TWI485386B - Dual mode multi-ion detector and fabrication method thereof and method for measuring cation sensitivity thereof - Google Patents

Dual mode multi-ion detector and fabrication method thereof and method for measuring cation sensitivity thereof Download PDF

Info

Publication number
TWI485386B
TWI485386B TW101129161A TW101129161A TWI485386B TW I485386 B TWI485386 B TW I485386B TW 101129161 A TW101129161 A TW 101129161A TW 101129161 A TW101129161 A TW 101129161A TW I485386 B TWI485386 B TW I485386B
Authority
TW
Taiwan
Prior art keywords
dual mode
ion sensor
measuring
sensitivity
electrolyte
Prior art date
Application number
TW101129161A
Other languages
Chinese (zh)
Other versions
TW201407151A (en
Inventor
Jung Chuan Chou
Chun Hung Liu
Wen Kai Chang
Chien Cheng Chen
Chia Yu Liu
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW101129161A priority Critical patent/TWI485386B/en
Publication of TW201407151A publication Critical patent/TW201407151A/en
Application granted granted Critical
Publication of TWI485386B publication Critical patent/TWI485386B/en

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

雙模式多重離子感測器及其製造方法及量測雙模式多 重離子感測器的陽離子感測度的方法Dual-mode multi-ion sensor, manufacturing method thereof and multi-mode measurement Method for cation sensitivity of heavy ion sensor

本發明係有關一種感測器,特別是一種雙模式多重離子感測器及其陽離子感測度的量測方法。The invention relates to a sensor, in particular to a dual mode multi-ion sensor and a method for measuring the cation sensitivity thereof.

電變色(Electrochromism,EC)的理論係由J.R.Platt於1961年提出,若一過渡金屬氧化物或一化合物經由一外加電壓產生氧化還原反應,過渡金屬氧化物或化合物將有電子注入(Injection)或注出(Extraction),導致其顏色與穿透率(Transmittance,T%)改變。The theory of electrochromism (EC) was proposed by JRPlatt in 1961. If a transition metal oxide or a compound generates a redox reaction via an applied voltage, the transition metal oxide or compound will have an electron injection (Injection) or Extraction causes a change in color and transmittance (Transmittance, T%).

目前電變色材料分為過渡金屬氧化物、有機化合物及高分子聚合物之三種材料,其中過渡金屬氧化物的操作電壓低、反應速度快且使用壽命長,有機化合物的操作電壓低且反應速度快,但無法重複多次循環且使用壽命較短,而高分子聚合物雖具備電變色的能力,但其操作電壓高、反應速度慢且易受環境溫度之影響。因此,目前以過渡金屬氧化物為較常使用的電變色材料。然而,即使是過渡金屬氧化物也仍可能具有一些缺點,例如有毒或價格昂貴等。At present, electrochromic materials are classified into transition metal oxides, organic compounds and high molecular polymers. The transition metal oxides have low operating voltage, fast reaction speed and long service life, and the operating voltage of organic compounds is low and the reaction speed is fast. However, it is impossible to repeat the cycle many times and the service life is short, and the polymer has the ability to be electrically discolored, but the operating voltage is high, the reaction speed is slow, and it is susceptible to the environmental temperature. Therefore, transition metal oxides are currently the most commonly used electrochromic materials. However, even transition metal oxides may still have some disadvantages, such as being toxic or expensive.

中華民國發明專利證書第I273131號揭示一種電變色膜,其係藉由有機電變色導電層之可逆氧化還原反應產生顏色變化。電變色膜只需使用單一透明基材即可達到電變色效果,且可配合黏著劑層之施用結合於其他物體表面。The Republic of China Invention Patent No. I273131 discloses an electrochromic film which produces a color change by a reversible redox reaction of an organic electrochromic conductive layer. The electrochromic film can achieve electrochromic effect by using a single transparent substrate, and can be bonded to the surface of other objects in combination with the application of the adhesive layer.

中華民國新型專利證書第M338359號揭示一種電致變 色薄膜裝置,其包括:一透明基材層;一透明導電薄膜層,係置於該高分子透明物質層之下方,其可提供帶負電荷之電子;一變色薄膜,係置於該透明導電薄膜層之下方;以及一金屬氧化物層,係置於該透明導電薄膜層之下方,其可提供帶正電荷之離子;該變色薄膜於接受該透明導電薄膜層所提供帶負電荷之電子或該金屬氧化物層所提供帶正電荷之離子後會改變顏色。The Republic of China New Patent Certificate No. M338359 discloses an electrical change The color film device comprises: a transparent substrate layer; a transparent conductive film layer disposed under the polymer transparent material layer to provide negatively charged electrons; and a color changing film disposed on the transparent conductive layer a layer below the thin film layer; and a metal oxide layer disposed under the transparent conductive film layer to provide positively charged ions; the color changing film is provided with negatively charged electrons or The metal oxide layer provides a positively charged ion that changes color.

中華民國新型專利證書第M266470號揭示一種電致變色薄膜裝置,其包括:一第一導電玻璃;一與其相對之第二導電玻璃;及一形成於該第二導電玻璃相對該第一導電玻璃之表面之導電高分子薄膜層。其中,該導電高分子薄膜層與該第一導電玻璃之間設有一用於容納工作氣體之氣室。該電致變色玻璃元件結構緊湊簡單,操作簡便,生產成本低,解決了習知之變色玻璃結構複雜及成本高等問題。The Republic of China New Patent Certificate No. M266470 discloses an electrochromic thin film device comprising: a first conductive glass; a second conductive glass opposite thereto; and a second conductive glass formed opposite to the first conductive glass A conductive polymer film layer on the surface. A gas chamber for containing a working gas is disposed between the conductive polymer film layer and the first conductive glass. The electrochromic glass element has the advantages of compact and simple structure, simple operation and low production cost, and solves the problems of complicated structure and high cost of the conventional color-changing glass.

然而,上述之中華民國發明專利證書第I273131號、M338359號與M266470號皆於固定電解液濃度之狀態中進行封裝,故無法用於量測一待測溶液之離子濃度。However, the aforementioned Republic of China invention patent certificates Nos. I273131, M338359 and M266470 are packaged in a state in which the electrolyte concentration is fixed, and thus cannot be used to measure the ion concentration of a solution to be tested.

中華民國發明專利證書第M362401號揭示一種酸鹼值測定計,其包括一測定計本體及結合於測定計本體上用以探測液體之酸鹼度之一感應元件。其中,在測定計本體上具有一色彩顯示器,色彩顯示器係以不同顏色變化的呈現方式來表現出感應元件對液體檢測後之酸鹼度。於實施時,也可在測定計本體同時設有能夠顯示酸鹼度之一色彩顯示器以及一數值化顯示器,以供使用者選擇使用。然而,其僅以顏色變化作為量測之單一模式,因此可靠度較低。The Republic of China Invention Patent No. M362401 discloses a pH meter which includes a meter body and an inductive element coupled to the meter body for detecting the pH of the liquid. Wherein, there is a color display on the meter body, and the color display shows the pH of the sensing element after detecting the liquid in a different color display manner. In the implementation, the meter body can also be provided with a color display capable of displaying pH and a numerical display for the user to select and use. However, it only uses the color change as a single mode of measurement, so the reliability is low.

中華民國發明專利申請號第094138243號揭示一種酸鹼度感測器之製備方法、所製備的酸鹼度感測器、含有該酸鹼度感測器之系統以及量測方法。上述酸鹼度感測器係一延伸式閘極離子感測場效電晶體結構。上述酸鹼度感測器之製備方法包括以下步驟:提供一延伸式閘極離子感測場效電晶體,其具有一延伸閘極區域;以射頻濺鍍法於該延伸閘極區域上形成一氮化鈦層,以得到一酸鹼度感測器。The Republic of China Invention Patent Application No. 094138243 discloses a method for preparing a pH sensor, a pH sensor prepared, a system containing the pH sensor, and a measuring method. The above pH sensor is an extended gate ion sensing field effect transistor structure. The method for preparing the above-mentioned pH sensor comprises the steps of: providing an extended gate ion sensing field effect transistor having an extended gate region; forming a nitride on the extended gate region by radio frequency sputtering The titanium layer is used to obtain a pH sensor.

中華民國發明專利申請號第098104928號揭示一種鈉離子選擇電極的形成方法、鈉離子選擇電極與鈉離子感測裝置,其包括:(a)提供一導電基板;(b)形成一導線其由該導電基板延伸而出,作為對外之電性接點;以及(c)形成一鈉離子感測膜於該導電基板上。The invention of the invention of sodium ion selective electrode, a sodium ion selective electrode and a sodium ion sensing device, comprising: (a) providing a conductive substrate; (b) forming a wire The conductive substrate extends as an external electrical contact; and (c) forms a sodium ion sensing film on the conductive substrate.

中華民國發明專利申請號第092135902號揭示一種延伸式場效電晶體應用於鉀、鈉離子感測元件,其係以延伸式離子感測場效電晶體作為基礎製作鉀、鈉離子感測元件,以延伸式離子感測場效電晶體之延伸閘極為訊號截取電極,並固定上親水性雙亞克力芳香聚尿酸鉀酯高分子混合陰電性添加劑、鉀、鈉離子選擇物等物質製成鉀、鈉離子感測電極。利用親水性雙亞克力芳香聚尿酸鉀酯高分子可硬化與親水性佳之性質,固定鉀、鈉離子選擇物,製成無濾波電路、單層離子選擇膜與訊號穩定之離子感測電極,致使於樣品上量測鉀、鈉濃度值時,可減少鉀、鈉離子選擇電極之互相干擾,使量測之值更接近於真實值。The Republic of China invention patent application No. 092135902 discloses an extended field effect transistor applied to a potassium and sodium ion sensing element, which is based on an extended ion sensing field effect transistor to produce potassium and sodium ion sensing elements, The extended ion sensing field effect transistor extends the signal to intercept the electrode, and is fixed with hydrophilic bi-acrylic aromatic potassium polyurethane polymer mixed negative electrical additive, potassium, sodium ion selection and other substances to make potassium and sodium. Ion sensing electrode. The hydrophilic double-acrylic aromatic potassium urate polymer can be hardened and hydrophilic, and the potassium and sodium ion options are fixed to form a filterless circuit, a single-layer ion selective membrane and a signal-stabilized ion sensing electrode, resulting in When the potassium and sodium concentration values are measured on the sample, the interference between the potassium and sodium ion selective electrodes can be reduced, and the measured value is closer to the true value.

上述之中華民國發明專利證書第094138243號、098104928號與092135902號僅以電壓變化作為量測之單 一模式,可靠度較低。The above-mentioned Republic of China invention patent certificates Nos. 094138243, 098104928 and 092135902 are only measured by voltage changes. A mode with low reliability.

由上述可知,目前僅能以單一模式量測離子濃度,因此可靠度較低。As can be seen from the above, at present, the ion concentration can be measured only in a single mode, and thus the reliability is low.

因此,亟需一種可改良或解決上述問題的電變色材料及離子濃度量測方法。Therefore, there is a need for an electrochromic material and an ion concentration measurement method which can improve or solve the above problems.

有鑑於此,本發明之一實施例係提供一種雙模式多重離子感測器,包括:一導電基板;及一電變色膜,設置於導電基板上,其中電變色膜包括二氧化鈦。In view of this, an embodiment of the present invention provides a dual mode multiple ion sensor comprising: a conductive substrate; and an electrochromic film disposed on the conductive substrate, wherein the electrochromic film comprises titanium dioxide.

本發明之另一實施例係提供一種雙模式多重離子感測器的製造方法,包括以下步驟:提供一導電基板;及在導電基板上形成一電變色膜,其中電變色膜包括二氧化鈦。Another embodiment of the present invention provides a method of fabricating a dual mode multiple ion sensor comprising the steps of: providing a conductive substrate; and forming an electrochromic film on the conductive substrate, wherein the electrochromic film comprises titanium dioxide.

本發明之又一實施例係提供一種量測雙模式多重離子感測器的陽離子感測度的方法,依序包括下列步驟:(a)提供如申請專利範圍第1項所述之雙模式多重離子感測器;(b)將雙模式多重離子感測器浸泡於一電解液中且使雙模式多重離子感測器進行一著色反應,其中電解液具有一陽離子濃度;(c)量測雙模式多重離子感測器在一波長範圍所對應的著色穿透率;(d)將雙模式多重離子感測器浸泡於電解液中進行一去色反應;(e)量測雙模式多重離子感測器在波長範圍的一去色穿透率;(f)改變電解液的陽離子濃度,且重複(b)~(e)的步驟;及(g)根據步驟(c)及步驟(f)所量測的著色穿透率以決定雙模式多重離子感測器的一陽 離子感測度。Yet another embodiment of the present invention provides a method of measuring a cationic sensitivity of a dual mode multiple ion sensor, comprising the steps of: (a) providing a dual mode multiple ion as described in claim 1 of the patent application; a sensor; (b) immersing the dual mode multiple ion sensor in an electrolyte and subjecting the dual mode multiple ion sensor to a coloring reaction, wherein the electrolyte has a cation concentration; (c) measuring the dual mode Multi-ion sensor's color penetration rate corresponding to a wavelength range; (d) immersing a dual-mode multi-ion sensor in the electrolyte for a decolorization reaction; (e) measuring dual-mode multiple ion sensing a decolorization transmittance in the wavelength range; (f) changing the cation concentration of the electrolyte, and repeating the steps (b) to (e); and (g) measuring according to steps (c) and (f) Measuring the color penetration rate to determine the yang of the dual-mode multi-ion sensor Ion sensibility.

本發明之又一實施例係提供一種量測雙模式多重離子感測器的陽離子感測度的方法,依序包括下列步驟:(a)提供如申請專利範圍第1項所述之雙模式多重離子感測器;(b)將雙模式多重離子感測器浸泡於一電解液中且量測雙模式多重離子感測器在一掃描電壓下的氧化還原電流密度,其中電解液具有一陽離子濃度;(c)改變電解液的陽離子濃度,且重複(b)的步驟;及(d)根據步驟(b)及步驟(c)所量測的氧化還原電流密度以決定雙模式多重離子感測器的一陽離子感測度。Yet another embodiment of the present invention provides a method of measuring a cationic sensitivity of a dual mode multiple ion sensor, comprising the steps of: (a) providing a dual mode multiple ion as described in claim 1 of the patent application; a sensor; (b) immersing the dual mode multiple ion sensor in an electrolyte and measuring a redox current density of the dual mode multiple ion sensor at a scan voltage, wherein the electrolyte has a cation concentration; (c) changing the cation concentration of the electrolyte, and repeating the step of (b); and (d) determining the redox current density measured according to step (b) and step (c) to determine the dual mode multiple ion sensor A cationic sensitivity.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:The above and other objects, features and advantages of the present invention will become more <RTIgt;

將在以下詳細討論本揭露實施例的組成及使用。應能理解的是實施例提供許多發明概念已實施在多種特定情況。在此討論的特定實施例僅為說明用且不對本揭露之範疇有限定性。The composition and use of the disclosed embodiments will be discussed in detail below. It should be understood that the embodiments provide many inventive concepts that have been implemented in a variety of specific embodiments. The specific embodiments discussed herein are for illustrative purposes only and are not limiting of the scope of the disclosure.

第1圖係繪示出根據本發明一實施例之一雙模式多重離子感測器100的製造方法之剖面示意圖。如第1圖所示,可先提供一導電基板101,接著在其上形成一電變色膜102,其中電變色膜102包括二氧化鈦,進而完成雙模式多重離子感測器100的製造。在本實施例中,電變色膜102可局部覆蓋(或暴露出)其下的導電基板101。1 is a cross-sectional view showing a method of fabricating a dual mode multiple ion sensor 100 in accordance with an embodiment of the present invention. As shown in FIG. 1, a conductive substrate 101 may be provided first, and then an electrochromic film 102 is formed thereon, wherein the electrochromic film 102 includes titanium dioxide, thereby completing the fabrication of the dual mode multiple ion sensor 100. In the present embodiment, the electrochromic film 102 can partially cover (or expose) the conductive substrate 101 thereunder.

導電基板101可包括一雙層結構,其包括一導電膜101a設置於一透明基板101b上方。舉例來說,導電基板101可包括一氧化銦錫膜/塑膠(Indium Tin Oxide/Polyethylene Terephthalate,ITO/PET)導電基板、氧化銦錫膜/玻璃(Indium Tin Oxide/Glass,ITO/Glass)導電基板、或氧化氟錫膜/玻璃(Fluorine-doped Tin Oxide/Polyethylene Terephthalate,FTO/Glass)導電基板之雙層結構。在一些實施例中,可使用市售的可撓式氧化銦錫膜/塑膠導電基板作為導電基板101,且其可具有一為20 Ω的電阻值。The conductive substrate 101 may include a two-layer structure including a conductive film 101a disposed above a transparent substrate 101b. For example, the conductive substrate 101 may include an Indium Tin Oxide/Polyethylene Terephthalate (ITO/PET) conductive substrate, an Indium Tin Oxide/Glass (ITO/Glass) conductive substrate. Or a two-layer structure of a Fluorine-doped Tin Oxide/Polyethylene Terephthalate (FTO/Glass) conductive substrate. In some embodiments, a commercially available flexible indium tin oxide film/plastic conductive substrate can be used as the conductive substrate 101, and it can have a resistance value of 20 Ω.

在一些實施例中,電變色膜102所包括的二氧化鈦可為粉末形式,例如奈米粉末形式。在一些實施例中,顆粒粒徑範圍可約為3~100 nm。可使用例如P25(Degussa)作為二氧化鈦的來源,然不限於此。再者,電變色膜102可更包括一分散劑及一界面活性劑。In some embodiments, the titanium dioxide included in the electrochromic film 102 can be in powder form, such as in the form of a nanopowder. In some embodiments, the particle size range can be from about 3 to 100 nm. For example, P25 (Degussa) can be used as a source of titanium dioxide, but is not limited thereto. Furthermore, the electrochromic film 102 may further comprise a dispersing agent and a surfactant.

分散劑可包括乙基乙酰丙酮。界面活性劑可包括聚乙二醇辛基苯基醚(C14 H22 O(C2 H4 O)n )。可使用例如TritonTM X-100(Dow)作為聚乙二醇辛基苯基醚的來源,然不限於此。The dispersing agent may include ethyl acetylacetone. The surfactant may include polyethylene glycol octylphenyl ether (C 14 H 22 O(C 2 H 4 O) n ). May be used, for example, Triton TM X-100 (Dow) as the source of polyethylene glycol octylphenyl ether, and then limited thereto.

在一些實施例中,可藉由以下步驟在導電基板101上形成電變色膜102:首先製備一二氧化鈦膠體,再以任何合適方法在導電基板101上形成二氧化鈦膠體。在一些實施例中,可藉由混合二氧化鈦(例如二氧化鈦粉末)、一分散劑溶液(例如乙基乙酰丙酮溶液)及一界面活性劑(例如聚乙二醇辛基苯基醚)而形成二氧化鈦膠體,其中分散 劑溶液相對於二氧化鈦的容積比可約為0~0.3毫升:1~5毫升,而界面活性劑相對於二氧化鈦的容積比可約為0~0.3毫升:1~5毫升。加入分散劑溶液可提升膠體之分散程度,避免有結塊之現象產生。加入界面活性劑可提升電變色膜102與導電基板101之間的附著力。再者,可進一步均勻混合所形成的二氧化鈦膠體,例如將二氧化鈦膠體置入一超音波振盪器,並在之後將均勻混合的二氧化鈦膠體靜置使其擴散均勻在一些實施例中,靜置的時間可約為5~48小時。另外,在一些實施例中,可藉由在導電基板101上網版印刷二氧化鈦膠體以在導電基板101上形成電變色膜102。在一些實施例中,用於網版印刷的一網版與導電基板101之間的距離可約為0.1公分~0.4公分,較佳可約為0.1公分。在網版印刷二氧化鈦膠體於導電基板101上之後,可進一步將具有二氧化鈦膠體的導電基板101置於烘箱中烘烤使二氧化鈦膠體乾燥成形。在一些實施例中,烘烤的溫度可為70-150℃,且較佳為125℃,而烘烤的時間可為5-30分鐘,且較佳為10分鐘。In some embodiments, the electrochromic film 102 can be formed on the conductive substrate 101 by first preparing a titania colloid, and then forming a titania colloid on the conductive substrate 101 by any suitable method. In some embodiments, the titanium dioxide colloid can be formed by mixing titanium dioxide (such as titanium dioxide powder), a dispersant solution (such as ethyl acetylacetone solution), and a surfactant (such as polyethylene glycol octyl phenyl ether). Which is dispersed The volume ratio of the solution to the titanium dioxide may be about 0 to 0.3 ml: 1 to 5 ml, and the volume ratio of the surfactant to the titanium dioxide may be about 0 to 0.3 ml: 1 to 5 ml. Adding a dispersant solution can increase the degree of dispersion of the colloid and avoid the occurrence of agglomeration. The adhesion between the electrochromic film 102 and the conductive substrate 101 can be improved by adding a surfactant. Furthermore, the formed titania colloid can be further uniformly mixed, for example, the titania colloid is placed in an ultrasonic oscillator, and then the uniformly mixed titania colloid is allowed to stand to diffuse uniformly. In some embodiments, the standing time It can be about 5~48 hours. In addition, in some embodiments, the electrochromic film 102 can be formed on the conductive substrate 101 by screen printing a titania colloid on the conductive substrate 101. In some embodiments, the distance between a screen for screen printing and the conductive substrate 101 can be from about 0.1 cm to about 0.4 cm, preferably about 0.1 cm. After the screen printing of the titania colloid on the conductive substrate 101, the conductive substrate 101 having the titania colloid may be further baked in an oven to dry-form the titania colloid. In some embodiments, the baking temperature may be 70-150 ° C, and preferably 125 ° C, and the baking time may be 5-30 minutes, and preferably 10 minutes.

第2圖係繪示出根據本發明一實施例之一電變色裝置200,其電性連接至雙模式多重離子感測器100(如第1圖所示)。電變色裝置200包括一電源供應器201、一電極202及一電解液203。電源供應器201可使用固緯電子公司所產製之PST-3201之電源供應器,然而亦可使用具有相同功能之其他電源供應器。電極202可包括一鉑棒。電解液203為一含有陽離子之溶液,例如一氫離子電解液、鈉離子電解液、鉀離子電解液或鋰離子電解液。在一實施例中, 電解液203可為一氫離子電解液(pH=1~13)或鈉離子電解液(1~10-5 M氯化鈉溶液)。2 is a diagram showing an electrochromic device 200 electrically coupled to a dual mode multiple ion sensor 100 (as shown in FIG. 1) in accordance with an embodiment of the present invention. The electrochromic device 200 includes a power supply 201, an electrode 202, and an electrolyte 203. The power supply 201 can use the power supply of the PST-3201 manufactured by Good Will Electronics, but other power supplies having the same function can also be used. Electrode 202 can include a platinum rod. The electrolyte 203 is a solution containing a cation such as a hydrogen ion electrolyte, a sodium ion electrolyte, a potassium ion electrolyte or a lithium ion electrolyte. In one embodiment, the electrolyte 203 can be a hydrogen ion electrolyte (pH=1~13) or a sodium ion electrolyte (1~ 10-5 M sodium chloride solution).

在一些實施例中,可藉由以下方式達成電變色裝置200與雙模式多重離子感測器100之間的電性連接:將雙模式多重離子感測器100與電極202浸泡於電解液203中,並將雙模式多重離子感測器100及電極202分別電性連接(例如藉由一導線)至電源供應器201的正端及負端(或負端及正端)。舉例來說,雙模式多重離子感測器100可電性連接至電源供應器201的正端,且電極202可電性連接至電源供應器201的負端。或者,雙模式多重離子感測器100可電性連接至電源供應器201的負端,且電極202可電性連接至電源供應器201的正端。電源供應器201可在雙模式多重離子感測器100與電極202之間提供一操作電壓。。在一實施例中,操作電壓可約為0.5~3伏特。In some embodiments, the electrical connection between the electrochromic device 200 and the dual mode multiple ion sensor 100 can be achieved by immersing the dual mode multiple ion sensor 100 and the electrode 202 in the electrolyte 203. The dual-mode multi-ion sensor 100 and the electrode 202 are electrically connected (for example, by a wire) to the positive end and the negative end (or the negative end and the positive end) of the power supply 201, respectively. For example, the dual mode multiple ion sensor 100 can be electrically connected to the positive end of the power supply 201, and the electrode 202 can be electrically connected to the negative end of the power supply 201. Alternatively, the dual mode multiple ion sensor 100 can be electrically connected to the negative end of the power supply 201, and the electrode 202 can be electrically connected to the positive end of the power supply 201. The power supply 201 can provide an operating voltage between the dual mode multiple ion sensor 100 and the electrode 202. . In one embodiment, the operating voltage can be approximately 0.5 to 3 volts.

當電源供應器201在雙模式多重離子感測器100與電極202之間提供一操作電壓時,雙模式多重離子感測器100中的電變色膜102將發生化學反應如下式(1),並造成其顏色及穿透率改變: When the power supply 201 provides an operating voltage between the dual mode multiple ion sensor 100 and the electrode 202, the electrochromic film 102 in the dual mode multiple ion sensor 100 will chemically react as shown in the following equation (1), and Causes changes in color and penetration:

其中M+ 為電解液203中所含的陽離子,例如H+ 、Li+ 或Na+ 等,而x值為0~1,且其大小視通入膜之電量而定。式(1)進行的方向將視雙模式多重離子感測器100是電性連接至電源供應器201的正端或負端而定。由於TiO2 為接近無色,而Mx TiO2 為淡藍色,因此當電變色膜102發生式(1)的化學反應,其將產生顏色上的改變,故式(1)的 化學反應又稱為一著色(反應向右)/去色(反應向左)反應。Wherein M + is a cation contained in the electrolytic solution 203, such as H + , Li + or Na + , and the x value is 0 to 1, and the size thereof depends on the amount of electricity supplied to the film. The direction in which equation (1) is performed will depend on whether the dual mode multiple ion sensor 100 is electrically connected to the positive or negative terminal of the power supply 201. Since TiO 2 is nearly colorless and M x TiO 2 is light blue, when the electrochromic film 102 undergoes a chemical reaction of the formula (1), it will produce a color change, so the chemical reaction of the formula (1) is also called For a coloring (reaction to the right) / color removal (reaction to the left) reaction.

當將雙模式多重離子感測器100電性連接至電源供應器201的負端(亦即施加負電位於雙模式多重離子感測器100,且將電極202電性連接至電源供應器201的正端,電子與陽離子將同時注入至電變色膜102,而進行著色反應。反之,當將雙模式多重離子感測器100電性連接至電源供應器201的正端,且將電極202電性連接至電源供應器201的負端,此時將進行去色反應。When the dual mode multiple ion sensor 100 is electrically connected to the negative end of the power supply 201 (that is, the negative power is applied to the dual mode multiple ion sensor 100, and the electrode 202 is electrically connected to the power supply 201 The electrons and the cations are simultaneously injected into the electrochromic film 102 to perform a coloring reaction. Conversely, when the dual mode multiple ion sensor 100 is electrically connected to the positive end of the power supply 201, the electrodes 202 are electrically connected. To the negative end of the power supply 201, a decoloring reaction will be performed at this time.

基於上述電變色膜102在操作電壓下產生顏色及透光度改變的特性,可利用電變色裝置200與一光學檢測儀來得到雙模式多重離子感測器100對於電解液中所含陽離子的感測度。在此,「感測度」的定義為於固定室溫下每增加單位陽離子濃度值所造成雙模式多重離子感測器100的穿透率增加。第3圖係繪示出根據本發明一實施例之量測雙模式多重離子感測器100的陽離子感測度的方法400之流程圖。首先,進行步驟10,提供雙模式多重離子感測器100(如第1圖所示)。接著,進行步驟20,將雙模式多重離子感測器100浸泡於一電解液中且使雙模式多重離子感測器100進行一著色反應,其中電解液具有一陽離子濃度。在步驟20中,可將雙模式多重離子感測器100與電變色裝置200電性連接以進行著色反應,其中雙模式多重離子感測器100浸泡於電解液203中。在一些實施例中,陽離子為氫離子,而氫離子濃度的範圍可約為10-1 M~10-5 M,亦即其pH值約為1~5。在其他實施例中,可使用氯化 鈉溶液作為電解液203,因此陽離子為鈉離子,而鈉離子濃度的範圍可約為1~10-5 M。在一些實施例中,著色反應可進行約60~120秒。Based on the characteristics that the electrochromic film 102 generates color and transmittance changes under the operating voltage, the electrochromic device 200 and an optical detector can be used to obtain the sensation of the cation contained in the electrolyte by the dual mode multi-ion sensor 100. measure. Here, "sensitivity" is defined as an increase in the transmittance of the dual-mode multi-ion sensor 100 caused by an increase in the unit concentration of cations at a fixed room temperature. 3 is a flow chart showing a method 400 of measuring the cation sensitivity of the dual mode multiple ion sensor 100 in accordance with an embodiment of the present invention. First, step 10 is performed to provide a dual mode multiple ion sensor 100 (as shown in Figure 1). Next, in step 20, the dual mode multiple ion sensor 100 is immersed in an electrolyte and the dual mode multiple ion sensor 100 is subjected to a coloring reaction, wherein the electrolyte has a cation concentration. In step 20, the dual mode multiple ion sensor 100 can be electrically connected to the electrochromic device 200 for coloring reaction, wherein the dual mode multiple ion sensor 100 is immersed in the electrolyte 203. In some embodiments, the cation is a hydrogen ion and the hydrogen ion concentration can range from about 10 -1 M to 10 -5 M, that is, its pH is about 1-5. In other embodiments, a sodium chloride solution can be used as the electrolyte 203, so the cation is sodium ion and the sodium ion concentration can range from about 1 to 10 -5 M. In some embodiments, the coloring reaction can be carried out for about 60 to 120 seconds.

在完成著色反應後,進行步驟30,量測雙模式多重離子感測器100在一波長範圍所對應的著色穿透率(Tcolor (%))。可使用一紫外光-可見光(UV-Visible,UV-Vis)光譜分析儀(Optical Spectrum Analyzer)進行步驟30的量測。在一些實施例中,上述波長範圍為300~900奈米。在其他實施例中,上述波長範圍為500~900奈米。After the coloring reaction is completed, step 30 is performed to measure the color penetration (T color (%)) corresponding to the wavelength range of the dual mode multiple ion sensor 100. The measurement of step 30 can be carried out using an ultraviolet-visible (UV-Vis) optical spectrum analyzer (Optical Spectrum Analyzer). In some embodiments, the above wavelength range is from 300 to 900 nm. In other embodiments, the above wavelength range is from 500 to 900 nm.

接著,進行步驟40,將雙模式多重離子感測器100浸泡於電解液203中進行一去色反應。類似地,在步驟40中,可將雙模式多重離子感測器100與電變色裝置200電性連接以進行去色反應,其中雙模式多重離子感測器100浸泡於電解液203中。在一些實施例中,去色反應可進行約240~360秒。Next, in step 40, the dual mode multiple ion sensor 100 is immersed in the electrolyte 203 for a decolorization reaction. Similarly, in step 40, the dual mode multiple ion sensor 100 can be electrically coupled to the electrochromic device 200 for a decolorizing reaction, wherein the dual mode multiple ion sensor 100 is immersed in the electrolyte 203. In some embodiments, the decolorization reaction can be carried out for about 240 to 360 seconds.

在完成去色反應後,進行步驟50,量測雙模式多重離子感測器100在一波長範圍所對應的去色穿透率(Tbleach (%))。可使用紫外光-可見光光譜分析儀進行步驟50的量測。在一些實施例中,上述波長範圍為300~900奈米。在其他實施例中,上述波長範圍為500~900奈米。After the decoloring reaction is completed, step 50 is performed to measure the decolorization transmittance (T bleach (%)) corresponding to the wavelength range of the dual mode multi-ion sensor 100. The measurement of step 50 can be performed using an ultraviolet light-visible spectrum analyzer. In some embodiments, the above wavelength range is from 300 to 900 nm. In other embodiments, the above wavelength range is from 500 to 900 nm.

接著,進行步驟60,改變電解液203的陽離子濃度,且重複步驟20~50。Next, step 60 is performed to change the cation concentration of the electrolyte 203, and steps 20 to 50 are repeated.

接著,進行步驟70,根據步驟30及步驟60所量測的著色穿透率以決定雙模式多重離子感測器100的陽離子感測度。舉例來說,可作出陽離子濃度與雙模式多重離子感 測器100在上述波長範圍內的一固定波長下的著色穿透率之間的關係圖,並依此決定雙模式多重離子感測器100的陽離子感測度。在一些實施例中,可作出陽離子濃度的負對數與雙模式多重離子感測器100在上述波長範圍內的一固定波長下的著色穿透率的關係圖,並進行線性化,以得到雙模式多重離子感測器100的一陽離子感測度。由於在不同波長下的雙模式多重離子感測器100的著色穿透率不同,因此需要在一固定波長下量測雙模式多重離子感測器100的著色穿透率,且較佳選擇著色穿透率變化較平均的波長以得到較準確的感測度。在一實施例中,上述固定波長可為800奈米。應注意的是,能藉由步驟70得到雙模式多重離子感測器100的陽離子感測度之原因是基於陽離子濃度的負對數與雙模式多重離子感測器100在一固定波長下的著色穿透率彼此大抵呈線性關係。Next, step 70 is performed to determine the cation sensitivity of the dual mode multi-ion sensor 100 based on the color penetration measured in steps 30 and 60. For example, cation concentration and dual mode multiple ion sensation can be made The relationship between the color penetration of the detector 100 at a fixed wavelength in the above wavelength range, and the cation sensitivity of the dual mode multiple ion sensor 100 is determined accordingly. In some embodiments, a relationship between the negative logarithm of the cation concentration and the color penetration of the dual mode multiple ion sensor 100 at a fixed wavelength in the above wavelength range can be made and linearized to obtain a dual mode. A cationic sensitivity of the multiple ion sensor 100. Since the color transmittance of the dual-mode multi-ion sensor 100 at different wavelengths is different, it is necessary to measure the color transmittance of the dual-mode multi-ion sensor 100 at a fixed wavelength, and it is preferable to select the coloring wear. The permeability changes more than the average wavelength to get a more accurate sensitivity. In an embodiment, the fixed wavelength may be 800 nm. It should be noted that the reason for obtaining the cation sensitivity of the dual mode multi-ion sensor 100 by step 70 is based on the negative logarithm of the cation concentration and the color penetration of the dual mode multi-ion sensor 100 at a fixed wavelength. The rates are linear with each other.

第4圖係繪示出根據本發明一實施例之一電化學量測系統300,其電性連接至雙模式多重離子感測器100(如第1圖所示)。電化學量測系統300包括一參考電極301、電極302、一電解液303及一循環伏安儀(Cyclic Voltammogram,CV)304。參考電極301可為一銀/氯化銀參考電極。電解液303可與電解液203類似。類似地,電解液203可包括一含有陽離子之溶液,例如一氫離子電解液、鈉離子電解液、鉀離子電解液或鋰離子電解液。在一實施例中,電解液203可為一氫離子電解液(pH=1~13)或鈉離子電解液(1~10-5 M氯化鈉溶液)。在一些實施例中,循環伏安儀304可利用BioLogic公司所產製之SP-150 之循環伏安儀,然而亦可使用相同功能之其他循環伏安儀。4 is a diagram showing an electrochemical measurement system 300 electrically coupled to a dual mode multiple ion sensor 100 (as shown in FIG. 1) in accordance with an embodiment of the present invention. The electrochemical measurement system 300 includes a reference electrode 301, an electrode 302, an electrolyte 303, and a Cyclic Voltammogram (CV) 304. The reference electrode 301 can be a silver/silver chloride reference electrode. The electrolyte 303 can be similar to the electrolyte 203. Similarly, the electrolyte 203 may include a solution containing a cation such as a hydrogen ion electrolyte, a sodium ion electrolyte, a potassium ion electrolyte or a lithium ion electrolyte. In one embodiment, the electrolyte 203 can be a hydrogen ion electrolyte (pH=1~13) or a sodium ion electrolyte (1~ 10-5 M sodium chloride solution). In some embodiments, the cyclic voltammeter 304 can utilize a cyclic voltammeter of SP-150 manufactured by BioLogic, although other cyclic voltammeters of the same function can also be used.

在一些實施例中,可藉由以下方式達成電化學量測系統300與雙模式多重離子感測器100之間的電性連接:將雙模式多重離子感測器100、電極302與參考電極301浸泡於電解液303中且分別電性連接(例如藉由一導線)至循環伏安儀304。循環伏安儀304在雙模式多重離子感測器100與參考電極301之間供應一掃描電壓。當循環伏安儀304在雙模式多重離子感測器100與參考電極301之間供應一掃描電壓時,電變色膜102的分子結構會與電解液303中的陽離子結合,使電變色膜102產生氧化還原電流。電變色膜102的氧化還原電流密度與電變色膜102的材料特性及電解液303的陽離子濃度相關,且氧化還原電流之峰值視電變色膜102材料特性而定,當峰值於某一電壓下特別高時,表示電變色膜102對於此電壓具較強烈之氧化或還原反應。In some embodiments, the electrical connection between the electrochemical measurement system 300 and the dual mode multiple ion sensor 100 can be achieved by: dual mode multiple ion sensor 100, electrode 302 and reference electrode 301 Soaked in the electrolyte 303 and electrically connected (for example by a wire) to the cyclic voltammeter 304. The cyclic voltammeter 304 supplies a scan voltage between the dual mode multiple ion sensor 100 and the reference electrode 301. When the cyclic voltammeter 304 supplies a scan voltage between the dual mode multiple ion sensor 100 and the reference electrode 301, the molecular structure of the electrochromic film 102 is combined with the cations in the electrolyte 303 to cause the electrochromic film 102 to be generated. Redox current. The redox current density of the electrochromic film 102 is related to the material properties of the electrochromic film 102 and the cation concentration of the electrolyte 303, and the peak of the redox current depends on the material properties of the electrochromic film 102, when the peak is at a certain voltage. When high, it means that the electrochromic film 102 has a strong oxidation or reduction reaction for this voltage.

第5圖係繪示出根據本發明另一實施例之量測雙模式多重離子感測器的陽離子感測度的方法500之流程圖。首先,進行步驟15,提供雙模式多重離子感測器100(如第1圖所示)。5 is a flow chart showing a method 500 of measuring the cation sensitivity of a dual mode multiple ion sensor in accordance with another embodiment of the present invention. First, step 15 is performed to provide a dual mode multiple ion sensor 100 (as shown in Figure 1).

接著,進行步驟25,將雙模式多重離子感測器100浸泡於一電解液中且量測雙模式多重離子感測器100在一掃描電壓下的氧化還原電流密度,其中電解液具有一陽離子濃度。在步驟25中,可將雙模式多重離子感測器100與電化學量測系統300(如第4圖所示)電性連接以進行氧化還原電流密度的量測,其中雙模式多重離子感測器100浸 泡於電解液303中。在一些實施例中,掃描電壓為-2.5~+2.5伏特。在較佳實施例中,掃描電壓為-1~+1伏特。Next, step 25 is performed to immerse the dual mode multiple ion sensor 100 in an electrolyte and measure the redox current density of the dual mode multiple ion sensor 100 at a scan voltage, wherein the electrolyte has a cationic concentration . In step 25, the dual mode multiple ion sensor 100 can be electrically coupled to the electrochemical measurement system 300 (as shown in FIG. 4) for measurement of redox current density, wherein dual mode multiple ion sensing 100 dip Soaked in the electrolyte 303. In some embodiments, the scan voltage is between -2.5 and +2.5 volts. In the preferred embodiment, the scan voltage is -1 to +1 volts.

接著,進行步驟35,改變電解液203的陽離子濃度,且重複步驟25。Next, step 35 is performed to change the cation concentration of the electrolyte 203, and step 25 is repeated.

之後,進行步驟45,根據步驟25及步驟35所量測的氧化還原電流密度以決定雙模式多重離子感測器100的一陽離子感測度。舉例來說,可作出陽離子濃度與雙模式多重離子感測器100在上述掃描電壓內的一固定電壓下雙模式多重離子感測器100的氧化還原電流密度之間的關係圖,並依此決定雙模式多重離子感測器100的陽離子感測度。在一些實施例中,可做出陽離子的濃度的負對數與在上述掃描電壓內的一固定電壓下雙模式多重離子感測器100的氧化還原電流密度的關係圖,並進行線性化,以得到雙模式多重離子感測器100的陽離子感測度。在一些實施例中,上述固定電壓可為-1~-2.5伏特。應注意的是,能藉由步驟45得到雙模式多重離子感測器100的陽離子感測度之原因是基於電解液具有的陽離子濃度的負對數與雙模式多重離子感測器100在一固定電壓下的氧化還原電流密度彼此大抵呈線性關係。Thereafter, step 45 is performed to determine a cationic sensitivity of the dual mode multiple ion sensor 100 based on the redox current density measured in steps 25 and 35. For example, a relationship between the cation concentration and the redox current density of the dual mode multi-ion sensor 100 at a fixed voltage of the dual mode multiple ion sensor 100 within the scan voltage can be determined. The cationic sensitivity of the dual mode multiple ion sensor 100. In some embodiments, a relationship between the negative logarithm of the concentration of the cation and the redox current density of the dual mode multiple ion sensor 100 at a fixed voltage within the scan voltage can be made and linearized to obtain The cationic sensitivity of the dual mode multiple ion sensor 100. In some embodiments, the fixed voltage can be from -1 to -2.5 volts. It should be noted that the reason for obtaining the cation sensitivity of the dual mode multi-ion sensor 100 by step 45 is based on the negative logarithm of the cation concentration of the electrolyte and the dual mode multi-ion sensor 100 at a fixed voltage. The redox current densities are linear with each other.

根據上述實施例,可藉由上述電化學模式或光學模式的量測方法得到雙模式多重離子感測器100的陽離子感測度。再者,在得到陽離子感測度之後,可進一步量測具有未知陽離子濃度的電解液的(1)著色及去色透光率(光學模式);或(2)氧化還原電流,即可得到電解液的陽離子濃度。According to the above embodiment, the cation sensitivity of the dual mode multiple ion sensor 100 can be obtained by the above-described electrochemical mode or optical mode measurement method. Furthermore, after obtaining the cationic sensitivity, the (1) coloring and decolorizing transmittance (optical mode) of the electrolyte having an unknown cation concentration may be further measured; or (2) the redox current, the electrolyte may be obtained. Concentration of cations.

本發明的應用十分廣泛,舉例來說,可將本發明應用在檢測人體中體液的離子濃度,尤其是氫離子濃度或酸鹼值。人體中體液的酸鹼值對於人體健康扮演極重要的角色,當酸鹼值偏低時,體內細胞的新陳代謝較為緩慢,而對生理功能產生嚴重影響,亦增加罹癌之機率。人體內血紅素細胞在代謝後會產生許多無機及有機酸,如碳酸、磷酸、硫酸、尿酸、乳酸等,其中硫酸為強酸且會釋放出大量氫離子。這些經代謝而產生的無機及有機酸可被人體中的緩衝系統(例如碳酸氫鹽系統、蛋白質、磷酸氫鹽系統等)所吸收,尤其是硫酸所釋放出大量的氫離子,其99.99%都可被這些緩衝系統吸收。這些緩衝系統由於皆具有弱酸,因此就算加入一強酸,弱酸與其共軛鹼也可與絕大部分由強酸所釋放出來之氫離子配對,使強酸轉變為弱酸,進而維持酸鹼值的穩定。此外,人體體液內的鈉離子對於人體健康亦是十分重要,其中鈉離子之首要功能即是保持體內水份與酸鹼度之平衡,使體液維持一定之滲透壓,以維持正常之水分含量。若是電解質不平衡,則水份與酸鹼度亦會失去平衡,最後維持生命之各種生理生化反應即會逐一產生問題,例如因缺少鈉鹽,則產生無力、昏睡、脫水、心悸等症狀。The invention is widely used. For example, the present invention can be applied to detecting the ion concentration of a body fluid in a human body, particularly a hydrogen ion concentration or a pH value. The pH value of body fluids in human body plays an important role in human health. When the pH value is low, the metabolism of cells in the body is slow, which has a serious impact on physiological functions and increases the risk of cancer. After being metabolized, heme cells in the human body produce many inorganic and organic acids, such as carbonic acid, phosphoric acid, sulfuric acid, uric acid, lactic acid, etc., in which sulfuric acid is a strong acid and releases a large amount of hydrogen ions. These metabolically produced inorganic and organic acids can be absorbed by buffer systems in the human body (such as bicarbonate systems, proteins, hydrogen phosphate systems, etc.), especially sulfuric acid, which releases a large amount of hydrogen ions, 99.99% of which are Can be absorbed by these buffer systems. Since these buffer systems all have a weak acid, even if a strong acid is added, the weak acid and its conjugate base can be paired with most of the hydrogen ions released by the strong acid, so that the strong acid is converted into a weak acid, thereby maintaining the stability of the pH. In addition, sodium ions in human body fluids are also important for human health. The primary function of sodium ions is to maintain the balance between water and pH in the body, so that the body fluid maintains a certain osmotic pressure to maintain normal water content. If the electrolyte is unbalanced, the water and pH will lose balance. Finally, various physiological and biochemical reactions that sustain life will cause problems one by one. For example, due to lack of sodium salt, it will produce symptoms such as weakness, lethargy, dehydration and palpitations.

將在以下說明根據本發明之各種實施例。Various embodiments in accordance with the present invention will be described below.

【實施例1】雙模式多重離子感測器的製造方法[Embodiment 1] Method of manufacturing dual mode multiple ion sensor

進行以下步驟以製造雙模式多重離子感測器:(a)在3克之P25(Degussa)中添加2.5毫升之去離子水,之後再加入0.1毫升之乙基乙酰丙酮溶液與0.2毫升之 TritonTM X-100(Dow),以形成一混合物;(b)將上述之混合物置入一超音波振盪器以均勻混合,之後將均勻混合後的混合物靜置於陰涼處24小時使其擴散均勻,形成一二氧化鈦膠體;(c)在一導電基板上網板印刷二氧化鈦膠體,其中所使用來網版印刷的一網版與導電基板之間的距離為0.1公分;及(d)將具有二氧化鈦膠體的導電基板置於一溫度約為125℃的烘箱中烘烤10分鐘,藉以在導電基板上形成一電變色膜,完成雙模式多重離子感測器的製造。Perform the following steps to make a dual mode multi-ion sensor: (a) add 2.5 ml of deionized water to 3 grams of P25 (Degussa), then add 0.1 ml of ethyl acetylacetone solution and 0.2 ml of Triton TM X. -100 (Dow) to form a mixture; (b) placing the above mixture into an ultrasonic oscillator for uniform mixing, and then uniformly mixing the mixture in a cool place for 24 hours to diffuse uniformly to form a a titanium dioxide colloid; (c) printing a titania colloid on a conductive substrate, wherein a distance between a screen and a conductive substrate used for screen printing is 0.1 cm; and (d) placing a conductive substrate having a titania colloid The dual-mode multi-ion sensor was fabricated by baking in an oven at a temperature of about 125 ° C for 10 minutes to form an electrochromic film on the conductive substrate.

【實施例2】量測雙模式多重離子感測器的氫離子感測度的方法(光學模式)[Embodiment 2] Method for measuring hydrogen ion sensation of dual mode multi-ion sensor (optical mode)

依序進行下列步驟,其中分別以三種含有不同氫離子濃度的溶液作為電解液,其分別為電解液A(pH=1)、電解液B(pH=3)及電解液C(pH=5):(a)提供實施例1的雙模式多重離子感測器及與其電性連接的一電變色裝置,其中電變色裝置包括:作為電極的一鉑棒、具有一陽離子(氫離子或鈉離子)濃度的一電解液、及一電源供應器(PST-3201;固緯電子公司),其中雙模式多重離子感測器與鉑棒浸泡於電解液中,且雙模式多重離子感測器及鉑棒分別藉由一導線電性連接至電源供應器的正端及負端(或負端及正端),且電源供應器在雙模式多重離子感測器與鉑棒之間提供一操作電壓;(b)將雙模式多重離子感測器及鉑棒分別電性連接至 電源供應器的負端及正端,使電變色膜進行90秒的著色反應,其中操作電壓為2.5伏特;(c)以紫外光-可見光光譜分析儀(Labomed)量測雙模式多重離子感測器在波長範圍為300~900奈米中的著色穿透率(Tcolor (%));(d)將雙模式多重離子感測器與鉑棒連接至電源供應器的電極互換,亦即將雙模式多重離子感測器及電極分別電性連接至電源供應器的正端及負端,使電變色膜進行約300秒的去色反應,其中操作電壓同樣為2.5伏特;及(e)去色反應完成後,以紫外光-可見光光譜分析儀(Labomed)量測雙模式多重離子感測器在波長範圍為300~900奈米中的去色穿透率(Tbleach (%))。The following steps are sequentially performed, wherein three solutions containing different hydrogen ion concentrations are respectively used as the electrolyte, which are electrolyte A (pH=1), electrolyte B (pH=3), and electrolyte C (pH=5). (a) providing the dual mode multi-ion sensor of Embodiment 1 and an electrochromic device electrically connected thereto, wherein the electrochromic device comprises: a platinum rod as an electrode having a cation (hydrogen ion or sodium ion) a concentration of an electrolyte, and a power supply (PST-3201; Goodwill Electronics), in which a dual-mode multi-ion sensor and platinum rod are immersed in the electrolyte, and a dual-mode multi-ion sensor and a platinum rod Electrically connected to the positive and negative terminals (or the negative terminal and the positive terminal) of the power supply by a wire, and the power supply provides an operating voltage between the dual mode multiple ion sensor and the platinum rod; b) electrically connecting the dual-mode multi-ion sensor and the platinum rod to the negative end and the positive end of the power supply respectively, so that the electrochromic film performs a color reaction of 90 seconds, wherein the operating voltage is 2.5 volts; (c) Ultra-violet-visible spectrum analyzer (Labomed) measurement of dual-mode multiple ion sensing In a wavelength range of 300 to 900 nm coloring transmittance (T color (%)); (d) the dual mode multi-ion sensor electrode and a platinum rod connected to the power supply interchanged, i.e. the dual mode The multi-ion sensor and the electrode are respectively electrically connected to the positive end and the negative end of the power supply, and the electrochromic film is subjected to a decoloring reaction for about 300 seconds, wherein the operating voltage is also 2.5 volts; and (e) the decolorizing reaction Upon completion, the decolorization transmittance (T bleach (%)) of the dual mode multi-ion sensor in the wavelength range of 300-900 nm was measured by an ultraviolet-visible spectrum analyzer (Labomed).

第6圖係顯示根據實施例2之在不同氫離子濃度(以pH值表示)下雙模式多重離子感測器的著色穿透率與波長的關係圖。第7圖係顯示氫離子濃度(以pH值表示)與雙模式多重離子感測器在一固定波長(800奈米)下的穿透率的關係圖。在第7圖中,在進行線性化之後,所得線性度為0.9934,且氫離子感測度為1.125 T%/pH。Figure 6 is a graph showing the color penetration versus wavelength for a dual mode multiple ion sensor at different hydrogen ion concentrations (expressed in pH) according to Example 2. Figure 7 is a graph showing the hydrogen ion concentration (expressed in pH) versus the dual mode multi-ion sensor at a fixed wavelength (800 nm). In Figure 7, after linearization, the resulting linearity was 0.9934 and the hydrogen ion sensitivity was 1.125 T%/pH.

【實施例3】量測雙模式多重離子感測器的鈉離子感測度的方法(光學模式)[Embodiment 3] Method for measuring sodium ion sensitivity of a dual mode multi-ion sensor (optical mode)

本實施例與實施例2相同,除了電解液換成具有不同鈉離子濃度的電解液,其分別為1 M、10-1 M、10-2 M、10-3 M、10-4 M及10-5 M的氯化鈉溶液。第8圖係顯示根據本發明實施例3之在不同鈉離子濃度(以pNa值表示)下雙 模式多重離子感測器的著色穿透率與波長的關係圖。第9圖係顯示鈉離子的濃度(以pNa值表示)與雙模式多重離子感測器在一固定波長(800奈米)下的穿透率的關係圖。在第9圖中,在進行線性化之後,所得線性度為0.9979,且鈉離子感測度2.242 T%/pNa。This embodiment is the same as Embodiment 2 except that the electrolyte is replaced with an electrolyte having different sodium ion concentrations, which are 1 M, 10 -1 M, 10 -2 M, 10 -3 M, 10 -4 M, and 10, respectively. -5 M sodium chloride solution. Figure 8 is a graph showing the color penetration versus wavelength for a dual mode multiple ion sensor at different sodium ion concentrations (represented by pNa values) in accordance with Example 3 of the present invention. Figure 9 is a graph showing the relationship between the concentration of sodium ions (expressed in pNa) and the transmittance of a dual mode multiple ion sensor at a fixed wavelength (800 nm). In Figure 9, after linearization, the resulting linearity was 0.9979 and the sodium ion sensitivity was 2.242 T%/pNa.

【實施例4】量測雙模式多重離子感測器的氫離子感測度的方法(電化學模式)[Embodiment 4] Method for measuring hydrogen ion sensation of dual mode multi-ion sensor (electrochemical mode)

依序進行下列步驟,其中分別以四種含有不同氫離子濃度的溶液作為電解液,其分別為電解液A(pH=1)、電解液B(pH=3)及電解液C(pH=5)及電解液D(pH=7)。The following steps are sequentially performed, wherein four solutions containing different hydrogen ion concentrations are respectively used as the electrolyte, which are electrolyte A (pH=1), electrolyte B (pH=3), and electrolyte C (pH=5). And electrolyte D (pH = 7).

(a)提供實施例1的雙模式多重離子感測器及與其電性連接的一電化學量測系統,其中電化學量測系統包括:一參考電極、作為電極的一鉑棒、具有一陽離子(氫離子或鈉離子)濃度的一電解液、及一循環伏安儀,其中雙模式多重離子感測器、鉑棒與參考電極浸泡於電解液中且分別藉由一導線電性連接至循環伏安儀,且循環伏安儀在雙模式多重離子感測器與參考電極之間供應一掃描電壓,其中掃描電壓為-1~+1伏特;及(b)使用電化學量測系統量測雙模式多重離子感測器在一掃描電壓下的氧化還原電流密度。(a) providing the dual-mode multi-ion sensor of Embodiment 1 and an electrochemical measurement system electrically connected thereto, wherein the electrochemical measurement system comprises: a reference electrode, a platinum rod as an electrode, and a cation An electrolyte (hydrogen ion or sodium ion) concentration, and a cyclic voltammeter, wherein the dual mode multi-ion sensor, the platinum rod and the reference electrode are immersed in the electrolyte and electrically connected to the cycle by a wire An voltammeter, and the cyclic voltammeter supplies a scan voltage between the dual mode multiple ion sensor and the reference electrode, wherein the scan voltage is -1 to +1 volt; and (b) is measured using an electrochemical measurement system The redox current density of a dual mode multiple ion sensor at a scan voltage.

第10圖係顯示根據實施例4之在不同氫離子濃度(以pH值表示)下雙模式多重離子感測器的氧化還原電流密度與掃描電壓的關係圖。第11圖係顯示氫離子濃度(以pH值表示)與雙模式多重離子感應器在一固定電壓(-0.8伏 特)下的電流密度的關係圖。在第11圖中,在進行線性化之後,所得線性度為0.9814,且氫離子的感測度為0.3655毫安培/平方公分。Figure 10 is a graph showing the redox current density versus scan voltage for a dual mode multiple ion sensor at different hydrogen ion concentrations (expressed in pH) according to Example 4. Figure 11 shows the hydrogen ion concentration (in pH) and the dual-mode multi-ion sensor at a fixed voltage (-0.8 volts) A plot of current density under special conditions. In Fig. 11, after linearization, the obtained linearity was 0.9814, and the sensitivity of hydrogen ions was 0.3655 mA/cm 2 .

【實施例5】量測雙模式多重離子感測器的鈉離子感測度的方法(電化學模式)[Embodiment 5] Method for measuring sodium ion sensation of dual mode multi-ion sensor (electrochemical mode)

本實施例與實施例4相同,除了電解液換成含有不同鈉離子濃度的電解液,其分別為1 M、10-1 M、10-2 M、10-3 M、10-4 M及10-5 M的氯化鈉溶液。This embodiment is the same as the embodiment 4 except that the electrolyte is replaced with an electrolyte containing different sodium ion concentrations, which are 1 M, 10 -1 M, 10 -2 M, 10 -3 M, 10 -4 M and 10, respectively. -5 M sodium chloride solution.

第12圖係顯示根據實施例5之在不同鈉離子濃度(以pNa值表示)下雙模式多重離子感測器的氧化還原電流密度與掃描電壓的關係圖。第13圖係顯示鈉離子濃度(以pNaa值表示)與雙模式多重離子感應器在一固定電壓(-0.87伏特)下的電流密度的關係圖。在第13圖中,在進行線性化之後,所得線性度為0.9556,且鈉離子的感測度為0.0905毫安培/平方公分。Figure 12 is a graph showing the redox current density versus scan voltage for a dual mode multiple ion sensor at different sodium ion concentrations (expressed as pNa values) according to Example 5. Figure 13 is a graph showing the relationship between sodium ion concentration (expressed as pNaa value) and current density at a fixed voltage (-0.87 volts) for a dual mode multiple ion sensor. In Fig. 13, after linearization, the obtained linearity was 0.9556, and the sensitivity of sodium ions was 0.0905 mA/cm 2 .

綜上所述,本發明提供了一種新穎的雙模式多重離子感測器,其具有包括二氧化鈦的電變色膜,且具有無毒、化學性質穩定、耐酸鹼及價格低廉等優點。本發明亦提供以雙模式(光學模式及電化學模式)量測雙模式多重離子感測器的陽離子感測度的方法,且在得知陽離子感測度之後,可進一步量測具有未知陽離子濃度的電解液之陽離子濃度。此外,本發明雙模式的量測方法比僅以單一模式量測陽離子的感測度的方法更精確。In summary, the present invention provides a novel dual-mode multi-ion sensor having an electrochromic film comprising titanium dioxide and having the advantages of non-toxicity, chemical stability, acid and alkali resistance, and low cost. The present invention also provides a method for measuring the cationic sensitivity of a dual mode multi-ion sensor in a dual mode (optical mode and electrochemical mode), and after knowing the cationic sensitivity, the electrolysis having an unknown cation concentration can be further measured. The cation concentration of the liquid. Furthermore, the dual mode measurement method of the present invention is more accurate than the method of measuring the sensitivity of a cation only in a single mode.

10、15、20、25、30、35、40、50、60‧‧‧方法10, 15, 20, 25, 30, 35, 40, 50, 60 ‧ ‧ methods

100‧‧‧雙模式多重離子感測器100‧‧‧Double mode multi-ion sensor

101‧‧‧導電基板101‧‧‧Electrical substrate

101a‧‧‧導電膜101a‧‧‧Electrical film

101b‧‧‧透明基板101b‧‧‧Transparent substrate

102‧‧‧電變色膜102‧‧‧Electrochromic film

200‧‧‧電變色裝置200‧‧‧Electron-changing device

201‧‧‧電源供應器201‧‧‧Power supply

202、302‧‧‧電極202, 302‧‧‧ electrodes

203、303‧‧‧電解液203, 303‧‧‧ electrolyte

300‧‧‧電化學量測系統300‧‧‧Electrochemical Measurement System

301‧‧‧參考電極301‧‧‧ reference electrode

400、500‧‧‧方法400, 500‧‧‧ method

第1圖係繪示出根據本發明一實施例之一雙模式多重離子感測器的製造方法之剖面示意圖。1 is a cross-sectional view showing a method of fabricating a dual mode multiple ion sensor according to an embodiment of the present invention.

第2圖係繪示出根據本發明一實施例之一電變色裝置,其電性連接至雙模式多重離子感測器。2 is a diagram showing an electrochromic device electrically coupled to a dual mode multiple ion sensor in accordance with an embodiment of the present invention.

第3圖係繪示出根據本發明一實施例之量測雙模式多重離子感測器的陽離子感測度的方法之流程圖。3 is a flow chart showing a method of measuring the cationic sensitivity of a dual mode multiple ion sensor in accordance with an embodiment of the present invention.

第4圖係繪示出根據本發明一實施例之一電化學量測系統,其電性連接至雙模式多重離子感測器。4 is a diagram showing an electrochemical measurement system electrically coupled to a dual mode multiple ion sensor in accordance with an embodiment of the present invention.

第5圖係繪示出根據本發明另一實施例之量測雙模式多重離子感測器的陽離子感測度的方法之流程圖。Figure 5 is a flow chart showing a method of measuring the cationic sensitivity of a dual mode multiple ion sensor in accordance with another embodiment of the present invention.

第6圖係顯示根據實施例2之在不同氫離子濃度(以pH值表示)下雙模式多重離子感測器的著色穿透率與波長的關係圖。Figure 6 is a graph showing the color penetration versus wavelength for a dual mode multiple ion sensor at different hydrogen ion concentrations (expressed in pH) according to Example 2.

第7圖係顯示氫離子的濃度(以pH值表示)與雙模式多重離子感測器在一固定波長(800奈米)下的穿透率的關係圖。Figure 7 is a graph showing the relationship between the concentration of hydrogen ions (expressed in pH) and the transmittance of a dual mode multi-ion sensor at a fixed wavelength (800 nm).

第8圖係顯示根據本發明實施例3之在不同鈉離子濃度(以pNa值表示)下雙模式多重離子感測器的著色穿透率與波長的關係圖。Figure 8 is a graph showing the color penetration versus wavelength for a dual mode multiple ion sensor at different sodium ion concentrations (represented by pNa values) in accordance with Example 3 of the present invention.

第9圖係顯示鈉離子濃度(以pNa值表示)與雙模式多重離子感測器在一固定波長(800奈米)下的穿透率的關係圖。Figure 9 shows a plot of sodium ion concentration (expressed as pNa) versus permeability of a dual mode multiple ion sensor at a fixed wavelength (800 nm).

第10圖係顯示根據實施例4之在不同氫離子濃度(以 pH值表示)下雙模式多重離子感測器的氧化還原電流密度與掃描電壓的關係圖。Figure 10 shows the different hydrogen ion concentrations according to Example 4 (in The pH value is a plot of the redox current density of the lower dual mode multiple ion sensor versus the scan voltage.

第11圖係顯示氫離子濃度(以pH值表示)與雙模式多重離子感應器在一固定電壓(-0.8伏特)下的電流密度的關係圖。Figure 11 is a graph showing the relationship between the hydrogen ion concentration (in pH) and the current density of a dual mode multi-ion sensor at a fixed voltage (-0.8 volts).

第12圖係顯示根據實施例5之在不同鈉離子濃度(以pNa值表示)下雙模式多重離子感測器的氧化還原電流密度與掃描電壓的關係圖。Figure 12 is a graph showing the redox current density versus scan voltage for a dual mode multiple ion sensor at different sodium ion concentrations (expressed as pNa values) according to Example 5.

第13圖係顯示鈉離子濃度(以pNa值表示)與雙模式多重離子感應器在一固定電壓(-0.87伏特)下的電流密度的關係圖。Figure 13 is a graph showing the relationship between sodium ion concentration (expressed as pNa value) and current density at a fixed voltage (-0.87 volts) for a dual mode multiple ion sensor.

100‧‧‧雙模式多重離子感測器100‧‧‧Double mode multi-ion sensor

101‧‧‧導電基板101‧‧‧Electrical substrate

101a‧‧‧導電膜101a‧‧‧Electrical film

101b‧‧‧透明基板101b‧‧‧Transparent substrate

102‧‧‧電變色膜102‧‧‧Electrochromic film

Claims (11)

一種量測雙模式多重離子感測器的陽離子感測度的方法,依序包括下列步驟:(a)提供一雙模式多重離子感測器,其包括:一導電基板;及一電變色膜,設置於該導電基板上,其中該電變色膜包括二氧化鈦;(b)將該雙模式多重離子感測器浸泡於一電解液中且使該雙模式多重離子感測器進行一著色反應,其中該電解液具有一陽離子濃度;(c)量測該雙模式多重離子感測器在一波長範圍所對應的著色穿透率;(d)將該雙模式多重離子感測器浸泡於該電解液中進行一去色反應;(e)量測該雙模式多重離子感測器在該波長範圍的一去色穿透率;(f)改變該電解液的陽離子濃度,且重複(b)~(e)的步驟;及(g)根據該步驟(c)及該步驟(f)所量測的著色穿透率以決定該雙模式多重離子感測器的一陽離子感測度。 A method for measuring a cationic sensitivity of a dual mode multiple ion sensor comprises the following steps: (a) providing a dual mode multiple ion sensor comprising: a conductive substrate; and an electrochromic film, setting On the conductive substrate, wherein the electrochromic film comprises titanium dioxide; (b) immersing the dual mode multiple ion sensor in an electrolyte and subjecting the dual mode multiple ion sensor to a coloring reaction, wherein the electrolysis The liquid has a cation concentration; (c) measuring the color penetration of the dual-mode multi-ion sensor in a wavelength range; (d) immersing the dual-mode multi-ion sensor in the electrolyte a decolorization reaction; (e) measuring a decolorization transmittance of the dual mode multi-ion sensor in the wavelength range; (f) changing the cation concentration of the electrolyte, and repeating (b) to (e) And (g) determining a cationic sensitivity of the dual mode multiple ion sensor based on the color penetration measured by the step (c) and the step (f). 如申請專利範圍第1項所述之量測雙模式多重離子感測器的陽離子感測度的方法,其中該陽離子包括氫離子、鈉離子、鉀離子或鋰離子。 The method of measuring the cation sensitivity of a dual mode multi-ion sensor as described in claim 1, wherein the cation comprises hydrogen ions, sodium ions, potassium ions or lithium ions. 如申請專利範圍第1項所述之量測雙模式多重離 子感測器的陽離子感測度的方法,其中使用一紫外光-可見光光譜分析儀以量測上述著色穿透率及去色穿透率。 The dual mode multiple separation as described in item 1 of the patent application scope A method of cationic sensitivity of a sub-sensor, wherein an ultraviolet-visible light spectrum analyzer is used to measure the above-described coloring transmittance and color-removing transmittance. 如申請專利範圍第1項所述之量測雙模式多重離子感測器的陽離子感測度的方法,其中藉由分別對該雙模式多重離子感測器施加一正電位以進行步驟(b)的該著色反應及施加一負電位以進行步驟(c)的該去色反應。 The method of measuring the cation sensitivity of a dual mode multi-ion sensor as described in claim 1, wherein the step (b) is performed by applying a positive potential to the dual mode multi-ion sensor, respectively. The coloring reaction and application of a negative potential to carry out the decolorization reaction of step (c). 如申請專利範圍第4項所述之量測雙模式多重離子感測器的陽離子感測度的方法,其中該正電位及該負電位為0.5~3伏特。 The method for measuring the cation sensitivity of a dual mode multi-ion sensor as described in claim 4, wherein the positive potential and the negative potential are 0.5 to 3 volts. 如申請專利範圍第1項所述之量測雙模式多重離子感測器的陽離子感測度的方法,其中該著色反應進行時間為60~120秒,且該去色反應進行時間為240~360秒。 The method for measuring the cation sensitivity of the dual mode multi-ion sensor as described in claim 1, wherein the coloring reaction is performed for 60 to 120 seconds, and the decolorization reaction is performed for 240 to 360 seconds. . 如申請專利範圍第1項所述之量測雙模式多重離子感測器的陽離子感測度的方法,其中該波長範圍為300~900奈米。 A method of measuring the cation sensitivity of a dual mode multi-ion sensor as described in claim 1, wherein the wavelength range is from 300 to 900 nm. 一種量測雙模式多重離子感測器的陽離子感測度的方法,依序包括下列步驟:(a)提供一雙模式多重離子感測器,其包括:一導電基板;及一電變色膜,設置於該導電基板上,其中該電變色膜包括二氧化鈦;(b)將該雙模式多重離子感測器浸泡於一電解液中且量測該雙模式多重離子感測器在一掃描電壓下的氧化還原電流密度,其中該電解液具有一陽離子濃度;(c)改變該電解液的陽離子濃度,且重複(b)的步驟; 及(d)根據該步驟(b)及該步驟(c)所量測的氧化還原電流密度以決定該雙模式多重離子感測器的一陽離子感測度。 A method for measuring a cationic sensitivity of a dual mode multiple ion sensor comprises the following steps: (a) providing a dual mode multiple ion sensor comprising: a conductive substrate; and an electrochromic film, setting On the conductive substrate, wherein the electrochromic film comprises titanium dioxide; (b) immersing the dual mode multiple ion sensor in an electrolyte and measuring the oxidation of the dual mode multi-ion sensor at a scan voltage Reducing the current density, wherein the electrolyte has a cation concentration; (c) changing the cation concentration of the electrolyte, and repeating the step of (b); And (d) determining the cation sensitivity of the dual mode multiple ion sensor according to the redox current density measured in the step (b) and the step (c). 如申請專利範圍第8項所述之量測雙模式多重離子感測器的陽離子感測度的方法,其中該陽離子包括氫離子、鈉離子、鉀離子或鋰離子。 A method of measuring the cationic sensitivity of a dual mode multi-ion sensor as described in claim 8 wherein the cation comprises a hydrogen ion, a sodium ion, a potassium ion or a lithium ion. 如申請專利範圍第8項所述之量測雙模式多重離子感測器的陽離子感測度的方法,其中該掃描電壓為-2.5~+2.5伏特。 A method of measuring the cation sensitivity of a dual mode multi-ion sensor as described in claim 8 wherein the scan voltage is -2.5 to +2.5 volts. 如申請專利範圍第8項所述之量測雙模式多重離子感測器的陽離子感測度的方法,其中以一循環伏安儀提供該掃描電壓。 A method of measuring the cationic sensitivity of a dual mode multiple ion sensor as described in claim 8 wherein the scan voltage is provided by a cyclic voltammeter.
TW101129161A 2012-08-10 2012-08-10 Dual mode multi-ion detector and fabrication method thereof and method for measuring cation sensitivity thereof TWI485386B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101129161A TWI485386B (en) 2012-08-10 2012-08-10 Dual mode multi-ion detector and fabrication method thereof and method for measuring cation sensitivity thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101129161A TWI485386B (en) 2012-08-10 2012-08-10 Dual mode multi-ion detector and fabrication method thereof and method for measuring cation sensitivity thereof

Publications (2)

Publication Number Publication Date
TW201407151A TW201407151A (en) 2014-02-16
TWI485386B true TWI485386B (en) 2015-05-21

Family

ID=50550430

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101129161A TWI485386B (en) 2012-08-10 2012-08-10 Dual mode multi-ion detector and fabrication method thereof and method for measuring cation sensitivity thereof

Country Status (1)

Country Link
TW (1) TWI485386B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768058B (en) * 2017-06-12 2022-06-21 日商愛宕股份有限公司 Liquid quality measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646681B (en) * 2022-05-23 2022-08-23 中国科学院烟台海岸带研究所 Visual detection method of solid contact type ion selective electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770031A (en) * 2004-11-04 2006-05-10 柯尼卡美能达商用科技株式会社 Image forming method and image forming apparatus
TWI273110B (en) * 1999-08-11 2007-02-11 Dainippon Printing Co Ltd Highly stable resin, curable resin composition, method for producing the same, color filter and liquid crystal pane
TW200839402A (en) * 2006-12-04 2008-10-01 3M Innovative Properties Co Electrochromic device
TW200928320A (en) * 2007-12-28 2009-07-01 Qisda Corp Fluid measuring apparatus
TW201024884A (en) * 2008-12-16 2010-07-01 Univ Cheng Shiu Electrochromic device and its fabrication method
US20110149367A1 (en) * 2008-05-07 2011-06-23 Kyushu University Electrochromic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI273110B (en) * 1999-08-11 2007-02-11 Dainippon Printing Co Ltd Highly stable resin, curable resin composition, method for producing the same, color filter and liquid crystal pane
CN1770031A (en) * 2004-11-04 2006-05-10 柯尼卡美能达商用科技株式会社 Image forming method and image forming apparatus
TW200839402A (en) * 2006-12-04 2008-10-01 3M Innovative Properties Co Electrochromic device
TW200928320A (en) * 2007-12-28 2009-07-01 Qisda Corp Fluid measuring apparatus
US20110149367A1 (en) * 2008-05-07 2011-06-23 Kyushu University Electrochromic material
TW201024884A (en) * 2008-12-16 2010-07-01 Univ Cheng Shiu Electrochromic device and its fabrication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768058B (en) * 2017-06-12 2022-06-21 日商愛宕股份有限公司 Liquid quality measuring device

Also Published As

Publication number Publication date
TW201407151A (en) 2014-02-16

Similar Documents

Publication Publication Date Title
Jarolímová et al. Capacitive model for coulometric readout of ion-selective electrodes
Hu et al. Rational design of all-solid-state ion-selective electrodes and reference electrodes
Vanamo et al. New signal readout principle for solid-contact ion-selective electrodes
van de Velde et al. Solid contact potassium selective electrodes for biomedical applications–a review
Zou et al. Solid contact ion-selective electrodes with a well-controlled Co (II)/Co (III) redox buffer layer
Papp et al. Potential reproducibility of potassium-selective electrodes having perfluorinated alkanoate side chain functionalized poly (3, 4-ethylenedioxytiophene) as a hydrophobic solid contact
Paczosa-Bator et al. Potentiometric sensors with carbon black supporting platinum nanoparticles
Khramov et al. Electrogenerated Chemiluminescence of Tris (2, 2 ‘-bipyridyl) ruthenium (II) Ion-Exchanged in Nafion− Silica Composite Films
Kurzweil Metal oxides and ion-exchanging surfaces as pH sensors in liquids: State-of-the-art and outlook
Pellitero et al. Quantitative self-powered electrochromic biosensors
Pięk et al. All-solid-state nitrate selective electrode with graphene/tetrathiafulvalene nanocomposite as high redox and double layer capacitance solid contact
Jaworska et al. Introducing cobalt (II) porphyrin/cobalt (III) corrole containing transducers for improved potential reproducibility and performance of all-solid-state ion-selective electrodes
Michalska Optimizing the analytical performance and construction of ion-selective electrodes with conducting polymer-based ion-to-electron transducers
JP6184322B2 (en) System and method for improved stability of electrochemical sensors
Paczosa-Bator et al. Application of nanostructured TCNQ to potentiometric ion-selective K+ and Na+ electrodes
Wadhawan et al. Microelectrode studies of the reaction of superoxide with carbon dioxide in dimethyl sulfoxide
Wardak et al. Application of ionic liquid to the construction of Cu (II) ion-selective electrode with solid contact
Salazar et al. Characterization and application of a new pH sensor based on magnetron sputtered porous WO3 thin films deposited at oblique angles
CN105531584B (en) ion-selective electrode
CN102636532A (en) Medical all-solid-state potassium ion selective sensor and preparation method thereof
Tavares et al. Self-powered and self-signalled autonomous electrochemical biosensor applied to cancinoembryonic antigen determination
Wang et al. All-solid-state blood calcium sensors based on screen-printed poly (3, 4-ethylenedioxythiophene) as the solid contact
KR20130092571A (en) Systems and methods for improved accuracy for temperature correction of glucose results for control solution
Urbanowicz et al. A miniaturized solid-contact potentiometric multisensor platform for determination of ionic profiles in human saliva
Ozer et al. All-solid-state potassium-selective sensor based on carbon black modified thermoplastic electrode