials can be assigned to be input to the second RM encoder. Information materials. For example, when the 12-bit information material d 0 , d 1 , d 2 , ..., d 11 is encoded by two RM encoders, the 6 bits of the information material d 0 , d 1 , d 2 ,... , d 5 can be input to the first RM encoder, and the 6-bit d 6 , d 7 , d 8 , ..., d 11 of the information material can be input to the second RM encoder.

同時,集合性地參照第18圖與第19圖,在所有資訊資料的位元大小O 對應至一奇數時,(O +1)/2位元可被分配為正被輸入至第一RM編碼器的資訊資料,而(O -1)/2位元可被分配為正被輸入至第二RM編碼器的資訊資料。或者,(O -1)/2位元可被分配為正被輸入至第一RM編碼器的資訊資料,而(O +1)/2位元可被分配為正被輸入至第二RM編碼器的資訊資料。Meanwhile, referring collectively to FIGS. 18 and 19, when the bit size O of all information materials corresponds to an odd number, ( O +1)/2 bits can be assigned to be input to the first RM code. The information of the device, and ( O -1)/2 bits can be assigned as the information material being input to the second RM encoder. Alternatively, ( O -1)/2 bits may be allocated as information material being input to the first RM encoder, and ( O +1)/2 bits may be allocated as being input to the second RM code Information.

(3)在部件載波之中,對應至主要部件載波(主要CCs)的資訊資料可被配置為一個群組,而對應至其他部件載波(CCs)的資訊資料可被配置為另一個群組。在此,主要部件載波可對應至具有最高有效索引或最低有效索引的部件載波,或可對應至預定索引。或者,亦可將具有最部件載波,或可對應至預定索引。或者,亦可將具有最有利通道狀態或具有最不有利通道狀態的部件載波配置為主要部件載波。再者,可將具有最大位元大小或最小位元大小之資訊資料的部件載波配置為主要部件載波。且,對於編碼速率與調變階數方面,可由使用相同的方法來配置主要部件載波。(3) Among the component carriers, the information material corresponding to the main component carriers (primary CCs) can be configured as one group, and the information material corresponding to other component carriers (CCs) can be configured as another group. Here, the primary component carrier may correspond to a component carrier having the most significant index or the least significant index, or may correspond to a predetermined index. Alternatively, it may have the most component carrier or may correspond to a predetermined index. Alternatively, the component carrier having the most favorable channel state or having the least favorable channel state may also be configured as the primary component carrier. Furthermore, the component carrier having the information material of the largest or smallest bit size can be configured as the main component carrier. Also, for the coding rate and modulation order, the main component carrier can be configured using the same method.

2) 應用雙RM編碼方案時的編碼鏈2) Coding chain when applying dual RM coding scheme

(1) 現將於下文界定用於計算在應用雙RM編碼方案時,用於分配經編碼資訊資料之資源單元數量的方法。在計算資源單元數量時,本發明提出一種由使用方程式1與方程式2來計算資源單元數量的方法,其係根據所有資訊資料的位元大小,而非根據被分成複數個群組的資訊資料的位元大小。更具體而言,在由使用雙RM編碼方案來編碼ACK/NACK與RI時,正被分配至每一RM字碼的資源單元的數量係相等地由資源單元的數量分配,其係從所有資訊單元的給定位元大小O 計算出。(1) A method for calculating the number of resource elements for allocating encoded information when applying a dual RM coding scheme will now be defined below. In calculating the number of resource units, the present invention proposes a method for calculating the number of resource units by using Equation 1 and Equation 2, which is based on the bit size of all information materials, and not based on information materials that are divided into a plurality of groups. Bit size. More specifically, when ACK/NACK and RI are encoded by using a dual RM coding scheme, the number of resource elements being allocated to each RM word code is equally allocated by the number of resource elements from all information units. O cell size to the location is calculated.

因此,在從所有資訊資料的的給定位元大小O 計算出的資源單元數量Q '係對應於一偶數時,可分配Q '/2個資源單元給每一字碼,係根據雙RM編碼方案以產生每一字碼。Therefore, when the number of resource units Q ' calculated from the location element size O of all the information materials corresponds to an even number, Q '/2 resource units can be allocated to each word code according to the dual RM coding scheme. Generate each word.

此外,在從所有資訊資料的的給定位元大小O 計算出的資源單元數量Q '係對應於一奇數時,可分配(Q '+1)/2個資源單元給第一個字碼,第一個字碼係根據雙RM編碼方案以產生,並可分配(Q '-1)/2個資源單元給第二個字碼,第二個字碼亦根據雙RM編碼方案以產生。或者,可分配(Q '-1)/2個資源單元給第一個字碼,並可分配(Q '+1)/2個資源單元給第二個字碼。In addition, when the number of resource units Q ' calculated from the location element size O of all the information materials corresponds to an odd number, ( Q '+1)/2 resource units can be allocated to the first word, first The word code is generated according to the dual RM coding scheme, and ( Q '-1)/2 resource units are allocated to the second word code, and the second word code is also generated according to the dual RM coding scheme. Alternatively, ( Q '-1)/2 resource elements may be allocated to the first word, and ( Q '+1)/2 resource elements may be allocated to the second word.

(2) 然而,在使用方程式4的速率匹配步驟中,可對每一字碼各別施行速率匹配(亦即,穿孔),每一字碼係根據雙RM編碼方案以產生,同時與資源單元的數量與調變階數匹配,其中資源單元係如在2)中描述者般被分配至每一字碼。(2) However, in the rate matching step using Equation 4, rate matching (i.e., puncturing) may be performed for each word code, and each word code is generated according to the dual RM coding scheme, and the number of resource units simultaneously Matching the modulation order, where the resource elements are assigned to each word as described in 2).

(3) 第20圖圖示說明根據本發明第二具體實施例之用於雙RM編碼的編碼鏈。(3) Figure 20 illustrates an encoding chain for dual RM encoding in accordance with a second embodiment of the present invention.

參考第20圖,根據本發明之用於雙RM編碼的編碼鏈,可被概括視為用於施行雙RM編碼方案的方法,其係於本發明中提出,其中單資源單元計算係與各別速率匹配程序結合。Referring to Fig. 20, a coding chain for dual RM coding according to the present invention can be generally regarded as a method for implementing a dual RM coding scheme, which is proposed in the present invention, wherein a single resource unit calculation system and each Rate matching program combination.

更具體而言,對於ACK/NACK與RI的資訊資料大小大於或等於12位元的情況,可應用本發明之雙(32,0)RM編碼方案,且如1)所述,所有資訊資料可被分組並分成第一個資訊資料與第二個資訊資料。More specifically, for the case where the information size of ACK/NACK and RI is greater than or equal to 12 bits, the dual (32, 0) RM coding scheme of the present invention can be applied, and as described in 1), all information materials can be They are grouped and divided into the first information and the second information.

隨後,如(1)或2)所述,在計算欲分配之資源單元數量時,可根據所有資訊資料的位元大小來計算對應的資源單元數量,而非根據正被分成複數個群組之資訊資料的位元大小。隨後,計算出的資源單元數量被分配至每一RM編碼器。隨後,可根據給定資源大小,對輸出自每一編碼器的編碼施行速率匹配。其後,可串聯經處理的資料。再者,雖然可對經串聯資料應用交插器(interleaver),在一些情況中交插器可被省略。Then, as described in (1) or 2), when calculating the number of resource units to be allocated, the number of corresponding resource units can be calculated according to the bit size of all information materials, instead of being divided into a plurality of groups according to The bit size of the information material. Subsequently, the calculated number of resource units is allocated to each RM encoder. The rate output from each encoder can then be rate matched according to the given resource size. Thereafter, the processed data can be serially connected. Furthermore, although an interleaver can be applied to the serial data, the interleaver can be omitted in some cases.

3) 用於在應用雙RM編碼方案時決定資源單元最小數量的方法3) Method for determining the minimum number of resource elements when applying a dual RM coding scheme

同時,如本發明之第一具體實施例所描述,在雙RM編碼方案中,在正被分配至UCI(亦即,ACK/NACK或RI)的資源單元數量中亦需配置一最小值。因此,在根據本發明之雙RM編碼方案中,可由加上對應至每一經分組資訊資料位元的資源單元的最小數量,來配置正被分配至ACK/NACK與RI的資源單元數量的最小值。Meanwhile, as described in the first embodiment of the present invention, in the dual RM coding scheme, a minimum value is also required to be allocated in the number of resource units being allocated to UCI (ie, ACK/NACK or RI). Therefore, in the dual RM coding scheme according to the present invention, the minimum number of resource elements being allocated to ACK/NACK and RI can be configured by adding the minimum number of resource elements corresponding to each packetized information material bit. .

更具體而言,若用於計算資源單元最小數量的方程式(亦即,方程式5至方程式7)係針對O 個位元的資訊資料(為了簡單起見稱為f (O )),則用於計算在雙RM編碼程序期間,欲分配至每一字碼的資源單元的最小數量的方程式可對應至f (O /2)。且被分配至所有(或整個)ACK/NACK與RI之資源單元數量可對應至f (O /2)+f (O /2)。作為簡單的範例,被分配至12位元大小資訊資料的資源單元最小數量對應至f (6)+f (6),而非f (12)。More specifically, if the equation for calculating the minimum number of resource elements (ie, Equations 5 to 7) is for the information of 0 bits (referred to as f ( O ) for simplicity), Calculating the minimum number of equations of resource elements to be assigned to each word during the dual RM encoding procedure may correspond to f ( O /2). And the number of resource units allocated to all (or the entire) ACK/NACK and RI may correspond to f ( O /2)+ f ( O /2). As a simple example, the minimum number of resource elements assigned to a 12-bit size information material corresponds to f (6) + f (6) instead of f (12).

同時,對於資訊資料大小對應至一奇數的情況,用於計算資源單元最小數量的每一資訊資料群組的大小,對於第一個字碼可由(O +1)/2位元分配,且對於第二個字碼可由(O -1)/2位元分配。或者,資源單元最小數量對於第一個字碼可由(O +1)/2位元分配,且對於第二個字碼可由(O -1)/2位元分配。對此情況,正被分配至所有ACK/NACK與RI的資源單元最小數量對應至f ((O +1)/2)+f ((O -1)/2)。例如,對於13位元資訊資料,所計算之資源單元最小數量對應至f (7)+f (6),而非f (13)。Meanwhile, for the case where the size of the information material corresponds to an odd number, the size of each information data group used for calculating the minimum number of resource units can be allocated by ( O +1)/2 bits for the first word code, and for the first Two words can be assigned by ( O -1)/2 bits. Alternatively, the minimum number of resource elements may be allocated by ( O +1)/2 bits for the first word and by ( O -1)/2 bits for the second word. In this case, the minimum number of resource elements being allocated to all ACK/NACK and RI corresponds to f (( O +1)/2) + f (( O -1)/2). For example, for a 13-bit information, the minimum number of resource units calculated corresponds to f (7) + f (6) instead of f (13).

因此,方程式7可被改變為下列方程式12與方程式13。Therefore, Equation 7 can be changed to Equation 12 and Equation 13 below.

[方程式12][Equation 12]

(其中O 為一偶數) (where O is an even number)

[方程式13][Equation 13]

(其中O 為一奇數) (where O is an odd number)

方程式12與方程式13的組合可表示為下列方程式14。The combination of Equation 12 and Equation 13 can be expressed as Equation 14 below.

[方程式14][Equation 14]

若所有資訊資料被分成N個群組以使RM編碼方案可被各別應用,且若在每一RM編碼程序期間正被輸入之資訊資料大小被稱為O i ,則正被分配至ACK/NACK與RI的資源單元最小數量對應至If all information materials are divided into N groups so that the RM encoding scheme can be applied separately, and if the size of the information material being input during each RM encoding process is called O i , it is being assigned to ACK/ NACK corresponds to the minimum number of resource units of the RI to .

同時,在傳送區塊的調變階數之中,其中係施行了PUSCH傳送,Q m 可對應至較低的調變階數。更具體而言,在第一個傳送區塊(TB)的調變階數為QPSK時,且在第二個TB的調變階數為16QAM時,Q m 係等於2,其對應至對於在兩個傳送區塊之調變階數中較低的調變階數。或者,Q m 可對應至傳送區塊調變階數值的平均值,其中係施行了PUSCH傳送。更具體而言,在第一個傳送區塊(TB)的調變階數為QPSK時,且在第二個TB的調變階數為16QAM時,Q m 係等於3,其對應至兩個傳送區塊調變階數的平均值。再者,在傳送區塊的調變階數之中,其中係施行了PUSCH傳送,Q m 可對應至較高的調變階數。更具體而言,在第一個傳送區塊(TB)的調變階數為QPSK時,且在第二個TB的調變階數為16QAM時,Q m 係等於4,其對應至對於在兩個傳送區塊之調變階數中較高的調變階數的16QAM值。At the same time, among the modulation orders of the transmission block, in which the PUSCH transmission is performed, Q m can correspond to a lower modulation order. More specifically, when the modulation order of the first transfer block (TB) is QPSK, and when the modulation order of the second TB is 16QAM, Q m is equal to 2, which corresponds to The lower modulation order of the modulation order of the two transfer blocks. Alternatively, Q m may correspond to the average value of transport blocks modulation order, wherein the PUSCH transmission line purposes. More specifically, when the modulation order of the first transfer block (TB) is QPSK, and when the modulation order of the second TB is 16QAM, the Q m system is equal to 3, which corresponds to two The average of the modulation block modulation order. Furthermore, among the modulation orders of the transmission block, in which PUSCH transmission is performed, Q m can correspond to a higher modulation order. More specifically, when the modulation order of the first transfer block (TB) is QPSK, and when the modulation order of the second TB is 16QAM, the Q m system is equal to 4, which corresponds to The 16QAM value of the higher modulation order of the modulation order of the two transfer blocks.

<第三具體實施例-用於映射經編碼資訊至資源單元的方法><Third Embodiment - Method for Mapping Encoded Information to Resource Units>

在根據本發明第一具體實施例與第二具體實施例映射經編碼UCI至PUSCH時,每一經編碼字碼可被映射至一個資源單元,或藉由一虛擬載波階數被映射至特定數量的資源單元。When the encoded UCI to PUSCH is mapped according to the first embodiment and the second embodiment of the present invention, each coded code may be mapped to one resource unit or mapped to a specific number of resources by a virtual carrier order. unit.

在施行循序映射時,經編碼字碼係以遞增索引方向從虛擬子載波的最低(最小)有效索引開始被映射。例如,在施行雙RM編碼時,第一個字碼可從最低有效索引之奇數個虛擬子載波開始被映射至每一奇數個虛擬子載波。且,第二個字碼可從最低有效索引之偶數個虛擬子載波開始被映射至每一偶數個虛擬子載波。When performing sequential mapping, the encoded word code is mapped from the lowest (minimum) effective index of the virtual subcarrier in an incremental index direction. For example, when performing dual RM encoding, the first word may be mapped to each odd number of virtual subcarriers starting from an odd number of virtual subcarriers of the least significant index. Moreover, the second word can be mapped to each even number of virtual subcarriers from an even number of virtual subcarriers of the least significant index.

此外,亦可由以時間為基礎的順序來施行映射方法。例如,在經分配的資源單元個別對應至第二個、第四個、第九個與第十一個符元時,第一個字碼可被映射至第二個與第九個符元,且第二個字碼可被映射至第四個與第十一個符元。或者,第一個字碼可被映射至對應至兩個符元的資源單元,且第二個字碼可被映設至對應至剩餘符元的資源單元。In addition, the mapping method can also be performed in a time-based order. For example, when the allocated resource units individually correspond to the second, fourth, ninth, and eleventh symbols, the first word can be mapped to the second and ninth symbols, and The second word can be mapped to the fourth and eleventh symbols. Alternatively, the first word code can be mapped to a resource unit corresponding to two symbols, and the second word code can be mapped to a resource unit corresponding to the remaining symbol.

第21圖圖示說明圖示根據本發明一具體實施例之通訊設備之結構的方塊圖。Figure 21 is a block diagram showing the structure of a communication device in accordance with an embodiment of the present invention.

參考第21圖,通訊設備2100包含處理器2110、記憶體2120、RF模組2130、顯示模組2140與使用者介面模組2150。Referring to FIG. 21, the communication device 2100 includes a processor 2110, a memory 2120, an RF module 2130, a display module 2140, and a user interface module 2150.

通訊設備2100為示例性說明,其被提供以簡化本發明描述。此外,通訊設備2100可進一步包含必要的模組。此外,在通訊設備2100中一些模組可被分成更小分段的模組。參考第21圖,範例處理器2110經配置以根據本發明之具體實施例施行作業。更具體而言,對於處理器2110之詳細作業,可參考第1圖至第20圖所圖示之對本發明的描述。Communication device 2100 is an exemplary illustration that is provided to simplify the description of the present invention. In addition, the communication device 2100 can further include the necessary modules. In addition, some of the modules in the communication device 2100 can be divided into smaller segmented modules. Referring to Figure 21, the example processor 2110 is configured to perform operations in accordance with a particular embodiment of the present invention. More specifically, for the detailed operation of the processor 2110, the description of the present invention as illustrated in FIGS. 1 to 20 can be referred to.

記憶體2120係連接至處理器2110,並儲存作業系統、程式碼、資料等等。RF模組2130係連接至處理器2110,並施行用於轉換基頻訊號至無線電(或無線)訊號,或轉換無線電訊號至基頻訊號的功能。為此,RF模組2130施行類比轉換、放大、濾波、以及頻率上行鏈路轉換或其反向程序。顯示模組2140係連接至處理器2110,並顯示多樣的資訊。顯示模組2140將不僅限於在此所給定的範例。換言之,已知的一般單元,諸如液晶顯示器(LCD)、發光二極體(LED)、有機發光二極體(OLED),亦可作為顯示模組2140。使用者介面模組2150係連接至處理器2110,且使用者介面模組2150可由已知的一般使用者介面來配置,諸如鍵盤、觸控螢幕等等。The memory 2120 is coupled to the processor 2110 and stores the operating system, code, data, and the like. The RF module 2130 is connected to the processor 2110 and performs a function for converting a baseband signal to a radio (or wireless) signal or converting a radio signal to a baseband signal. To this end, the RF module 2130 performs analog conversion, amplification, filtering, and frequency uplink conversion or its reverse procedure. Display module 2140 is coupled to processor 2110 and displays a variety of information. Display module 2140 will not be limited to the examples given herein. In other words, known general units, such as a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED), can also be used as the display module 2140. The user interface module 2150 is coupled to the processor 2110, and the user interface module 2150 can be configured by a known general user interface, such as a keyboard, a touch screen, and the like.

上文所述之本發明具體實施例,對應至本發明的單元、特徵與特性的預定組合。再者,除非另外提及,本發明的特性可被視為本發明的選擇性特徵。在此,本發明的每一單元或特性,亦可無需與本發明的其他單元或特性結合即可操作或施行。再者,可由結合本發明的一些單元及(或)特性來理解本發明的具體實施例。此外,根據本發明的具體實施例所述之作業順序可被改變。再者,本發明的任一特定具體實施例的部分配置或特性,亦可包含在本發明的另一具體實施例中(或與本發明的另一具體實施例共享),或者,本發明的任一特定具體實施例的部分配置或特性,可代替在本發明的另一具體實施例中相對的配置或特性。再者,顯然的是,未在本發明申請專利範圍的範圍內明顯引用的請求項,可被結合以配置本發明的另一具體實施例,或可在本發明專利申請案提出申請後,對本發明的修正期間增加新的請求項。The specific embodiments of the invention described above correspond to a predetermined combination of units, features and characteristics of the invention. Further, the characteristics of the present invention can be considered as optional features of the present invention unless otherwise mentioned. Here, each unit or characteristic of the invention may be operated or carried out without being combined with other units or features of the invention. Further, specific embodiments of the invention may be understood by incorporating some elements and/or features of the invention. Moreover, the order of operations described in accordance with embodiments of the present invention can be changed. Furthermore, some of the configurations or features of any particular embodiment of the invention may also be included in another embodiment of the invention (or shared with another embodiment of the invention), or Partial configurations or characteristics of any particular embodiment may be substituted for the relative configuration or characteristics in another embodiment of the invention. Furthermore, it is apparent that the claims that are not explicitly recited within the scope of the claims of the present invention may be combined to configure another embodiment of the present invention, or may be applied after the application of the present patent application. A new request item is added during the revision of the invention.

在本發明說明書中,已藉由主要聚焦在基地台與終端(或使用者設備)之間的資料傳送與接收關係,來描述本發明的具體實施例。有時候,在本發明說明書中描述為由基地台施行的本發明特定作業,亦可由基地台的上層節點施行。更具體而言,在由多個網路節點(包含基地台)所組成的網路中,顯然的是,為了與終端通訊而施行的多樣作業,可由基地台或除了基地台以外的B網路節點來施行。在此,用詞「基地台(BS)」可由其他用詞替換,諸如固定式基地台、B節點(Node B)、演進型B節點(eNode B;eNB)、存取點(Access Point;AP)等等。In the present specification, a specific embodiment of the present invention has been described by a data transmission and reception relationship mainly between a base station and a terminal (or user equipment). Occasionally, the specific operation of the present invention described in the specification of the present invention as being performed by a base station may also be performed by an upper node of the base station. More specifically, in a network composed of a plurality of network nodes (including base stations), it is obvious that various operations performed in order to communicate with the terminal can be performed by the base station or the B network other than the base station. Node to implement. Here, the term "base station (BS)" may be replaced by other terms, such as a fixed base station, a Node B, an evolved Node B (eNode B; eNB), an access point (Access Point; AP). )and many more.

可使用各種方法以實施上述的本發明具體實施例。例如,本發明的具體實施例可被實施為硬體、韌體或軟體型式、或為硬體、韌體及(或)軟體之組合的型式。Various methods can be used to implement the specific embodiments of the invention described above. For example, embodiments of the invention may be implemented as a hard, tough or soft type, or as a combination of a hard body, a tough body, and/or a soft body.

對於將本發明的具體實施例實施為硬體型式的情況,可使用至少一下列者來實施根據本發明具體實施例的方法:特定應用積體電路(Application Specific Integrated Circuits;ASICs)、數位訊號處理器(Digital Signal Processors;DSPs)、數位訊號處理裝置(Digital Signal Processing Devices;DSPDs)、可程式化邏輯裝置(Programmable Logic Devices;PLDs)、可程式化閘陣積體電路(Field Programmable Gate Arrays;FPGAs)、處理器、控制器、微控制器、微處理器等等。In the case where the specific embodiment of the present invention is implemented as a hardware type, at least one of the following may be used to implement a method according to an embodiment of the present invention: Application Specific Integrated Circuits (ASICs), digital signal processing (Digital Signal Processors; DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gate Arrays (FPGAs) ), processors, controllers, microcontrollers, microprocessors, and more.

對於將本發明的具體實施例實施為韌體或軟體型式的情況,根據本發明具體實施例的方法可被實施為以下型式:模組、程序或施行上述功能或作業的函式。軟體碼可被儲存於記憶體單元內,且由處理器驅動。在此,記憶體單元可定位於處理器內部或外部,且記憶體單元可由使用已揭露的廣泛方法,來傳送(接收)資料至(自)處理器。In the case where a specific embodiment of the present invention is implemented as a firmware or a soft type, the method according to an embodiment of the present invention can be implemented as a module, a program, or a function for performing the above functions or operations. The software code can be stored in the memory unit and driven by the processor. Here, the memory unit can be located inside or outside the processor, and the memory unit can transmit (receive) data to the (self) processor using a wide range of methods that have been disclosed.

如上述,根據本發明的用於在無線通訊系統中傳送控制資訊的方法及其裝置,係有利於:在無線通訊系統中,傳送端可有效地根據本發明將控制資訊編碼。此外,根據本發明的用於在無線通訊系統中傳送控制資訊的方法及其裝置,可應用至無線通訊系統。最特定地,本發明可應用至使用於蜂巢式系統(cellular system)的無線行動通訊設備。As described above, the method and apparatus for transmitting control information in a wireless communication system in accordance with the present invention facilitates the transmission of control information in accordance with the present invention in a wireless communication system. Further, a method and apparatus for transmitting control information in a wireless communication system according to the present invention can be applied to a wireless communication system. Most specifically, the invention is applicable to wireless mobile communication devices for use in a cellular system.

本發明可被實現於另一實體配置(或形式),而不脫離本發明必要特徵的範圍與精神。因此對於所有態樣而言,本發明的實施方式意為被瞭解並解譯為不為限制的本發明的示例性具體實施例。必須根據對本發明附加申請專利範圍合理的解譯來決定本發明的範圍,且必須屬於附加申請專利範圍及其均等範圍內。The present invention can be implemented in another physical configuration (or form) without departing from the scope and spirit of the essential features of the invention. The present embodiments are, therefore, to be understood as illustrative of the embodiments The scope of the present invention must be determined by a reasonable interpretation of the scope of the appended claims, and must be within the scope of the appended claims and their equivalents.

因此,在本發明領域中具有通常知識者將可顯然得知,可對本發明進行各種修改與變化,而不脫離本發明的精神與範圍。因此,本發明意為包含屬於附加申請專利範圍及其均等範圍內之對此發明的修改與變化。Therefore, it will be apparent to those skilled in the art of the invention that various modifications and changes may be made without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and modifications

201...攪亂模組201. . . Scramble module

202...調變映射器202. . . Modulation mapper

203...轉換預編碼器203. . . Conversion precoder

204...資源單元映射器204. . . Resource unit mapper

205...SC-FDMA訊號產生器205. . . SC-FDMA signal generator

301...擾亂模組301. . . Disturbing module

302...調變映射器302. . . Modulation mapper

303...分層映射器303. . . Hierarchical mapper

304...預編碼模組304. . . Precoding module

305...資源單元映射器305. . . Resource unit mapper

306...OFDMA訊號產生器306. . . OFDMA signal generator

401...序列至平行轉換器401. . . Sequence to parallel converter

402...N點IDFT模組402. . . N point IDFT module

403...子載波映射器403. . . Subcarrier mapper

404...M點IDFT模組404. . . M point IDFT module

405...平行至序列轉換器405. . . Parallel to sequence converter

406...循環字首加入模組406. . . Cycle prefix into the module

2100...通訊設備2100. . . Communication equipment

2110...處理器2110. . . processor

2120...記憶體2120. . . Memory

2130...RF模組2130. . . RF module

2140...顯示模組2140. . . Display module

2150...使用者介面模組2150. . . User interface module

在此包含附加圖式,附加圖式提供對本發明更進一步的瞭解,且併入說明書以作為本申請案的一部分,附加圖式圖示說明本發明的具體實施例,並與發明說明一同解釋本發明的原則。在附加圖式中:The accompanying drawings are included to provide a further understanding of the invention Principles of invention. In the additional schema:

第1圖圖示說明用於第三代合作夥伴計畫(3rd Generation Partnership;3GPP)長期演進技術(Long Term Evolution;LTE)系統的實體通道,3GPP LTE系統為一種行動通訊系統以及使用此系統的一般訊號傳送方法的範例;Figure 1 illustrates a Third Generation Partnership Project (3 rd Generation Partnership; 3GPP) Long Term Evolution (Long Term Evolution; LTE) physical channel system, 3GPP LTE system as a mobile communication system and the use of this system An example of a general signal transmission method;

第2圖圖示說明由使用者設備施行以傳送上行鏈路訊號的訊號處理程序;Figure 2 illustrates a signal processing procedure performed by the user equipment to transmit an uplink signal;

第3圖圖示說明由基地台施行以傳送下行鏈路訊號的訊號處理程序;Figure 3 illustrates a signal processing procedure performed by the base station to transmit downlink signals;

第4圖圖示說明在行動通訊系統中用於傳送上行鏈路訊號的SC-FDMA方案,與用於傳送下行鏈路訊號的OFDMA方案;Figure 4 illustrates an SC-FDMA scheme for transmitting uplink signals in a mobile communication system, and an OFDMA scheme for transmitting downlink signals;

第5圖圖示說明用於滿足在頻域中之單載波特徵的時域訊號映射方法;Figure 5 illustrates a time domain signal mapping method for satisfying single carrier characteristics in the frequency domain;

第6圖圖示說明根據本發明之一具體實施例之訊號處理程序,其中DFT程序輸出取樣在叢集式SC-FDMA中被映射至單載波;Figure 6 illustrates a signal processing procedure in accordance with an embodiment of the present invention, wherein DFT program output samples are mapped to a single carrier in a clustered SC-FDMA;

第7圖與第8圖各別圖示說明根據本發明之一具體實施例之訊號處理程序,其中DFT程序輸出取樣在叢集式SC-FDMA中被映射至多載波;Figures 7 and 8 each illustrate a signal processing procedure in accordance with an embodiment of the present invention, wherein the DFT program output samples are mapped to multiple carriers in a clustered SC-FDMA;

第9圖圖示說明根據本發明之一具體實施例的分段SC-FDMA系統中的訊號處理程序;Figure 9 illustrates a signal processing procedure in a segmented SC-FDMA system in accordance with an embodiment of the present invention;

第10圖圖示說明用於經由上行鏈路傳送參考訊號(此後稱為RS)的訊號處理程序;Figure 10 illustrates a signal processing procedure for transmitting a reference signal (hereinafter referred to as RS) via an uplink;

第11圖圖示說明對於正常循環字首(CP)的情況,用於傳送RS的子訊框結構;Figure 11 illustrates a sub-frame structure for transmitting RS for the case of a normal cyclic prefix (CP);

第12圖圖示說明對於延伸循環字首(CP)的情況,用於傳送RS的子訊框結構;Figure 12 illustrates a sub-frame structure for transmitting an RS for the case of extending a cyclic prefix (CP);

第13圖圖示說明圖示對於上行鏈路共享頻道之傳送通道的處理程序的方塊圖;Figure 13 illustrates a block diagram illustrating a processing procedure for a transmission channel of an uplink shared channel;

第14圖圖示說明用於上行鏈路資料與控制通道的實體資源映射方法;Figure 14 illustrates an entity resource mapping method for uplink data and control channels;

第15圖圖示說明圖示用於在上行鏈路共享通道內有效率地使資料與控制通道多工之方法的流程圖;Figure 15 illustrates a flow chart illustrating a method for efficiently multiplexing data and control channels within an uplink shared channel;

第16圖圖示說明圖示用於產生資料與控制通道之傳送訊號之方法的方塊圖;Figure 16 is a block diagram illustrating a method for generating a transmission signal for data and control channels;

第17圖圖示說明字碼至分層映射方法;Figure 17 illustrates a method of character code to hierarchical mapping;

第18圖圖示說明根據本發明第二具體實施例之,用於將資訊資料分組以應用雙RM編碼方案的方法;Figure 18 illustrates a method for grouping information materials to apply a dual RM encoding scheme in accordance with a second embodiment of the present invention;

第19圖圖示說明根據本發明之第二具體實施例之,另一種用於將資訊資料分組以應用雙RM編碼方案的方法;Figure 19 illustrates another method for grouping information materials to apply a dual RM encoding scheme in accordance with a second embodiment of the present invention;

第20圖圖示說明根據本發明第二具體實施例之用於雙RM編碼的編碼鏈;Figure 20 illustrates an encoding chain for dual RM encoding in accordance with a second embodiment of the present invention;

第21圖圖示說明圖示根據本發明一具體實施例之通訊設備之結構的方塊圖。Figure 21 is a block diagram showing the structure of a communication device in accordance with an embodiment of the present invention.

Claims (14)

一種藉由使用一李得米勒(Reed-Muller;RM)編碼方案以在一無線通訊系統中傳送資訊資料的方法,該方法包含以下步驟:基於該資訊資料的一位元大小O ,配置資源單元之一數量Q ',以用於傳送該資訊資料;當該資訊資料的一位元大小O 係大於或等於一預定數量時,則將該資訊資料分割成第一資訊資料與第二資訊資料;藉由應用該RM編碼方案,分別地編碼該第一資訊資料與該第二資訊資料之每一者;將經配置的該資源單元之數量Q '平均分割成用於該第一資訊資料的資源單元之一第一數量Q 1 ',及用於該第二資訊資料的資源單元之一第二數量Q 2 ';行使速率匹配,以使該經編碼的第一資訊資料之一大小係對應至該資源單元之第一數量Q 1 ';行使速率匹配,以使該經編碼的第二資訊資料之一大小係對應至該資源單元之第二數量Q 2 ';串聯(concatenating)該經速率匹配的第一資訊資料與該經速率匹配的第二資訊資料;以及藉由使用該資源單元之數量Q ',傳送該經串聯的第一資訊資料及第二資訊資料。A method for transmitting information materials in a wireless communication system by using a Reed-Muller (RM) encoding scheme, the method comprising the steps of: configuring resources based on a one-dimensional size O of the information material a quantity Q ' of the unit for transmitting the information material; when the one-dimensional size O of the information material is greater than or equal to a predetermined quantity, the information material is divided into the first information material and the second information material And respectively encoding each of the first information material and the second information data by applying the RM coding scheme; dividing the configured quantity Q ′ of the resource units into an average for the first information material a first quantity Q 1 ' of the resource unit and a second quantity Q 2 ' of the resource unit for the second information material; the rate matching is performed such that one of the encoded first information materials corresponds to a size a first quantity Q 1 ' to the resource unit; the rate matching is performed such that one of the encoded second information materials corresponds to a second quantity Q 2 ' of the resource unit; concatenating the rate match The first information material is matched with the rate-matched second information material; and the first information material and the second information material connected in series are transmitted by using the quantity Q ′ of the resource unit. 如申請專利範圍第1項所述之方法,其中該第一資訊資 料的一大小O 1 對應至位元,且 其中該第二資訊資料的一大小O 2 對應至位 元。The method of claim 1, wherein a size O 1 of the first information material corresponds to a bit, and wherein a size O 2 of the second information material corresponds to Bit. 如申請專利範圍第1項所述之方法,其中該預定數量對應至12位元,且其中該經編碼第一資訊資料與該經編碼第二資訊資料的每一位元大小對應至32位元。 The method of claim 1, wherein the predetermined number corresponds to 12 bits, and wherein each of the encoded first information material and the encoded second information material corresponds to a 32-bit size . 如申請專利範圍第1項所述之方法,其中該資訊資料對應至上行鏈路控制資訊(Uplink Control Information;UCI),且其中係經由一上行鏈路共享通道傳送該上行鏈路控制資訊。 The method of claim 1, wherein the information material corresponds to Uplink Control Information (UCI), and wherein the uplink control information is transmitted via an uplink shared channel. 如申請專利範圍第4項所述之方法,其中該上行鏈路控制資訊包含混合自動重傳請求(Hybrid Automatic Retransmission reQuest;HARQ)-肯定回應確認/否定回應確認(Acknowledgment/Negative Acknowledgment;ACK/NACK)資料或一等級指示(Rank Indicator;RI)。 The method of claim 4, wherein the uplink control information comprises a Hybrid Automatic Retransmission ReQuest (HARQ)-Affirmative Response Confirmation/Negative Acknowledgment (Acknowledgment/Negative Acknowledgment; ACK/NACK) ) Data or a level indicator (Rank Indicator; RI). 如申請專利範圍第1項所述之方法,其中在該資源單元之數量Q '為一偶數時,該資源單元之第一數量Q 1 '與該資 源單元之第二數量Q 2 '之每一者對應至The method of claim 1, wherein the first quantity Q 1 ' of the resource unit and the second quantity Q 2 ' of the resource unit are each when the quantity Q ′ of the resource unit is an even number Corresponding to . 如申請專利範圍第1項所述之方法,其中在該資源單元之數量Q '為一奇數時,該資源單元之第一數量Q 1 '對應至(Q '+1)/2,且該資源單元之第二數量Q 2 '對應至(Q '-1)/2。The method of claim 1, wherein when the quantity Q ′ of the resource unit is an odd number, the first quantity Q 1 ' of the resource unit corresponds to ( Q '+1)/2, and the resource The second quantity Q 2 ' of the unit corresponds to ( Q '-1)/2. 一種用於一無線通訊系統的傳送裝置,該傳送裝置包含:一處理器,該處理器經配置以配置以基於該資訊資料的一位元大小O ,配置資源單元之一數量Q ',以用於傳送該資訊資料,使得,當資訊資料的該位元大小O 係大於或等於一預定數量,則將該資訊資料分割成第一資訊資料與第二資訊資料,以藉由應用該RM編碼方案,分別地編碼該第一資訊資料與該第二資訊資料之每一者,以將經配置的該資源單元之數量Q '平均分割成用於該第一資訊資料的資源單元之一第一數量Q 1 ',及用於該第二資訊資料的資源單元之一第二數量Q 2 ',以行使速率匹配使得該經編碼的第一資訊資料之一大小係對應至該資源單元之第一數量Q 1 ',及行使速率匹配使得該經編碼的第二資訊資料之一大小係對應至該資源單元之第二數量Q 2 ',及串聯(concatenate)該經速率匹配的第一資訊資料與該經速率匹配的第二資訊資料;以及一傳送模組,該傳送模組經配置以藉由使用該資源單元之數量Q ',傳送該經串聯的第一資訊資料與第二資訊資料。A transmitting device for a wireless communication system, the transmitting device comprising: a processor configured to configure a quantity Q ' of a resource unit based on a one-dimensional size O of the information material for use Transmitting the information material such that when the bit size O of the information material is greater than or equal to a predetermined amount, the information material is segmented into the first information material and the second information material to apply the RM encoding scheme Separating each of the first information material and the second information material separately to divide the configured quantity Q ′ of the resource units into a first quantity of one of the resource units for the first information material Q 1 ', and a second quantity Q 2 ' of the resource unit for the second information material, the rate matching is performed such that the size of one of the encoded first information materials corresponds to the first quantity of the resource unit Q 1 ', and the exercise information rate matching such that the second one of the encoded data based size corresponding to the number of the second resource unit of Q 2' a first information resources, and series (CONCATENATE) the rate-matched The second information by the data matches the rate; and a transmitting module, the module is configured to transmit the number of resource units by using Q ', transmits the first information and the second information data by the data series. 如申請專利範圍第8項所述之傳送裝置,其中該第一資 訊資料的一大小O 1 對應至位元,且 其中該第二資訊資料的一大小O 2 對應至位元。The transmitting device of claim 8, wherein a size O 1 of the first information material corresponds to a bit, and wherein a size O 2 of the second information material corresponds to Bit. 如申請專利範圍第8項所述之傳送裝置,其中該預定數量對應至12位元,且其中該經編碼的第一資訊資料與該經編碼的第二資訊資料的每一位元大小對應至32位元。 The transmitting device of claim 8, wherein the predetermined number corresponds to 12 bits, and wherein the encoded first information material and each bit size of the encoded second information material correspond to 32-bit. 如申請專利範圍第8項所述之傳送裝置,其中該資訊資料對應至上行鏈路控制資訊(Uplink Control Information;UCI),且其中係經由一上行鏈路共享通道傳送該上行鏈路控制資訊。 The transmitting device of claim 8, wherein the information material corresponds to Uplink Control Information (UCI), and wherein the uplink control information is transmitted via an uplink shared channel. 如申請專利範圍第11項所述之傳送裝置,其中該上行鏈路控制資訊包含混合自動重傳請求(Hybrid Automatic Retransmission reQuest;HARQ)-肯定回應確認/否定回應確認(Acknowledgment/Negative Acknowledgment;ACK/NACK)資料或一等級指示(Rank Indicator;RI)。 The transmitting device of claim 11, wherein the uplink control information comprises a Hybrid Automatic Retransmission reQuest (HARQ)-Affirmative Response Confirmation/Negative Acknowledgment (ACK/Acknowledgment/Negative Acknowledgment; ACK/ NACK) data or a level indicator (Rank Indicator; RI). 如申請專利範圍第8項所述之傳送裝置,其中在該資源單元之數量Q '為一偶數時,該資源單元之第一數量Q 1 ' 與該資源單元之第二數量Q 2 '的每一者對應至The transmitting device of claim 8, wherein the first quantity Q 1 ' of the resource unit and the second quantity Q 2 ' of the resource unit are each when the quantity Q ′ of the resource unit is an even number One corresponds to . 如申請專利範圍第8項所述之傳送裝置,其中在該資源單元之數量Q '為一奇數時,該資源單元之第一數量Q 1 '對應至(Q '+1)/2,且該資源單元之第二數量Q 2 '對應至(Q '-1)/2。The transmitting device of claim 8, wherein when the quantity Q ′ of the resource unit is an odd number, the first quantity Q 1 ' of the resource unit corresponds to ( Q '+1)/2, and the The second quantity Q 2 ' of the resource unit corresponds to ( Q '-1)/2.
TW100114924A 2010-08-20 2011-04-28 Method for transmitting control information in wireless communication system and apparatus therefor TWI485993B (en)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US37528810P 2010-08-20 2010-08-20
US37616410P 2010-08-23 2010-08-23
US37699610P 2010-08-25 2010-08-25
US38701110P 2010-09-28 2010-09-28
US39248610P 2010-10-13 2010-10-13
US40615310P 2010-10-24 2010-10-24
US40656210P 2010-10-25 2010-10-25
US40789110P 2010-10-28 2010-10-28
US40996010P 2010-11-04 2010-11-04
US41279210P 2010-11-12 2010-11-12
US41393410P 2010-11-15 2010-11-15
US41437710P 2010-11-16 2010-11-16
KR1020110027555A KR101846167B1 (en) 2010-08-20 2011-03-28 Method for transmitting control information in wireless communication system and apparatus therefor

Publications (2)

Publication Number Publication Date
TW201210206A TW201210206A (en) 2012-03-01
TWI485993B true TWI485993B (en) 2015-05-21

Family

ID=45839854

Family Applications (4)

Application Number Title Priority Date Filing Date
TW100114924A TWI485993B (en) 2010-08-20 2011-04-28 Method for transmitting control information in wireless communication system and apparatus therefor
TW100114919A TWI467981B (en) 2010-08-20 2011-04-28 Method for transmitting control information in wireless communication system and apparatus therefor
TW100114922A TWI487292B (en) 2010-08-20 2011-04-28 Method for transmitting control information in wireless communication system and apparatus therefor
TW100114918A TWI465047B (en) 2010-08-20 2011-04-28 Method for transmitting control information in wireless communication system and apparatus therefor

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW100114919A TWI467981B (en) 2010-08-20 2011-04-28 Method for transmitting control information in wireless communication system and apparatus therefor
TW100114922A TWI487292B (en) 2010-08-20 2011-04-28 Method for transmitting control information in wireless communication system and apparatus therefor
TW100114918A TWI465047B (en) 2010-08-20 2011-04-28 Method for transmitting control information in wireless communication system and apparatus therefor

Country Status (3)

Country Link
JP (4) JP5268201B2 (en)
KR (4) KR101846164B1 (en)
TW (4) TWI485993B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107835069B (en) * 2010-11-03 2021-06-18 三星电子株式会社 Method for encoding acknowledgement information bits by user equipment and user equipment
KR101368751B1 (en) 2012-02-22 2014-03-03 삼성메디슨 주식회사 Method for controlling image diagnosis apparatus using wi-fi direct network and mobile device, and method for operating of image diagnosis apparatus using wi-fi direct network and image diagnosis apparatus
JP6073856B2 (en) 2012-02-29 2017-02-01 株式会社ブリヂストン tire
CN104144798B (en) 2012-02-29 2017-03-08 株式会社普利司通 Tire
US9414367B2 (en) 2012-03-16 2016-08-09 Lg Electronics Inc. Method and apparatus for transmitting uplink control information
JPWO2014020798A1 (en) * 2012-07-31 2016-07-21 日本電気株式会社 Wireless communication apparatus, HARQ response transmission method and reception method
JP6995772B2 (en) 2016-03-30 2022-01-17 華為技術有限公司 Information processing methods, terminal devices, network devices and communication systems
EP3420765B1 (en) * 2016-03-31 2024-01-31 Mediatek Inc. Efficient operation for systems with large carrier bandwidth
US10716105B2 (en) 2017-02-14 2020-07-14 Lg Electronics Inc. Method for transmitting and receiving a physical downlink shared channel and a demodulation reference signal and apparatus therefor
WO2018194363A1 (en) 2017-04-18 2018-10-25 엘지전자 (주) Method for rate matching in wireless communication system and apparatus therefor
CN110754058B (en) * 2017-06-14 2023-05-05 交互数字专利控股公司 Method, apparatus for UCI transmission via uplink shared data channel
KR20210102745A (en) * 2020-02-12 2021-08-20 삼성전자주식회사 Apparatus and method for transmission and reception of data and control signals in communication systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080192705A1 (en) * 2005-04-18 2008-08-14 Misubishi Electric Corporation Sending Station, Receiving Station, and Radio Communication Method
US20080192847A1 (en) * 2007-02-08 2008-08-14 Motorola, Inc. Method and apparatus for downlink resource allocation in an orthogonal frequency division multiplexing communication system
US20090286482A1 (en) * 2008-05-15 2009-11-19 Qualcomm Incorporated Spatial interference mitigation schemes for wireless communication

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266727A (en) * 1989-04-07 1990-10-31 Toshiba Corp Digital radio communication equipment and error correction circuit used for the same
US5862182A (en) * 1996-07-30 1999-01-19 Lucent Technologies Inc. OFDM digital communications system using complementary codes
KR100421164B1 (en) * 2000-06-12 2004-03-04 삼성전자주식회사 Apparatus and method for encoding and decoding tfci in a mobile communication system
US6973611B2 (en) * 2001-04-17 2005-12-06 Texas Instruments Incorporated Interleaved coder and method
JP3713008B2 (en) * 2002-09-30 2005-11-02 長野計器株式会社 Method for manufacturing strain amount detection device
GB2401516A (en) * 2003-04-17 2004-11-10 Univ Southampton Peak-to-average power ratio reduction by subtracting shaped pulses from a baseband signal
US7418832B2 (en) * 2003-10-21 2008-09-02 William R Ferrono Portable mister for adjusting ambient temperature
US8477593B2 (en) * 2006-07-28 2013-07-02 Qualcomm Incorporated Method and apparatus for sending signaling for data transmission in a wireless communication system
JP4985652B2 (en) * 2006-11-01 2012-07-25 富士通株式会社 Wireless communication apparatus, wireless communication method, and wireless communication system
JP4740372B2 (en) * 2007-07-06 2011-08-03 シャープ株式会社 Mobile communication system, mobile station apparatus, base station apparatus, and communication method
US9130712B2 (en) * 2008-02-29 2015-09-08 Google Technology Holdings LLC Physical channel segmentation in wireless communication system
EP2178237A1 (en) * 2008-10-20 2010-04-21 Thomson Licensing Method for encoding and decoding signalling information
KR20100083440A (en) * 2009-01-13 2010-07-22 삼성전자주식회사 Apparatus and method for transmission of physical uplink control signaling in uplink wireless communication systems with multi-carrier transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080192705A1 (en) * 2005-04-18 2008-08-14 Misubishi Electric Corporation Sending Station, Receiving Station, and Radio Communication Method
US20080192847A1 (en) * 2007-02-08 2008-08-14 Motorola, Inc. Method and apparatus for downlink resource allocation in an orthogonal frequency division multiplexing communication system
US20090286482A1 (en) * 2008-05-15 2009-11-19 Qualcomm Incorporated Spatial interference mitigation schemes for wireless communication

Also Published As

Publication number Publication date
KR20120018052A (en) 2012-02-29
KR101846166B1 (en) 2018-04-06
TWI467981B (en) 2015-01-01
JP5367015B2 (en) 2013-12-11
KR101846165B1 (en) 2018-04-06
JP2012044645A (en) 2012-03-01
TWI465047B (en) 2014-12-11
TW201210206A (en) 2012-03-01
TW201210204A (en) 2012-03-01
KR20120018051A (en) 2012-02-29
JP2012044643A (en) 2012-03-01
JP5268200B2 (en) 2013-08-21
KR20120018054A (en) 2012-02-29
JP5367014B2 (en) 2013-12-11
KR20120018053A (en) 2012-02-29
JP2012044644A (en) 2012-03-01
JP5268201B2 (en) 2013-08-21
TW201210276A (en) 2012-03-01
KR101846164B1 (en) 2018-04-06
JP2012044642A (en) 2012-03-01
KR101846167B1 (en) 2018-04-06
TW201210205A (en) 2012-03-01
TWI487292B (en) 2015-06-01

Similar Documents

Publication Publication Date Title
TWI485993B (en) Method for transmitting control information in wireless communication system and apparatus therefor
USRE48628E1 (en) Method for transmitting control information in wireless communication system and apparatus therefor
US9325481B2 (en) Method for performing channel interleaving in a multi-antenna wireless communication system, and apparatus for same
US8750223B2 (en) Method for transmitting control information in wireless communication system and apparatus therefor
KR101422041B1 (en) Method for determining modulation order of uplink control information in multiple antenna wireless communication system and device therefor
KR20120093760A (en) Method and apparatus for transmitting channel quality control information in wireless access system
US9113459B2 (en) Method for transmitting control information in wireless communication system and apparatus therefor
US20120044883A1 (en) Method for transmitting control information in wireless communication system and apparatus therefor
WO2012057480A2 (en) Method for transmitting control information in a wireless communication system, and device therefor
WO2011152659A2 (en) Method for transmitting control information in wireless communication system, and apparatus for same
US9100954B2 (en) Method for transmitting response information in a wireless communication system, and apparatus for same