TWI478514B - The method of using precode to distinguish the equivalent channel and the relay module thereof - Google Patents
The method of using precode to distinguish the equivalent channel and the relay module thereof Download PDFInfo
- Publication number
- TWI478514B TWI478514B TW101149813A TW101149813A TWI478514B TW I478514 B TWI478514 B TW I478514B TW 101149813 A TW101149813 A TW 101149813A TW 101149813 A TW101149813 A TW 101149813A TW I478514 B TWI478514 B TW I478514B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- precoding
- precoding matrix
- matrix
- cyclic
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Description
本發明係關於一種分離等效通道之方法及其中繼裝置,尤其是利用預編碼分離等效通道之通道響應的方法及其中繼裝置。The present invention relates to a method for separating an equivalent channel and a relay device thereof, and more particularly to a method for separating a channel response of an equivalent channel by precoding and a relay device therefor.
在通訊技術中,雙向傳輸中繼網路(Two Way Relay Network,TWRN)架構係為一種合作式通訊(Cooperative Communications)系統,該架構具有一中繼系統以進行資料的輔助傳輸作業,且該中繼系統可在二資料收發端之間進行資料交換,並藉此提升傳輸效率與通訊品質。In the communication technology, the Two Way Relay Network (TWRN) architecture is a Cooperative Communications system, which has a relay system for auxiliary transmission of data, and Following the system, data can be exchanged between the two data transceivers, thereby improving transmission efficiency and communication quality.
請參照第1圖所示,習知雙向傳輸中繼網路架構9,係於一第一來源端91與一第二來源端92之間設置數個中繼裝置93,使該第一來源端91與第二來源端92可於該數個中繼裝置93處進行資料交換。當該第二來源端92接收來自該數個中繼裝置93所傳送之資料時,更可使該數個中繼裝置93與該第二來源端92之間形成一多輸入單輸出(Multiple Input Single Output,MISO)系統,令該第二來源端92獲得空間多樣性(Spatial Diversity)的優點,藉此提升通訊品質。Referring to FIG. 1 , a conventional bidirectional transmission relay network architecture 9 is provided with a plurality of relay devices 93 between a first source end 91 and a second source end 92 to enable the first source end. 91 and the second source 92 can exchange data at the plurality of relay devices 93. When the second source 92 receives the data transmitted from the plurality of relay devices 93, a plurality of input and output (Multiple Input) can be formed between the plurality of relay devices 93 and the second source terminal 92. The Single Output (MISO) system enables the second source 92 to obtain the advantages of spatial diversity, thereby improving communication quality.
進一步而言,當資料在不同通道中進行傳輸時,會受到不同通道之通道響應的影響,故在對該資料進行通道補償時,若不能有效的對不同通道分別進行估測,將會影響整體的通訊品質。習知分離通道響應的研究中,係於該中繼裝置引入空時編碼(Space-Time Coding,STC)或空頻編碼( Space-Frequency Coding,SFC)的技術,並分別針對不同中繼裝置所形成的通道進行分離。然而該研究主要皆針對單向傳輸中繼網路(One Way Relay Network,OWRN)架構,且在該單向傳輸中繼網路架構中,各該中繼裝置所形成之通道較為單純,僅包含依序經由該傳送端、中繼裝置及接收端所形成之通道,且上述之編碼大多受限於通道環境為單一路徑(Single Path)的條件。Further, when data is transmitted in different channels, it will be affected by the channel response of different channels. Therefore, if channel compensation is performed on the data, if the different channels cannot be effectively estimated, it will affect the whole. Communication quality. In the study of the conventional separation channel response, Space-Time Coding (STC) or space-frequency coding is introduced in the relay device. Space-Frequency Coding (SFC) technology, which separates the channels formed by different relay devices. However, the research is mainly directed to a One Way Relay Network (OWRN) architecture, and in the one-way transmission relay network architecture, each of the relay devices forms a simple channel, including only The channels formed by the transmitting end, the relay device and the receiving end are sequentially, and the above coding is mostly limited by the condition that the channel environment is a single path.
在雙向傳輸中繼網路架構9中,由於該第一來源端91與第二來源端92可進行資料交換,並非單純的分別為傳送端與接收端,對該第二來源端92而言,該第二來源端92所接收的資料中,該資料的傳輸路徑除了有依序經由該第一來源端91、中繼裝置93及第二來源端92所形成的第一等效通道外,更具有由該第二來源端92傳出至該中繼裝置93,再由該中繼裝置93回傳至該第二來源端92所形成之第二等效通道。若是不能有效的分離該第一等效通道與第二等效通道,將會影響通道估測結果,進而造成整體通訊品質下降。In the two-way transmission trunking network architecture 9, since the first source end 91 and the second source end 92 can exchange data, not only the transmitting end and the receiving end, respectively, for the second source end 92, The data received by the second source end 92 has a first equivalent channel formed by the first source terminal 91, the relay device 93, and the second source terminal 92, in addition to the first equivalent channel formed by the first source terminal 91, the relay device 93, and the second source terminal 92. There is a second equivalent channel formed by the second source end 92 to the relay device 93 and then returned by the relay device 93 to the second source end 92. If the first equivalent channel and the second equivalent channel cannot be effectively separated, the channel estimation result will be affected, thereby causing the overall communication quality to decrease.
有鑑於此,針對雙向傳輸中繼網路的中繼裝置,必須要有能夠分離不同通道之通道響應的設計,藉此在維持頻譜使用效益的同時,可提升通訊品質,並具有較低之運算複雜度。In view of this, for a relay device of a two-way transmission relay network, it is necessary to have a design capable of separating channel responses of different channels, thereby improving communication quality while maintaining communication efficiency, and having lower operation. the complexity.
本發明之主要目的係提供一種利用預編碼分離等效通道之方法及其中繼裝置,該方法及其中繼裝置可在維持頻譜使用效益的同時,提升通訊品質。The main object of the present invention is to provide a method for separating an equivalent channel by using precoding and a relay device thereof, and the method and the relay device thereof can improve communication quality while maintaining spectrum use efficiency.
本發明之另一目的係提供一種利用預編碼分離等效通道之方法及其中繼裝置,該方法及其中繼裝置具有較低之運算複雜度。Another object of the present invention is to provide a method for separating an equivalent channel using precoding and a relay device thereof, the method and the relay device having lower computational complexity.
為達到前述發明目的,本發明之利用預編碼分離等效通道之方法,係包含:利用一預編碼模組,以一預編碼矩陣對一第一處理資料進行預編碼,以獲得一第一預編碼資料;利用該預編碼模組對該預編碼矩陣進行一循環位移,以獲得一位移預編碼矩陣,並以該位移預編碼矩陣對該第二處理資料進行預編碼,以獲得一第二預編碼資料;及利用一疊加運算模組對該第一預編碼資料及第二預編碼資料進行疊加運算,以獲得一疊加資料。In order to achieve the foregoing object, the method for separating an equivalent channel by using a precoding method comprises: precoding a first processing data by using a precoding matrix by using a precoding module to obtain a first pre- Encoding data; using the precoding module to perform a cyclic shift on the precoding matrix to obtain a displacement precoding matrix, and precoding the second processing data by using the displacement precoding matrix to obtain a second pre- Encoding data; and superimposing the first pre-encoded data and the second pre-encoded data by using a superposition operation module to obtain an overlay data.
本發明之利用預編碼分離等效通道之方法,其中該預編碼矩陣係為一循環矩陣,且該循環矩陣之列向量可表示為:P i =[0 (i-1)×1 A i 0 (N-i)×1 ] T The method for separating equivalent channels by using precoding according to the present invention, wherein the precoding matrix is a cyclic matrix, and the column vector of the cyclic matrix can be expressed as: P i = [0 (i-1) × 1 A i 0 (Ni)×1 ] T
該預編碼矩陣可表示為:
其中,A i 為非0之任意數,N代表該列向量之長度,該預編碼矩陣的維度為N×N。Wherein, A i is an arbitrary number other than 0, and N represents the length of the column vector, and the dimension of the precoding matrix is N×N.
本發明之利用預編碼分離等效通道之方法,其中該預編碼矩陣與位移預編碼矩陣間的循環位移量需滿足: 2L-1≦循環位移量≦N-L-1The method for separating equivalent channels by using precoding according to the present invention, wherein the cyclic shift amount between the precoding matrix and the displacement precoding matrix is satisfied: 2L-1≦ cyclic displacement ≦N-L-1
其中L代表任一傳發端至該中繼裝置間的最大通道長度,N代表該預編碼矩陣之列向量長度,且N大於L。Where L represents the maximum channel length from any of the transmitting terminals to the relay device, N represents the column vector length of the precoding matrix, and N is greater than L.
本發明之利用預編碼分離等效通道之方法,其中該方法另包含利用該接收處理模組,接收來自該第一收發端之第一資料與第二收發端之第二資料,並對該第一資料與第二資料進行串併轉換與移除循環字首,以分別獲得一第一處理資料與一第二處理資料。The method for separating the equivalent channel by using the precoding, wherein the method further comprises: receiving, by the receiving processing module, the first data from the first transceiver end and the second data of the second transceiver end, and The data and the second data are serially converted and the cyclic prefix is removed to obtain a first processed data and a second processed data, respectively.
本發明之利用預編碼分離等效通道之方法,其中該方法另包含利用該傳送處理模組對該疊加資料加入循環字首及併串轉換,以獲得一輸出資料,並將該輸出資料傳送至該第一收發端或第二收發端。The method for separating an equivalent channel by using a precoding method, wherein the method further comprises adding a cyclic prefix and a parallel string conversion to the superimposed data by using the transfer processing module to obtain an output data, and transmitting the output data to the The first transceiver end or the second transceiver end.
本發明之利用預編碼分離等效通道之中繼裝置,係包含:一接收處理模組,係接收一第一收發端傳送之一第一資料及一第二收發端傳送之一第二資料,並對該第一資料與第二資料進行串併轉換與移除循環字首,以分別獲得一第一處理資料與一第二處理資料;一預編碼模組,係接收該第一處理資料與第二處理資料,且具有一預編碼矩陣,並可對該預編碼矩陣進行一循環位移,以獲得一位移預編碼矩陣,再利用該預編碼矩陣與位移預編碼矩陣,分別對該第一處理資料與第二處理資料進行預編碼,以分別獲得一第一預編碼資料與一第二預編碼資料;一疊加運算模組,係接收該第一預編碼資料與一第二預編碼資料,並對該第一預編碼資料及第二預編碼資料進行疊加運算,以獲得一疊加資料;及一傳送處理模組,係接收該疊加資料,並 對該疊加資料加入循環字首及併串轉換,以獲得一輸出資料。The relay device using the precoding separation equivalent channel of the present invention comprises: a receiving processing module, which receives a first data transmitted by a first transceiver and a second data transmitted by a second transceiver; And serially converting and removing the cyclic prefix from the first data and the second data to obtain a first processing data and a second processing data respectively; and a precoding module receiving the first processing data and a second processing data, and having a precoding matrix, and performing a cyclic shift on the precoding matrix to obtain a displacement precoding matrix, and then using the precoding matrix and the displacement precoding matrix, respectively, respectively, the first processing The data and the second processing data are pre-coded to obtain a first pre-encoded data and a second pre-encoded data respectively; a superimposed computing module receives the first pre-encoded data and a second pre-encoded data, and Superimposing the first pre-encoded data and the second pre-encoded data to obtain a superimposed data; and a transfer processing module, receiving the superimposed data, and Adding a cyclic prefix and a parallel conversion to the superimposed data to obtain an output data.
本發明之利用預編碼分離等效通道之中繼裝置,其中該該循環矩陣之列向量可表示為:P i =[0 (i-1)×1 A i 0 (N- i)×1 ] T The relay device of the present invention utilizes precoding to separate an equivalent channel, wherein the column vector of the cyclic matrix can be expressed as: P i = [0 (i-1) × 1 A i 0 (N- i) × 1 ] T
該預編碼矩陣可表示為:
其中,A i 為非0之任意數,N代表該列向量之長度,該預編碼矩陣的維度為N×N。Wherein, A i is an arbitrary number other than 0, and N represents the length of the column vector, and the dimension of the precoding matrix is N×N.
本發明之利用預編碼分離等效通道之中繼裝置,其中該預編碼矩陣與位移預編碼矩陣間的循環位移量需滿足:2L-1≦循環位移量≦N-L-1The relay device using the precoding separation equivalent channel of the invention, wherein the cyclic displacement between the precoding matrix and the displacement precoding matrix is satisfied: 2L-1≦ cyclic displacement ≦N-L-1
其中L代表任一收發端至該中繼裝置間的最大通道長度,N代表該預編碼矩陣之列向量長度,且N大於L。Where L represents the maximum channel length between any transceiver and the relay device, N represents the column vector length of the precoding matrix, and N is greater than L.
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:本發明所述之「循環矩陣」(Circulant Matrix),係指一矩陣H由一列向量(column vector)h
=[h 0 ,h 1 ,
...,h L-1 ] T
所組成,且該矩陣H之表示如下:
本發明所述之「循環位移」,係指在一N×N之矩陣中,各個列向量之每個元素朝一相同方向位移一區塊單元,且在位移前之各該列向量的最後一個元素,在位移後形成各該列向量的第一個元素。The "cyclic displacement" in the present invention means that in an N×N matrix, each element of each column vector is displaced by a block unit in the same direction, and the last element of each column vector before the displacement The first element of each column vector is formed after the displacement.
本發明所述之「等效通道」,係指一資料由任一收發端出發,最後到達任一收發端所經過之通道路徑。The "equivalent channel" as used in the present invention refers to a channel path through which a data source starts from any transceiver end and finally reaches any transceiver end.
請參照第2圖所示,其係本發明之利用預編碼分離等效通道之方法之較佳實施裝置及環境,該中繼裝置1係設置於一雙向傳輸中繼網路,該雙向傳輸中繼網路另具有一第一收發端2及一第二收發端3,其中該第一收發端2與第二收發端3皆可用以輸出或接收資料,且該第一收發端2係傳送一第一資料,該第二收發端3係傳送一第二資料,且該第一資料與第二資料可於該中繼裝置1處進行資料處理進而達到資料交換的目的。Please refer to FIG. 2, which is a preferred implementation apparatus and environment for the method for separating equivalent channels by using precoding according to the present invention. The relay device 1 is disposed in a bidirectional transmission relay network, and the bidirectional transmission is performed. The network further has a first transceiver terminal 2 and a second transceiver terminal 3, wherein the first transceiver terminal 2 and the second transceiver terminal 3 are both available for outputting or receiving data, and the first transceiver terminal 2 transmits one. The first data, the second transceiver 3 transmits a second data, and the first data and the second data can be processed at the relay device 1 to achieve data exchange.
請參照第3圖所示,該中繼裝置1包含一接收處理模組11、一預編碼模組12、一疊加運算模組13及一傳送處理模組14。As shown in FIG. 3 , the relay device 1 includes a receiving processing module 11 , a precoding module 12 , a superimposing computing module 13 , and a transfer processing module 14 .
本發明之利用預編碼分離等效通道之方法,首先該中 繼裝置1係利用該接收處理模組11,接收來自該第一收發端2之第一資料與第二收發端3之第二資料,並對該第一資料與第二資料進行串併轉換與移除循環字首(Cyclic Prefix,CP),以分別獲得一第一處理資料與一第二處理資料。The method for separating equivalent channels by using precoding according to the present invention, firstly The device 1 receives the first data from the first transceiver 2 and the second data from the second transceiver 3 by using the receiving processing module 11, and performs serial-to-parallel conversion on the first data and the second data. The Cyclic Prefix (CP) is removed to obtain a first processing data and a second processing data, respectively.
在本實施例中,該接收處理模組11可為習知通訊設備中之串併轉換與移除循環字首等相關結構,在此並不設限。In this embodiment, the receiving processing module 11 may be a related structure such as serial-to-parallel conversion and removal of a cyclic prefix in a conventional communication device, and is not limited herein.
更詳言之,當該接收處理模組11在對該第一資料移除循環字首,以獲得該第一處理資料後,該第一處理資料可表示如下:
其中代表該第一處理資料,代表該第一收發端2之傳送功率(Transmission Power),s 1 代表該第一資料,n R,1 代表可加性白高斯雜訊(Additive White Gaussian Noise ,AWGN),代表該第一收發端2至該中繼裝置1之間的通道循環矩陣,且該通道循環矩陣係由該第一收發端2至該中繼裝置1之間的通道響應所組成,其中該通道響應之列向量可表示為,L 代表該通道響應之通道長度。among them Representing the first processing data, Representing the transmission power of the first transceiver 2, s 1 represents the first data, and n R, 1 represents Additive White Gaussian Noise (AWGN), Representing a channel loop matrix between the first transceiver end 2 and the relay device 1, and the channel loop matrix is composed of a channel response between the first transceiver end 2 and the relay device 1, wherein the channel The response column vector can be expressed as , L represents the channel length of the channel response.
當該接收處理模組11在對該第二資料移除循環字首,以獲得該第二處理資料後,該第二處理資料可表示如下:
其中代表該第二處理資料,代表該第二收發端 3之傳送功率(Transmission Power),s 2 代表該第二資料,n R,2 代表可加性白高斯雜訊(Additive White Gaussian Noise ,AWGN),代表該第二收發端3至該中繼裝置1之間的通道循環矩陣,且該通道循環矩陣係由該第二收發端3至該中繼裝置1之間的通道響應所組成,其中該通道響應之列向量可表示為,L 代表該通道響應之通道長度。among them Representing the second processing data, Representing the transmission power of the second transceiver 3, s 2 represents the second data, and n R, 2 represents Additive White Gaussian Noise (AWGN), Representing a channel loop matrix between the second transceiver end 3 and the relay device 1, and the channel loop matrix is composed of a channel response between the second transceiver end 3 and the relay device 1, wherein the channel The response column vector can be expressed as , L represents the channel length of the channel response.
在獲得該第一處理資料後,係利用該預編碼模組12,以一預編碼矩陣對該第一處理資料進行預編碼,以獲得一第一預編碼資料。After obtaining the first processing data, the pre-coding module 12 is used to pre-code the first processing data in a precoding matrix to obtain a first pre-encoding data.
該預編碼矩陣係為一循環矩陣,且該循環矩陣之列向量可表示為:P i =[0 (i-1)×1 A i 0 (N-i)×1 ] T (3)The precoding matrix is a cyclic matrix, and the column vector of the cyclic matrix can be expressed as: P i = [0 (i-1) × 1 A i 0 (Ni) × 1 ] T (3)
其中,A i 為非0之任意數,N代表該列向量之長度。Where A i is an arbitrary number other than 0, and N represents the length of the column vector.
當該預編碼矩陣之維度為N×N時,該預編碼矩陣可表示如下:
又,該預編碼矩陣在維度為N×N時,可進行N次的循環位移,並可具有N種型態之預編碼矩陣。以N=8為範例,如第4圖所示,可具有8種型態之預編碼矩陣。其中每一方格代表該預編碼矩陣之區塊單元,當該預編碼矩陣 之區塊單元為0時,皆以空格表示,其餘係為具有相同數值A且不為0之元素。Moreover, the precoding matrix can perform N cyclic shifts when the dimension is N×N, and can have N types of precoding matrices. Taking N=8 as an example, as shown in Fig. 4, there may be eight types of precoding matrices. Each of the squares represents a block unit of the precoding matrix, and the precoding matrix When the block unit is 0, it is represented by a space, and the rest are elements having the same value A and not 0.
該第一預編碼資料可表示如下:
其中,代表該第一預編碼資料,Str 1 代表用以對第一處理資料進行預編碼之預編碼矩陣。among them, Representing the first pre-encoded data, Str 1 represents a precoding matrix for precoding the first processed data.
在獲得該第二處理資料後,係利用該預編碼模組12對該預編碼矩陣進行一循環位移,以獲得一位移預編碼矩陣,並以該位移預編碼矩陣對該第二處理資料進行預編碼,以獲得一第二預編碼資料。After obtaining the second processing data, the precoding matrix is cyclically shifted by the precoding module 12 to obtain a displacement precoding matrix, and the second processing data is pre-processed by the displacement precoding matrix. Encoding to obtain a second pre-encoded material.
更詳言之,該預編碼模組12係接收該第一處理資料與第二處理資料,且具有該預編碼矩陣,並可對該預編碼矩陣進行該循環位移,以另外獲得該位移預編碼矩陣,再利用該預編碼矩陣與位移預編碼矩陣,分別對該第一處理資料與第二處理資料進行預編碼,以分別獲得該第一預編碼資料與該第二預編碼資料。In more detail, the precoding module 12 receives the first processing data and the second processing data, and has the precoding matrix, and can perform the cyclic shift on the precoding matrix to additionally obtain the displacement precoding. And using the precoding matrix and the displacement precoding matrix to precode the first processing data and the second processing data, respectively, to obtain the first precoding data and the second precoding data respectively.
該第二預編碼資料可表示如下:
其中,代表該第二預編碼資料,Str 2 代表用以對第二處理資料進行預編碼之位移預編碼矩陣。among them, Representing the second pre-encoded data, Str 2 represents a displacement precoding matrix for precoding the second processed data.
該預編碼矩陣與位移預編碼矩陣間的循環位移量,較佳滿足以下條件:2L-1≦循環位移量≦N-L-1The cyclic displacement between the precoding matrix and the displacement precoding matrix preferably satisfies the following condition: 2L-1≦ cyclic displacement ≦N-L-1
其中L代表任一收發端至該中繼裝置1間的最大通道長度,N代表該預編碼矩陣之列向量長度,且N大於L。以避免該第一處理資料與第二處理資料之通道響應產生重疊。Where L represents the maximum channel length between any transceiver and the relay device 1, N represents the column vector length of the precoding matrix, and N is greater than L. The overlapping of the channel response of the first processed data and the second processed data is avoided.
由於該循環矩陣僅需經由簡單的循環位移,便可呈現不同型態之預編碼矩陣,並對不同的資料進行預編碼,故不需太過複雜的運算,具有較低之運算複雜度。Since the cyclic matrix only needs a simple cyclic shift, it can present different types of precoding matrices and precode different data, so it does not need too complicated operations and has low computational complexity.
在獲得該第一預編碼資料及第二預編碼資料後,係利用該疊加運算模組13對該第一預編碼資料及第二預編碼資料進行疊加運算,以獲得一疊加資料。After obtaining the first pre-encoded data and the second pre-encoded data, the superimposed operation module 13 performs superposition operation on the first pre-encoded data and the second pre-encoded data to obtain an overlay data.
該疊加運算模組13係接收該第一編碼資料與一第二編碼資料,並進行疊加運算以獲得該疊加資料,該疊加資料可表示如下:
其中y R
代表該疊加資料,α代表該中繼裝置3之訊號放大因子,該訊號放大因子表示如下:
其中,P r 代表該中繼裝置之傳送功率,σ代表平均值變異量。Where P r represents the transmission power of the relay device and σ represents the average variation amount.
更詳言之,該第一預編碼資料與第二預編碼資料進行疊加以獲得該疊加資料後,由於該疊加資料可同時包含該第一預編碼資料與第二預編碼資料,故可提高整體通訊系統的頻譜使用效益。In more detail, after the first pre-encoded data and the second pre-encoded data are superimposed to obtain the superimposed data, since the superimposed data can simultaneously include the first pre-encoded data and the second pre-encoded data, the overall The spectrum use efficiency of the communication system.
然而,由於該第一預編碼資料與第二預編碼資料係分 別經由該第一收發端2及第二收發端3而來,故該第一預編碼資料與第二預編碼資料具有不同的通道路徑,且分別挾帶著不同的通道響應所形成的通道循環矩陣及。為了有效的分離該第一預編碼資料與第二預編碼資料本身所挾帶的通道響應,以提升通道估測的準確度,故在對該第一處理資料與第二處理資料在進行預編碼時,必需使用具有不同循環位移的預編碼矩陣,以避免該通道循環矩陣及產生重疊,進而提升通訊品質。However, since the first pre-encoded data and the second pre-encoded data are respectively sent through the first transceiver end 2 and the second transceiver end 3, the first pre-encoded data and the second pre-encoded data have different channels. Path, and each channel has a different channel response to form a channel loop matrix and . In order to effectively separate the channel response carried by the first pre-encoded data and the second pre-encoded data, to improve the accuracy of the channel estimation, the first processed data and the second processed data are pre-coded. It is necessary to use precoding matrices with different cyclic shifts to avoid the loop matrix of the channel. and Overlap, which improves communication quality.
此外,由於該預編碼矩陣僅需進行循環位移便可達到分離通道循環矩陣的目的,故不需太過複雜的運算,具有較低之運算複雜度。In addition, since the precoding matrix only needs to perform cyclic shift to achieve the purpose of separating the loop matrix of the channel, it does not need too complicated operation and has low computational complexity.
在獲得該疊加資料後,係利用該傳送處理模組14接收該疊加資料,並對該疊加資料加入循環字首及併串轉換,以獲得一輸出資料,並將該輸出資料傳送至該第一收發端2或第二收發端3。在本實施例中,該傳送處理模組14可為習知通訊設備中之加入循環字首與併串轉換等相關結構,在此並不設限。After the superimposed data is obtained, the superimposed data is received by the transfer processing module 14, and a cyclic prefix and a parallel conversion are added to the superimposed data to obtain an output data, and the output data is transmitted to the first Transceiver 2 or second transceiver 3. In this embodiment, the transmission processing module 14 may be a related structure such as a cyclic prefix and a parallel conversion in a conventional communication device, and is not limited herein.
為了清楚說明本發明之通道分離方法,以下說明範例僅列出通道響應與預編碼矩陣之運算關係,以解釋本發明確實可達到等效通道的分離。此外,由於第一收發端2與第二收發端3在訊號處理上具有相似之方式,故僅以該第一收發端2舉例說明。In order to clarify the channel separation method of the present invention, the following illustrative examples only list the operational relationship between the channel response and the precoding matrix to explain that the present invention can indeed achieve separation of equivalent channels. In addition, since the first transceiver terminal 2 and the second transceiver terminal 3 have similar manners in signal processing, only the first transceiver terminal 2 is exemplified.
請再參照第2圖所示,對該第一收發端2而言,其所接收之該輸出資料所包含的等效通道中,具有經由該第一收發端2傳出至該中繼裝置1,再由該中繼裝置1回傳至 該第一收發端2所形成之一第一等效通道;以及依序經由該第二收發端3、中繼裝置1及第一收發端2所形成之一第二等效通道。Referring to FIG. 2 again, the first transceiver terminal 2 has an equivalent channel included in the output data received, and is transmitted to the relay device 1 via the first transceiver terminal 2 And then passed back to the relay device 1 to a first equivalent channel formed by the first transceiver end 2; and a second equivalent channel formed by the second transceiver terminal 3, the relay device 1 and the first transceiver terminal 2 in sequence.
更詳言之,在該輸出資料進行疊加之前,該第一等效通道與該預編碼矩陣的運算關係表示如下:
其中,代表第一等效通道,代表該中繼裝置1至該第一收發端2之通道響應所形成的通道循環矩陣,代表該第一收發端2至該中繼裝置1之通道響應所形成的通道循環矩陣。among them, Representing the first equivalent channel, Representing a channel loop matrix formed by the channel response of the relay device 1 to the first transceiver terminal 2, Representing the channel loop matrix formed by the channel response of the first transceiver 2 to the relay device 1.
該第二等效通道與該位移預編碼矩陣的運算關係表示如下:
其中,代表第二等效通道,代表該第二收發端3至該中繼裝置1之通道響應所形成的通道循環矩陣。among them, Representing the second equivalent channel, Representing the channel loop matrix formed by the channel response of the second transceiver 3 to the relay device 1.
請參照第5a圖所示,其係該第一等效通道與該預編碼矩陣進行預編碼的計算過程,其中該通道循環矩陣及之通道響應h 1 及h 2 的通道長度皆為2,該預編碼矩陣之維度為8×8。在經過該預編碼矩陣之編碼作業後,可得到如等號右邊所示之矩陣,其中,該矩陣標示陰影處之區塊單元,即代表包含第一等效通道之通道響應的區塊單元。Please refer to FIG. 5a, which is a calculation process of precoding the first equivalent channel and the precoding matrix, wherein the channel circulant matrix and The channel lengths of the channel responses h 1 and h 2 are both 2, and the dimension of the precoding matrix is 8×8. After the encoding operation of the precoding matrix, a matrix as shown on the right side of the equal sign is obtained, wherein the matrix indicates the block unit at the shadow, that is, the block unit representing the channel response of the first equivalent channel.
為了能有效區隔該第一等效通道與第二等效通道,該預編碼矩陣在對來自第二收發端3之第二處理資料進行預編碼前,係先進行循環位移,為了滿足循環位移量必須等 於或大於2L-1及小於或等於N-L-1,在本實施例中,舉例而言,若各該通道長度假設皆為2,且該預編碼矩陣之列向量長度為8,故在此選擇循環位移為4,且該計算過程如第5b所示。其中,等號右邊矩陣標示陰影處的區塊單元,即代表包含第二等效通道之通道響應的區塊單元。In order to effectively separate the first equivalent channel and the second equivalent channel, the precoding matrix performs cyclic shift before precoding the second processing data from the second transceiver terminal 3, in order to satisfy the cyclic displacement. Quantity must wait In the present embodiment, for example, if the length of each channel is assumed to be 2, and the length of the column vector of the precoding matrix is 8, it is selected here. The cyclic displacement is 4, and the calculation process is as shown in Fig. 5b. Wherein, the matrix on the right side of the equal sign indicates the block unit at the shadow, that is, the block unit representing the channel response of the second equivalent channel.
當該第一預編碼資料及第二預編碼資料進行疊加運算時,該第一等效通道、第二等效通道及該預編碼矩陣的運算關係表示如下:
其中,HMix 代表一混合等效通道。Among them, H Mix represents a mixed equivalent channel.
請參照第5c圖所示,其係該第一等效通道與第二等效通道疊加後所形成之混合等效通道示意圖。由第5c圖可知,該第一等效通道與第二等效通道之通道響應並未重疊,可有效的分離該第一等效通道與第二等效通道。Please refer to FIG. 5c, which is a schematic diagram of a mixed equivalent channel formed by superposing the first equivalent channel and the second equivalent channel. It can be seen from FIG. 5c that the channel responses of the first equivalent channel and the second equivalent channel do not overlap, and the first equivalent channel and the second equivalent channel can be effectively separated.
請參照第6a及6b圖所示,進一步而言,當該混合等效通道將來欲進行解預編碼時,僅需將該混合等效通道與該預編碼矩陣及位移預編碼矩陣之共軛轉置(Hermitian)矩陣進行運算,即可分別將第一等效通道與第二等效通道的通道響應移至矩陣對角線的區塊單元上,以獲取正確之等效通道的通道響應。其中,由於解預編碼時僅需利用該預編碼矩陣及位移預編碼矩陣所相對之共軛轉置矩陣便可完成,亦不需過於複雜的運算,有助於降低整體的運算複雜度。Please refer to the figures 6a and 6b. Further, when the mixed equivalent channel is to be de-precoded in the future, only the conjugate phase of the mixed equivalent channel and the precoding matrix and the displacement precoding matrix need to be converted. By performing a (Hermitian) matrix operation, the channel response of the first equivalent channel and the second equivalent channel can be respectively moved to the block unit of the matrix diagonal to obtain the channel response of the correct equivalent channel. In the process of de-precoding, only the conjugate transposed matrix of the pre-coding matrix and the displacement pre-coding matrix can be used, and the complicated operation is not needed, which helps to reduce the overall computational complexity.
更詳言之,該第一預編碼資料與第二預編碼資料進行 疊加以獲得該疊加資料後,由於該疊加資料可同時包含該第一預編碼資料與第二預編碼資料,故可維持整體通訊系統的頻譜使用效益。In more detail, the first pre-encoded data and the second pre-encoded data are performed. After superimposing to obtain the superimposed data, since the superimposed data can simultaneously include the first pre-encoded data and the second pre-encoded data, the spectrum use efficiency of the overall communication system can be maintained.
此外,由於該第一預編碼資料與第二預編碼資料,係利用不同循環位移的預編碼矩陣,分別對該第一處理資料及第二處理資料進行預編碼,故可避免該第一預編碼資料與第二預編碼資料各自之等效通道的通道響應產生重疊,可有效的分離該第一等效通道與第二等效通道,有助於提升通訊品質。In addition, since the first pre-encoded data and the second pre-encoded data are pre-coded by using the pre-coding matrix of different cyclic shifts, respectively, the first processed data and the second processed data are used, so that the first pre-encoding can be avoided. The channel response of the equivalent channel of each of the second pre-encoded data overlaps, and the first equivalent channel and the second equivalent channel are effectively separated, which helps to improve communication quality.
本發明之利用預編碼分離等效通道之方法及其中繼裝置,僅利用循環位移以改變該預編碼矩陣,且解預編碼時僅需利用相對之該預編碼矩陣的共軛轉置矩陣便可完成,具有較低之運算複雜度。The method for precoding separation equivalent channel and the relay device thereof of the invention only use cyclic shift to change the precoding matrix, and only need to use the conjugate transposed matrix relative to the precoding matrix when deprecoding Completed with lower computational complexity.
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準While the invention has been described in connection with the preferred embodiments described above, it is not intended to limit the scope of the invention. The technical scope of the invention is protected, and therefore the scope of protection of the present invention is subject to the scope defined in the appended patent application.
〔本發明〕〔this invention〕
1‧‧‧中繼裝置1‧‧‧Relay device
11‧‧‧接收處理模組11‧‧‧Receive processing module
12‧‧‧預編碼模組12‧‧‧ Precoding module
13‧‧‧疊加運算模組13‧‧‧Superimposed computing module
14‧‧‧傳送處理模組14‧‧‧Transfer Processing Module
2‧‧‧第一收發端2‧‧‧First transceiver
3‧‧‧第二收發端3‧‧‧Second transceiver
〔習知〕[study]
9‧‧‧雙向傳輸中繼網路9‧‧‧Two-way transmission relay network
91‧‧‧第一來源端91‧‧‧First source
92‧‧‧第二來源端92‧‧‧second source
93‧‧‧中繼裝置93‧‧‧Relay device
第1圖:習知雙向傳輸中繼網路架構圖。Figure 1: A schematic diagram of a conventional two-way transmission relay network.
第2圖:本發明應用於雙向傳輸中繼網路示意圖。Figure 2: Schematic diagram of the present invention applied to a two-way transmission relay network.
第3圖:本發明利用預編碼分離等效通道之中繼裝置方塊圖。Fig. 3 is a block diagram of a relay device using the precoding separation equivalent channel of the present invention.
第4圖:本發明之預編碼矩陣進行循環位移之型態圖。Fig. 4 is a view showing the pattern of cyclic displacement of the precoding matrix of the present invention.
第5a圖:本發明預編碼矩陣與第一等效通道運算示意圖。Figure 5a is a schematic diagram of the operation of the precoding matrix and the first equivalent channel of the present invention.
第5b圖:本發明預編碼矩陣與第二等效通道運算示意圖。Figure 5b is a schematic diagram of the operation of the precoding matrix and the second equivalent channel of the present invention.
第5c圖:本發明混合通道疊加運算示意圖。Figure 5c: Schematic diagram of the superposition operation of the hybrid channel of the present invention.
第6a圖:本發明混合通道解預編碼第一情況圖。Figure 6a: The first situation diagram of the pre-precoding of the hybrid channel of the present invention.
第6b圖:本發明混合通道解預編碼第二情況圖。Figure 6b is a second diagram of the pre-precoding of the hybrid channel of the present invention.
1‧‧‧中繼裝置1‧‧‧Relay device
11‧‧‧接收處理模組11‧‧‧Receive processing module
12‧‧‧預編碼模組12‧‧‧ Precoding module
13‧‧‧疊加運算模組13‧‧‧Superimposed computing module
14‧‧‧傳送處理模組14‧‧‧Transfer Processing Module
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101149813A TWI478514B (en) | 2012-12-25 | 2012-12-25 | The method of using precode to distinguish the equivalent channel and the relay module thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101149813A TWI478514B (en) | 2012-12-25 | 2012-12-25 | The method of using precode to distinguish the equivalent channel and the relay module thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201427301A TW201427301A (en) | 2014-07-01 |
TWI478514B true TWI478514B (en) | 2015-03-21 |
Family
ID=51725779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101149813A TWI478514B (en) | 2012-12-25 | 2012-12-25 | The method of using precode to distinguish the equivalent channel and the relay module thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI478514B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200849871A (en) * | 2007-02-06 | 2008-12-16 | Qualcomm Inc | Cyclic delay diversity and precoding for wireless communication |
US7629902B2 (en) * | 2007-06-08 | 2009-12-08 | Samsung Electronics Co., Ltd. | MIMO wireless precoding system robust to power imbalance |
US20120082042A1 (en) * | 2010-04-05 | 2012-04-05 | Nokia Corporation | Channel state information feedback for enhanced downlink multiple input - multiple output operation |
-
2012
- 2012-12-25 TW TW101149813A patent/TWI478514B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200849871A (en) * | 2007-02-06 | 2008-12-16 | Qualcomm Inc | Cyclic delay diversity and precoding for wireless communication |
US7629902B2 (en) * | 2007-06-08 | 2009-12-08 | Samsung Electronics Co., Ltd. | MIMO wireless precoding system robust to power imbalance |
US20120082042A1 (en) * | 2010-04-05 | 2012-04-05 | Nokia Corporation | Channel state information feedback for enhanced downlink multiple input - multiple output operation |
Also Published As
Publication number | Publication date |
---|---|
TW201427301A (en) | 2014-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5599948B2 (en) | Phase rotation for multi-user wireless communication | |
TWI274482B (en) | MIMO-OFDM system and pre-coding and feedback method therein | |
TWI443991B (en) | Apparatus, system and method for mimo beamforming for frequency selective channels in wireless communication systems and non-transitory computer readable medium encoded with computer executable instructions | |
KR101334053B1 (en) | Precoding method and device | |
JP5620521B2 (en) | Channel state information feedback method and system | |
HUE030133T2 (en) | Flexible sdma and interference suppression | |
TW200952362A (en) | Spread-spectrum coding of data bursts | |
Castanheira et al. | Retrospective interference alignment: Degrees of freedom scaling with distributed transmitters | |
JP2009253975A (en) | Multiple-input and multiple-output precoding method, and apparatus for the method | |
CN106788643B (en) | Safety pre-coding method for multi-user to end-to-end relay system | |
JP2009253980A (en) | Multiple-input and multiple-output precoding method and apparatus for the method | |
CN102237974A (en) | Method and device for acquiring pre-coding matrix | |
JP2012521139A (en) | Apparatus for transmission via multiple antennas | |
CN114884549A (en) | Large-scale MIMO channel state information feedback method based on deep learning | |
WO2009076819A1 (en) | Method for transmitting signal of multiuser multi-input multi-output, device and communication system | |
CN101783723B (en) | Signal processing method, system and device of multi-antenna system | |
WO2011050543A1 (en) | Method and device for obtaining downlink channel status information | |
WO2011072622A1 (en) | Method for network coding in cooperative communication and device thereof | |
CN103780351B (en) | Transmitting and receiving method for confronting time asynchronization in decoding and forwarding cooperative communication system | |
CN104243374B (en) | A kind of method for transmitting signals, apparatus and system | |
TWI478514B (en) | The method of using precode to distinguish the equivalent channel and the relay module thereof | |
WO2009089654A1 (en) | Method for controlling signal transmission in wireless cooperation relay network and device thereof | |
CN102474389B (en) | Method and apparatus for channel information feedback and precoding | |
CN102377528B (en) | Data transmission method, transmitting end and receiving end in cooperative communication system | |
CN108282197B (en) | Method for indicating and determining precoding vector and receiving and transmitting terminal equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |