TWI481021B - Semiconductor device and manufacturing method and operating method for the same - Google Patents

Semiconductor device and manufacturing method and operating method for the same Download PDF

Info

Publication number
TWI481021B
TWI481021B TW101145386A TW101145386A TWI481021B TW I481021 B TWI481021 B TW I481021B TW 101145386 A TW101145386 A TW 101145386A TW 101145386 A TW101145386 A TW 101145386A TW I481021 B TWI481021 B TW I481021B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor device
solid electrolyte
ion supply
substrate
Prior art date
Application number
TW101145386A
Other languages
Chinese (zh)
Other versions
TW201423971A (en
Inventor
Feng Ming Lee
Yu Yu Lin
Ming Hsiu Lee
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW101145386A priority Critical patent/TWI481021B/en
Publication of TW201423971A publication Critical patent/TW201423971A/en
Application granted granted Critical
Publication of TWI481021B publication Critical patent/TWI481021B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

半導體裝置及其製造方法與操作方法Semiconductor device, manufacturing method and operating method thereof

本發明係有關於半導體裝置及其製造方法與操作方法,特別係有關於具有可變臨界電壓的半導體裝置及其製造方法與操作方法。The present invention relates to a semiconductor device, a method of fabricating the same, and a method of operating the same, and more particularly to a semiconductor device having a variable threshold voltage, a method of fabricating the same, and a method of operating the same.

隨著半導體技術的進步,電子元件的微縮能力不斷提高,使得電子產品能夠在維持固定大小,甚至更小的體積之下,能夠擁有更多的功能。而隨著資訊的處理量愈來愈高,對於大容量、小體積的記憶體需求也日益殷切。With the advancement of semiconductor technology, the shrinking capability of electronic components has been increasing, enabling electronic products to have more functions while maintaining a fixed size or even a smaller volume. As the processing volume of information becomes higher and higher, the demand for large-capacity and small-volume memory is also growing.

目前的可讀寫記憶體係以電晶體結構配合記憶單元作資訊的儲存,但是此種記憶體架構隨著製造技術的進步,可微縮性已經達到一個瓶頸。因此先進的記憶體架構不斷的被提出,例如相變化隨機存取記憶體(phase change random access memory,PCRAM)、磁性隨機存取記憶體(magnetic random access memory,MRAM)、電阻式隨機存取記憶體(resistive random access memory,RRAM)、導電橋式隨機存取記憶體(conductive bridging RAM,CBRAM)等等。The current readable and writable memory system uses a transistor structure in conjunction with a memory unit for information storage, but this memory architecture has reached a bottleneck with the advancement of manufacturing technology. Therefore, advanced memory architectures have been proposed, such as phase change random access memory (PCRAM), magnetic random access memory (MRAM), and resistive random access memory. Resistive random access memory (RRAM), conductive bridging RAM (CBRAM), and the like.

然而,目前記憶裝置在操作效率上仍需改進。However, current memory devices still need to be improved in operational efficiency.

提供一種半導體裝置。半導體裝置包括基底、摻雜區域與堆疊結構。摻雜區域位於基底中。堆疊結構位於基底 上。堆疊結構包括介電層、電極層、固態電解質層與離子供應層。A semiconductor device is provided. The semiconductor device includes a substrate, a doped region, and a stacked structure. The doped regions are located in the substrate. Stacked structure on the substrate on. The stacked structure includes a dielectric layer, an electrode layer, a solid electrolyte layer, and an ion supply layer.

提供一種製造半導體裝置的方法。方法包括以下步驟。提供基底。形成摻雜區域位於基底中。形成堆疊結構位於基底上。堆疊結構包括介電層、電極層、固態電解質層與離子供應層。A method of fabricating a semiconductor device is provided. The method includes the following steps. A substrate is provided. A doped region is formed in the substrate. A stacked structure is formed on the substrate. The stacked structure includes a dielectric layer, an electrode layer, a solid electrolyte layer, and an ion supply layer.

提供一種半導體裝置的操作方法。方法包括以下步驟。提供第一偏壓至上述半導體裝置的離子供應層。提供第二偏壓至離子供應層。第一偏壓的極性係相反於第二偏壓的極性。A method of operating a semiconductor device is provided. The method includes the following steps. A first bias voltage is supplied to the ion supply layer of the semiconductor device. A second bias is provided to the ion supply layer. The polarity of the first bias is opposite to the polarity of the second bias.

下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the preferred embodiment will be described in detail with reference to the accompanying drawings.

第1圖繪示根據一實施例之半導體裝置的剖面圖。請參照第1圖,堆疊結構102係形成在半導體基底104上。堆疊結構102可包括由下往上依序形成的介電層106、電極層108、固態電解質層110與離子供應層112。於實施例中,固態電解質層110係實體接觸在電極層108與離子供應層112之間。源極114與汲極116分別形成在堆疊結構102之相反側上的半導體基底104中。1 is a cross-sectional view of a semiconductor device in accordance with an embodiment. Referring to FIG. 1, a stacked structure 102 is formed on a semiconductor substrate 104. The stacked structure 102 may include a dielectric layer 106, an electrode layer 108, a solid electrolyte layer 110, and an ion supply layer 112 that are sequentially formed from bottom to top. In an embodiment, the solid electrolyte layer 110 is physically in contact between the electrode layer 108 and the ion supply layer 112. Source 114 and drain 116 are formed in semiconductor substrate 104 on opposite sides of stacked structure 102, respectively.

半導體基底104可包括矽基材、絕緣層上覆矽(SOI)、半導體磊晶層或其他合適的材料。The semiconductor substrate 104 can include a germanium substrate, an overlying silicon oxide (SOI), a semiconductor epitaxial layer, or other suitable material.

介電層106可包括氧化物、氮化物例如氧化矽(SiO2)、氮化矽、氮氧化矽、金屬氧化物、高介電常數材料、或其他合適的材料。介電層106可為單一層薄膜例如 單一層氧化物薄膜、或多層薄膜例如ONO結構、或其他合適的結構。介電層106可以沉積、熱氧化、熱氮化等的方式形成。Dielectric layer 106 can include an oxide, a nitride such as hafnium oxide (SiO2), tantalum nitride, hafnium oxynitride, a metal oxide, a high dielectric constant material, or other suitable material. Dielectric layer 106 can be a single layer of film, for example A single layer of oxide film, or a multilayer film such as an ONO structure, or other suitable structure. The dielectric layer 106 can be formed by deposition, thermal oxidation, thermal nitridation, or the like.

電極層108可包括多晶矽或金屬,例如氮化鈦(TiN)、氮化鉭(TaN)、氮化鎢(WN)等適合的材料。電極層108可為單一層薄膜或多層薄膜例如TiN/TaN/WN結構、或其他合適的結構。The electrode layer 108 may include polysilicon or a metal such as titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), or the like. Electrode layer 108 can be a single layer film or a multilayer film such as a TiN/TaN/WN structure, or other suitable structure.

固態電解質層110的材質可選擇具有低的電子傳導性(low electron conductivity)而具有高的離子傳導性(high ion conductivity)。固態電解質層110可包括氧化物、氮化物例如氧化矽(SiO2)、氮化矽、氮氧化矽、金屬氧化物、高介電常數材料、或其他合適的材料。固態電解質層110可包括氧化鉿(Hf-oxide)、氧化鋯(Zr-oxide)、或氧化鉭(Ta-oxide)等。固態電解質層110可為單一層薄膜結構或多層薄膜結構。固態電解質層110可以沉積、熱氧化、熱氮化等的適合的方式形成。The material of the solid electrolyte layer 110 may be selected to have low electron conductivity and high ion conductivity. The solid electrolyte layer 110 may include an oxide, a nitride such as hafnium oxide (SiO2), tantalum nitride, hafnium oxynitride, a metal oxide, a high dielectric constant material, or other suitable materials. The solid electrolyte layer 110 may include hafnium oxide (Hf-oxide), zirconium oxide (Zr-oxide), or tantalum oxide (Ta-oxide) or the like. The solid electrolyte layer 110 may be a single layer thin film structure or a multilayer thin film structure. The solid electrolyte layer 110 may be formed in a suitable manner of deposition, thermal oxidation, thermal nitridation, or the like.

離子供應層112用以供應可移動的離子至固態電解質層110。於實施例中,離子供應層112對於離子的可溶性係大於固態電解質層110對於離子的可溶性。於一些實施例中,離子供應層112包括含有金屬材料的硫屬(chalcogenide)化物,例如含有銅、銀、鋅等金屬的硫屬化物。離子供應層112可包括含有金屬之鍺銻碲化物(Germanium Antimony Telluride;GST)的高導電性材料,例如Cu-GST、Au-GST、Zn-GST等等。供應的離子可包括銅離子、銀離子、鋅離子等的金屬離子。The ion supply layer 112 serves to supply movable ions to the solid electrolyte layer 110. In an embodiment, the soluble supply of ion supply layer 112 to ions is greater than the solubility of solid electrolyte layer 110 to ions. In some embodiments, ion supply layer 112 includes a chalcogenide containing a metallic material, such as a chalcogenide containing a metal such as copper, silver, zinc, or the like. The ion supply layer 112 may include a highly conductive material containing a Germanium Antimony Telluride (GST) such as Cu-GST, Au-GST, Zn-GST, or the like. The supplied ions may include metal ions such as copper ions, silver ions, zinc ions, and the like.

於一實施例中,可在形成介電層106與電極層108之後形成源極114、汲極116。然後,在電極層108上方形成堆疊結構102其他的薄膜例如固態電解質層110與離子供應層112。於其他實施例中,亦可在堆疊結構102所有的薄膜都形成之後形成源極114、汲極116。可在適當的時機進行退火步驟,例如在堆疊結構102所有薄膜形成完之後以400℃進行退火20分鐘。In an embodiment, the source 114 and the drain 116 may be formed after the dielectric layer 106 and the electrode layer 108 are formed. Then, other films of the stacked structure 102, such as the solid electrolyte layer 110 and the ion supply layer 112, are formed over the electrode layer 108. In other embodiments, the source 114 and the drain 116 may also be formed after all of the thin films of the stacked structure 102 are formed. The annealing step can be performed at an appropriate timing, for example, annealing at 400 ° C for 20 minutes after all the films of the stacked structure 102 are formed.

根據實施例之半導體裝置的製造方法簡單、堆疊結構的設計也能減少半導體裝置的製造面積,有助於微縮化的發展。舉例來說,堆疊結構中的各薄膜可微縮至5nm節點(node)的臨界尺寸。例如5nm節點之固態電解質層中的電中性原子儲存不會發生庫倫阻塞效應(coulomb blockade effect),能提高裝置的操作效能。The manufacturing method of the semiconductor device according to the embodiment is simple, and the design of the stacked structure can also reduce the manufacturing area of the semiconductor device and contribute to the development of miniaturization. For example, each film in the stacked structure can be shrunk to a critical size of 5 nm node. For example, the storage of electrically neutral atoms in the solid electrolyte layer of the 5 nm node does not cause a coulomb blockade effect, which can improve the operational efficiency of the device.

於實施例中,半導體裝置可視為合併電晶體(transistor)與電化學(electrochemical;EC)裝置構成的非揮發性記憶體(nonvolatile memory)。換句話說,半導體基底104、介電層106、電極層108、源極114與汲極116構成的裝置結構可視為電晶體。電極層108、固態電解質層110與離子供應層112構成的結構裝置可視為電化學裝置。In an embodiment, the semiconductor device can be regarded as a nonvolatile memory composed of a transistor and an electrochemical (EC) device. In other words, the device structure formed by the semiconductor substrate 104, the dielectric layer 106, the electrode layer 108, the source 114, and the drain 116 can be regarded as a transistor. The structural device composed of the electrode layer 108, the solid electrolyte layer 110, and the ion supply layer 112 can be regarded as an electrochemical device.

於實施例中,電極層108係用作浮動閘極電極,離子供應層112係用作控制閘極電極。換句話說,堆疊結構102中係只有離子供應層112耦接至控制電極端118。電極層108係浮接。半導體基底104、介電層106與電極層108係構成固定電容的裝置結構。於實施例中,電極層108、固態電解質層110與離子供應層112係構成可變電容的裝 置結構。In an embodiment, electrode layer 108 is used as a floating gate electrode and ion supply layer 112 is used as a control gate electrode. In other words, only the ion supply layer 112 is coupled to the control electrode terminal 118 in the stacked structure 102. The electrode layer 108 is floating. The semiconductor substrate 104, the dielectric layer 106, and the electrode layer 108 constitute a device structure of a fixed capacitance. In the embodiment, the electrode layer 108, the solid electrolyte layer 110 and the ion supply layer 112 constitute a variable capacitor. Set the structure.

舉例來說,半導體裝置的操作方法包括程式化、讀取與抹除等的步驟。For example, the method of operation of the semiconductor device includes steps of stylization, reading and erasing, and the like.

請參照第2圖,程式化半導體裝置的方法可包括從控制電極端118提供第一偏壓V1至半導體裝置的離子供應層112。舉例來說,第一偏壓V1係為正偏壓,例如正偏壓脈衝,這可相對於半導體基底104而論,例如半導體基底104係接地。Referring to FIG. 2, the method of programming a semiconductor device can include providing a first bias voltage V1 from the control electrode terminal 118 to the ion supply layer 112 of the semiconductor device. For example, the first bias voltage V1 is a positive bias voltage, such as a positive bias pulse, which may be relative to the semiconductor substrate 104, such as the semiconductor substrate 104 being grounded.

請參照第2圖,提供第一偏壓V1的步驟係造成半導體基底104中的帶電荷載子120穿隧過介電層106(亦即用作穿隧層)至電極層108並轉移至固態電解質層110中。帶電荷載子120包括例如電子。提供第一偏壓V1的步驟係同時造成離子供應層112提供離子122移動至固態電解質層110中。離子122包括金屬離子例如帶正電的銅離子、銀離子、或鋅離子。Referring to FIG. 2, the step of providing the first bias voltage V1 causes the charged carriers 120 in the semiconductor substrate 104 to tunnel through the dielectric layer 106 (ie, used as a tunneling layer) to the electrode layer 108 and transfer to the solid electrolyte. In layer 110. Charged charge carriers 120 include, for example, electrons. The step of providing the first bias voltage V1 simultaneously causes the ion supply layer 112 to provide ions 122 to move into the solid electrolyte layer 110. Ions 122 include metal ions such as positively charged copper ions, silver ions, or zinc ions.

請參照第3圖,舉例來說,藉由第一偏壓V1移動至固態電解質層110中的帶電荷載子120與離子122係結合成導電介質124累積於固態電解質層110(亦即用作儲存層)中。導電介質124可包括電中性(electrically neutral)的金屬原子例如銅原子、銀原子或鋅原子等(亦即固態電解質層110用作原子儲存層)。Referring to FIG. 3, for example, the charged carrier 120 moved to the solid electrolyte layer 110 by the first bias voltage V1 is combined with the ion 122 to form a conductive medium 124 accumulated in the solid electrolyte layer 110 (ie, used as a storage). In the layer). The conductive medium 124 may include an electrically neutral metal atom such as a copper atom, a silver atom, or a zinc atom (ie, the solid electrolyte layer 110 functions as an atomic storage layer).

藉由提供第一偏壓V1而在固態電解質層110中產生的導電介質124係使得固態電解質層110的導電性提高,換句話說,介電常數(dielectric constant)、電容率降低。提供第一偏壓V1至離子供應層112的步驟係造成由電極層 108、固態電解質層110與離子供應層112所構成之裝置結構具有第一電容值(capacitance)Cs1。此外,半導體基底104、介電層106與電極層108所構成之裝置結構具有電容值Cd1。具有電性串聯關係的第一電容值Cs1與電容值Cd1使得半導體裝置具有第一臨界電壓Vt1。The conductive medium 124 generated in the solid electrolyte layer 110 by providing the first bias voltage V1 causes the conductivity of the solid electrolyte layer 110 to be improved, in other words, the dielectric constant and the permittivity are lowered. The step of providing the first bias voltage V1 to the ion supply layer 112 is caused by the electrode layer 108. The device structure formed by the solid electrolyte layer 110 and the ion supply layer 112 has a first capacitance Cs1. Further, the device structure constituted by the semiconductor substrate 104, the dielectric layer 106 and the electrode layer 108 has a capacitance value Cd1. The first capacitance value Cs1 and the capacitance value Cd1 having an electrical series relationship cause the semiconductor device to have the first threshold voltage Vt1.

於一實施例中,在程式化半導體裝置之後,可讀取半導體裝置的程式化狀態。舉例來說,可從源極電極端126與汲極電極端128提供偏壓至源極114與汲極116來進行讀取步驟,例如提供絕對值大於零的偏壓至源極114,並使汲極116接地,或使用其他的偏壓配置方法。In one embodiment, after stylizing the semiconductor device, the stylized state of the semiconductor device can be read. For example, a bias voltage can be applied from the source electrode terminal 126 and the drain electrode terminal 128 to the source 114 and the drain 116 for a read step, such as providing a bias voltage greater than zero to the source 114, and The drain 116 is grounded or other biasing configuration method is used.

請參照第4圖,抹除半導體裝置的方法可包括從控制電極端118提供第二偏壓V2至堆疊結構102的離子供應層112。用以程式化的第一偏壓V1的極性係相反於用以抹除的第二偏壓V2的極性。舉例來說,第二偏壓V2為負偏壓,例如負偏壓脈衝,這可相對於半導體基底104而論,例如半導體基底104係接地。在實施例中,抹除步驟可在程式化步驟之後、或讀取程式化狀態的步驟之後進行。Referring to FIG. 4, the method of erasing a semiconductor device can include providing a second bias voltage V2 from the control electrode terminal 118 to the ion supply layer 112 of the stacked structure 102. The polarity of the first bias voltage V1 for stylization is opposite to the polarity of the second bias voltage V2 for erasing. For example, the second bias voltage V2 is a negative bias voltage, such as a negative bias pulse, which may be relative to the semiconductor substrate 104, such as the semiconductor substrate 104 being grounded. In an embodiment, the erasing step can be performed after the stylization step or after the step of reading the stylized state.

請參照第4圖,提供第二偏壓V2的步驟係造成固態電解質層110中的導電介質124(第3圖)分解回電性相反的帶電荷載子120與離子122。再者,帶電荷載子120從固態電解質層110轉移至電極層108並穿隧過介電層106至半導體基底104中。帶電荷載子120包括例如電子。此外,離子122從固態電解質層110吸引回至離子供應層112中。離子122包括金屬離子例如帶正電的銅離子、銀離子或鋅離子等。透過提供第二偏壓V2至離子供應層112,半 導體裝置又回復到如第1圖所示的狀態。Referring to FIG. 4, the step of providing the second bias voltage V2 causes the conductive medium 124 (Fig. 3) in the solid electrolyte layer 110 to decompose the charged carriers 120 and ions 122 having opposite electrical returns. Furthermore, charged carrier 120 is transferred from solid electrolyte layer 110 to electrode layer 108 and through dielectric layer 106 to semiconductor substrate 104. Charged charge carriers 120 include, for example, electrons. Further, ions 122 are attracted back from the solid electrolyte layer 110 into the ion supply layer 112. The ions 122 include metal ions such as positively charged copper ions, silver ions or zinc ions, and the like. By providing a second bias voltage V2 to the ion supply layer 112, half The conductor device is returned to the state shown in Fig. 1.

藉由第二偏壓V2移除固態電解質層110中的導電介質124,使得固態電解質層110的導電性降低,換句話說,介電常數提高。因此,提供第二偏壓V2至離子供應層112的步驟係造成由電極層108、固態電解質層110與離子供應層112所構成之裝置結構具有第二電容值Cs2,再者,半導體基底104、介電層106與電極層108所構成之裝置結構具有電容值Cd2。具有電性串聯關係的第二電容值Cs2與電容值Cd2使得半導體裝置具有第二臨界電壓Vt2。第二偏壓V2造成的電容值Cd2係相同於第一偏壓V1造成的電容值Cd1。第二偏壓V2造成的第二電容值Cs2係不同於第一偏壓V1造成的第一電容值Cs1,亦即,第一偏壓對半導體裝置造成的耦合率(coupling ratio)係不同於第二偏壓對半導體裝置造成的耦合率。因此,半導體裝置具有第二臨界電壓Vt2係不同於第一臨界電壓Vt1,因此可對應至不同的儲存狀態。於實施例中,第一電容值Cs1係大於第二電容值Cs2,亦即,第一偏壓對半導體裝置造成的耦合率係大於第二偏壓對半導體裝置造成的耦合率。此外,第一臨界電壓Vt1係小於第二臨界電壓Vt2。The conductive medium 124 in the solid electrolyte layer 110 is removed by the second bias voltage V2, so that the conductivity of the solid electrolyte layer 110 is lowered, in other words, the dielectric constant is increased. Therefore, the step of providing the second bias voltage V2 to the ion supply layer 112 causes the device structure composed of the electrode layer 108, the solid electrolyte layer 110 and the ion supply layer 112 to have a second capacitance value Cs2, and further, the semiconductor substrate 104, The device structure formed by the dielectric layer 106 and the electrode layer 108 has a capacitance value Cd2. The second capacitance value Cs2 and the capacitance value Cd2 having an electrical series relationship cause the semiconductor device to have the second threshold voltage Vt2. The capacitance value Cd2 caused by the second bias voltage V2 is the same as the capacitance value Cd1 caused by the first bias voltage V1. The second capacitance value Cs2 caused by the second bias voltage V2 is different from the first capacitance value Cs1 caused by the first bias voltage V1, that is, the coupling ratio of the first bias voltage to the semiconductor device is different from the first The coupling ratio of the two bias voltages to the semiconductor device. Therefore, the semiconductor device has the second threshold voltage Vt2 which is different from the first threshold voltage Vt1 and thus can correspond to different storage states. In an embodiment, the first capacitance value Cs1 is greater than the second capacitance value Cs2, that is, the coupling ratio of the first bias voltage to the semiconductor device is greater than the coupling ratio of the second bias voltage to the semiconductor device. Further, the first threshold voltage Vt1 is smaller than the second threshold voltage Vt2.

於一實施例中,在抹除半導體裝置之後,可讀取半導體裝置的抹除狀態。舉例來說,可從源極電極端126與汲極電極端128提供偏壓至源極114與汲極116來進行讀取步驟,例如提供絕對值大於零的偏壓至源極114,並使汲極116接地,或使用其他的偏壓配置方法。In an embodiment, after erasing the semiconductor device, the erased state of the semiconductor device can be read. For example, a bias voltage can be applied from the source electrode terminal 126 and the drain electrode terminal 128 to the source 114 and the drain 116 for a read step, such as providing a bias voltage greater than zero to the source 114, and The drain 116 is grounded or other biasing configuration method is used.

根據實施例之半導體裝置可視為1T記憶體。在一些 實施例中,兩端點(two terminal)RRAM裝置可使用根據實施例之半導體裝置,取代使用一般電荷儲存結構的1D1R或1T1R的裝置,而不需要額外的驅動裝置。程式化與抹除步驟的電流非常低,主要限制於穿隧電流。因此陣列可以設計成具有高單元密度並且裝置具有低的功耗率。The semiconductor device according to the embodiment can be regarded as a 1T memory. In some In an embodiment, a two terminal RRAM device may use a semiconductor device according to an embodiment instead of a 1D1R or 1T1R device using a general charge storage structure, without the need for an additional driving device. The current in the stylization and erase steps is very low, mainly limited by the tunneling current. Thus the array can be designed to have a high cell density and the device has a low power consumption rate.

於一實施例中,半導體裝置在程式化狀態與抹除狀態的電性曲線係如第5圖所示。其中程式化脈衝為12V/5us,而抹除脈衝為-13V/1ms。提供程式化脈衝得到的臨界電壓為1.4V @ 10nA。提供抹除脈衝得到的臨界電壓為2.4V @ 10nA。在此例中,程式化與抹除的臨界電壓差約為1V。In an embodiment, the electrical characteristics of the semiconductor device in the stylized state and the erased state are as shown in FIG. 5. The stylized pulse is 12V/5us, and the erase pulse is -13V/1ms. The threshold voltage obtained by providing a stylized pulse is 1.4V @ 10nA. The threshold voltage obtained by providing the erase pulse is 2.4V @ 10nA. In this example, the threshold voltage difference between stylization and erase is approximately 1V.

第6圖繪示之半導體裝置與第1圖繪示之半導體裝置的差異在於,堆疊結構102A係包括導電層130位於離子供應層112上。離子供應層112係透過導電層130耦接至控制電極端118。導電層130可用作阻障層,能避免離子供應層112中的離子擴散,以提高裝置的操作效能。導電層130可包括多晶矽或金屬,例如氮化鈦(TiN)、氮化鉭(TaN)、氮化鎢(WN)等適合的材料。導電層130可為單一層薄膜或多層薄膜例如TiN/TaN/WN結構、或其他合適的結構。The difference between the semiconductor device shown in FIG. 6 and the semiconductor device shown in FIG. 1 is that the stacked structure 102A includes the conductive layer 130 on the ion supply layer 112. The ion supply layer 112 is coupled to the control electrode end 118 through the conductive layer 130. The conductive layer 130 can serve as a barrier layer, which can prevent ion diffusion in the ion supply layer 112 to improve the operational efficiency of the device. The conductive layer 130 may include polysilicon or a metal such as titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), or the like. Conductive layer 130 can be a single layer film or a multilayer film such as a TiN/TaN/WN structure, or other suitable structure.

第7圖繪示之半導體裝置與第6圖繪示之半導體裝置的差異在於,間隙壁132係形成在堆疊結構102A之介電層106與電極層108的側壁上。此設計概念亦可延伸至如第1圖所示的半導體裝置。於一實施例中,間隙壁132可在形成介電層106與電極層108之後形成。然後,以間隙壁132作為摻雜遮罩對半導體基底104進行摻雜來形成源 極114、汲極116。然後,在電極層108上方形成堆疊結構102A其他的薄膜例如固態電解質層110、離子供應層112與導電層130。於其他實施例中,亦可在堆疊結構102A所有的薄膜都形成之後再形成間隙壁132,然後形成源極114、汲極116。可在適當的時機進行退火步驟,例如在堆疊結構102A所有薄膜形成完之後以400℃進行退火20分鐘。The difference between the semiconductor device shown in FIG. 7 and the semiconductor device shown in FIG. 6 is that the spacers 132 are formed on the sidewalls of the dielectric layer 106 and the electrode layer 108 of the stacked structure 102A. This design concept can also be extended to the semiconductor device as shown in FIG. In an embodiment, the spacers 132 may be formed after the dielectric layer 106 and the electrode layer 108 are formed. Then, the semiconductor substrate 104 is doped with the spacer 132 as a doping mask to form a source. Pole 114, bungee 116. Then, other films of the stacked structure 102A, such as the solid electrolyte layer 110, the ion supply layer 112, and the conductive layer 130 are formed over the electrode layer 108. In other embodiments, the spacers 132 may be formed after all the thin films of the stacked structure 102A are formed, and then the source 114 and the drain 116 are formed. The annealing step can be performed at an appropriate timing, for example, annealing at 400 ° C for 20 minutes after all the films of the stacked structure 102A are formed.

第8圖繪示之半導體裝置與第7圖繪示之半導體裝置的差異在於,間隙壁132A係形成在堆疊結構102A所有薄膜的側壁上。於實施例中,形成在固態電解質層110、離子供應層112側壁上的間隙壁132A可用作阻障層,能避免固態電解質層110、離子供應層112中的離子擴散,以提高裝置的操作效能。此設計概念亦可延伸至如第1圖所示的半導體裝置。The difference between the semiconductor device shown in FIG. 8 and the semiconductor device shown in FIG. 7 is that the spacers 132A are formed on the sidewalls of all the films of the stacked structure 102A. In the embodiment, the spacers 132A formed on the sidewalls of the solid electrolyte layer 110 and the ion supply layer 112 can serve as a barrier layer, and the diffusion of ions in the solid electrolyte layer 110 and the ion supply layer 112 can be avoided to improve the operation of the device. efficacy. This design concept can also be extended to the semiconductor device as shown in FIG.

實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The embodiments are disclosed above, but are not intended to limit the present invention. Any one skilled in the art can make some modifications and retouchings without departing from the spirit and scope of the present invention. The scope of the patent application is subject to change.

102、102A‧‧‧堆疊結構102, 102A‧‧‧Stack structure

104‧‧‧半導體基底104‧‧‧Semiconductor substrate

106‧‧‧介電層106‧‧‧Dielectric layer

108‧‧‧電極層108‧‧‧electrode layer

110‧‧‧固態電解質層110‧‧‧Solid electrolyte layer

112‧‧‧離子供層112‧‧‧Ion supply layer

114‧‧‧源極114‧‧‧ source

116‧‧‧汲極116‧‧‧汲polar

118‧‧‧控制電極端118‧‧‧Control electrode end

120‧‧‧帶電荷載子120‧‧‧charged charge carriers

122‧‧‧離子122‧‧‧ ions

124‧‧‧導電介質124‧‧‧Electrical medium

126‧‧‧源極電極端126‧‧‧Source electrode end

128‧‧‧汲極電極端128‧‧‧汲 electrode tip

130‧‧‧導電層130‧‧‧ Conductive layer

132、132A‧‧‧間隙壁132, 132A‧‧‧ spacer

V1‧‧‧第一偏壓V1‧‧‧First bias

V2‧‧‧第二偏壓V2‧‧‧second bias

第1圖繪示根據一實施例之半導體裝置的剖面圖。1 is a cross-sectional view of a semiconductor device in accordance with an embodiment.

第2圖繪示根據一實施例之半導體裝置的操作示意圖。FIG. 2 is a schematic diagram showing the operation of a semiconductor device according to an embodiment.

第3圖繪示根據一實施例之半導體裝置的操作示意圖。FIG. 3 is a schematic diagram showing the operation of a semiconductor device according to an embodiment.

第4圖繪示根據一實施例之半導體裝置的操作示意圖。FIG. 4 is a schematic diagram showing the operation of a semiconductor device according to an embodiment.

第5圖繪示根據一實施例之半導體裝置的操作示意圖。FIG. 5 is a schematic diagram showing the operation of a semiconductor device according to an embodiment.

第6圖繪示根據一實施例之半導體裝置的電性圖。FIG. 6 is an electrical diagram of a semiconductor device in accordance with an embodiment.

第7圖繪示根據一實施例之半導體裝置的剖面圖。FIG. 7 is a cross-sectional view of a semiconductor device in accordance with an embodiment.

第8圖繪示根據一實施例之半導體裝置的剖面圖。FIG. 8 is a cross-sectional view of a semiconductor device in accordance with an embodiment.

102‧‧‧堆疊結構102‧‧‧Stack structure

104‧‧‧半導體基底104‧‧‧Semiconductor substrate

106‧‧‧介電層106‧‧‧Dielectric layer

108‧‧‧電極層108‧‧‧electrode layer

110‧‧‧固態電解質層110‧‧‧Solid electrolyte layer

112‧‧‧離子供應層112‧‧‧Ion supply layer

114‧‧‧源極114‧‧‧ source

116‧‧‧汲極116‧‧‧汲polar

118‧‧‧控制電極端118‧‧‧Control electrode end

126‧‧‧源極電極端126‧‧‧Source electrode end

128‧‧‧汲極電極端128‧‧‧汲 electrode tip

Claims (10)

一種半導體裝置,包括:一基底;一摻雜區域,位於該基底中;以及一堆疊結構,位於該基底上,該堆疊結構包括:一介電層;一電極層;一固態電解質層;以及一離子供應層,用以供應可移動的離子至該固態電解質層。 A semiconductor device comprising: a substrate; a doped region in the substrate; and a stacked structure on the substrate, the stacked structure comprising: a dielectric layer; an electrode layer; a solid electrolyte layer; An ion supply layer for supplying movable ions to the solid electrolyte layer. 如申請專利範圍第1項所述之半導體裝置,其中該固態電解質層係在該電極層與該離子供應層之間。 The semiconductor device of claim 1, wherein the solid electrolyte layer is between the electrode layer and the ion supply layer. 如申請專利範圍第1項所述之半導體裝置,其中該電極層係用作一浮動閘極,該離子供應層係用作控制閘極。 The semiconductor device of claim 1, wherein the electrode layer is used as a floating gate, and the ion supply layer is used as a control gate. 如申請專利範圍第1項所述之半導體裝置,其中該電極層、該固態電解質層與該離子供應層係構成一可變電容的裝置結構,該基底、該介電層與該電極層係構成一固定電容的裝置結構。 The semiconductor device according to claim 1, wherein the electrode layer, the solid electrolyte layer and the ion supply layer form a variable capacitance device structure, and the substrate, the dielectric layer and the electrode layer are formed. A device structure with a fixed capacitance. 一種製造半導體裝置的方法,包括:提供一基底;形成一摻雜區域,位於該基底中;以及形成一堆疊結構,位於該基底上,該堆疊結構包括:一介電層;一電極層; 一固態電解質層;以及一離子供應層,用以供應可移動的離子至該固態電解質層。 A method of fabricating a semiconductor device, comprising: providing a substrate; forming a doped region in the substrate; and forming a stacked structure on the substrate, the stacked structure comprising: a dielectric layer; an electrode layer; a solid electrolyte layer; and an ion supply layer for supplying movable ions to the solid electrolyte layer. 如申請專利範圍第5項所述之方法,其中該電極層、該固態電解質層與該離子供應層係構成一可變電容的裝置結構,該基底、該介電層與該電極層係構成一固定電容的裝置結構。 The method of claim 5, wherein the electrode layer, the solid electrolyte layer and the ion supply layer form a variable capacitance device structure, and the substrate, the dielectric layer and the electrode layer form a Device structure for fixed capacitors. 一種半導體裝置的操作方法,包括:提供一第一偏壓至如申請專利範圍第1項所述之半導體裝置的該離子供應層;以及提供一第二偏壓至該離子供應層,其中該第一偏壓的極性係相反於該第二偏壓的極性。 A method of operating a semiconductor device, comprising: providing a first bias voltage to the ion supply layer of the semiconductor device according to claim 1; and providing a second bias voltage to the ion supply layer, wherein the The polarity of a bias is opposite to the polarity of the second bias. 如申請專利範圍第7項所述之半導體裝置的操作方法,其中提供該第一偏壓至該離子供應層的步驟係造成該半導體裝置具有一第一臨界電壓,提供該第二偏壓至該離子供應層的步驟係造成該半導體裝置具有一第二臨界電壓,其中該第一臨界電壓不同於該第二臨界電壓。 The method of operating a semiconductor device according to claim 7, wherein the step of providing the first bias voltage to the ion supply layer causes the semiconductor device to have a first threshold voltage, and the second bias voltage is supplied to the semiconductor device The step of supplying the ion layer causes the semiconductor device to have a second threshold voltage, wherein the first threshold voltage is different from the second threshold voltage. 如申請專利範圍第7項所述之半導體裝置的操作方法,其中提供該第一偏壓至該離子供應層的步驟係造成由該電極層、該固態電解質層與該離子供應層所構成之一裝置結構具有一第一電容值,提供該第二偏壓至該離子供應層的步驟係造成該裝置結構具有一第二電容值,其中該第一電容值不同於該第二電容值。 The method of operating a semiconductor device according to claim 7, wherein the step of providing the first bias voltage to the ion supply layer is caused by the electrode layer, the solid electrolyte layer and the ion supply layer. The device structure has a first capacitance value, and the step of providing the second bias voltage to the ion supply layer causes the device structure to have a second capacitance value, wherein the first capacitance value is different from the second capacitance value. 如申請專利範圍第7項所述之半導體裝置的操作方法,其中提供該第一偏壓的步驟係造成該基底中的一帶電荷載子穿隧過該介電層至該電極層並轉移至該固態電解質層中,並造成該離子供應層提供一離子至該固態電解質層中,提供該第二偏壓的步驟係造成該帶電荷載子從該固態電解質層移動回該基底中,並造成該離子從該固態電解質層移動回該離子供應層中。 The method of operating a semiconductor device according to claim 7, wherein the step of providing the first bias voltage causes a charge carrier in the substrate to tunnel through the dielectric layer to the electrode layer and transfer to the In the solid electrolyte layer, and causing the ion supply layer to provide an ion to the solid electrolyte layer, the step of providing the second bias causes the charged charge carrier to move back from the solid electrolyte layer to the substrate and cause the ion The solid electrolyte layer is moved back into the ion supply layer.
TW101145386A 2012-12-04 2012-12-04 Semiconductor device and manufacturing method and operating method for the same TWI481021B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101145386A TWI481021B (en) 2012-12-04 2012-12-04 Semiconductor device and manufacturing method and operating method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101145386A TWI481021B (en) 2012-12-04 2012-12-04 Semiconductor device and manufacturing method and operating method for the same

Publications (2)

Publication Number Publication Date
TW201423971A TW201423971A (en) 2014-06-16
TWI481021B true TWI481021B (en) 2015-04-11

Family

ID=51394154

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101145386A TWI481021B (en) 2012-12-04 2012-12-04 Semiconductor device and manufacturing method and operating method for the same

Country Status (1)

Country Link
TW (1) TWI481021B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200935426A (en) * 2008-02-14 2009-08-16 Macronix Int Co Ltd Operating method of memory device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200935426A (en) * 2008-02-14 2009-08-16 Macronix Int Co Ltd Operating method of memory device

Also Published As

Publication number Publication date
TW201423971A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
US20230043781A1 (en) Integrated Assemblies Containing Ferroelectric Transistors, and Methods of Forming Integrated Assemblies
US20200342939A1 (en) Memory cells, memory cell arrays, methods of using and methods of making
US10388864B2 (en) Transistors and methods of forming transistors
CN109196654B (en) Ferroelectric device and method of forming a ferroelectric device
US20170294230A1 (en) Memory Cells, Memory Cell Arrays, Methods of Using and Methods of Making
US11502254B2 (en) Resistive random access memory device and methods of fabrication
KR101283539B1 (en) Inverted non-volatile memory devices, stack modules and method of fabricating the same
US20130270508A1 (en) Non-Volatile Memory Device and Method of Forming the Same
KR100659026B1 (en) Semiconductor storage device
KR101805032B1 (en) Low voltage embedded memory having cationic-based conductive oxide element
US9019769B2 (en) Semiconductor device and manufacturing method and operating method for the same
US20170148982A1 (en) Oxide-based three-terminal resistive switching logic devices
US9865809B2 (en) Nonvolatile resistance change element
JP2006191033A (en) Hybrid multi-bit nonvolatile memory element and its operation method
WO2017222525A1 (en) Rram devices with two-sided intrinsic ballast
US9947722B2 (en) Semiconductor memory device
US11532439B2 (en) Ultra-dense ferroelectric memory with self-aligned patterning
JP2004096014A (en) Semiconductor nonvolatile memory device and its cell manufacturing method
US20200286686A1 (en) Ferroelectric capacitor with insulating thin film
US20140003122A1 (en) Semiconductor memory structure and control method thereof
Pešić et al. Electron-assisted switching in FeFETs: Memory window dynamics–retention–trapping mechanisms and correlation
TWI481021B (en) Semiconductor device and manufacturing method and operating method for the same
BR102021022543A2 (en) Column selection transistor for three-dimensional cross-point memory
TWI455138B (en) Nonvolatile semiconductor memory device
US11818895B2 (en) Semiconductor device including ferroelectric layer and metal particles embedded in metal-organic framework layer