TWI479610B - Non-volatile memory and manufacturing method thereof - Google Patents

Non-volatile memory and manufacturing method thereof Download PDF

Info

Publication number
TWI479610B
TWI479610B TW100136872A TW100136872A TWI479610B TW I479610 B TWI479610 B TW I479610B TW 100136872 A TW100136872 A TW 100136872A TW 100136872 A TW100136872 A TW 100136872A TW I479610 B TWI479610 B TW I479610B
Authority
TW
Taiwan
Prior art keywords
charge storage
layer
forming
oxide
volatile memory
Prior art date
Application number
TW100136872A
Other languages
Chinese (zh)
Other versions
TW201316460A (en
Inventor
Chih Chieh Cheng
Shih Guei Yan
Cheng Hsien Cheng
Wen Jer Tsai
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW100136872A priority Critical patent/TWI479610B/en
Publication of TW201316460A publication Critical patent/TW201316460A/en
Application granted granted Critical
Publication of TWI479610B publication Critical patent/TWI479610B/en

Links

Description

非揮發性記憶體及其製造方法Non-volatile memory and method of manufacturing same

本發明是有關於一種非揮發性記憶體( non-volatile memory,NVM)及其製造方法,且特別是有關於一種可以避免第二位元效應(second bit effect)與程式化干擾(program disturbance)的非揮發性記憶體及其製造方法。The present invention relates to a non-volatile memory (NVM) and a method of fabricating the same, and in particular to a second bit effect and a program disturbance. Non-volatile memory and its method of manufacture.

非揮發性記憶體由於具有存入的資料在斷電後也不會消失的優點,因此許多電器產品中必須具備此類記憶體,以維持電器產品開機時的正常操作。Non-volatile memory has the advantage that it does not disappear after power-off, so many electrical products must have such memory to maintain the normal operation of the electrical products when they are turned on.

氮化物唯讀記憶體(read only memory,ROM)為目前常見的一種非揮發性記憶體。在氮化物唯讀記憶體的記憶胞中,利用由氮化物層所構成的電荷捕捉結構可儲存二位元的資料。一般來說,二位元的資料可分別儲存於電荷捕捉結構中的左側(即左位元)或右側(即右位元) 。A nitride-only read-only memory (ROM) is a commonly used non-volatile memory. In the memory cell of the nitride read-only memory, the data of the two-bit can be stored by the charge trapping structure composed of the nitride layer. In general, the two-bit data can be stored separately on the left side (ie, the left bit) or the right side (ie, the right bit) in the charge trapping structure.

然而,在氮化物唯讀記憶體中存在著第二位元效應,即當對左位元進行讀取操作時會受到右位元的影響,或者當對右位元進行讀取操作時會受到左位元的影響。此外,隨著記憶體尺寸逐漸縮小,記憶胞中的通道(channel)長度也隨之縮短,造成第二位元效應更為顯著,因而影響了操作裕度(operation window)與元件效能。However, there is a second bit effect in the nitride read-only memory, that is, when the left bit is read, it is affected by the right bit, or when the right bit is read, The influence of the left bit. In addition, as the size of the memory is gradually reduced, the length of the channel in the memory cell is also shortened, resulting in a more significant second bit effect, thus affecting the operation window and component performance.

另外,由於記憶體尺寸逐漸縮小,記憶胞之間的間距也隨之縮短,因此相鄰的記憶胞在進行程式化操作時,也容易產生程式化干擾的問題。In addition, as the size of the memory is gradually reduced, the spacing between the memory cells is also shortened, so that adjacent memory cells are prone to stylized interference when performing programmatic operations.

本發明的實施例提供一種非揮發性記憶體的製作方法,可製造出能夠避免在操作時產生第二位元效應與程式化干擾的非揮發性記憶體。Embodiments of the present invention provide a method of fabricating a non-volatile memory that can produce non-volatile memory that can avoid second bit effects and stylized interference during operation.

本發明的實施例另提供一種非揮發性記憶體,其可避免在操作時產生第二位元效應與程式化干擾。Embodiments of the present invention further provide a non-volatile memory that avoids the generation of second bit effects and stylized interference during operation.

本發明提出一種非揮發性記憶體的製作方法。此方法是於基底上形成具有突起部的第一氧化物層,於突起部二側的基底中形成一對摻雜區。於突起部的側壁上形成一對電荷儲存間隙壁,且於第一氧化物層與電荷儲存間隙壁上形成第二氧化物層,並於第二氧化物層上形成導體層。The invention provides a method for fabricating a non-volatile memory. In this method, a first oxide layer having protrusions is formed on the substrate, and a pair of doped regions are formed in the substrate on both sides of the protrusion. A pair of charge storage spacers are formed on sidewalls of the protrusions, and a second oxide layer is formed on the first oxide layer and the charge storage spacers, and a conductor layer is formed on the second oxide layer.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述之第一氧化物層的形成方法例如是先於基底上形成第一氧化物材料層。然後,於第一氧化物材料層上形成圖案化罩幕層。接著,以圖案化罩幕層為罩幕,移除部分第一氧化物材料層,以形成突起部。之後,移除圖案化罩幕層。According to a method of fabricating a non-volatile memory according to an embodiment of the invention, the first oxide layer is formed by, for example, forming a first oxide material layer on a substrate. A patterned mask layer is then formed over the first oxide material layer. Next, a portion of the first oxide material layer is removed by patterning the mask layer as a mask to form protrusions. After that, the patterned mask layer is removed.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述在移除部分第一氧化物材料層之後,未暴露出位於突起部二側的基底。According to the method for fabricating a non-volatile memory according to an embodiment of the invention, after removing a portion of the first oxide material layer, the substrate on both sides of the protrusion is not exposed.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述在形成突起部之後以及在移除圖案化罩幕層之前,更包括以圖案化罩幕層為罩幕,進行離子植入製程,以形成摻雜區。According to the method for fabricating a non-volatile memory according to the embodiment of the invention, after the forming of the protrusion and before removing the patterned mask layer, the method further comprises: patterning the mask layer as a mask for ion implantation. The process is to form a doped region.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述之電荷儲存間隙壁的形成方法例如是先於第一氧化物層上共形地形成電荷儲存材料層。之後,進行等向性蝕刻製程,移除部分電荷儲存材料層。According to the method for fabricating a non-volatile memory according to an embodiment of the invention, the method for forming the charge storage spacers is, for example, conformally forming a charge storage material layer on the first oxide layer. Thereafter, an isotropic etching process is performed to remove a portion of the charge storage material layer.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述之電荷儲存間隙壁的形成方法例如是先於第一氧化物層上共形地形成電荷儲存材料層。然後,於電荷儲存材料層上形成第二氧化物材料層。之後,進行等向性蝕刻製程,移除部分第二氧化物材料層與部分電荷儲存材料層。According to the method for fabricating a non-volatile memory according to an embodiment of the invention, the method for forming the charge storage spacers is, for example, conformally forming a charge storage material layer on the first oxide layer. Then, a second oxide material layer is formed on the charge storage material layer. Thereafter, an isotropic etching process is performed to remove a portion of the second oxide material layer and a portion of the charge storage material layer.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述在形成突起部之後以及在移除圖案化罩幕層之前,更包括先於圖案化罩幕層與突起部的側壁上形成一對氮化物間隙壁。之後,以圖案化罩幕層與氮化物間隙壁為罩幕,進行離子植入製程,以形成摻雜區。According to the method for fabricating a non-volatile memory according to the embodiment of the present invention, after the forming of the protrusion and before removing the patterned mask layer, the method further comprises forming a sidewall of the patterned mask layer and the protrusion. A pair of nitride spacers. Thereafter, an ion implantation process is performed by patterning the mask layer and the nitride spacer as a mask to form a doped region.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述在移除圖案化罩幕層時,同時移除氮化物間隙壁。According to the method for fabricating a non-volatile memory according to an embodiment of the invention, the nitride spacer is simultaneously removed when the patterned mask layer is removed.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述之電荷儲存間隙壁的形成方法例如是先於第一氧化物層上共形地形成電荷儲存材料層。之後,進行等向性蝕刻製程,移除部分電荷儲存材料層。According to the method for fabricating a non-volatile memory according to an embodiment of the invention, the method for forming the charge storage spacers is, for example, conformally forming a charge storage material layer on the first oxide layer. Thereafter, an isotropic etching process is performed to remove a portion of the charge storage material layer.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述在形成摻雜區之後以及在移除圖案化罩幕層之前,更包括形成第三氧化物層,以覆蓋圖案化罩幕層、氮化物間隙壁與第一氧化物層。According to the method for fabricating a non-volatile memory according to an embodiment of the invention, after forming the doped region and before removing the patterned mask layer, the method further includes forming a third oxide layer to cover the patterned mask a layer, a nitride spacer and a first oxide layer.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述之移除圖案化罩幕層的方法例如是進行平坦化製程,移除圖案化罩幕層、部分氮化物間隙壁與部分第三氧化物層,直到暴露出突出部,且形成電荷儲存間隙壁。According to the method for fabricating a non-volatile memory according to an embodiment of the invention, the method for removing the patterned mask layer is, for example, performing a planarization process, removing the patterned mask layer, a portion of the nitride spacer and the portion. The third oxide layer is exposed until the protrusions are exposed and a charge storage spacer is formed.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述在移除部分第一氧化物材料層之後,暴露出位於突起部二側的該基底。According to the method for fabricating a non-volatile memory according to an embodiment of the invention, after removing a portion of the first oxide material layer, the substrate on both sides of the protrusion is exposed.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述在形成突起部之後以及在移除圖案化罩幕層之前,更包括以圖案化罩幕層為罩幕,進行離子植入製程,以形成摻雜區。According to the method for fabricating a non-volatile memory according to the embodiment of the invention, after the forming of the protrusion and before removing the patterned mask layer, the method further comprises: patterning the mask layer as a mask for ion implantation. The process is to form a doped region.

依照本發明實施例所述之非揮發性記憶體的製作方法,上述之電荷儲存間隙壁的形成方法包括例如是先於第一氧化物層上共形地形成第三氧化物層。然後,於第三氧化物層上共形地形成電荷儲存材料層。之後,進行等向性蝕刻製程,移除部分電荷儲存材料層。According to the method for fabricating a non-volatile memory according to an embodiment of the invention, the method for forming the charge storage spacer includes, for example, conformally forming a third oxide layer on the first oxide layer. Then, a charge storage material layer is conformally formed on the third oxide layer. Thereafter, an isotropic etching process is performed to remove a portion of the charge storage material layer.

本發明另提出一種非揮發性記憶體,其包括基底、電荷儲存結構、第一摻雜區、第二摻雜區以及閘極。電荷儲存結構配置於基底上。第一摻雜區與第二摻雜區分別配置於電荷儲存結構二側的基底中。閘極配置於電荷儲存結構上。電荷儲存結構包括介電主體、第一電荷儲存間隙壁與第二電荷儲存間隙壁。第一電荷儲存間隙壁與第二電荷儲存間隙壁鏡像對稱地配置於介電主體中且彼此分離。第一電荷儲存間隙壁鄰近第一摻雜區,且第二電荷儲存間隙壁鄰近第二摻雜區。第一電荷儲存間隙壁與第二電荷儲存間隙壁分別為L形,且第一電荷儲存間隙壁的水平部分與第二電荷儲存間隙壁的水平部分彼此遠離延伸,或者第一電荷儲存間隙壁與第二電荷儲存間隙壁分別具有曲面或斜面,且第一電荷儲存間隙壁的曲面或斜面與第二電荷儲存間隙壁的曲面或斜面彼此遠離。The invention further provides a non-volatile memory comprising a substrate, a charge storage structure, a first doped region, a second doped region, and a gate. The charge storage structure is disposed on the substrate. The first doped region and the second doped region are respectively disposed in the substrate on both sides of the charge storage structure. The gate is disposed on the charge storage structure. The charge storage structure includes a dielectric body, a first charge storage spacer, and a second charge storage spacer. The first charge storage spacers are disposed in mirror symmetry with the second charge storage spacers in the dielectric body and are separated from each other. The first charge storage spacer is adjacent to the first doped region, and the second charge storage spacer is adjacent to the second doped region. The first charge storage spacer and the second charge storage spacer are respectively L-shaped, and the horizontal portion of the first charge storage spacer and the horizontal portion of the second charge storage spacer extend away from each other, or the first charge storage spacer The second charge storage spacers respectively have a curved surface or a sloped surface, and the curved surface or the inclined surface of the first charge storage spacer is away from the curved surface or the inclined surface of the second charge storage spacer.

依照本發明實施例所述之非揮發性記憶體,上述之第一電荷儲存間隙壁與第二電荷儲存間隙壁的材料例如為氮化物、多晶矽、高介電常數(high-k)材料、氧化鉿(Hfx Oy )、氮氧化鉿(HfOx Ny )、氧化鋁(Alx Oy )或氧化鉿鋁(Hfx Aly Oz )。According to the non-volatile memory of the embodiment of the present invention, the materials of the first charge storage spacer and the second charge storage spacer are, for example, nitride, polysilicon, high-k material, oxidation.铪 (Hf x O y ), yttrium oxynitride (HfO x N y ), alumina (Al x O y ) or yttrium aluminum oxide (Hf x Al y O z ).

依照本發明實施例所述之非揮發性記憶體,上述之第一電荷儲存間隙壁與第二電荷儲存間隙壁的厚度例如介於40 A至80 A之間。According to the non-volatile memory of the embodiment of the invention, the thickness of the first charge storage spacer and the second charge storage spacer is between 40 A and 80 A, for example.

基於上述,本發明利用形成於氧化物突起部的側壁上的電荷儲存間隙壁來作為電荷儲存區域,因此可以有效地將電荷分別侷限於電荷儲存間隙壁中,以避免在進行讀取操作時產生第二位元效應,以及避免相鄰的記憶胞在進行程式化操作時產生程式化干擾的問題。此外,本發明可藉由調整用以形成電荷儲存間隙壁的電荷儲存材料層的厚度來控制電荷儲存間隙壁的尺寸,以避免造成電荷儲存間隙壁的尺寸過小而影響記憶體儲存電荷的能力。Based on the above, the present invention utilizes a charge storage spacer formed on the sidewall of the oxide protrusion as a charge storage region, thereby effectively limiting the charge to the charge storage spacer, respectively, to avoid generation during a read operation. The second bit effect, and the problem of avoiding stylized interference when adjacent memory cells are programmed. In addition, the present invention can control the size of the charge storage spacer by adjusting the thickness of the charge storage material layer for forming the charge storage spacer to avoid causing the charge storage spacer to be too small in size to affect the memory storage charge.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

第一實施例First embodiment

圖1A至圖1D為依照本發明第一實施例所 繪示的非揮發性記憶體之製作流程剖面示意圖。首先,請參照圖1A,於基底100上形成具有突起部102a的氧化物層102。氧化物層102的形成方法例如是先於基底100上形成氧化物材料層。氧化物材料層的形成方法例如是化學氣相沈積法。然後,於氧化物材料層上形成圖案化罩幕層104。圖案化罩幕層104覆蓋氧化物層102中欲形成突起部的區域。接著,以圖案化罩幕層104為罩幕,進行等向性蝕刻製程,以移除部分氧化物材料層直到暴露出基底100而形成突起部102a。在本實施例中,由於未被圖案化罩幕層104覆蓋的氧化物層102皆被移除,因此保留下來的氧化物層102皆屬於突起部102a。1A to 1D are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to a first embodiment of the present invention. First, referring to FIG. 1A, an oxide layer 102 having protrusions 102a is formed on a substrate 100. The oxide layer 102 is formed by, for example, forming an oxide material layer on the substrate 100. The method of forming the oxide material layer is, for example, a chemical vapor deposition method. A patterned mask layer 104 is then formed over the layer of oxide material. The patterned mask layer 104 covers the area of the oxide layer 102 where the protrusions are to be formed. Next, using the patterned mask layer 104 as a mask, an isotropic etching process is performed to remove a portion of the oxide material layer until the substrate 100 is exposed to form the protrusions 102a. In the present embodiment, since the oxide layer 102 not covered by the patterned mask layer 104 is removed, the remaining oxide layer 102 belongs to the protrusion 102a.

然後,請參照圖1B,以圖案化罩幕層104為罩幕,進行離子植入製程,以於突起部102a(氧化物層102)二側的基底100中形成摻雜區106。之後,移除圖案化罩幕層104。Then, referring to FIG. 1B, the ion mask process is performed by patterning the mask layer 104 as a mask to form the doping region 106 in the substrate 100 on both sides of the protrusion 102a (the oxide layer 102). Thereafter, the patterned mask layer 104 is removed.

接著,請參照圖1C,於基底100上共形地形成氧化物層108。氧化物層108的形成方法例如是化學氣相沈積法。氧化物層108覆蓋了突起部102a(氧化物層102)與摻雜區106。然後,於突起部102a(氧化物層102)的側壁上形成一對電荷儲存間隙壁110。電荷儲存間隙壁110作為後續形成的記憶體中的電荷儲存區域。電荷儲存間隙壁110的形成方法例如是先於氧化物層108上共形地形成電荷儲存材料層。電荷儲存材料層的材料例如為氮化物、多晶矽、高介電常數材料、氧化鉿、氮氧化鉿、氧化鋁或氧化鉿鋁。電荷儲存材料層的形成方法例如是化學氣相沈積法。之後,進行等向性蝕刻製程,移除部分電荷儲存材料層。由上述可知,電荷儲存間隙壁110的尺寸取決於電荷儲存材料層的厚度。換句話說,電荷儲存間隙壁110的尺寸可藉由調整電荷儲存材料層的厚度來控制。Next, referring to FIG. 1C, an oxide layer 108 is conformally formed on the substrate 100. The method of forming the oxide layer 108 is, for example, a chemical vapor deposition method. The oxide layer 108 covers the protrusions 102a (oxide layer 102) and the doped regions 106. Then, a pair of charge storage spacers 110 are formed on the sidewalls of the protrusions 102a (oxide layer 102). The charge storage spacers 110 serve as charge storage regions in the subsequently formed memory. The charge storage spacer 110 is formed, for example, by conformally forming a charge storage material layer on the oxide layer 108. The material of the charge storage material layer is, for example, nitride, polycrystalline germanium, high dielectric constant material, cerium oxide, cerium oxynitride, aluminum oxide or cerium aluminum oxide. The method of forming the charge storage material layer is, for example, a chemical vapor deposition method. Thereafter, an isotropic etching process is performed to remove a portion of the charge storage material layer. As can be seen from the above, the size of the charge storage spacer 110 depends on the thickness of the charge storage material layer. In other words, the size of the charge storage spacers 110 can be controlled by adjusting the thickness of the charge storage material layer.

在本實施例中,電荷儲存材料層的厚度例如介於40 A至80 A之間。如此一來,在對所形成的記憶體施加電壓之後,可以有效地將電荷儲存且侷限於電荷儲存間隙壁110中。此外,由於電荷儲存材料層的厚度介於40 A至80 A之間,因此不會造成電荷儲存間隙壁110的尺寸過小而影響記憶體儲存電荷的能力。In the present embodiment, the thickness of the charge storage material layer is, for example, between 40 A and 80 A. As a result, after a voltage is applied to the formed memory, the charge can be efficiently stored and confined to the charge storage spacer 110. In addition, since the thickness of the charge storage material layer is between 40 A and 80 A, the size of the charge storage spacer 110 is not too small to affect the ability of the memory to store charges.

之後,請參照圖1D,於氧化物層108與電荷儲存間隙壁110上形成氧化物層112。氧化物層112的形成方法例如是化學氣相沈積法。然後,於氧化物層112上形成導體層114,以形成非揮發性記憶體10。導體層114的形成方法例如是化學氣相沈積法。導體層114例如為多晶矽層。Thereafter, referring to FIG. 1D, an oxide layer 112 is formed on the oxide layer 108 and the charge storage spacers 110. The method of forming the oxide layer 112 is, for example, a chemical vapor deposition method. Then, a conductor layer 114 is formed on the oxide layer 112 to form the non-volatile memory 10. The method of forming the conductor layer 114 is, for example, a chemical vapor deposition method. The conductor layer 114 is, for example, a polysilicon layer.

非揮發性記憶體10包括多個如虛線處所示的記憶胞,其中突起部102a(氧化物層102)、氧化物層108、一對電荷儲存間隙壁110與氧化物層112構成電荷儲存結構(突起部102a、氧化物層108與氧化物層112可合稱為介電主體),而位於電荷儲存結構二側的摻雜區106分別作為源極區與汲極區,且導體層114作為閘極。在每一個記憶胞中,由於二個電荷儲存間隙壁110彼此分離開,因此可以有效地將電荷分別侷限於左側的電荷儲存間隙壁110(即左位元)與右側的電荷儲存間隙壁110(即右位元)中,以避免在進行讀取操作時產生第二位元效應。此外,由於電荷被侷限於電荷儲存間隙壁110中,因此亦可避免相鄰的記憶胞在進行程式化操作時產生程式化干擾的問題。The non-volatile memory 10 includes a plurality of memory cells as shown at the broken line, wherein the protrusions 102a (oxide layer 102), the oxide layer 108, the pair of charge storage spacers 110, and the oxide layer 112 constitute a charge storage structure. (The protrusion 102a, the oxide layer 108 and the oxide layer 112 may be collectively referred to as a dielectric body), and the doped regions 106 on both sides of the charge storage structure serve as a source region and a drain region, respectively, and the conductor layer 114 functions as Gate. In each of the memory cells, since the two charge storage spacers 110 are separated from each other, the charges can be effectively limited to the charge storage spacers 110 on the left side (ie, the left bit) and the charge storage spacers 110 on the right side ( That is, in the right bit), to avoid generating a second bit effect when a read operation is performed. In addition, since the electric charge is confined to the charge storage spacer 110, it is also possible to avoid the problem that stylized interference occurs when adjacent memory cells perform a program operation.

第二實施例Second embodiment

圖2A至圖2C為依照本發明第二實施例所 繪示的非揮發性記憶體之製作流程剖面示意圖。首先,請參照圖2A,於基底200上形成具有突起部202a的氧化物層202。氧化物層202的形成方法例如是先於基底200上形成氧化物材料層。氧化物材料層的形成方法例如是化學氣相沈積法。然後,於氧化物材料層上形成圖案化罩幕層204。圖案化罩幕層204覆蓋氧化物層202中欲形成突起部的區域。接著,以圖案化罩幕層204為罩幕,進行等向性蝕刻製程,以移除部分氧化物材料層但不暴露出基底200而形成突起部202a。2A to 2C are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to a second embodiment of the present invention. First, referring to FIG. 2A, an oxide layer 202 having protrusions 202a is formed on the substrate 200. The oxide layer 202 is formed by, for example, forming an oxide material layer on the substrate 200. The method of forming the oxide material layer is, for example, a chemical vapor deposition method. A patterned mask layer 204 is then formed over the layer of oxide material. The patterned mask layer 204 covers the regions of the oxide layer 202 where the protrusions are to be formed. Next, using the patterned mask layer 204 as a mask, an isotropic etching process is performed to remove a portion of the oxide material layer without exposing the substrate 200 to form the protrusions 202a.

然後,請參照圖2B,以圖案化罩幕層204為罩幕,進行離子植入製程,以於突起部202a二側的基底200中形成摻雜區206。接著,移除圖案化罩幕層204。之後,於突起部202a的側壁上形成一對電荷儲存間隙壁208。電荷儲存間隙壁208作為後續形成的記憶體中的電荷儲存區域。電荷儲存間隙壁208的形成方法例如是先於氧化物層202上共形地形成電荷儲存材料層。電荷儲存材料層的材料例如為氮化物、多晶矽、高介電常數材料、氧化鉿、氮氧化鉿、氧化鋁或氧化鉿鋁。電荷儲存材料層的形成方法例如是化學氣相沈積法。之後,進行等向性蝕刻製程,移除部分電荷儲存材料層。與第一實施例相同,電荷儲存間隙壁208的尺寸可藉由調整電荷儲存材料層的厚度來控制。在本實施例中,電荷儲存材料層的厚度例如介於40 A至80 A之間。如此一來,可避免造成電荷儲存間隙壁208的尺寸過小而影響記憶體儲存電荷的能力。Then, referring to FIG. 2B, the ion mask process is performed by patterning the mask layer 204 as a mask to form a doping region 206 in the substrate 200 on both sides of the protrusion 202a. Next, the patterned mask layer 204 is removed. Thereafter, a pair of charge storage spacers 208 are formed on the sidewalls of the protrusions 202a. The charge storage spacers 208 serve as charge storage regions in the subsequently formed memory. The method of forming the charge storage spacers 208 is, for example, conformally forming a layer of charge storage material prior to the oxide layer 202. The material of the charge storage material layer is, for example, nitride, polycrystalline germanium, high dielectric constant material, cerium oxide, cerium oxynitride, aluminum oxide or cerium aluminum oxide. The method of forming the charge storage material layer is, for example, a chemical vapor deposition method. Thereafter, an isotropic etching process is performed to remove a portion of the charge storage material layer. As with the first embodiment, the size of the charge storage spacers 208 can be controlled by adjusting the thickness of the charge storage material layer. In the present embodiment, the thickness of the charge storage material layer is, for example, between 40 A and 80 A. In this way, the ability of the charge storage spacers 208 to be too small to affect the stored charge of the memory can be avoided.

之後,請參照圖2C,於氧化物層202與電荷儲存間隙壁208上形成氧化物層210。氧化物層210的形成方法例如是化學氣相沈積法。然後,於氧化物層210上形成導體層212,以形成非揮發性記憶體20。導體層212的形成方法例如是化學氣相沈積法。導體層212例如為多晶矽層。Thereafter, referring to FIG. 2C, an oxide layer 210 is formed on the oxide layer 202 and the charge storage spacers 208. The method of forming the oxide layer 210 is, for example, a chemical vapor deposition method. Conductor layer 212 is then formed over oxide layer 210 to form non-volatile memory 20. The method of forming the conductor layer 212 is, for example, a chemical vapor deposition method. The conductor layer 212 is, for example, a polysilicon layer.

非揮發性記憶體20包括多個如虛線處所示的記憶胞,其中氧化物層202、一對電荷儲存間隙壁208與氧化物層210構成電荷儲存結構(氧化物層202與氧化物層210可合稱為介電主體),而位於電荷儲存結構二側的摻雜區206分別作為源極區與汲極區,且導體層212作為閘極。與非揮發性記憶體10相同,在對非揮發性記憶體20的記憶胞進行讀取操作時可避免產生第二位元效應,以及可避免相鄰的記憶胞在進行程式化操作時產生程式化干擾的問題。The non-volatile memory 20 includes a plurality of memory cells as shown at the broken line, wherein the oxide layer 202, the pair of charge storage spacers 208 and the oxide layer 210 constitute a charge storage structure (the oxide layer 202 and the oxide layer 210). The doped regions 206 on the two sides of the charge storage structure serve as the source region and the drain region, respectively, and the conductor layer 212 serves as a gate. Like the non-volatile memory 10, the second bit effect can be avoided when reading the memory cells of the non-volatile memory 20, and the adjacent memory cells can be prevented from generating programs during the stylization operation. The problem of interference.

第三實施例Third embodiment

圖3A至圖3D為依照本發明第三實施例所 繪示的非揮發性記憶體之製作流程剖面示意圖。首先,請參照圖3A,於基底300上形成具有突起部302a的氧化物層302。氧化物層302的形成方法例如是先於基底300上形成氧化物材料層。氧化物材料層的形成方法例如是化學氣相沈積法。然後,於氧化物材料層上形成圖案化罩幕層304。圖案化罩幕層304覆蓋氧化物層302中欲形成突起部的區域。接著,以圖案化罩幕層304為罩幕,進行等向性蝕刻製程,以移除部分氧化物材料層但不暴露出基底300而形成突起部302a。3A to 3D are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to a third embodiment of the present invention. First, referring to FIG. 3A, an oxide layer 302 having protrusions 302a is formed on the substrate 300. The oxide layer 302 is formed by, for example, forming an oxide material layer on the substrate 300. The method of forming the oxide material layer is, for example, a chemical vapor deposition method. A patterned mask layer 304 is then formed over the layer of oxide material. The patterned mask layer 304 covers the area of the oxide layer 302 where the protrusions are to be formed. Next, using the patterned mask layer 304 as a mask, an isotropic etching process is performed to remove portions of the oxide material layer without exposing the substrate 300 to form the protrusions 302a.

然後,請參照圖3B,於圖案化罩幕層304與突起部302a的側壁上形成一對氮化物間隙壁306。氮化物間隙壁306的形成方法例如是先於氧化物層302上共形地形成氮化物材料層。之後,進行等向性蝕刻製程,移除部分氮化物材料層。接著,以圖案化罩幕層304與氮化物間隙壁306為罩幕,進行離子植入製程,以形成摻雜區308。Then, referring to FIG. 3B, a pair of nitride spacers 306 are formed on the sidewalls of the patterned mask layer 304 and the protrusions 302a. The method of forming the nitride spacers 306 is, for example, to conformally form a layer of nitride material prior to the oxide layer 302. Thereafter, an isotropic etching process is performed to remove a portion of the nitride material layer. Next, an ion implantation process is performed by patterning the mask layer 304 and the nitride spacer 306 as a mask to form a doping region 308.

在本實施例中,由於在形成摻雜區308時同時以圖案化罩幕層304與氮化物間隙壁306為罩幕來進行離子植入製程,因此突起部302a二側的摻雜區308之間可以具有較大的距離,進而可以避免後續所形成的記憶體在操作過程中發生短通道效應(short channel effect)以及電荷擊穿(punch through)的現象而對元件效能造成影響。In this embodiment, since the ion implantation process is performed by patterning the mask layer 304 and the nitride spacer 306 as a mask while forming the doping region 308, the doping region 308 on both sides of the protrusion 302a There can be a large distance between each other, which can avoid the short channel effect and the punch through phenomenon of the memory formed in the subsequent operation, which affects the device performance.

接著,請參照圖3C,移除圖案化罩幕層304與氮化物間隙壁306。在本實施例中,圖案化罩幕層304與氮化物間隙壁306可同時被移除。然後,於突起部302a的側壁上形成一對電荷儲存間隙壁310。電荷儲存間隙壁310作為後續形成的記憶體中的電荷儲存區域。電荷儲存間隙壁310的形成方法例如是先於氧化物層302上共形地形成電荷儲存材料層。電荷儲存材料層的材料例如為氮化物、多晶矽、高介電常數材料、氧化鉿、氮氧化鉿、氧化鋁或氧化鉿鋁。電荷儲存材料層的形成方法例如是化學氣相沈積法。之後,進行等向性蝕刻製程,移除部分電荷儲存材料層。與第一實施例相同,電荷儲存間隙壁310的尺寸可藉由調整所形成的電荷儲存材料層的厚度來控制。在本實施例中,電荷儲存材料層的厚度例如介於40 A至80 A之間。如此一來,可避免造成電荷儲存間隙壁310的尺寸過小而影響記憶體儲存電荷的能力。Next, referring to FIG. 3C, the patterned mask layer 304 and the nitride spacers 306 are removed. In the present embodiment, the patterned mask layer 304 and the nitride spacers 306 can be removed simultaneously. Then, a pair of charge storage spacers 310 are formed on the sidewalls of the protrusions 302a. The charge storage spacers 310 serve as charge storage regions in the subsequently formed memory. The charge storage spacer 310 is formed by, for example, conformally forming a charge storage material layer on the oxide layer 302. The material of the charge storage material layer is, for example, nitride, polycrystalline germanium, high dielectric constant material, cerium oxide, cerium oxynitride, aluminum oxide or cerium aluminum oxide. The method of forming the charge storage material layer is, for example, a chemical vapor deposition method. Thereafter, an isotropic etching process is performed to remove a portion of the charge storage material layer. As with the first embodiment, the size of the charge storage spacers 310 can be controlled by adjusting the thickness of the formed charge storage material layer. In the present embodiment, the thickness of the charge storage material layer is, for example, between 40 A and 80 A. In this way, the ability of the charge storage spacers 310 to be too small to affect the stored charge of the memory can be avoided.

之後,請參照圖3D,於氧化物層302與電荷儲存間隙壁310上形成氧化物層312。氧化物層312的形成方法例如是化學氣相沈積法。然後,於氧化物層312上形成導體層314,以形成非揮發性記憶體30。導體層314的形成方法例如是化學氣相沈積法。導體層314例如為多晶矽層。Thereafter, referring to FIG. 3D, an oxide layer 312 is formed on the oxide layer 302 and the charge storage spacers 310. The method of forming the oxide layer 312 is, for example, a chemical vapor deposition method. Conductor layer 314 is then formed over oxide layer 312 to form non-volatile memory 30. The method of forming the conductor layer 314 is, for example, a chemical vapor deposition method. The conductor layer 314 is, for example, a polysilicon layer.

非揮發性記憶體30包括多個如虛線處所示的記憶胞,其中氧化物層302、一對電荷儲存間隙壁310與氧化物層312構成電荷儲存結構(氧化物層302與氧化物層312可合稱為介電主體),而位於電荷儲存結構二側的摻雜區308分別作為源極區與汲極區,且導體層314作為閘極。與非揮發性記憶體10相同,在對非揮發性記憶體30的記憶胞進行讀取操作時可避免產生第二位元效應,以及可避免相鄰的記憶胞在進行程式化操作時產生程式化干擾的問題。此外,在非揮發性記憶體30中,由於源極區與汲極區之間具有較大的距離,因此可以避免在操作過程中發生短通道效應以及電荷擊穿的現象。The non-volatile memory 30 includes a plurality of memory cells as shown at the broken line, wherein the oxide layer 302, the pair of charge storage spacers 310 and the oxide layer 312 constitute a charge storage structure (the oxide layer 302 and the oxide layer 312). The doped regions 308 on the two sides of the charge storage structure serve as the source region and the drain region, respectively, and the conductor layer 314 serves as a gate. Like the non-volatile memory 10, the second bit effect can be avoided when reading the memory cells of the non-volatile memory 30, and the adjacent memory cells can be prevented from generating programs during the stylization operation. The problem of interference. Further, in the non-volatile memory 30, since there is a large distance between the source region and the drain region, the phenomenon of short channel effect and charge breakdown during operation can be avoided.

第四實施例Fourth embodiment

圖4A至圖4D為依照本發明第四實施例所 繪示的非揮發性記憶體之製作流程剖面示意圖。首先,請參照圖4A,於基底400上形成具有突起部402a的氧化物層402。氧化物層402的形成方法例如是先於基底400上形成氧化物材料層。氧化物材料層的形成方法例如是化學氣相沈積法。然後,於氧化物材料層上形成圖案化罩幕層404。圖案化罩幕層404覆蓋氧化物層402中欲形成突起部的區域。接著,以圖案化罩幕層404為罩幕,進行等向性蝕刻製程,以移除部分氧化物材料層但不暴露出基底400而形成突起部402a。4A-4D are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to a fourth embodiment of the present invention. First, referring to FIG. 4A, an oxide layer 402 having protrusions 402a is formed on the substrate 400. The oxide layer 402 is formed by, for example, forming a layer of an oxide material on the substrate 400. The method of forming the oxide material layer is, for example, a chemical vapor deposition method. A patterned mask layer 404 is then formed over the layer of oxide material. The patterned mask layer 404 covers the area of the oxide layer 402 where the protrusions are to be formed. Next, using the patterned mask layer 404 as a mask, an isotropic etching process is performed to remove portions of the oxide material layer without exposing the substrate 400 to form the protrusions 402a.

然後,請參照圖4B,以圖案化罩幕層404為罩幕,進行離子植入製程,以於突起部402a二側的基底400中形成摻雜區406。接著,移除圖案化罩幕層404。而後,於氧化物層402上共形地形成電荷儲存材料層408。電荷儲存材料層408的材料例如為氮化物、多晶矽、高介電常數材料、氧化鉿、氮氧化鉿、氧化鋁或氧化鉿鋁。電荷儲存材料層408的形成方法例如是化學氣相沈積法。然後,於電荷儲存材料層408上形成氧化物材料層410。氧化物材料層410的形成方法例如是化學氣相沈積法。Then, referring to FIG. 4B, the ion mask process is performed by patterning the mask layer 404 as a mask to form a doping region 406 in the substrate 400 on both sides of the protrusion 402a. Next, the patterned mask layer 404 is removed. The charge storage material layer 408 is then conformally formed on the oxide layer 402. The material of the charge storage material layer 408 is, for example, nitride, polycrystalline germanium, high dielectric constant material, cerium oxide, cerium oxynitride, aluminum oxide or cerium aluminum oxide. The method of forming the charge storage material layer 408 is, for example, a chemical vapor deposition method. An oxide material layer 410 is then formed over the charge storage material layer 408. The method of forming the oxide material layer 410 is, for example, a chemical vapor deposition method.

接著,請參照圖4C,進行等向性蝕刻製程,移除部分氧化物材料層410與部分電荷儲存材料層408,以於突起部402a的側壁上形成一對電荷儲存間隙壁408a。與第一實施例相同,電荷儲存間隙壁408a的尺寸可藉由調整所形成的電荷儲存材料層408的厚度來控制。在本實施例中,電荷儲存材料層408的厚度例如介於40 A至80 A之間。如此一來,可避免造成電荷儲存間隙壁408a的尺寸過小而影響記憶體儲存電荷的能力。Next, referring to FIG. 4C, an isotropic etching process is performed to remove a portion of the oxide material layer 410 and a portion of the charge storage material layer 408 to form a pair of charge storage spacers 408a on the sidewalls of the protrusions 402a. As with the first embodiment, the size of the charge storage spacers 408a can be controlled by adjusting the thickness of the formed charge storage material layer 408. In the present embodiment, the thickness of the charge storage material layer 408 is, for example, between 40 A and 80 A. In this way, the ability of the charge storage spacer 408a to be too small to affect the memory storage charge can be avoided.

之後,請參照圖4D,於氧化物層402、電荷儲存間隙壁408a與剩餘的氧化物材料層410上形成氧化物層412。氧化物層412的形成方法例如是化學氣相沈積法。然後,於氧化物層412上形成導體層414,以形成非揮發性記憶體40。導體層414的形成方法例如是化學氣相沈積法。導體層414例如為多晶矽層。Thereafter, referring to FIG. 4D, an oxide layer 412 is formed on the oxide layer 402, the charge storage spacers 408a, and the remaining oxide material layer 410. The method of forming the oxide layer 412 is, for example, a chemical vapor deposition method. Conductor layer 414 is then formed over oxide layer 412 to form non-volatile memory 40. The method of forming the conductor layer 414 is, for example, a chemical vapor deposition method. The conductor layer 414 is, for example, a polysilicon layer.

非揮發性記憶體40包括多個如虛線處所示的記憶胞,其中氧化物層402、一對電荷儲存間隙壁408a、氧化物材料層410與氧化物層412構成電荷儲存結構(氧化物層402、氧化物材料層410與氧化物層412可合稱為介電主體),而位於電荷儲存結構二側的摻雜區406分別作為源極區與汲極區,且導體層414作為閘極。與非揮發性記憶體10相同,在對非揮發性記憶體40的記憶胞進行讀取操作時可避免產生第二位元效應,以及可避免相鄰的記憶胞在進行程式化操作時產生程式化干擾的問題。The non-volatile memory 40 includes a plurality of memory cells as shown at the broken line, wherein the oxide layer 402, the pair of charge storage spacers 408a, the oxide material layer 410, and the oxide layer 412 constitute a charge storage structure (oxide layer) 402, the oxide material layer 410 and the oxide layer 412 may be collectively referred to as a dielectric body), and the doped regions 406 on the two sides of the charge storage structure serve as a source region and a drain region, respectively, and the conductor layer 414 serves as a gate. . Like the non-volatile memory 10, the second bit effect can be avoided when reading the memory cells of the non-volatile memory 40, and the adjacent memory cells can be prevented from generating programs during the stylization operation. The problem of interference.

第五實施例Fifth embodiment

圖5A至圖5E為依照本發明第五實施例所 繪示的非揮發性記憶體之製作流程剖面示意圖。首先,請參照圖5A,於基底500上形成具有突起部502a的氧化物層502。氧化物層502的形成方法例如是先於基底500上形成氧化物材料層。氧化物材料層的形成方法例如是化學氣相沈積法。然後,於氧化物材料層上形成圖案化罩幕層504。圖案化罩幕層504覆蓋氧化物層502中欲形成突起部的區域。接著,以圖案化罩幕層504為罩幕,進行等向性蝕刻製程,以移除部分氧化物材料層但不暴露出基底500而形成突起部502a。5A to 5E are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to a fifth embodiment of the present invention. First, referring to FIG. 5A, an oxide layer 502 having a protrusion 502a is formed on the substrate 500. The oxide layer 502 is formed by, for example, forming a layer of an oxide material on the substrate 500. The method of forming the oxide material layer is, for example, a chemical vapor deposition method. A patterned mask layer 504 is then formed over the layer of oxide material. The patterned mask layer 504 covers the area of the oxide layer 502 where the protrusions are to be formed. Next, using the patterned mask layer 504 as a mask, an isotropic etching process is performed to remove a portion of the oxide material layer without exposing the substrate 500 to form the protrusions 502a.

然後,請參照圖5B,於圖案化罩幕層504與突起部502a的側壁上形成一對電荷儲存間隙壁506。電荷儲存間隙壁506的形成方法例如是先於氧化物層502上共形地形成電荷儲存材料層。電荷儲存材料層的材料例如為氮化物、多晶矽、高介電常數材料、氧化鉿、氮氧化鉿、氧化鋁或氧化鉿鋁。之後,進行等向性蝕刻製程,移除部分電荷儲存材料層。接著,以圖案化罩幕層504與電荷儲存間隙壁506為罩幕,進行離子植入製程,以形成摻雜區508。Then, referring to FIG. 5B, a pair of charge storage spacers 506 are formed on the sidewalls of the patterned mask layer 504 and the protrusions 502a. The charge storage spacers 506 are formed, for example, by conformally forming a layer of charge storage material prior to the oxide layer 502. The material of the charge storage material layer is, for example, nitride, polycrystalline germanium, high dielectric constant material, cerium oxide, cerium oxynitride, aluminum oxide or cerium aluminum oxide. Thereafter, an isotropic etching process is performed to remove a portion of the charge storage material layer. Next, an ion implantation process is performed with the patterned mask layer 504 and the charge storage spacers 506 as masks to form doped regions 508.

與第三實施例相同,在本實施例中,突起部502a二側的摻雜區508之間具有較大的距離,因此可以避免後續所形成的記憶體在操作過程中發生短通道效應以及電荷擊穿的現象而對元件效能造成影響。As in the third embodiment, in the present embodiment, the doped regions 508 on the two sides of the protrusions 502a have a large distance therebetween, so that short-channel effects and charges can be prevented from occurring in the subsequently formed memory during operation. The phenomenon of breakdown affects the performance of components.

接著,請參照圖5C,於氧化物層502上形成氧化物層510,以覆蓋圖案化罩幕層504、電荷儲存間隙壁506與氧化物層502。氧化物層510的形成方法例如是化學氣相沈積法。Next, referring to FIG. 5C, an oxide layer 510 is formed on the oxide layer 502 to cover the patterned mask layer 504, the charge storage spacers 506, and the oxide layer 502. The method of forming the oxide layer 510 is, for example, a chemical vapor deposition method.

而後,請參照圖5D,移除圖案化罩幕層504。移除圖案化罩幕層504的方法例如是進行平坦化製程(如化學機械研磨製程),移除圖案化罩幕層504、部分電荷儲存間隙壁506與部分氧化物層510,直到暴露出突出部502a,且於突出部502a的側壁上形成一對電荷儲存間隙壁512。Then, referring to FIG. 5D, the patterned mask layer 504 is removed. The method of removing the patterned mask layer 504 is, for example, performing a planarization process (such as a chemical mechanical polishing process), removing the patterned mask layer 504, the portion of the charge storage spacers 506, and the portion of the oxide layer 510 until the protrusion is exposed. The portion 502a forms a pair of charge storage spacers 512 on the sidewalls of the protrusions 502a.

之後,請參照圖5E,於氧化物層502與電荷儲存間隙壁512上形成氧化物層514。氧化物層514的形成方法例如是化學氣相沈積法。然後,於氧化物層514上形成導體層516,以形成非揮發性記憶體50。導體層516的形成方法例如是化學氣相沈積法。導體層516例如為多晶矽層。Thereafter, referring to FIG. 5E, an oxide layer 514 is formed on the oxide layer 502 and the charge storage spacers 512. The method of forming the oxide layer 514 is, for example, a chemical vapor deposition method. Conductor layer 516 is then formed over oxide layer 514 to form non-volatile memory 50. The method of forming the conductor layer 516 is, for example, a chemical vapor deposition method. The conductor layer 516 is, for example, a polysilicon layer.

非揮發性記憶體50包括多個如虛線處所示的記憶胞,其中氧化物層502、一對電荷儲存間隙壁512與氧化物層514構成電荷儲存結構(氧化物層502與氧化物層514可合稱為介電主體),而位於電荷儲存結構二側的摻雜區508分別作為源極區與汲極區,且導體層516作為閘極。與非揮發性記憶體10相同,在對非揮發性記憶體50的記憶胞進行讀取操作時可避免產生第二位元效應,以及可避免相鄰的記憶胞在進行程式化操作時產生程式化干擾的問題。此外,在非揮發性記憶體50中,由於源極區與汲極區之間具有較大的距離,因此可以避免在操作過程中發生短通道效應以及電荷擊穿的現象。The non-volatile memory 50 includes a plurality of memory cells as shown at the dashed line, wherein the oxide layer 502, the pair of charge storage spacers 512 and the oxide layer 514 constitute a charge storage structure (the oxide layer 502 and the oxide layer 514). The doped regions 508 on the two sides of the charge storage structure serve as a source region and a drain region, respectively, and the conductor layer 516 serves as a gate. Like the non-volatile memory 10, the second bit effect can be avoided when reading the memory cells of the non-volatile memory 50, and the adjacent memory cells can be prevented from generating programs during the stylization operation. The problem of interference. Further, in the non-volatile memory 50, since there is a large distance between the source region and the drain region, the phenomenon of short channel effect and charge breakdown during operation can be avoided.

在非揮發性記憶體10、20、30、40、50的每一個記憶胞中,用以儲存電荷的二個電荷儲存間隙壁彼此分離且鏡像對稱地配置。此外,在非揮發性記憶體10、20、30的每一個記憶胞中,二個電荷儲存間隙壁分別具有曲面或斜面,且二個電荷儲存間隙壁的曲面或斜面彼此遠離。另外,在非揮發性記憶體40的每一個記憶胞中,二個電荷儲存間隙壁408a分別為L形,且二個L形的電荷儲存間隙壁408a中的水平部分彼此遠離延伸。In each of the memory cells of the non-volatile memory 10, 20, 30, 40, 50, the two charge storage spacers for storing charges are separated from each other and arranged in mirror symmetry. Further, in each of the memory cells of the non-volatile memory 10, 20, 30, the two charge storage spacers respectively have a curved surface or a sloped surface, and the curved surfaces or inclined surfaces of the two charge storage spacers are apart from each other. In addition, in each of the memory cells of the non-volatile memory 40, the two charge storage spacers 408a are respectively L-shaped, and the horizontal portions of the two L-shaped charge storage spacers 408a extend away from each other.

另外一提的是,在非揮發性記憶體40的電荷儲存間隙壁408a的製作過程中,在形成電荷儲存材料層408之後,於電荷儲存材料層408上形成了氧化物材料層410,然後才進行等向性蝕刻製程來形成電荷儲存間隙壁408a,因此相較於非揮發性記憶體10、20、30的每一個記憶胞中的電荷儲存間隙壁,電荷儲存間隙壁408a可以具有較大的體積,且因此可讓所儲存的電荷更靠近摻雜區,以有效改善第二位元效應和程式化干擾效應。In addition, during the fabrication of the charge storage spacers 408a of the non-volatile memory 40, after the formation of the charge storage material layer 408, an oxide material layer 410 is formed on the charge storage material layer 408, and then The isotropic etching process is performed to form the charge storage spacers 408a, so the charge storage spacers 408a may have a larger memory storage spacers in each of the memory cells of the non-volatile memory 10, 20, 30. The volume, and therefore the stored charge, is closer to the doped region to effectively improve the second bit effect and stylized interference effects.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10、20、30、40、50...非揮發性記憶體10, 20, 30, 40, 50. . . Non-volatile memory

100、200、300、400、500...基底100, 200, 300, 400, 500. . . Base

102、108、112、202、210、302、312、402、412、502、510、514...氧化物層102, 108, 112, 202, 210, 302, 312, 402, 412, 502, 510, 514. . . Oxide layer

102a、202a、302a、402a、502a...突起部102a, 202a, 302a, 402a, 502a. . . Protrusion

104、204、304、404、504...圖案化罩幕層104, 204, 304, 404, 504. . . Patterned mask layer

106、206、308、406、508...摻雜區106, 206, 308, 406, 508. . . Doped region

110、208、310、408a、506、512...電荷儲存間隙壁110, 208, 310, 408a, 506, 512. . . Charge storage spacer

114、212、314、414、516...導體層114, 212, 314, 414, 516. . . Conductor layer

306...氮化物間隙壁306. . . Nitride spacer

408...電荷儲存材料層408. . . Charge storage material layer

410...氧化物材料層410. . . Oxide material layer

圖1A至圖1D為依照本發明第一實施例所 繪示的非揮發性記憶體之製作流程剖面示意圖。1A to 1D are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to a first embodiment of the present invention.

圖2A至圖2C為依照本發明第二實施例所繪示的非揮發性記憶體之製作流程剖面示意圖。2A-2C are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to a second embodiment of the present invention.

圖3A至圖3D為依照本發明第三實施例所繪示的非揮發性記憶體之製作流程剖面示意圖。3A-3D are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to a third embodiment of the present invention.

圖4A至圖4D為依照本發明第四實施例所繪示的非揮發性記憶體之製作流程剖面示意圖。4A-4D are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to a fourth embodiment of the present invention.

圖5A至圖5E為依照本發明第五實施例所繪示的非揮發性記憶體之製作流程剖面示意圖。5A-5E are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to a fifth embodiment of the present invention.

100...基底100. . . Base

102、108...氧化物層102, 108. . . Oxide layer

102a...突起部102a. . . Protrusion

106...摻雜區106. . . Doped region

110...電荷儲存間隙壁110. . . Charge storage spacer

Claims (17)

一種非揮發性記憶體的製作方法,包括: 於一基底上形成一第一氧化物層,該第一氧化物層具有一突起部; 於該突起部二側的該基底中形成一對摻雜區; 於該突起部的側壁上形成一對電荷儲存間隙壁; 於該第一氧化物層與該對電荷儲存間隙壁上形成一第二氧化物層;以及 於該第二氧化物層上形成一導體層。A method of fabricating a non-volatile memory, comprising: forming a first oxide layer on a substrate, the first oxide layer having a protrusion; forming a pair of doping in the substrate on both sides of the protrusion Forming a pair of charge storage spacers on sidewalls of the protrusions; forming a second oxide layer on the first oxide layer and the pair of charge storage spacers; and forming on the second oxide layer A conductor layer. 如申請專利範圍第1項所述之非揮發性記憶體的製作方法,其中該第一氧化物層的形成方法包括: 於該基底上形成一第一氧化物材料層; 於該第一氧化物材料層上形成一圖案化罩幕層; 以該圖案化罩幕層為罩幕,移除部分該第一氧化物材料層,以形成該突起部;以及 移除該圖案化罩幕層。The method for fabricating a non-volatile memory according to claim 1, wherein the method for forming the first oxide layer comprises: forming a first oxide material layer on the substrate; Forming a patterned mask layer on the material layer; using the patterned mask layer as a mask, removing a portion of the first oxide material layer to form the protrusion; and removing the patterned mask layer. 如申請專利範圍第2項所述之非揮發性記憶體的製作方法,其中在移除部分該第一氧化物材料層之後,未暴露出位於該突起部二側的該基底。The method of fabricating the non-volatile memory of claim 2, wherein the substrate on both sides of the protrusion is not exposed after removing a portion of the first oxide material layer. 如申請專利範圍第3項所述之非揮發性記憶體的製作方法,其中在形成該突起部之後以及在移除該圖案化罩幕層之前,更包括以該圖案化罩幕層為罩幕,進行離子植入製程,以形成該對摻雜區。The method of fabricating the non-volatile memory of claim 3, wherein after the forming the protrusion and before removing the patterned mask layer, the mask layer is further covered by the patterned mask layer An ion implantation process is performed to form the pair of doped regions. 如申請專利範圍第4項所述之非揮發性記憶體的製作方法,其中該對電荷儲存間隙壁的形成方法包括: 於該第一氧化物層上共形地形成一電荷儲存材料層;以及 進行等向性蝕刻製程,移除部分該電荷儲存材料層。The method for fabricating a non-volatile memory according to claim 4, wherein the method of forming the pair of charge storage spacers comprises: conformally forming a layer of charge storage material on the first oxide layer; An isotropic etching process is performed to remove a portion of the charge storage material layer. 如申請專利範圍第4項所述之非揮發性記憶體的製作方法,其中該對電荷儲存間隙壁的形成方法包括: 於該第一氧化物層上共形地形成一電荷儲存材料層; 於該電荷儲存材料層上形成一第二氧化物材料層;以及 進行等向性蝕刻製程,移除部分該第二氧化物材料層與部分該電荷儲存材料層。The method for fabricating a non-volatile memory according to claim 4, wherein the method for forming the pair of charge storage spacers comprises: conformally forming a layer of charge storage material on the first oxide layer; Forming a second oxide material layer on the charge storage material layer; and performing an isotropic etching process to remove a portion of the second oxide material layer and a portion of the charge storage material layer. 如申請專利範圍第3項所述之非揮發性記憶體的製作方法,其中在形成該突起部之後以及在移除該圖案化罩幕層之前,更包括: 於該圖案化罩幕層與該突起部的側壁上形成一對氮化物間隙壁;以及 以該圖案化罩幕層與該對氮化物間隙壁為罩幕,進行離子植入製程,以形成該對摻雜區。The method for fabricating a non-volatile memory according to claim 3, wherein after the forming the protrusion and before removing the patterned mask layer, the method further comprises: the patterning mask layer and the Forming a pair of nitride spacers on sidewalls of the protrusions; and performing an ion implantation process by using the patterned mask layer and the pair of nitride spacers as a mask to form the pair of doped regions. 如申請專利範圍第7項所述之非揮發性記憶體的製作方法,其中在移除該圖案化罩幕層時,同時移除該對氮化物間隙壁。The method of fabricating the non-volatile memory of claim 7, wherein the pair of nitride spacers are simultaneously removed when the patterned mask layer is removed. 如申請專利範圍第7項所述之非揮發性記憶體的製作方法,其中該對電荷儲存間隙壁的形成方法包括: 於該第一氧化物層上共形地形成一電荷儲存材料層;以及 進行等向性蝕刻製程,移除部分該電荷儲存材料層。The method of fabricating the non-volatile memory of claim 7, wherein the method of forming the pair of charge storage spacers comprises: conformally forming a layer of charge storage material on the first oxide layer; An isotropic etching process is performed to remove a portion of the charge storage material layer. 如申請專利範圍第7項所述之非揮發性記憶體的製作方法,其中在形成該對摻雜區之後以及在移除該圖案化罩幕層之前,更包括形成一第三氧化物層,以覆蓋該圖案化罩幕層、該對氮化物間隙壁與該第一氧化物層。The method for fabricating a non-volatile memory according to claim 7, wherein after forming the pair of doped regions and before removing the patterned mask layer, forming a third oxide layer is further included. The patterned mask layer, the pair of nitride spacers and the first oxide layer are covered. 如申請專利範圍第10項所述之非揮發性記憶體的製作方法,其中移除該圖案化罩幕層的方法包括進行平坦化製程,移除該圖案化罩幕層、部分該對氮化物間隙壁與部分該第三氧化物層,直到暴露出該突出部,且形成該對電荷儲存間隙壁。The method of fabricating the non-volatile memory of claim 10, wherein the method of removing the patterned mask layer comprises performing a planarization process, removing the patterned mask layer, and partially removing the pair of nitrides The spacer and a portion of the third oxide layer are exposed until the protrusion is formed, and the pair of charge storage spacers are formed. 如申請專利範圍第2項所述之非揮發性記憶體的製作方法,其中在移除部分該第一氧化物材料層之後,暴露出位於該突起部二側的該基底。The method of fabricating the non-volatile memory of claim 2, wherein after removing a portion of the first oxide material layer, the substrate on both sides of the protrusion is exposed. 如申請專利範圍第12項所述之非揮發性記憶體的製作方法,其中在形成該突起部之後以及在移除該圖案化罩幕層之前,更包括以該圖案化罩幕層為罩幕,進行離子植入製程,以形成該對摻雜區。The method of fabricating the non-volatile memory of claim 12, wherein the forming the mask layer is used as a mask after forming the protrusion and before removing the patterned mask layer An ion implantation process is performed to form the pair of doped regions. 如申請專利範圍第13項所述之非揮發性記憶體的製作方法,其中該對電荷儲存間隙壁的形成方法包括: 於該基底上共形地形成一第三氧化物層; 於該第三氧化物層上共形地形成一電荷儲存材料層;以及 進行等向性蝕刻製程,移除部分該電荷儲存材料層。The method for fabricating a non-volatile memory according to claim 13 , wherein the method for forming the pair of charge storage spacers comprises: conformally forming a third oxide layer on the substrate; Forming a layer of charge storage material conformally on the oxide layer; and performing an isotropic etching process to remove a portion of the charge storage material layer. 一種非揮發性記憶體,包括: 一基底; 一電荷儲存結構,配置於該基底上; 一第一摻雜區與一第二摻雜區,分別配置於該電荷儲存結構二側的該基底中;以及 一閘極,配置於該電荷儲存結構上, 其中該電荷儲存結構包括一介電主體、一第一電荷儲存間隙壁與一第二電荷儲存間隙壁,該第一電荷儲存間隙壁與該第二電荷儲存間隙壁鏡像對稱地配置於該介電主體中且彼此分離,該第一電荷儲存間隙壁鄰近該第一摻雜區,且該第二電荷儲存間隙壁鄰近該第二摻雜區,其中該第一電荷儲存間隙壁與該第二電荷儲存間隙壁分別為L形,且該第一電荷儲存間隙壁的水平部分與該第二電荷儲存間隙壁的水平部分彼此遠離延伸,或者該第一電荷儲存間隙壁與該第二電荷儲存間隙壁分別具有曲面或斜面,且該第一電荷儲存間隙壁的曲面或斜面與該第二電荷儲存間隙壁的曲面或斜面彼此遠離。A non-volatile memory comprising: a substrate; a charge storage structure disposed on the substrate; a first doped region and a second doped region respectively disposed in the substrate on both sides of the charge storage structure And a gate disposed on the charge storage structure, wherein the charge storage structure comprises a dielectric body, a first charge storage spacer and a second charge storage spacer, the first charge storage spacer and the The second charge storage spacers are mirror-symmetrically disposed in the dielectric body and are separated from each other, the first charge storage spacer is adjacent to the first doped region, and the second charge storage spacer is adjacent to the second doped region The first charge storage spacer and the second charge storage spacer are respectively L-shaped, and a horizontal portion of the first charge storage spacer and a horizontal portion of the second charge storage spacer extend away from each other, or The first charge storage spacer and the second charge storage spacer respectively have a curved surface or a slope, and a curved surface or a slope of the first charge storage spacer and the second charge storage gap The curved surface or inclined surface away from each other. 如申請專利範圍第15項所述之非揮發性記憶體,其中該第一電荷儲存間隙壁與該第二電荷儲存間隙壁的材料包括氮化物、多晶矽、高介電常數材料、氧化鉿、氮氧化鉿、氧化鋁或氧化鉿鋁。The non-volatile memory of claim 15, wherein the material of the first charge storage spacer and the second charge storage spacer comprises a nitride, a polysilicon, a high dielectric constant material, a cerium oxide, and a nitrogen. Cerium oxide, aluminum oxide or yttrium aluminum oxide. 如申請專利範圍第15項所述之非揮發性記憶體,其中該第一電荷儲存間隙壁與該第二電荷儲存間隙壁的厚度介於40 A至80 A之間。The non-volatile memory of claim 15, wherein the first charge storage spacer and the second charge storage spacer have a thickness between 40 A and 80 A.
TW100136872A 2011-10-12 2011-10-12 Non-volatile memory and manufacturing method thereof TWI479610B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100136872A TWI479610B (en) 2011-10-12 2011-10-12 Non-volatile memory and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100136872A TWI479610B (en) 2011-10-12 2011-10-12 Non-volatile memory and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201316460A TW201316460A (en) 2013-04-16
TWI479610B true TWI479610B (en) 2015-04-01

Family

ID=48803126

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100136872A TWI479610B (en) 2011-10-12 2011-10-12 Non-volatile memory and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI479610B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW444331B (en) * 2000-02-24 2001-07-01 Vanguard Int Semiconduct Corp Method for enhancing the silicon nitride spacer of gate structure
TW200807573A (en) * 2006-07-27 2008-02-01 Promos Technologies Pte Ltd Integrated circuit and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW444331B (en) * 2000-02-24 2001-07-01 Vanguard Int Semiconduct Corp Method for enhancing the silicon nitride spacer of gate structure
TW200807573A (en) * 2006-07-27 2008-02-01 Promos Technologies Pte Ltd Integrated circuit and method of manufacturing the same

Also Published As

Publication number Publication date
TW201316460A (en) 2013-04-16

Similar Documents

Publication Publication Date Title
JP4417145B2 (en) Nonvolatile semiconductor memory device having local SONOS structure using notch gate and method of manufacturing the same
US7416945B1 (en) Method for forming a split gate memory device
JP2009212218A (en) Semiconductor storage device and method for manufacturing the same
KR102237584B1 (en) Method of forming pairs of three-gate non-volatile flash memory cells using two polysilicon deposition steps
CN107591449B (en) Semiconductor device and method for manufacturing the same
JP2010153780A (en) Method of manufacturing flash memory device
US7687345B2 (en) Flash memory device and method of manufacturing the same
JP4395871B2 (en) Manufacturing method of MOSFET element in peripheral region
US8546871B2 (en) Non-volatile memory cell and fabricating method thereof
US9589977B1 (en) Non-volatile memory and fabricating method thereof
JP2008244108A (en) Semiconductor device and method of manufacturing the same
JP2008010817A (en) Manufacturing method of nand flash memory device
TW201725704A (en) Non-volatile memory device and method for fbricating the same
TWI479610B (en) Non-volatile memory and manufacturing method thereof
JP2008141153A (en) Semiconductor memory element, and method of manufacturing the same
KR100742758B1 (en) Flash memory device and fabricating method thereof
US20110068416A1 (en) Semiconductor device and method for manufacturing the same
TWI499041B (en) Non-volatile memory and manufacturing method thereof
US10153289B2 (en) Non-volatile memory and fabricating method thereof
US9048263B2 (en) Manufacturing method of non-volatile memory
EP1969603A2 (en) Sonos memory device with reduced short-channel effects
TWI493660B (en) Non-volatile memory and manufacturing method thereof
CN111384160A (en) Manufacturing method of field effect transistor, field effect transistor and grid structure
KR100733055B1 (en) Charge trap nonvolatile memory device and methods of fabricating the same
TWI574385B (en) Non-volatile memory structure and manufacturing method thereof