TWI480758B - Method for conjecturing effective width and effective length of gate - Google Patents

Method for conjecturing effective width and effective length of gate Download PDF

Info

Publication number
TWI480758B
TWI480758B TW098124856A TW98124856A TWI480758B TW I480758 B TWI480758 B TW I480758B TW 098124856 A TW098124856 A TW 098124856A TW 98124856 A TW98124856 A TW 98124856A TW I480758 B TWI480758 B TW I480758B
Authority
TW
Taiwan
Prior art keywords
gate
width
length
error
design
Prior art date
Application number
TW098124856A
Other languages
Chinese (zh)
Other versions
TW201104485A (en
Inventor
Kuo Liang Yeh
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW098124856A priority Critical patent/TWI480758B/en
Publication of TW201104485A publication Critical patent/TW201104485A/en
Application granted granted Critical
Publication of TWI480758B publication Critical patent/TWI480758B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

推測閘極有效寬度與閘極有效長度的方法Method for estimating gate effective width and gate effective length

本發明係關於一種推測閘極有效寬度與閘極有效長度的方法。特定言之,本發明係關於經由推算出閘極通道電容值與邊緣電容值之後,再最佳化所預測之寬度誤差與長度誤差來推測出閘極有效寬度與閘極有效長度的方法。The present invention relates to a method of estimating the effective width of a gate and the effective length of a gate. In particular, the present invention relates to a method for estimating a gate effective width and a gate effective length by estimating a gate channel capacitance value and an edge capacitance value and then optimizing the predicted width error and length error.

金氧半場效電晶體(MOSFET)是一種重要的半導體元件,通常使用標準的半導體製程製造而得。使用半導體製程時,會依據設計好的元件規格,逐步地建立出金氧半場效電晶體的各個部份,例如源極、汲極與閘極。其中,與金氧半場效電晶體的電性有關的閘極有效寬度(effective gate width,Weff)與閘極有效長度(effective gate length,Leff),則是一個重要的檢查項目,因為閘極有效寬度與閘極有效長度對於元件操作性能以及製程發展的影響極為深遠與廣泛。Gold oxide half field effect transistors (MOSFETs) are an important semiconductor component commonly produced using standard semiconductor processes. When using a semiconductor process, various parts of the MOS half-effect transistor, such as the source, drain, and gate, are gradually built up according to the designed component specifications. Among them, the effective gate width (Weff) and the effective gate length (Leff) related to the electrical properties of the MOS field-effect transistor are an important inspection item because the gate is effective. The width and effective gate length have a profound and extensive impact on component performance and process development.

雖然在半導體製程中,是依據設計好的元件規格,逐步地建立出金氧半場效電晶體的各個部份,例如閘極,但是成品晶粒(dice)中實際的閘極尺寸,或是說,表現在電性上的閘極有效寬度與閘極有效長度,卻會因為製程變異(process variation)的關係,與設計好的元件規格不盡相同。嚴格來說,因為對於製程發展的影響更為具體,表現在電性上的閘極有效寬度與閘極有效長度,其實比起閘極實體(physical)寬度與閘極實體長度還重要的多。Although in the semiconductor process, the various parts of the MOS field-effect transistor, such as the gate, are gradually established according to the designed component specifications, but the actual gate size in the finished die, or The effective width of the gate and the effective length of the gate are different, but the process variations are not the same as the designed component specifications. Strictly speaking, because the influence on the development of the process is more specific, the effective gate width and the effective gate length of the gate are actually much more important than the gate width (physical width) and the gate body length.

目前判斷閘極寬度與閘極長度的方法是使用穿隧式電子顯微鏡(TEM)。這並不是一個完美無缺的方法。一方面,由於有限的取樣數量與人工目視檢查而使得結果並不可靠。另一方面,所得到的結果也僅止於製程上的閘極實體寬度與閘極實體長度而已,並不能實際上反應與電性有關的閘極有效寬度與閘極有效長度的尺寸。The current method of determining gate width and gate length is to use a tunneling electron microscope (TEM). This is not a perfect method. On the one hand, the results are not reliable due to the limited number of samples and manual visual inspection. On the other hand, the result obtained is only limited to the gate body width and the gate body length on the process, and does not actually reflect the electrical effective gate effective width and gate effective length.

可惜的是,目前並沒有一個可以判斷閘極有效寬度與閘極有效長度的方法。因此獲得如何推測閘極有效寬度與閘極有效長度的方法,即成為推動半導體製程進步至為重要的關鍵課題。Unfortunately, there is currently no way to determine the effective width of the gate and the effective length of the gate. Therefore, how to estimate the effective width of the gate and the effective length of the gate is a key issue that is important to promote the progress of the semiconductor process.

本發明即在於提出一種判斷閘極有效尺寸,即閘極有效寬度與閘極有效長度的方法。透過計算出閘極通道的固有(intrinsic)電容值與固有邊緣電容值之後,再經過計算寬度偏差值與長度偏差值來最佳化所預測的寬度誤差與長度誤差,就可以推測一個設計閘極的閘極有效寬度與閘極有效長度。在本發明方法之一實施態樣中,此等設計閘極還可以包含複數個相異之閘極設計寬度或是閘極設計長度。因此預測一群組寬度誤差或是群組長度誤差時,還可以得到適用於所有閘極設計寬度或是所有閘極設計長度之預測群組寬度誤差或是預測群組寬度誤差。此等預測群組寬度誤差或是預測群組寬度誤差,在用於預測未知設計閘極尺寸之閘極有效長度、或是閘極有效寬度上十分有幫助。The present invention is directed to a method of determining the gate effective size, i.e., the effective width of the gate and the effective length of the gate. After calculating the intrinsic capacitance value and the inherent edge capacitance value of the gate channel, and then calculating the width error value and the length deviation value to optimize the predicted width error and length error, a design gate can be inferred. The effective width of the gate and the effective length of the gate. In one embodiment of the method of the present invention, the design gates may also include a plurality of distinct gate design widths or gate design lengths. Therefore, when predicting a group width error or a group length error, a prediction group width error or a prediction group width error suitable for all gate design widths or all gate design lengths can be obtained. These predicted group width errors or predicted group width errors are very helpful in predicting the gate effective length of an unknown design gate size, or the effective width of the gate.

本發明於是提出一種推測一閘極有效寬度與一閘極有效長度的方法。首先,提供一設計閘極組,其包含一閘極設計尺寸,例如,第一閘極設計寬度與一第一閘極設計長度。其次,測量第一設計閘極在一反轉電壓下之一第一測量反轉電容值,以計算第一設計閘極之一閘極通道電容值。之後,測量第一設計閘極在一閘極電壓為零時下之一零值電容值,以計算此閘極之一邊緣電容值。繼續,經由閘極通道電容值與邊緣電容值來預測一第一寬度誤差,而計算出一第一寬度計算反轉電容值與一預測之第一寬度偏差值。接下來,反覆預測第一寬度誤差,以最小化預測第一寬度偏差值並最佳化所預測之第一寬度誤差,而得到最佳化之第一寬度誤差。或是,經由閘極通道電容值與邊緣電容值預測一第一長度誤差,而計算出一第一長度計算反轉電容值與一預測之第一長度偏差值。然後,反覆預測第一長度誤差,以最小化預測第一長度偏差值並最佳化所預測之第一長度誤差,而得到最佳化之第一長度誤差。再來,經由最佳化之第一寬度誤差與最佳化之第一長度誤差,推測出閘極有效寬度與閘極有效長度。The present invention therefore proposes a method for estimating the effective width of a gate and the effective length of a gate. First, a design gate set is provided that includes a gate design size, such as a first gate design width and a first gate design length. Next, a first measurement inversion capacitance value of the first design gate at a reverse voltage is measured to calculate a gate channel capacitance value of the first design gate. Thereafter, a value of one of the zero values of the first design gate at a gate voltage of zero is measured to calculate an edge capacitance value of the gate. Continuing, a first width error is predicted via the gate channel capacitance value and the edge capacitance value, and a first width calculation inversion capacitance value and a predicted first width deviation value are calculated. Next, the first width error is repeatedly predicted to minimize the predicted first width deviation value and optimize the predicted first width error to obtain an optimized first width error. Alternatively, a first length error is predicted via the gate channel capacitance value and the edge capacitance value, and a first length calculation inversion capacitance value and a predicted first length deviation value are calculated. The first length error is then overlaid to minimize the predicted first length deviation value and to optimize the predicted first length error to obtain an optimized first length error. Then, the gate effective width and the gate effective length are estimated by the optimized first width error and the optimized first length error.

在本發明方法之一實施態樣中,此等設計閘極還可以包含複數個相異之閘極設計寬度或是閘極設計長度。因此預測一群組寬度誤差或是群組長度誤差,還可以得到適用於所有閘極設計寬度或是所有閘極設計長度之預測群組寬度誤差或是預測群組長度誤差。在本發明方法之另一實施態樣中,此等預測群組寬度誤差或是預測群組長度誤差,還可以另外用於預測給定設計閘極尺寸之閘極有效長度、或是閘極有效寬度。In one embodiment of the method of the present invention, the design gates may also include a plurality of distinct gate design widths or gate design lengths. Therefore, a group width error or a group length error is predicted, and a prediction group width error or a prediction group length error suitable for all gate design widths or all gate design lengths can be obtained. In another embodiment of the method of the present invention, the predicted group width error or the predicted group length error may be additionally used to predict the gate effective length of a given design gate size, or the gate is effective. width.

本發明所提供之推測閘極有效寬度與閘極有效長度的方法,可以用來從已知實體寬度與實體長度之設計閘極,決定此設計閘極未知的閘極有效寬度與閘極有效長度。如果此等設計閘極包含複數個相異之閘極設計寬度或是閘極設計長度,還可以因此預測一群組寬度誤差或是群組長度誤差,於是得到適用於所有閘極設計寬度或是所有閘極設計長度之預測群組寬度誤差或是預測群組長度誤差。另一方面,所得之預測群組寬度誤差或是預測群組長度誤差,在用於預測未知設計閘極尺寸之閘極有效長度、或是閘極有效寬度上還十分有幫助。The method for estimating the effective width of the gate and the effective length of the gate provided by the invention can be used to design the gate from the known physical width and the physical length, and determine the gate effective width and the effective gate length of the gate. . If the design gates comprise a plurality of different gate design widths or gate design lengths, it is also possible to predict a group width error or a group length error, thus obtaining a width suitable for all gate designs or The predicted group width error of all gate design lengths or the predicted group length error. On the other hand, the resulting predicted group width error or predicted group length error is also very helpful in predicting the gate effective length of the unknown design gate size, or the gate effective width.

第1A/1B圖例示本發明推測閘極有效寬度與閘極有效長度方法的示意圖。對於一設計閘極101而言,其具有特定之設計長度110(design length. Ldes )與設計寬度120(design width,Wdes )。設計長度110與設計寬度120是為達到特定電性需求自模擬所計算出的理想長度/寬度,其並未考慮到製程上的變異及誤差。如前所述,設計閘極101表現在電性上的閘極有效長度與閘極有效寬度,卻會因為製程的變異及誤差關係,與設計好的設計長度110與設計寬度120不盡相同。可以使用下式來表示閘極有效寬度(Weff )與閘極有效長度(Leff ):Fig. 1A/1B is a view showing a method of estimating the effective width of the gate and the effective length of the gate of the present invention. For a design gate 101, it has a specific design length 110 (design length. L des ) and a design width 120 (design width, W des ). The design length 110 and the design width 120 are the ideal lengths/widths calculated from the simulation to achieve a particular electrical demand, which does not account for variations and errors in the process. As described above, the design gate 101 exhibits an electrical gate effective length and a gate effective width, but may be different from the designed design length 110 and the design width 120 due to process variations and error relationships. The following equation can be used to represent the gate effective width (W eff ) and the gate effective length (L eff ):

Cinv =Leff *Weff *CA *N+2*Cedge *Weff *NC inv =L eff *W eff *C A *N+2*C edge *W eff *N

Cinv =反轉電容值C inv = reverse capacitance value

CA =閘極通道電容值C A = gate channel capacitance

Cedge =邊緣電容值C edge = edge capacitance value

N=閘極數N = number of gates

如果能得到反轉電容值(Cinv )、閘極通道電容值(CA )與邊緣電容值(Cedge ),在閘極數已知時,就可以推測出閘極有效寬度(Weff )與閘極有效長度(Leff )。If the inversion capacitance value (C inv ), the gate channel capacitance value (C A ), and the edge capacitance value (C edge ) are obtained, the gate effective width (W eff ) can be estimated when the gate number is known. Effective length with gate (L eff ).

首先,如第1A圖所示,提供第一設計閘極101,其包含一第一閘極設計長度110與一第一閘極設計寬度120,但是閘極有效寬度與閘極有效長度則是未知。在本發明方法之一實施態樣中,還可以提供複數個相異設計閘極102之設計閘極組101’,如第1B圖所示。於是設計閘極組101’中包含複數個相異之閘極設計寬度(Wdes )或是閘極設計長度(Ldes )。First, as shown in FIG. 1A, a first design gate 101 is provided, which includes a first gate design length 110 and a first gate design width 120, but the gate effective width and the gate effective length are unknown. . In one embodiment of the method of the present invention, a plurality of design gate sets 101' of a plurality of distinct design gates 102 can also be provided, as shown in FIG. 1B. The design gate set 101' then includes a plurality of distinct gate design widths ( Wdes ) or gate design lengths ( Ldes ).

其次,當閘極的設計尺寸,例如閘極設計寬度(Wdes )與閘極設計長度(Ldes )夠大時,設計尺寸與有效尺寸,即閘極有效寬度(Weff )與閘極有效長度(Leff )間之誤差可以忽略不計。另外,當閘極設計寬度(Wdes )與閘極設計長度(Ldes )夠大時,在一反轉電壓下,閘極與源極103的電容值(Cf )、閘極與汲極103的電容值(Cf )以及閘極與輕摻雜汲極104的電容值(Cov )有關之邊緣電容值(Cedge =Cf +Cov )與閘極有效寬度(Weff )的乘積(即Cedge *Weff )相較於閘極通道電容值(CA )、閘極有效長度(Leff )與閘極有效寬度(Weff )的乘積(即CA *Leff *Weff )亦可以被忽略,所以就可以測量第一設計閘極101在一反轉電壓下之測量反轉電容值(Cminv ),以計算第一設計閘極101之一閘極通道電容值(CA )。Secondly, when the design dimensions of the gate, such as the gate design width (W des ) and the gate design length (L des ) are large enough, the design size and the effective size, ie the gate effective width (W eff ) and the gate are effective. The error between lengths (L eff ) is negligible. In addition, when the gate design width (W des ) and the gate design length (L des ) are sufficiently large, the capacitance value (C f ) of the gate and source 103, the gate and the drain are at a reverse voltage. The capacitance value (C f ) of 103 and the edge capacitance value (C edge = C f + C ov ) and the gate effective width (W eff ) of the gate and the capacitance value (C ov ) of the lightly doped drain 104 The product of the product (ie C edge *W eff ) compared to the gate channel capacitance value (C A ), the gate effective length (L eff ) and the gate effective width (W eff ) (ie C A *L eff *W Eff can also be ignored, so that the measured reverse capacitance value (C minv ) of the first design gate 101 at a reverse voltage can be measured to calculate the gate channel capacitance of the first design gate 101 ( C A ).

2*Cedge *Weff *N<<Leff *Weff *CA *N2*C edge *W eff *N<<L eff *W eff *C A *N

Cminv =Leff *Weff *CA *NC minv =L eff *W eff *C A *N

CA =(Cminv )/(Ldes *Wdes *N)C A =(C minv )/(L des *W des *N)

範例:example:

閘極設計寬度(Wdes )=9μmGate design width (W des )=9μm

閘極設計長度(Ldes )=9μmGate design length (L des )=9μm

閘極數(N)=1Number of gates (N)=1

測量反轉電容值(Cminv )=1.377E+03fFMeasuring reverse capacitance value (C minv )=1.377E+03fF

閘極通道電容值(CA )=1.70E+01(fF/μm2 )Gate channel capacitance value (C A )=1.70E+01 (fF/μm 2 )

還有,當閘極電壓為零(Vg =0)之空乏模式時,閘極並無通道電容值(CA )。而且,當閘極的設計尺寸夠大時,設計尺寸與有效尺寸間之誤差可以忽略不計,於是據此就可以測量第一設計閘極101在閘極電壓為零時之零值電容值(Cvg ),以計算閘極之一邊緣電容值(Cedge )。Also, when the gate voltage is zero (V g =0), the gate has no channel capacitance value (C A ). Moreover, when the design size of the gate is large enough, the error between the design size and the effective size can be neglected, so that the zero value capacitance value of the first design gate 101 when the gate voltage is zero can be measured (C). Vg ) to calculate the edge capacitance value (C edge ) of one of the gates.

Leff *Weff *CA *N=0L eff *W eff *C A *N=0

Cvg =2*Cedge *Wdes *NC vg =2*C edge *W des *N

Cedge =Cvg /(2*Wdes *N)C edge =C vg /(2*W des *N)

範例:example:

閘極設計寬度(Wdes )=9μmGate design width (W des )=9μm

閘極設計長度(Ldes )=0.036μmGate design length (L des )=0.036μm

閘極數(N)=1Number of gates (N)=1

零值電容值(Cvg )=4.41fFZero value capacitance value (C vg ) = 4.41fF

邊緣電容值(Cedge )=2.45E-01(fF/μm)Edge capacitance value (C edge ) = 2.45E-01 (fF / μm)

接下來,在實際量測到反轉電容值(Cinv )、又計算得到閘極通道電容值(CA )與邊緣電容值(Cedge )後,就可以準備開始推測閘極有效寬度(Weff )與閘極有效長度(Leff )了。因為實際上,在閘極設計寬度(Wdes )與閘極有效寬度(Weff )之間應該會存在有誤差,於此於是假設閘極有效寬度(Weff )為閘極設計寬度(Wdes )加計一寬度誤差(ΔW)。對於第一設計閘極101而言:Next, after actually measuring the inversion capacitance value (C inv ) and calculating the gate channel capacitance value (C A ) and the edge capacitance value (C edge ), it is ready to start estimating the effective gate width (W). Eff ) and gate effective length (L eff ). Because, in fact, there should be an error between the gate design width (W des ) and the gate effective width (W eff ), so the gate effective width (W eff ) is assumed to be the gate design width (W des ) Add a width error (ΔW). For the first design gate 101:

Weff =Wdes +ΔWW eff = W des + ΔW

同理,閘極有效長度(Leff )為閘極設計長度(Ldes )加計一長度誤差(ΔL):Similarly, the gate effective length (L eff ) is the gate design length (L des ) plus a length error (ΔL):

Leff =Ldes +ΔLL eff =L des +ΔL

繼續,經由先前所得之閘極通道電容值(CA )與邊緣電容值(Cedge ),著手進行第一寬度誤差之預測。為了方便起見,此時閘極有效長度(Leff )可以暫時以閘極設計長度(Ldes )作代表,亦即可以先假設ΔL=0。例如,任意猜測寬度誤差(ΔW)為第一寬度誤差(ΔW1 ),而計算出一第一寬度計算反轉電容值(Ccwinv1 )與一預測第一寬度偏差值(EW1 )。Continuing, the prediction of the first width error is initiated via the previously obtained gate channel capacitance value (C A ) and edge capacitance value (C edge ). For the sake of convenience, the gate effective length (L eff ) can be temporarily represented by the gate design length (L des ), that is, ΔL=0 can be assumed first. For example, the arbitrary guess width error (ΔW) is the first width error (ΔW 1 ), and a first width calculation inversion capacitance value (C cwinv1 ) and a predicted first width deviation value (EW 1 ) are calculated.

Ccwinv1 =Ldes *(Wdes +ΔW1 )*CA *N+2*Cedge *(Wdes +ΔW1 )*NC cwinv1 =L des *(W des +ΔW 1 )*C A *N+2*C edge *(W des +ΔW 1 )*N

在此定義尺寸偏差值為:The size deviation values defined here are:

E=(Ccwinv /Cminv )-1E=(C cwinv /C minv )-1

所以,第一寬度偏差值即為:Therefore, the first width deviation value is:

EW1 =(Ccwinv1 /Cminv )-1={[Ldes *(Wdes +ΔW1 )*CA *N+2*Cedge *(Wdes +ΔW1)*N]/Cminv }-1EW 1 =(C cwinv1 /C minv )-1={[L des *(W des +ΔW 1 )*C A *N+2*C edge *(W des +ΔW1)*N]/C minv }- 1

其中,Ldes 、Wdes 、ΔW1 、CA 、N、Cedge 、Cminv 皆為已知。Among them, L des , W des , ΔW 1 , C A , N, C edge , and C minv are all known.

下一步希望第一寬度偏差值(EW1 )能夠減到最小,換句話說,希望將第一寬度誤差(ΔW1 )最佳化,使得所預測之第一寬度計算反轉電容值(Ccwinv1 )盡量接近第一測量反轉電容值(Cminv )。操作方法可以是,例如使用多組不同之寬度誤差(ΔW),例如ΔW1 、ΔW2 、ΔW3 ...ΔWn ,反覆計算第一寬度偏差值(EW1 ),其中必定有能夠使得第一寬度偏差值(EW1 )減到最小的某一個最佳之寬度誤差(ΔWox )。於是,此最佳之寬度誤差(ΔWox )即可視為第一階段中最佳化之第一寬度誤差(ΔWox )。Next, it is desirable that the first width deviation value (EW 1 ) can be minimized. In other words, it is desirable to optimize the first width error (ΔW 1 ) such that the predicted first width calculates the inverse capacitance value (C cwinv1 ) As close as possible to the first measurement inversion capacitance value (C minv ). The operation method may be, for example, using a plurality of sets of different width errors (ΔW), such as ΔW 1 , ΔW 2 , ΔW 3 ... ΔW n , and repeatedly calculating the first width deviation value (EW 1 ), wherein there must be a A certain width error (ΔW ox ) that minimizes the width deviation value (EW 1 ). Thus, the optimum width error (ΔW ox ) can be considered as the first width error (ΔW ox ) optimized in the first stage.

另一方面,也可以使用類似的步驟進行第一長度誤差(ΔL1 )之預測。例如,任意猜測長度誤差(ΔL)為第一長度誤差(ΔL1 ),而計算出一第一長度計算反轉電容值(Cclinv1 )與一預測第一長度偏差值(EL1 )。為了方便起見,此時閘極有效寬度(Weff )可以暫以閘極設計長度(Wdes )作代表,亦即可以先假設ΔW=0。On the other hand, a similar procedure can also be used to predict the first length error (ΔL 1 ). For example, the arbitrary guess length error (ΔL) is the first length error (ΔL 1 ), and a first length calculated inversion capacitance value (C clinv1 ) and a predicted first length deviation value (EL 1 ) are calculated. For the sake of convenience, the gate effective width (W eff ) can be temporarily represented by the gate design length (W des ), that is, ΔW=0 can be assumed first.

Leff =Ldes +ΔLL eff =L des +ΔL

Cclinv1 =(Ldes +ΔL)*Wdes *CA *N+2*Cedge *Wdes *NC clinv1 = (L des + ΔL) * W des * C A * N + 2 * C edge * W des * N

EL1 =(Cclinv1 /Cminv )-1={[(Ldes +ΔL)*Wdes *CA *N+2*Cedge *Wdes *N]/Cminv }-1EL 1 =(C clinv1 /C minv )-1={[(L des +ΔL)*W des *C A *N+2*C edge *W des *N]/C minv }-1

還有,也希望第一長度偏差值(EL1 )能夠減到最小,換句話說,希望將第一長度誤差(ΔL1 )最佳化,使得所預測之第一長度計算反轉電容值(Cclinv1 )盡量接近第一測量反轉電容值(Cminv )。可以使用多組不同之長度誤差(ΔL),例如ΔL1 、ΔL2 、ΔL3 ...ΔLn ,反覆計算第一長度偏差值(EL1 ),其中必定有能夠使得第一長度偏差值(EL1 )減到最小的某一個最佳之長度誤差(ΔLox )。於是,此最佳之長度誤差(ΔLox )即可視為第一階段中最佳化之第一長度誤差(ΔLox )。Also, it is desirable that the first length deviation value (EL 1 ) can be minimized, in other words, it is desirable to optimize the first length error (ΔL 1 ) such that the predicted first length calculates the inverse capacitance value ( C clinv1 ) as close as possible to the first measured inversion capacitance value (C minv ). A plurality of different length errors (ΔL), such as ΔL 1 , ΔL 2 , ΔL 3 ... ΔL n , may be used to repeatedly calculate a first length deviation value (EL 1 ), wherein there must be a first length deviation value ( EL 1 ) minimizes one of the best length errors (ΔL ox ). Thus, this optimal length error (ΔL ox ) can be considered as the first length error (ΔL ox ) optimized in the first stage.

當第一階段中都得到了最佳化之第一寬度誤差(ΔWox )與最佳化之第一長度誤差(ΔLox )時,還可以再使用當時最佳化之第一長度誤差(ΔLox )來協助寬度誤差(ΔW)之預測,或是,另一方面,使用當時最佳化之第一寬度誤差(ΔWox )協助長度誤差(ΔL)之預測。例如,在再次猜測長度誤差(ΔL)為第一長度誤差(ΔL1 )時,使用先前所得到之最佳化之第一寬度誤差(ΔWox )作為現在閘極有效寬度(Weff )之基礎,即:When the first width error (ΔW ox ) is optimized and the first length error (ΔL ox ) is optimized in the first stage, the first length error (ΔL) optimized at that time can be reused. Ox ) to assist in the prediction of the width error (ΔW) or, on the other hand, to assist in the prediction of the length error (ΔL) using the then optimized first width error (ΔW ox ). For example, when again guessing that the length error (ΔL) is the first length error (ΔL 1 ), the previously obtained first width error (ΔW ox ) is used as the basis for the current gate effective width (W eff ). ,which is:

Weff =Wdes +ΔWoxW eff = W des + ΔW ox .

而在再次猜測寬度誤差(ΔW)為第一寬度誤差(ΔW1 )時,也可以使用先前所得到之最佳化之第一長度誤差(ΔLox )作為現在閘極有效長度(Leff )之基礎,即:When it is again guessed that the width error (ΔW) is the first width error (ΔW 1 ), the previously obtained optimized first length error (ΔL ox ) can also be used as the current gate effective length (L eff ). Foundation, namely:

Leff =Ldes +ΔLoxL eff = L des + ΔL ox .

一方面,閘極通道電容值(CA )會與寬度誤差(ΔW)與長度誤差(ΔL)之改變無關。另一方面,邊緣電容值(Cedge )亦與寬度誤差(ΔW)與長度誤差(ΔL)之改變無關,所以才能將閘極通道電容值(CA )與邊緣電容值(Cedge )排除於閘極有效寬度與閘極有效長度之猜測過程以外。On the one hand, the gate channel capacitance value (C A ) is independent of the change in width error (ΔW) and length error (ΔL). On the other hand, the edge capacitance value (C edge ) is also independent of the change in the width error (ΔW) and the length error (ΔL), so the gate channel capacitance value (C A ) and the edge capacitance value (C edge ) can be excluded from Outside the guessing process of the effective width of the gate and the effective length of the gate.

如此一來,不斷經由最佳化之第一長度誤差(ΔLox )來協助預測寬度誤差(ΔW),以及不斷經由最佳化之第一寬度誤差(ΔWox )來協助預測長度誤差(ΔL),而在經過多次反覆操作之後,當尺寸偏差值縮小到一個可接受的範圍內時,例如1%或是0.1%的範圍內時,即可視為推測出了所需的閘極有效寬度(Weff )與閘極有效長度(Leff ),並得到最佳化之寬度誤差(ΔWo )與最佳化之長度誤差(ΔLo )。In this way, the predicted width error (ΔW) is continuously assisted by the optimized first length error (ΔL ox ), and the predicted length error (ΔL) is continuously assisted by the optimized first width error (ΔW ox ). After a plurality of repeated operations, when the dimensional deviation value is reduced to an acceptable range, for example, in the range of 1% or 0.1%, it can be considered that the required gate effective width is estimated ( W eff ) and gate effective length (L eff ), and the optimized width error (ΔW o ) and the optimized length error (ΔL o ).

在本發明方法之一實施態樣中,設計閘極組101’還可以提供複數個相異設計閘極102,如第1B圖所示。相異的設計閘極102會分別具有複數個相異之閘極設計寬度(Wdes )或是閘極設計長度(Ldes )。在本發明推測閘極有效寬度與閘極有效長度的方法中,還希望找出一個群組寬度誤差(ΔWG ),而能同時描述多個相同閘極設計長度之相異閘極設計寬度(Wdes ),較佳者,能同時描述設計閘極組101’中所有的相異之閘極設計寬度(Wdes )。類似地,本發明也希望找出一個群組長度誤差(ΔLG ),而能同時描述多個相同閘極設計寬度之相異閘極設計長度(Ldes ),較佳者,能同時描述設計閘極組101’中所有相異之閘極設計長度(Ldes )。In one embodiment of the method of the present invention, the design gate set 101' can also provide a plurality of distinct design gates 102, as shown in FIG. 1B. The different design gates 102 will each have a plurality of distinct gate design widths ( Wdes ) or gate design lengths ( Ldes ). In the method for estimating the gate effective width and the effective gate length of the present invention, it is also desirable to find a group width error (ΔW G ), and simultaneously describe a plurality of different gate design widths of the same gate design length ( W des ), preferably, can simultaneously describe all of the different gate design widths (W des ) in the design gate set 101'. Similarly, the present invention also contemplates finding a group length error (ΔL G ) that simultaneously describes a plurality of distinct gate design lengths (L des ) of the same gate design width. Preferably, the design can be described simultaneously. All different gate design lengths (L des ) in the gate set 101'.

例如,相異的設計閘極102中具有三組相異之閘極設計長度(Ldes ),分別稱為Ldes α、Ldes β與Ldes γ。先任意猜測一個群組長度誤差(ΔLG )為第一群組長度誤差(ΔLG1 ),而分別計算出屬於Ldes α、Ldes β與Ldes γ之第一群組長度計算反轉電容值(Cclginv1 )與預測第一群組長度偏差值(ELG1 )。為了方便起見,此時閘極有效寬度(Weff )可以暫以閘極設計長度(Wdes )來代表之,亦即,可以先假設群組寬度誤差ΔWG =0。For example, the different design gates 102 have three different sets of gate design lengths (L des ), referred to as L des α, L des β, and L des γ, respectively. First guess a group length error (ΔL G ) as the first group length error (ΔL G1 ), and calculate the first group length calculation inversion capacitance belonging to L des α, L des β and L des γ respectively. The value (C clginv1 ) is predicted from the first group length deviation value (EL G1 ). For the sake of convenience, the gate effective width (W eff ) can be represented by the gate design length (W des ), that is, the group width error ΔW G =0 can be assumed first.

Leff α=Ldes α+ΔLG1 L eff α=L des α+ΔL G1

Leff β=Ldes β+ΔLG1 L eff β=L des β+ΔL G1

Leff γ=Ldes γ+ΔLG1 L eff γ=L des γ+ΔL G1

Ccαlginv1 =(Ldes α+ΔLG1 )*Wdes α*CA *N+2*Cedge *Wdes α*NC cαlginv1 =(L des α+ΔL G1 )*W des α*C A *N+2*C edge *W des α*N

ELGα1 =(Ccαlinv1 /Cminv )-1EL Gα1 =(C cαlinv1 /C minv )-1

接著,試圖找出一個第一群組長度誤差(ΔLG1 ),而使得ELGα1 ,ELGβ1 與ELGγ1 最小。例如,可以計算ELGα1 ,ELGβ1 ,ELGγ1 之方均根(square root)最小,視為使得ELGα1 ,ELGβ1 ,ELGγ1最小之最佳化第一群組長度誤差(ΔLGo1 )。同理,關於群組寬度誤差(ΔWG ),可以使用類似方式計算第一群組寬度計算反轉電容值(Ccwginv1 )與第一預測群組寬度偏差值(EWG1 ),進而找出最佳化之第一群組寬度誤差(ΔLWo1 )。Next, an attempt is made to find a first group length error (ΔL G1 ) such that EL Gα1 , EL Gβ1 and EL Gγ1 are minimized. For example, computing EL Gα1, EL Gβ1, EL Gγ1 the root mean square (square root) minimum, so considered EL Gα1, EL Gβ1, ELGγ1 best minimize the length of the first group of error (ΔL Go1). Similarly, regarding the group width error (ΔW G ), the first group width calculation inversion capacitance value (C cwginv1 ) and the first prediction group width deviation value (EW G1 ) can be calculated in a similar manner, thereby finding the most The first group width error (ΔLW o1 ).

如前所述,當上一個階段中都得到了最佳化第一群組長度誤差(ΔLGo1 )與最佳化之第一群組寬度誤差(ΔLWo1 )時,還可以再使用最佳化之第一群組長度誤差(ΔLGo1 )來協助群組寬度誤差(ΔWG )之預測,或是,另一方面,使用最佳化之第一群組寬度誤差(ΔLWo1 )協助群組長度誤差(ΔLG )之預測。如此一來,不斷經由最佳化之群組長度誤差(ΔLGo )來協助預測群組寬度誤差(ΔWG ),以及不斷經由最佳化之群組寬度誤差(ΔLWo )來協助預測群組長度誤差(ΔLG ),在經過多次反覆最佳化操作之後,當寬度或是長度之尺寸偏差值縮小到一個可接受的範圍內時,例如1%或是0.1%的範圍內時,即可視為推測出了所需的閘極有效寬度(Weff )與閘極有效長度(Leff ),並得到最佳化之群組寬度誤差(ΔWGo )與最佳化之群組長度誤差(ΔLGo )。As mentioned before, when the first group length error (ΔL Go1 ) and the optimized first group width error (ΔL Wo1 ) are obtained in the previous stage, the optimization can be reused. The first group length error (ΔL Go1 ) to assist in predicting the group width error (ΔW G ), or, on the other hand, using the optimized first group width error (ΔL Wo1 ) to assist the group length Prediction of the error (ΔL G ). In this way, the predicted group width error (ΔW G ) is continuously assisted by the optimized group length error (ΔL Go ), and the predicted group is continuously assisted by the optimized group width error (ΔL Wo ). The length error (ΔL G ), after a plurality of repeated optimization operations, when the width or length dimension deviation value is reduced to an acceptable range, for example, in the range of 1% or 0.1%, It can be considered that the required gate effective width (W eff ) and gate effective length (L eff ) are estimated, and the optimized group width error (ΔW Go ) and the optimized group length error are obtained ( ΔL Go ).

範例:example:

閘極設計長度(Ldes )=0.036μmGate design length (L des )=0.036μm

閘極設計寬度組(Wdes )=9,0.45,0.108μmGate design width group (W des )=9,0.45,0.108μm

最佳化群組長度誤差(ΔLGo )=-0.0094μmOptimized group length error (ΔL Go )=-0.0094μm

群組長度偏差值(ELG1 )Group length deviation value (E LG1 )

由於先前所得到之最佳化之群組寬度誤差(ΔWGo )或是最佳化之群組長度誤差(ΔLGo ),係對於設計閘極組101’中複數個,較佳為所有之相異設計閘極102之尺寸,例如寬度或是長度,皆視為最佳,更進一步來說,所得到之最佳化之群組寬度誤差(ΔWGo )或是最佳化之群組長度誤差(ΔLGo )還可以視為在相異設計閘極102之尺寸範圍中皆為最佳。Due to the previously obtained optimized group width error (ΔW Go ) or the optimized group length error (ΔL Go ), for the design of the gate group 101', a plurality of, preferably all, phases The size of the differently designed gate 102, such as width or length, is considered to be optimal, and further, the resulting optimized group width error (ΔW Go ) or optimized group length error (ΔL Go ) can also be considered to be optimal in the size range of the distinct design gate 102.

在本發明方法之又一實施態樣中,還可以找出一個與寬度或是長度有關之尺寸方程式。此等尺寸方程式可以實質上描述複數個相異之閘極設計,在尺寸上與最佳化之群組尺寸誤差間之關連。如此一來,利用此等尺寸方程式即可以使得預測一給定設計閘極尺寸之閘極有效寬度、或是閘極有效長度成為可能。In yet another embodiment of the method of the present invention, a dimension equation relating to width or length can also be found. These dimensional equations can essentially describe a plurality of distinct gate designs that are related in size to the optimized group size error. In this way, the use of these dimensional equations makes it possible to predict the gate effective width of a given design gate size, or the gate effective length.

舉例而言,相異設計閘極中具有三種不同之閘極設計寬度,如9,0.45,0.108。在經過上述步驟後,分別找出所對應之最佳化之群組寬度誤差,即(9,-0.05),(0.45,-0.0133),(0.108,0.0035)。經由此三組數據,即可以找出能同時滿足此三組數據條件之方程式。如果可以找到不只一個方程式,則以具有最小之未知數冪次為佳,例如:For example, the different design gates have three different gate design widths, such as 9, 0.45, 0.108. After the above steps, the corresponding optimized group width errors are respectively found, namely (9, -0.05), (0.45, -0.0133), (0.108, 0.0035). Through the three sets of data, it is possible to find an equation that can satisfy the three sets of data conditions at the same time. If you can find more than one equation, it is better to have the smallest unknown power, for example:

ΔW=-0.0052W-0.0033ΔW=-0.0052W-0.0033

不同閘極設計長度之操作方法可以參考前述內容,例如(9,-0.0026),(0.9,-0.0174),(0.1,-0.0135),(0.036,-0.0094)之方程式可以為:For the operation method of different gate design lengths, reference may be made to the foregoing. For example, (9, -0.0026), (0.9, -0.0174), (0.1, -0.0135), (0.036, -0.0094) can be:

ΔL=0.001L2 -0.0084L-0.0108ΔL=0.001L 2 -0.0084L-0.0108

故不再贅述。Therefore, it will not be repeated.

在本發明方法之再一實施態樣中,如果給定了一個已知閘極設計寬度或是閘極設計長度之設計閘極,就可以依據前述之方程式,推算出此設計閘極之閘極有效寬度、或是閘極有效長度。In still another embodiment of the method of the present invention, if a design gate having a known gate design width or a gate design length is given, the gate of the design gate can be derived according to the foregoing equation. Effective width, or effective gate length.

舉例而言,如果某個設計閘極中具有介於9與0.108間之閘極設計長度,即可以運用先前得到之方程式,透過內插法(interpolation)找出此設計閘極之閘極設計長度所對應之閘極有效長度。類似地,亦可以使用類似概念推測出此設計閘極之閘極設計寬度所對應之閘極有效寬度。For example, if a design gate has a gate design length between 9 and 0.108, the previously obtained equation can be used to find the gate design length of the design gate by interpolation. The corresponding effective gate length. Similarly, a similar concept can be used to infer the gate effective width corresponding to the gate design width of the design gate.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

101‧‧‧設計閘極101‧‧‧ Design gate

101’‧‧‧設計閘極組101’‧‧‧Design gate group

102‧‧‧相異設計閘極102‧‧‧Different design gates

103‧‧‧源極、汲極103‧‧‧Source, bungee

104‧‧‧輕摻雜汲極104‧‧‧Lightly doped bungee

110‧‧‧設計長度110‧‧‧Design length

120‧‧‧設計寬度120‧‧‧Design width

第1A/1B圖例示本發明推測閘極有效寬度與閘極有效長度方法的示意圖。Fig. 1A/1B is a view showing a method of estimating the effective width of the gate and the effective length of the gate of the present invention.

101’...設計閘極組101’. . . Design gate group

102...相異設計閘極102. . . Different design gate

Claims (20)

一種利用電腦推測一閘極有效寬度與一閘極有效長度的閘極設計方法,包含:提供一設計閘極,其包含一第一閘極設計寬度與一第一閘極設計長度;依據下列公式進行以下測量:Cinv =Leff *Weff *CA *N+2*Cedge *Weff *N其中Cinv =反轉電容值,CA =閘極通道電容值,Cedge =邊緣電容值,N=閘極數,Leff =閘極有效寬度,Weff =閘極有效長度;測量該第一設計閘極在一反轉電壓下之一第一測量反轉電容值,以計算該第一設計閘極之一閘極通道電容值;測量該第一設計閘極在一閘極電壓為零時下之一零值電容值,以計算該第一設計閘極之一邊緣電容值;經由該閘極通道電容值與該邊緣電容值預測一第一寬度誤差,而計算出一第一寬度計算反轉電容值與一預測第一寬度偏差值;反覆預測該第一寬度誤差,以最小化該預測第一寬度偏差值並最佳化該第一寬度誤差,而得到最佳化之該第一寬度誤差;經由該閘極通道電容值與該邊緣電容值預測一第一長度誤差, 而計算出一第一長度計算反轉電容值與一預測第一長度偏差值;反覆預測該第一長度誤差,以最小化該預測第一長度偏差值並最佳化該第一長度誤差,而得到最佳化之該第一長度誤差;以及經由最佳化之該第一寬度誤差與最佳化之該第一長度誤差,推測出該閘極有效寬度與該閘極有效長度。A gate design method for estimating a gate effective width and a gate effective length by using a computer, comprising: providing a design gate including a first gate design width and a first gate design length; according to the following formula Make the following measurements: C inv =L eff *W eff *C A *N+2*C edge *W eff *N where C inv = reverse capacitance value, C A = gate channel capacitance value, C edge = edge capacitance Value, N = gate number, L eff = gate effective width, W eff = gate effective length; measuring the first measured reverse capacitance value of the first design gate at a reverse voltage to calculate the a gate channel capacitance value of the first design gate; measuring a zero value capacitance value of the first design gate when a gate voltage is zero, to calculate an edge capacitance value of the first design gate; And calculating a first width error by using the gate channel capacitance value and the edge capacitance value, and calculating a first width calculation inversion capacitance value and a prediction first width deviation value; and repeatedly predicting the first width error to be the smallest The predicted first width deviation value is optimized and the first width error is optimized To optimize the first width error; predicting a first length error via the gate channel capacitance value and the edge capacitance value, and calculating a first length calculation inversion capacitance value and a prediction first length deviation value Overcoming the first length error to minimize the predicted first length deviation value and optimizing the first length error to obtain the first length error that is optimized; and the first The width error is optimized for the first length error, and the effective width of the gate and the effective length of the gate are inferred. 如請求項1之方法,其中該閘極通道電容值與該第一寬度誤差以及該第一長度誤差之改變無關。 The method of claim 1, wherein the gate channel capacitance value is independent of the first width error and the change in the first length error. 如請求項1之方法,其中該邊緣電容值與該第一寬度誤差以及該第一長度誤差之改變無關。 The method of claim 1, wherein the edge capacitance value is independent of the first width error and the change in the first length error. 如請求項1之方法,其中該邊緣電容值與該設計閘極之一輕摻雜汲極電容值以及一源極/汲極電容值有關。 The method of claim 1, wherein the edge capacitance value is related to a lightly doped drain capacitance value and a source/drain capacitance value of the design gate. 如請求項1之方法,其中預計該第一寬度誤差與該第一長度誤差之其中一者為零,以方便該另外一者之預測。 The method of claim 1, wherein one of the first width error and the first length error is expected to be zero to facilitate prediction by the other one. 如請求項1之方法,其中使用最佳化之該第一長度誤差與最佳化之該第一寬度誤差之其中一者,以方便該另外一者之預測。 The method of claim 1, wherein one of the first length error of the optimization and the first width error of the optimization is used to facilitate prediction by the other one. 如請求項1之方法,另包含提供複數個相異設計閘極,其中該等相異設計閘極包含複數個相異之閘極設計寬度。 The method of claim 1, further comprising providing a plurality of distinct design gates, wherein the distinct design gates comprise a plurality of distinct gate design widths. 如請求項7之方法,更包含:預測一群組寬度誤差,而計算出一群組寬度計算反轉電容值與一預測群組寬度偏差值;以及反覆預測該群組寬度誤差,以最小化該複數個相異閘極設計寬度之該預測群組寬度偏差值,並最佳化該群組寬度誤差,而得到最佳化之一群組寬度誤差。 The method of claim 7, further comprising: predicting a group width error, and calculating a group width calculation inversion capacitance value and a prediction group width deviation value; and repeatedly predicting the group width error to minimize The predicted group width deviation value of the plurality of distinct gate design widths is optimized and the group width error is optimized to obtain an optimized group width error. 如請求項8之方法,其中使用最佳化之該群組寬度誤差,以方便一群組長度誤差之最佳化預測。 The method of claim 8, wherein the group width error is optimized to facilitate optimal prediction of a group length error. 如請求項8之方法,其中使用一方均根方法以決定該複數個相異閘極設計寬度之最小化該預測群組寬度偏差值。 The method of claim 8, wherein a one-rooted method is used to determine the predicted group width deviation value of the plurality of distinct gate design widths. 如請求項8之方法,更包含:提供一寬度方程式,其得以實質上描述該複數個相異之閘極設計寬度與最佳化之該群組寬度誤差間之關連,其中該寬度方程式使得預測一給定設計閘極尺寸之該閘極有效寬度成為可能。 The method of claim 8, further comprising: providing a width equation substantially describing a relationship between the plurality of distinct gate design widths and the optimized group width error, wherein the width equation makes the prediction This gate effective width for a given design gate size is possible. 如請求項11之方法,其中使用一內插法,經由該寬度方程式與該給定設計閘極尺寸以推測出該給定設計閘極尺寸之該閘極有效寬度。 The method of claim 11, wherein an interpolation method is used to estimate the gate effective width of the given design gate size via the width equation and the given design gate size. 如請求項11之方法,其中該寬度方程式具有最小之未知數冪次。 The method of claim 11, wherein the width equation has a minimum unknown power. 如請求項1之方法,其中該設計閘極組包含複數個相異之閘極設計長度。 The method of claim 1, wherein the design gate set comprises a plurality of distinct gate design lengths. 如請求項14之方法,更包含:預測一群組長度誤差,而計算出一群組長度計算反轉電容值與一預測群組長度偏差值;以及反覆預測該群組長度誤差,以最小化該複數個相異閘極設計長度之該預測群組長度偏差值,並最佳化該群組長度誤差,而得到最佳化之一群組長度誤差。 The method of claim 14, further comprising: predicting a group length error, calculating a group length calculation inversion capacitance value and a prediction group length deviation value; and repeatedly predicting the group length error to minimize The predicted group length deviation value of the plurality of distinct gate design lengths is optimized, and the group length error is optimized to obtain an optimized group length error. 如請求項15之方法,其中使用該最佳化群組長度誤差,以方便一群組度寬誤差之最佳化預測。 The method of claim 15, wherein the optimized group length error is used to facilitate optimization of a group of width error errors. 如請求項15之方法,其中使用一方均根方法以決定該複數個閘極設計長度之最小化該預測群組長度偏差值。 The method of claim 15, wherein the one-segment rooting method is used to determine the plurality of gate design lengths to minimize the predicted group length deviation value. 如請求項15之方法,更包含:提供一長度方程式,其得以實質上描述該複數個閘極設計長度與最佳化之該群組長度誤差間之關連,其中該長度方程式使得預測一給定設計閘極尺寸之該閘極有效長度成為可能。 The method of claim 15, further comprising: providing a length equation substantially describing a relationship between the plurality of gate design lengths and the optimized group length error, wherein the length equation causes the prediction to be given It is possible to design the effective length of the gate of the gate size. 如請求項18之方法,其中使用一內插法,經由該長度方程式與該給定設計閘極尺寸以推測出該給定設計閘極尺寸之該閘極有效長度。 The method of claim 18, wherein an interpolation method is used to estimate the gate effective length of the given design gate size via the length equation and the given design gate size. 如請求項18之方法,其中該長度方程式具有最小之未知數冪次。 The method of claim 18, wherein the length equation has a minimum unknown power.
TW098124856A 2009-07-23 2009-07-23 Method for conjecturing effective width and effective length of gate TWI480758B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098124856A TWI480758B (en) 2009-07-23 2009-07-23 Method for conjecturing effective width and effective length of gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098124856A TWI480758B (en) 2009-07-23 2009-07-23 Method for conjecturing effective width and effective length of gate

Publications (2)

Publication Number Publication Date
TW201104485A TW201104485A (en) 2011-02-01
TWI480758B true TWI480758B (en) 2015-04-11

Family

ID=44813652

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098124856A TWI480758B (en) 2009-07-23 2009-07-23 Method for conjecturing effective width and effective length of gate

Country Status (1)

Country Link
TW (1) TWI480758B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200423274A (en) * 2003-04-25 2004-11-01 United Microelectronics Corp Method of measuring a gate channel length of a metal-oxide semiconductor transistor
TW200427232A (en) * 2003-05-21 2004-12-01 Spirox Corp Constant current source with threshold voltage and channel length modulation compensation
US20060131670A1 (en) * 2003-06-20 2006-06-22 Takashi Ogura Semiconductor device and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200423274A (en) * 2003-04-25 2004-11-01 United Microelectronics Corp Method of measuring a gate channel length of a metal-oxide semiconductor transistor
TW200427232A (en) * 2003-05-21 2004-12-01 Spirox Corp Constant current source with threshold voltage and channel length modulation compensation
US20060131670A1 (en) * 2003-06-20 2006-06-22 Takashi Ogura Semiconductor device and production method therefor
US20080203500A1 (en) * 2003-06-20 2008-08-28 Nec Corporation Semiconductor device and production method therefor

Also Published As

Publication number Publication date
TW201104485A (en) 2011-02-01

Similar Documents

Publication Publication Date Title
JP3786657B2 (en) Simulation method and simulation apparatus
WO2012149766A1 (en) Tcad simulation calibration method of soi field effect transistor
US8498855B2 (en) Circuit simulation based on gate spacing from adjacent MOS transistors
Tudor et al. An accurate MOSFET aging model for 28 nm integrated circuit simulation
Reid et al. Understanding LER-induced MOSFET $ V_ {T} $ variability—Part I: Three-dimensional simulation of large statistical samples
US20180156749A1 (en) Computer implemented method for determining intrinsic parameter in a stacked nanowires mosfet
WO2012126237A1 (en) Method for modeling soi field-effect transistor spice model series
WO2015109679A1 (en) Sti stress effect modelling method and apparatus for mos device
CN111368490A (en) Circuit model of transverse double-diffusion transistor and modeling method thereof
US20080216041A1 (en) Integrated circuit simulation method considering stress effects
TWI480758B (en) Method for conjecturing effective width and effective length of gate
CN116595832B (en) Quantum transport-heat stress coupling effect simulation method for nano semiconductor device
JP2010062441A (en) Simulation device and simulation method
Singh et al. 7-nm nanowire FET process variation modeling using industry standard BSIM-CMG model
CN110765712B (en) MOSFET trap auxiliary tunneling model and extraction method thereof
Gupta et al. Investigation of diffusion rounding for post-lithography analysis
JP5560700B2 (en) Design support apparatus, design support method, and design support program
JP2005229069A (en) Evaluation method of semiconductor device
CN113139355B (en) MOSFET trap auxiliary tunneling model and extraction method thereof
JP2001057425A (en) Method for extracting effective channel length of mis transistor, method for extracting resistance of diffusion layer thereof, and method for evaluating fabrication process thereof
Wang et al. The DIBL effect of SOI p-channel FinFETs under various SDE lengths
JP5546160B2 (en) Model parameter determination device, model parameter determination method and program
Wang et al. DIBL effect gauging the integrity of nano-node n-channel FinFETs
Garcia-Sanchez et al. Extraction of MOSFET model parameters from the measured source-to-drain resistance
Tan et al. Compact modeling of mechanical STI y-stress effect