TWI477815B - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
TWI477815B
TWI477815B TW101123250A TW101123250A TWI477815B TW I477815 B TWI477815 B TW I477815B TW 101123250 A TW101123250 A TW 101123250A TW 101123250 A TW101123250 A TW 101123250A TW I477815 B TWI477815 B TW I477815B
Authority
TW
Taiwan
Prior art keywords
image
display device
image generating
generating units
distance
Prior art date
Application number
TW101123250A
Other languages
Chinese (zh)
Other versions
TW201303372A (en
Inventor
Chy Lin Wang
Kuo Tung Tiao
Chir Weei Chang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to US13/545,002 priority Critical patent/US9097904B2/en
Priority to CN201210239578.3A priority patent/CN102880337B/en
Publication of TW201303372A publication Critical patent/TW201303372A/en
Application granted granted Critical
Publication of TWI477815B publication Critical patent/TWI477815B/en

Links

Description

顯示裝置Display device

本發明是有關於一種顯示裝置。The present invention relates to a display device.

近年來,隨著顯示技術的不斷進步,使用者對於顯示器之顯示品質(如影像解析度、色彩飽和度等)的要求也越來越高。然而,除了高影像解析度以及高色彩飽和度之外,為了滿足使用者與顯示影像互動的需求,亦發展出能夠讓使用者直接接觸顯示影像而與顯示影像產生互動的觸控控制介面。In recent years, with the continuous advancement of display technology, users have become more and more demanding on the display quality of displays (such as image resolution, color saturation, etc.). However, in addition to high image resolution and high color saturation, in order to meet the user's need to interact with the display image, a touch control interface that allows the user to directly touch the display image and interact with the display image is developed.

目前,許多觸控控制介面大多是以手指來碰觸觸控面板而得到相對應之訊息或回饋動作。然而,這樣的操作模式容易使觸控介面因長期被碰觸而沾染細菌或污垢。此外,在特定的環境下(例如在使用者的手有油污或細菌時),使用者為了避免弄髒使控面板,將無法便利地使用觸控控制介面來與影像產生互動。At present, many touch control interfaces mostly touch a touch panel with a finger to obtain a corresponding message or feedback action. However, such an operation mode tends to cause the touch interface to be contaminated with bacteria or dirt due to long-term contact. In addition, in a specific environment (for example, when the user's hand is contaminated with oil or bacteria), the user may not conveniently use the touch control interface to interact with the image in order to avoid soiling the control panel.

為了杜絕細菌、油污等污染觸控控制介面的情況,業界更期待一種能飄浮於空間中的虛擬觸控介面的影像來與使用者互動。因此,如何使顯示影像擺脫受限於使用者與顯示器之間的距離變化,是目前業界亟待解決的問題。In order to prevent contamination of the touch control interface by bacteria and oil, the industry is expecting an image of a virtual touch interface that can float in space to interact with the user. Therefore, how to make the display image get rid of the change of the distance between the user and the display is an urgent problem to be solved in the industry.

本發明之一實施例提出一種顯示裝置,其包括複數個 影像產生單元,且每一影像產生單元包括一影像源及一屈光模組。影像源提供一影像光束。屈光模組配置在影像光束的傳遞路徑上,且具有屈光力(refractive power)。屈光模組形成對應於影像源的一飄浮於空中的影像,且屈光模組位於影像源與影像之間。這些影像產生單元排列成陣列,且這些影像產生單元所形成的這些影像排列成陣列,並組合成一影像畫面。An embodiment of the present invention provides a display device including a plurality of An image generating unit, and each image generating unit includes an image source and a refractive module. The image source provides an image beam. The refractive module is disposed on the transmission path of the image beam and has a refractive power. The refractive module forms an image floating in the air corresponding to the image source, and the refractive module is located between the image source and the image. The image generating units are arranged in an array, and the images formed by the image generating units are arranged in an array and combined into an image frame.

為讓本發明之上述特徵能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-described features of the present invention more comprehensible, the following detailed description of the embodiments will be described in detail below.

圖1A為本發明之一實施例之顯示裝置的立體示意圖,圖1B與圖1C分別為圖1A之顯示裝置於兩個不同的方向上的側視圖,而圖1D與圖1E分別為圖1B與圖1C中的一個影像產生單元的側視圖。請參照圖1A至圖1E,本實施例之顯示裝置100包括複數個影像產生單元300,且每一影像產生單元300包括一影像源110及一屈光模組200。影像源110提供一影像光束112。在本實施例中,影像源110為一顯示面板,例如為液晶顯示面板、有機發光二極體顯示面板、電漿顯示面板或其他適當的顯示面板。然而,在另一實施例中,影像源110也可以是一發光元件,例如發光二極體或其他適當的發光元件。或者,在其他實施例中,影像源110也可以是一被光照射的物體,例如幻燈片、一般圖片或其他任何適當的物體。1A is a perspective view of a display device according to an embodiment of the present invention, and FIGS. 1B and 1C are respectively side views of the display device of FIG. 1A in two different directions, and FIGS. 1D and 1E are respectively FIG. 1B and FIG. A side view of an image generating unit in Fig. 1C. Referring to FIG. 1A to FIG. 1E , the display device 100 of the present embodiment includes a plurality of image generating units 300 , and each image generating unit 300 includes an image source 110 and a refractive module 200 . Image source 110 provides an image beam 112. In this embodiment, the image source 110 is a display panel, such as a liquid crystal display panel, an organic light emitting diode display panel, a plasma display panel, or other suitable display panel. However, in another embodiment, image source 110 can also be a light emitting element, such as a light emitting diode or other suitable light emitting element. Alternatively, in other embodiments, image source 110 may also be an object that is illuminated by light, such as a slide, a general picture, or any other suitable object.

屈光模組200配置在影像光束112的傳遞路徑上,且具有屈光力(refractive power)。屈光模組200可包括至少一透鏡。在圖1A中,是以每個屈光模組200包括一透鏡為例。屈光模組200形成對應於影像源110的一飄浮於空中的影像114,且屈光模組200位於影像源110與影像114之間。在本實施例中,影像114為屈光模組200所形成之影像源110的實像。The refractive module 200 is disposed on the transmission path of the image beam 112 and has a refractive power. The refractive module 200 can include at least one lens. In FIG. 1A, each of the refractive modules 200 includes a lens as an example. The refractive module 200 forms an image 114 corresponding to the image source 110 floating in the air, and the refractive module 200 is located between the image source 110 and the image 114. In the embodiment, the image 114 is a real image of the image source 110 formed by the refractive module 200.

這些影像產生單元300排列成陣列,且這些影像產生單元300所形成的這些影像114排列成陣列,而這些排成陣列的影像114組合成一影像畫面。在本實施例中,這些影像產生單元300與這些影像114所排成的陣列例如是二維陣列,但本發明不以此為限。在另一實施例中,這些影像產生單元300與這些影像114所排成的陣列亦可以是一維陣列或三維陣列。The image generating units 300 are arranged in an array, and the images 114 formed by the image generating units 300 are arranged in an array, and the arrayed images 114 are combined into one image frame. In the present embodiment, the arrays of the image generating units 300 and the images 114 are, for example, two-dimensional arrays, but the invention is not limited thereto. In another embodiment, the arrays of the image generating units 300 and the images 114 may also be a one-dimensional array or a three-dimensional array.

在本實施例之顯示裝置100中,藉由複數個屈光模組200來分別形成複數個影像源110的複數個飄浮於空中的影像114,而這些影像114可在空中組合成一影像畫面。因此,顯示裝置100可形成飄浮於空中的影像畫面。如此一來,當顯示裝置100與光學偵測裝置相搭配時,藉由光學偵測裝置偵測使用者的手指的位置及判斷使用者的手指是否碰到飄浮於空中的影像畫面,便可形成非接觸式飄浮影像觸控介面。換言之,使用者可在手指完全沒有碰到顯示裝置100的狀態下,就可與顯示裝置100產生互動。如此一來,當手指可能有病菌或油污時,便可在不會污染顯 示裝置100的狀況下與顯示裝置100完成互動。舉例而言,本實施例之顯示裝置100可應用於怕病菌傳染的醫療人機介面(例如手術房中用以控制醫療儀器的介面或掛號系統的介面等)。另外,由於採用複數個屈光模組200,因此每一個屈光模組200的尺寸可以較小,而使屈光模組200中的透鏡的尺寸較小。如此一來,便可以不用製造尺寸很大的透鏡來形成影像畫面,因此本實施例之顯示裝置100可解決透鏡尺寸過大所造成的透鏡難以製造且成本昂貴的問題。In the display device 100 of the present embodiment, a plurality of images 114 of a plurality of image sources 110 floating in the air are respectively formed by a plurality of refractive modules 200, and the images 114 can be combined into one image frame in the air. Therefore, the display device 100 can form an image frame floating in the air. In this way, when the display device 100 is matched with the optical detecting device, the position of the user's finger is detected by the optical detecting device, and whether the user's finger touches the image image floating in the air can be formed. Non-contact floating image touch interface. In other words, the user can interact with the display device 100 in a state where the finger does not touch the display device 100 at all. In this way, when the finger may have germs or oil stains, it will not be contaminated. The display device 100 completes interaction with the display device 100. For example, the display device 100 of the present embodiment can be applied to a medical human-machine interface for infection of a pathogen (for example, an interface for controlling a medical device or an interface of a registration system in an operating room, etc.). In addition, since a plurality of refractive modules 200 are used, the size of each of the refractive modules 200 can be small, and the size of the lenses in the refractive module 200 is small. In this way, the image frame can be formed without using a lens having a large size. Therefore, the display device 100 of the present embodiment can solve the problem that the lens is difficult to manufacture and expensive due to excessive lens size.

在本實施例中,影像產生單元300所在的空間可由彼此互相垂直的x軸、y軸與z軸一直角座標系來定義,其中影像產生單元300的光軸A與z軸實質上平行,x軸與一使用者的左眼50a與右眼50b的排列方向實質上平行,且y軸實質上垂直於x軸與z軸。In this embodiment, the space in which the image generating unit 300 is located may be defined by an x-axis, a y-axis, and a z-axis straight-angle coordinate system that are perpendicular to each other, wherein the optical axis A of the image generating unit 300 is substantially parallel to the z-axis, x The axis is substantially parallel to the direction in which the left eye 50a and the right eye 50b of a user are arranged, and the y-axis is substantially perpendicular to the x-axis and the z-axis.

在本實施例中,每一影像產生單元300符合NA≧sin(tan-1 (Y/L)),其中NA為影像產生單元300的數值孔徑(numerical aperture,NA),Y為影像單元110所產生的影像114的半高(例如為在y方向上的半高),L為影像114至使用者的單眼(例如左眼50a與右眼50b中的任一隻眼睛50)在平行於屈光模組200的光軸A上的距離(例如在z方向上的距離),且此距離為單眼能看到一個完整的影像114的最短距離。此外,影像114位於屈光模組200與眼睛50之間。當眼睛50與影像114的距離小於L時,使用者的眼睛將看不到完整的一個影像114的高度(即 2Y),而當眼睛50與影像114的距離大於等於L時,使用者的眼睛可看到完整的一個影像114的高度(即2Y)。在本實施例中,影像產生單元更符合25公分≦L≦2公尺,換言之,影像114落在使用者的手或手持的物品所能觸及的位置。如此一來,使用者便能夠藉由觸碰影像114而與顯示裝置100作互動。In this embodiment, each image generating unit 300 conforms to NA≧sin(tan −1 (Y/L)), where NA is the numerical aperture (NA) of the image generating unit 300, and Y is the image unit 110. The resulting image 114 has a half height (eg, half height in the y direction), and L is the image 114 to the user's monocular (eg, any of the left eye 50a and the right eye 50b) parallel to the refractive module. The distance on the optical axis A of 200 (e.g., the distance in the z direction), and this distance is the shortest distance that a single eye can see a complete image 114. Additionally, image 114 is located between refractive module 200 and eye 50. When the distance between the eye 50 and the image 114 is less than L, the user's eyes will not see the height of a complete image 114 (ie, 2Y), and when the distance between the eye 50 and the image 114 is greater than or equal to L, the user's eyes The height of a complete image 114 (ie 2Y) can be seen. In this embodiment, the image generating unit further conforms to 25 cm ≦L ≦ 2 metric meters, in other words, the image 114 falls at a position accessible to the user's hand or the hand-held article. In this way, the user can interact with the display device 100 by touching the image 114.

此外,在本實施例中,每一影像產生單元300符合NA≧sin(tan-1 ((2Y+E)/2D)),其中NA為影像產生單元300的數值孔徑,Y為影像單元300所產生的影像114的半高(例如是在x方向上的半高),E為使用者的雙眼(即左眼50a與右眼50b)的間距,D為影像114至雙眼(如左眼50a與右眼50b)在平行於屈光模組200的光軸A上的距離,且此距離為雙眼能同時看到一個完整的影像114的最短距離。當眼睛50與影像的距離大於等於D時,使用者的左眼50a及右眼50b中的任一個眼睛50皆可看到完整的影像高度(即2Y)。然而,當眼睛50與影像114的距離小於D時,使用者的左眼50a及右眼50b中的任一個眼睛50將無法看到完整的影像高度(即2Y),例如左眼50a看到左半邊的影像但看不到右半邊的影像,且右眼50b看到右半邊的影像但看不到左半邊的影像。在本實施例中,25公分≦D≦2公尺,換言之,影像114落在使用者的手或手持的物品所能觸及的位置。In addition, in this embodiment, each image generating unit 300 conforms to NA≧sin(tan -1 ((2Y+E)/2D)), where NA is the numerical aperture of the image generating unit 300, and Y is the image unit 300. The half height of the generated image 114 (for example, half height in the x direction), E is the distance between the eyes of the user (ie, the left eye 50a and the right eye 50b), and D is the image 114 to both eyes (such as the left eye) The distance between 50a and right eye 50b) is parallel to the optical axis A of the refractive module 200, and this distance is the shortest distance at which both eyes can simultaneously see a complete image 114. When the distance between the eye 50 and the image is greater than or equal to D, the full image height (ie, 2Y) can be seen by any one of the user's left eye 50a and right eye 50b. However, when the distance between the eye 50 and the image 114 is less than D, any one of the user's left eye 50a and right eye 50b will not be able to see the full image height (ie 2Y), for example, the left eye 50a sees the left. The image on the half side does not see the image on the right half, and the right eye 50b sees the image on the right half but does not see the image on the left side. In the present embodiment, 25 cm ≦D ≦ 2 metric meters, in other words, the image 114 falls in a position accessible to the user's hand or the hand-held article.

在本實施例中,這些影像產生單元300所形成的影像畫面至使用者的眼睛50的距離小於或等於使用者的手臂 在伸直狀態下的長度。如此一來,使用者便能夠透過手與影像產生單元300產生互動。In this embodiment, the distance between the image frame formed by the image generating unit 300 and the user's eyes 50 is less than or equal to the user's arm. The length in the straightened state. In this way, the user can interact with the image generation unit 300 through the hand.

在本實施例中,每一影像產生單元300更包括一孔徑光闌130,其配置於影像光束112的傳遞路徑上,且位於影像源110與屈光模組200之間。孔徑光闌130可限制影像光束112的張角,以使一影像產生單元300的影像源110所產生的影像光束112不會傳遞至相鄰的影像產生單元300中。如此一來,這些影像單元300所產生的這些影像114便不會彼此部分重疊,進而提升影像畫面的正確性與清晰度。圖2A為圖1A中的屈光模組的正視圖,而圖2B為圖1A中的影像的正視圖。舉例而言,如圖2A所繪示,相鄰兩影像產生單元300的屈光模組200之間存在有空隙。在本實施例中,這些影像產生單元300所分別產生的這些影像114之間存在有空隙。如此一來,可進一步確保相鄰兩影像114之間沒有部分重疊,如圖2B所繪示。此外,如圖2A所繪示,在本實施例中,屈光模組200中的透鏡例如為圓形透鏡,亦即相對於光軸A為軸對稱的透鏡。然而,在其他實施例中,這些影像產生單元300的這些透鏡亦可以是圓形透鏡、圓形切單邊的透鏡、圓形切相鄰兩邊的透鏡或其組合。In this embodiment, each image generating unit 300 further includes an aperture stop 130 disposed on the transmission path of the image beam 112 and located between the image source 110 and the refractive module 200. The aperture stop 130 can limit the opening angle of the image beam 112 such that the image beam 112 generated by the image source 110 of an image generating unit 300 is not transmitted to the adjacent image generating unit 300. As a result, the images 114 generated by the image units 300 do not partially overlap each other, thereby improving the correctness and clarity of the image. 2A is a front elevational view of the refractive module of FIG. 1A, and FIG. 2B is a front elevational view of the image of FIG. 1A. For example, as shown in FIG. 2A , there is a gap between the refractive modules 200 of the adjacent two image generating units 300 . In the present embodiment, there are gaps between the images 114 respectively generated by the image generating units 300. In this way, it can be further ensured that there is no partial overlap between the adjacent two images 114, as shown in FIG. 2B. In addition, as shown in FIG. 2A , in the embodiment, the lens in the refractive module 200 is, for example, a circular lens, that is, a lens that is axisymmetric with respect to the optical axis A. However, in other embodiments, the lenses of the image generating unit 300 may also be a circular lens, a circular unilateral lens, a circular tangential lens, or a combination thereof.

在其他實施例中,孔徑光闌130亦可位於屈光模組200與影像114之間,或位於屈光模組200中的沿著光軸A排列的相鄰兩透鏡間。或者,在另一實施例中,可由屈光模組200中的一鏡片的邊緣來作為孔徑光闌130的邊緣。In other embodiments, the aperture stop 130 may be located between the refractive module 200 and the image 114 or between adjacent lenses arranged along the optical axis A in the refractive module 200. Alternatively, in another embodiment, the edge of a lens in the refractive module 200 can be used as the edge of the aperture stop 130.

在本實施例中,如圖1A所繪示,顯示裝置100可更包括一邊框120,其環繞這些影像114。這些影像114可與邊框120約略位於同一平面上。在邊框120的導引下,可讓使用者的眼睛50容易注視於影像114所在的空間中的位置。然而,在其他實施例中,顯示裝置100亦可不採用邊框120,而使用者的眼睛50則直接注視影像114。In this embodiment, as shown in FIG. 1A , the display device 100 can further include a frame 120 surrounding the images 114 . These images 114 may be approximately in the same plane as the bezel 120. Under the guidance of the frame 120, the user's eyes 50 can be easily viewed at a position in the space in which the image 114 is located. However, in other embodiments, the display device 100 may not use the bezel 120, and the user's eyes 50 directly look at the image 114.

圖3A與圖3B分別繪示使用者的雙眼中的任一眼皆可看到完整的影像114的情況與皆無法看到完整的影像114的情況。請參照圖3A與圖3B,若以圖解來說明,影像光束112中的邊緣光線112a為來自影像源的左端(即x座標最小)且通過影像114的右端(即x座標最大)的邊緣光線112a,而影像光束112中的邊緣光線112b為來自影像源的右端(即x座標最大)且通過影像114的左端(即x座標最小)的邊緣光線112b。當使用者的左眼50a與右眼50b皆落在邊緣光束112a與邊緣光束112b之間的空間中時(如圖3A所繪示),左眼50a與右眼50b皆可看到影像114於x方向上的完整高度。而當左眼50a與右眼50b中有一眼(如圖3B所繪示的左眼50a)落在邊緣光束112a與邊緣光束112b之間的空間中,而另一眼(如圖3B所繪示的右眼50b)落在邊緣光束112a與邊緣光束112b之間的空間外,則落在此空間中的眼睛(如左眼50a)可看到影像114在x方向上的完整高度,但落在此空間外的眼睛(如右眼50b)則無法看到影像114在x方向上的完整高度。FIG. 3A and FIG. 3B respectively illustrate the case where the complete image 114 can be seen by any of the eyes of the user and the case where the complete image 114 cannot be seen. Referring to FIG. 3A and FIG. 3B, if illustrated by way of illustration, the edge ray 112a in the image beam 112 is the edge ray 112a from the left end of the image source (ie, the x coordinate is the smallest) and passes through the right end of the image 114 (ie, the x coordinate is the largest). The edge ray 112b in the image beam 112 is the edge ray 112b from the right end of the image source (ie, the x coordinate is the largest) and passes through the left end of the image 114 (ie, the x coordinate is the smallest). When the left eye 50a and the right eye 50b of the user both fall in the space between the edge beam 112a and the edge beam 112b (as shown in FIG. 3A), the image 114 can be seen by both the left eye 50a and the right eye 50b. The full height in the x direction. When one of the left eye 50a and the right eye 50b (the left eye 50a as shown in FIG. 3B) falls in the space between the edge beam 112a and the edge beam 112b, the other eye (as shown in FIG. 3B) The right eye 50b) falls outside the space between the edge beam 112a and the edge beam 112b, and the eye falling in this space (such as the left eye 50a) can see the full height of the image 114 in the x direction, but falls here. An eye outside the space (such as the right eye 50b) cannot see the full height of the image 114 in the x direction.

同理,在另一方向(如y方向)上,若使用者的眼睛50位於來自影像源110的上端(如y座標最大)且通過影像114的下端(如y座標最小)之邊緣光線與來自影像源110的下端(如y座標最小)且通過影像114的上端(如y座標最大)之邊緣光線之間的空間中時,則眼睛50可看到影像114於y方向上的完整高度。然而,若眼睛50在此空間外時,則影像50無法看到影像114於y方向上的完整高度。圖4為圖1C之顯示裝置的另一變化。如圖4所繪示,使用者的眼睛50落在從上往下數來第4個影像產生單元300的光軸A上,且圖4中的4個影像產生單元300的光軸A例如是彼此互相平行,此時眼睛50落在第4個影像產生單元300的相對兩邊緣光線之間的空間中,且落在第3個影像產生單元300的相對兩邊緣光線之間的空間中,但落在第1個與第2個影像產生單元300的相對兩邊緣光線之間的空間外,因此眼睛50可看到從上往下數來第3個影像114與第4個影像114的完整高度,但無法看到從上往下數來的第1個與第2個影像114的完整高度。因此,在圖4的實施例中,當使用者位於手可以觸及影像114的距離下,使用者的雙眼看到這些影像114的一部分,且使用者的雙眼移動至不同位置時看到這些影像114的不同部分。Similarly, in the other direction (such as the y direction), if the user's eye 50 is located at the upper end from the image source 110 (such as the y coordinate is the largest) and the edge of the image through the lower end of the image 114 (such as the smallest y coordinate) When the lower end of the image source 110 (e.g., the y coordinate is the smallest) and passes through the space between the edge rays of the upper end of the image 114 (e.g., the y coordinate is the largest), the eye 50 can see the full height of the image 114 in the y direction. However, if the eye 50 is outside of this space, the image 50 cannot see the full height of the image 114 in the y-direction. 4 is another variation of the display device of FIG. 1C. As shown in FIG. 4, the user's eye 50 falls on the optical axis A of the fourth image generating unit 300 from the top, and the optical axis A of the four image generating units 300 in FIG. 4 is, for example, The pixels 50 are parallel to each other, and the eye 50 falls in the space between the opposite edge rays of the fourth image generating unit 300, and falls in the space between the opposite edge rays of the third image generating unit 300, but Falling out of the space between the opposite edge rays of the first and second image generating units 300, the eye 50 can see the full height of the third image 114 and the fourth image 114 from the top down. However, the full height of the first and second images 114 counted from top to bottom cannot be seen. Therefore, in the embodiment of FIG. 4, when the user is at a distance that the hand can touch the image 114, the user's eyes see a part of the images 114, and the user's eyes move to different positions to see the images. Different parts of 114.

請再參照圖1C,若欲使眼睛50在不移動的情況下就能夠看到全部的影像114之完整的於y方向上的高度時,可使這些影像產生單元300的光軸A在靠近眼睛處50較 為集中,而在靠近影像源110處較為發散。具體而言,每一影像產生單元300的光軸A具有位於影像源處的一第一端E1及靠近使用者的眼睛50的一第二端E2,且這些影像產生單元300的這些光軸A的這些第二端E2比這些第一端E1集中。如此一來,可使眼睛50落在所有影像產生單元300的任一個之相對兩邊緣光線之間的空間中,眼睛50便能夠看到所有的影像114於y方向上的完整高度。Referring again to FIG. 1C, if the eye 50 is to be able to see the full height of the image 114 in the y direction without moving, the optical axis A of the image generating unit 300 can be brought close to the eye. 50 For concentration, it is more divergent near the image source 110. Specifically, the optical axis A of each image generating unit 300 has a first end E1 at the image source and a second end E2 near the user's eye 50, and the optical axes A of the image generating units 300 These second ends E2 are concentrated than these first ends E1. In this way, the eye 50 can be placed in the space between the opposite edge rays of any of the image generating units 300, and the eye 50 can see the full height of all the images 114 in the y direction.

此外,在圖1B中,由於使用者的左眼50a位於從右往左數來(即沿著-x方向數來)第二個與第三個影像產生單元300的相對兩邊緣光線之間的空間中,且位於第一個影像產生單元的相對兩邊緣光線之間的空間外,因此左眼50a可看到第二個與第三個影像114於x方向上的完整高度,但無法看到第一個影像114於x方向上的完整高度。同理,由於使用者的右眼50b位於從右往左數來(即沿著-x方向數來)第一個與第二個影像產生單元300的相對兩邊緣光線之間的空間中,且位於第三個影像產生單元的相對兩邊緣光線之間的空間外,因此右眼50b可看到第一個與第二個影像114於x方向上的完整高度,但無法看到第三個影像114於x方向上的完整高度。換言之,在此情況下,使用者的左眼50a看到這些影像114的一部分,且使用者的右眼50b看到這些影像114的另一部分。In addition, in FIG. 1B, since the user's left eye 50a is located from right to left (ie, along the -x direction) between the opposite edge rays of the second and third image generating units 300 In the space, and outside the space between the opposite edge rays of the first image generating unit, the left eye 50a can see the full height of the second and third images 114 in the x direction, but cannot be seen. The full height of the first image 114 in the x direction. Similarly, since the user's right eye 50b is located in the space between the right and left edge rays of the first and second image generating units 300 from the right to the left (ie, along the -x direction), and Located outside the space between the opposite edge rays of the third image generating unit, so the right eye 50b can see the full height of the first and second images 114 in the x direction, but the third image cannot be seen. 114 The full height in the x direction. In other words, in this case, the user's left eye 50a sees a portion of these images 114, and the user's right eye 50b sees another portion of these images 114.

在一實施例中,亦可使圖1B之光軸A在平行於x-z平面的方向上旋轉,而使得使用者的雙眼落在所有影像產生單元300的相對兩邊緣光線之間的空間,亦即光軸A在 靠近眼睛50的一端較為集中。此時,全部的這些影像114皆可被使用者的雙眼同時看到。在本實施例中,這些影像產生單元300的光學參數彼此實質上相同,例如這些影像產生單元300的數值孔徑彼此實質上相同,且這些影像產生單元300所產生的影像114的尺寸彼此實質上相同。然而,在其他實施例中,這些影像產生單元300的多個光學參數中亦可有至少部分彼此不相同。舉例而言,這些影像產生單元300的數值孔徑彼此不相同,且這些影像產生單元300所產生的影像114的尺寸彼此實質上相同。或者,這些影像產生單元300的數值孔徑彼此不相同,且這些影像產生單元300所產生的影像114的尺寸彼此不相同。In an embodiment, the optical axis A of FIG. 1B can also be rotated in a direction parallel to the xz plane, so that the user's eyes fall in the space between the opposite edge rays of all the image generating units 300. That is, the optical axis A is The end near the eye 50 is more concentrated. At this time, all of these images 114 can be simultaneously seen by both eyes of the user. In this embodiment, the optical parameters of the image generating units 300 are substantially identical to each other. For example, the numerical apertures of the image generating units 300 are substantially identical to each other, and the sizes of the images 114 generated by the image generating units 300 are substantially identical to each other. . However, in other embodiments, at least some of the plurality of optical parameters of the image generating unit 300 may be different from each other. For example, the numerical apertures of the image generating units 300 are different from each other, and the sizes of the images 114 generated by the image generating units 300 are substantially identical to each other. Alternatively, the numerical apertures of the image generating units 300 are different from each other, and the sizes of the images 114 generated by the image generating units 300 are different from each other.

此外,亦可藉由不同光學參數的複數個影像產生單元300於不同的距離處分別形成複數個影像114,以使這些影像114所組合成的影像畫面具有深度感,亦即使影像畫面成為立體影像畫面,如此顯示裝置100即成為立體顯示裝置。使用這樣的立體顯示裝置時可以不用配戴專用的眼睛,且不會有習知裸眼顯示技術的串音(crosstalk)干擾問題。在另一實施例中,影像源110亦可以是立體顯示面板,則無論採用相同或不同光學參數的複數個影像產生單元300,皆可使顯示裝置100成為立體顯示裝置。In addition, a plurality of images 114 can be formed at different distances by a plurality of image generating units 300 of different optical parameters, so that the image images combined by the images 114 have a sense of depth, and even if the image becomes a stereo image. In the screen, the display device 100 thus becomes a stereoscopic display device. When such a stereoscopic display device is used, it is not necessary to wear a dedicated eye, and there is no crosstalk interference problem of the conventional naked eye display technology. In another embodiment, the image source 110 can also be a stereoscopic display panel, and the display device 100 can be a stereoscopic display device regardless of the plurality of image generating units 300 using the same or different optical parameters.

由上述實施例可知,使用者影眼睛50在顯示裝置100的正前方附近的位置可看到影像114,但在過於傾斜的方向斜視顯示裝置100時,則會無法看到影像114,因此顯示裝置100可達到防窺的效果。舉例而言,顯示裝置100 更應用於具有隱私性的提款機或門禁系統,而此時顯示裝置100所提供的影像畫面可為飄浮於空中的按鍵影像。此時,只有位於顯示裝置100的正前方的使用者可以看到按鍵影像且對按鍵影像進行觸控,而位於使用者旁的他人卻看不到按鍵影像。因此,他人只會看到使用者的手指在空間中移動,但卻看不到使用者是觸碰到哪個按鍵。如此一來,便能夠維護使用者的使用隱私。As can be seen from the above embodiment, the user's shadow eye 50 can see the image 114 at a position near the front of the display device 100. However, when the display device 100 is slanted in a direction that is too oblique, the image 114 cannot be seen, so the display device 100 can achieve anti-peep effect. For example, the display device 100 It is more applicable to a cash dispenser or an access control system with privacy. At this time, the image screen provided by the display device 100 can be a button image floating in the air. At this time, only the user located directly in front of the display device 100 can see the button image and touch the button image, while others located beside the user cannot see the button image. Therefore, others will only see the user's finger moving in space, but they will not see which button the user touched. In this way, the user's privacy can be maintained.

在本實施例中,如圖1A所繪示,顯示裝置100更包括一物距調整單元140,其連接這些影像源110與這些屈光模組200,以調整這些影像源110與這些屈光模組200的距離。舉例而言,物距調整單元140可包括一固定框142、一固定框144及一軌道146。固定框142固定這些影像源110,固定框144固定這些屈光模組,且固定框142與固定框144至少其中之一可沿著軌道146移動,以改變這些影像源110與這些屈光模組200的距離(即物距)。在本實施例中,當固定框142沿著軌道146移動時,這些影像源110會同時一起移動。同理,當固定框144沿著軌道146移動時,這些屈光模組200亦會一起移動。當物距縮小時,屈光模組200與影像114的距離(即像距)會變大,而使得影像114的尺寸變大,並使得相鄰兩影像114的間距縮小。當物距變長時,屈光模組200與影像114的距離(即像距)會變小,而使得影像114的尺寸縮小,並使得相鄰兩影像114的間距變大。當物距由長變短時,這些影像114的間距可依序處於大於這些屈光模組200的間 距的狀態、等於這些屈光模組200的間距的狀態及小於這些屈光模組200的間距的狀態。本發明不限定物距調整單元140是以固定框142、固定框144及軌道146來實現,任何其他可調整物距的機構或力學裝置(此處的「力」可泛指靜電力、磁力、電磁力、各種接觸力、各種超距力或力學中的其他各種的力)亦可用以實現物距調整單元140。In this embodiment, as shown in FIG. 1A , the display device 100 further includes an object distance adjustment unit 140 that connects the image sources 110 and the refraction modules 200 to adjust the distance between the image sources 110 and the refraction modules 200 . . For example, the object distance adjustment unit 140 can include a fixed frame 142, a fixed frame 144, and a track 146. The fixing frame 142 fixes the image sources 110, the fixing frame 144 fixes the refraction modules, and at least one of the fixing frame 142 and the fixing frame 144 can move along the rails 146 to change the distance between the image sources 110 and the refraction modules 200 ( That is, the object distance). In the present embodiment, when the fixed frame 142 moves along the track 146, the image sources 110 move together at the same time. Similarly, when the fixed frame 144 moves along the track 146, the refractive modules 200 will also move together. When the object distance is reduced, the distance between the refractive module 200 and the image 114 (ie, the image distance) becomes larger, so that the size of the image 114 becomes larger, and the spacing between the adjacent two images 114 is reduced. When the object distance becomes longer, the distance between the refractive module 200 and the image 114 (ie, the image distance) becomes smaller, so that the size of the image 114 is reduced, and the distance between the adjacent two images 114 becomes larger. When the object distance is shortened from the length, the spacing of the images 114 may be sequentially larger than between the refraction modules 200. The state of the distance is equal to the state of the pitch of the refractive modules 200 and the state of the pitch of the refractive modules 200. The invention does not limit the object distance adjusting unit 140 by the fixing frame 142, the fixing frame 144 and the rail 146, and any other mechanism or mechanical device capable of adjusting the object distance (the "force" herein can be generally referred to as an electrostatic force, a magnetic force, Electromagnetic force, various contact forces, various over-range forces, or various other forces in mechanics can also be used to implement the object distance adjustment unit 140.

以下內容將舉出影像產生單元300之一實施例。需注意的是,下述之表一與表二中所列的數據資料並非用以限定本發明,任何所屬技術領域中具有通常知識者在參照本發明之後,當可對其參數或設定作適當的更動,惟其仍應屬於本發明之範疇內。An embodiment of the image generating unit 300 will be described below. It should be noted that the data sheets listed in Tables 1 and 2 below are not intended to limit the present invention, and any one of ordinary skill in the art can refer to the present invention after appropriate parameters or settings thereof. The change, but it should still fall within the scope of the present invention.

在表一中,間距是指兩相鄰表面間於光軸A上之直線距離,舉例來說,表面S1之間距,即表面S1至表面S2間於光軸A上之直線距離。備註欄中透鏡所對應之厚度請參照同列中間距的數值,且備註欄中透鏡所對應之材質請參照同列中的材料編號,如「PMMAO」即為透鏡的材料編號。In Table 1, the pitch refers to the linear distance between two adjacent surfaces on the optical axis A. For example, the distance between the surfaces S1, that is, the linear distance between the surface S1 and the surface S2 on the optical axis A. For the thickness of the lens in the remark column, refer to the value of the spacing in the same column. For the material corresponding to the lens in the remark column, refer to the material number in the same column. For example, “PMMAO” is the material number of the lens.

此外,在表一中,表面S1為影像源110的主動表面。表面S2為孔徑光闌130。表面S3、S4分別為屈光模組200的透鏡之相對兩表面。表面S5為影像114。有關於各表面之曲率半徑、間距等參數值,請參照表一,在此不再重述。由表一可看出,在本實施例中,屈光模組200的透鏡具有正屈光力,而此透鏡例如為雙凸透鏡。Further, in Table 1, the surface S1 is the active surface of the image source 110. The surface S2 is an aperture stop 130. The surfaces S3 and S4 are the opposite surfaces of the lens of the refractive module 200, respectively. Surface S5 is image 114. For the parameter values such as the radius of curvature and the spacing of each surface, please refer to Table 1, and will not be repeated here. As can be seen from Table 1, in the present embodiment, the lens of the refractive module 200 has a positive refractive power, and the lens is, for example, a lenticular lens.

再者,上述之表面S3及S4為非球面,而其可用下列公式表示: Furthermore, the above surfaces S3 and S4 are aspherical, and they can be expressed by the following formula:

式中,Z為光軸A方向之偏移量(sag),c是密切球面(osculating sphere)的半徑之倒數,也就是接近光軸A處的曲率半徑(如表格內表面S3及S4的曲率半徑)的倒數。k是二次曲面係數(conic),r是非球面高度,即為從透鏡中心往透鏡邊緣的高度,而A1 、A2 、A3 、A4 、A5 ...為非球面係數(aspheric coefficient),其中係數A1 為0。表二所列出的是表面S3及S4的參數值。Where Z is the offset (sag) in the direction of the optical axis A, and c is the reciprocal of the radius of the osculating sphere, that is, the radius of curvature near the optical axis A (such as the curvature of the inner surfaces S3 and S4 of the table) The reciprocal of the radius). k is a quadric coefficient (conic), r is the aspherical height, that is, the height from the center of the lens toward the edge of the lens, and A 1 , A 2 , A 3 , A 4 , A 5 ... are aspherical coefficients (aspheric Coefficient), where the coefficient A 1 is zero. Table 2 lists the parameter values for surfaces S3 and S4.

表二中,3.628E-06是指3.628×10-6 ,而其他數值以此類推。In Table 2, 3.628E-06 means 3.628×10 -6 , and other values are deduced by analogy.

在本實施例中,影像產生單元300的物像放大率例如為1,物高例如為7.5毫米,像高(即影像114的高度)例如為7.5毫米,屈光模組200的焦距例如為27.39毫米,屈光模組200的數值孔徑例如為0.12,且孔徑光闌130的位置與屈光模組200前焦點的位置差異例如為0.62毫米,但本發明不以此為限。In the present embodiment, the image generation unit 300 has an object image magnification of 1, for example, a height of, for example, 7.5 mm, an image height (ie, a height of the image 114) of, for example, 7.5 mm, and a focal length of the refractive module 200 of, for example, 27.39 mm. The numerical aperture of the refractive module 200 is, for example, 0.12, and the difference between the position of the aperture stop 130 and the front focus of the refractive module 200 is, for example, 0.62 mm, but the invention is not limited thereto.

圖5A與圖5B分別為本發明之另一實施例之顯示裝置於兩個不同的方向上之側視示意圖,圖5C為圖5A中之一個影像產生單元的側視示意圖,圖6A為圖5A中的屈光模組之正視圖,而圖6B為圖5A中的影像的正視圖。請參照圖5A至圖5C及圖6A至圖6B,本實施例之顯示裝置100a與圖1A的顯示裝置100類似,而兩者的主要差異如下所述。在本實施例之顯示裝置100a中,這些影像產生單元300a的屈光模組200a的這些透鏡為圓形透鏡222、圓形切單邊的透鏡224、圓形切相鄰兩邊的透鏡226的組合。在本實施例中,圓形切單邊的透鏡224之切邊C1是位於靠近顯示裝置100a的中央的一側。此外,圓形切相鄰兩邊的透鏡226之任一切邊C2是位於靠近圓形切單邊的透鏡224之一側。在本實施例中,圓形透鏡222則位於顯示裝置100a的中央。在本實施例中,由於孔徑光闌130會限制影像光束112的張角,因此若所有透鏡皆採圓形透鏡時,對於部分圓形透鏡而言,影像光束112不會通過整個透鏡。因此,可對影像光束112不會通過的透鏡的部分進行切邊處理。如此一來,部分這些屈光模組200a在進行切邊處理後,彼 此間位於光軸A上的中心位置的距離便可以進一步縮短,進而縮小顯示裝置100a的體積。此外,在縮短中心位置的距離後,影像產生單元300a所產生的這些影像114仍然能夠維持彼此互相分離的狀態。5A and FIG. 5B are respectively side views of the display device in two different directions according to another embodiment of the present invention, FIG. 5C is a side view of one of the image generating units of FIG. 5A, and FIG. 6A is a view of FIG. A front view of the refractive module in the middle, and FIG. 6B is a front view of the image in FIG. 5A. Referring to FIGS. 5A to 5C and FIGS. 6A to 6B, the display device 100a of the present embodiment is similar to the display device 100 of FIG. 1A, and the main differences between the two are as follows. In the display device 100a of the present embodiment, the lenses of the refractive module 200a of the image generating unit 300a are a combination of a circular lens 222, a circularly unilateral lens 224, and a circularly tangentially adjacent lens 226. In the present embodiment, the cut edge C1 of the circularly unilateral lens 224 is located on the side close to the center of the display device 100a. Further, any side C2 of the lens 226 that is circularly cut to the adjacent sides is located on one side of the lens 224 near the circular one side. In the present embodiment, the circular lens 222 is located at the center of the display device 100a. In the present embodiment, since the aperture stop 130 limits the opening angle of the image beam 112, if all the lenses adopt a circular lens, for a partial circular lens, the image beam 112 does not pass through the entire lens. Therefore, the portion of the lens through which the image beam 112 does not pass can be trimmed. In this way, some of the refractive modules 200a are subjected to trimming treatment, The distance between the center positions on the optical axis A can be further shortened, thereby reducing the volume of the display device 100a. Further, after shortening the distance of the center position, the images 114 generated by the image generating unit 300a can still maintain a state of being separated from each other.

以下表三與表四將舉出影像產生單元300a之一實施例,但本發明不以此為限。An embodiment of the image generating unit 300a will be described in the following Tables 3 and 4, but the invention is not limited thereto.

在表三中各物理量的說明可參照表一的說明。For the description of each physical quantity in Table 3, refer to the description of Table 1.

此外,在表三中,表面S1a為影像源110的主動表面。表面S2a為孔徑光闌130。表面S3a、S4a分別為為屈光模組200a的透鏡之相對兩表面。表面S5a為影像114。有關於各表面之曲率半徑、間距等參數值,請參照表三,在此不再重述。由表三可看出,在本實施例中,屈光模組200a的透鏡具有正屈光力,而此透鏡例如為雙凸透鏡。Further, in Table 3, the surface S1a is the active surface of the image source 110. The surface S2a is an aperture stop 130. The surfaces S3a and S4a are respectively opposite surfaces of the lens of the refractive module 200a. The surface S5a is the image 114. For the parameter values such as the radius of curvature and the spacing of each surface, please refer to Table 3, and will not be repeated here. As can be seen from Table 3, in the present embodiment, the lens of the refractive module 200a has a positive refractive power, and the lens is, for example, a lenticular lens.

再者,上述之表面S3a及S4a為非球面,而其可採用上述用以表示表面S3及S4的非球面公式表示,而公式中各參數的說明請參照上述對表面S3及S4的非球面公式的說明,在此不再重述。在本實施例中,係數A1 為0。表四 所列出的是表面S3a與S4a的非球面參數值。Furthermore, the above-mentioned surfaces S3a and S4a are aspherical surfaces, and the above-mentioned aspherical formulas for expressing the surfaces S3 and S4 can be used. For the description of each parameter in the formula, please refer to the above-mentioned aspherical formulas for the surfaces S3 and S4. The description is not repeated here. In the present embodiment, the coefficient A 1 is zero. Listed in Table 4 are the aspheric parameter values for surfaces S3a and S4a.

在本實施例中,影像產生單元300a的物像放大率例如為1,物高例如為7.5毫米,像高(即影像114的高度)例如為7.5毫米,屈光模組200a的焦距例如為26.87毫米,屈光模組200a的數值孔徑例如為0.15,且孔徑光闌130的位置與屈光模組200a前焦點的位置差異例如為0.75毫米,但本發明不以此為限。In the present embodiment, the image generation unit 300a has an object image magnification of 1, for example, a height of, for example, 7.5 mm, an image height (that is, a height of the image 114) of, for example, 7.5 mm, and a focal length of the refractive module 200a of, for example, 26.87 mm. The numerical aperture of the refractive module 200a is, for example, 0.15, and the difference between the position of the aperture stop 130 and the front focus of the refractive module 200a is, for example, 0.75 mm, but the invention is not limited thereto.

圖7A與圖7B分別為本發明之又一實施例之顯示裝置於兩個不同的方向上之側視示意圖,圖7C為圖7A中之一個影像產生單元的側視示意圖,圖8A繪示旋轉影像產生單元的光軸但不旋轉影像源的狀態,而圖8B繪示圖7B中旋轉影像產生單元的光軸且同時旋轉影像源的狀態,圖9A為圖7A中的屈光模組之正視圖,而圖9B為圖7A中的影像的正視圖。請參照圖7A至圖7C、圖8A至圖8B及圖9A至圖9B,本實施例之顯示裝置100b與圖1A的顯示裝置100類似,而兩者的差異如下所述。在本實施例之顯示裝置100b中,每一影像產生單元300b的屈光模組200b包含複數個透鏡,在本實施例中即包括第一透鏡210及第二透鏡220,其中第一透鏡210位於孔徑光闌130與第二 透鏡220之間。此外,在圖1C,由於光軸A在眼睛50的一側較為集中,因此這些影像產生單元300是呈弧形排列,且影像114亦排列於一弧面上。然而,在本實施例中,這些影像產生單元300b所產生的這些影像114實質上落在同一平面上,這可藉由使這些影像產生單元300b由原本排列於弧面上的位置往讓這些影像產生單元300b實質上落在同一平面上的方向移動。如圖7B所繪示,位於上側與下側的影像產生單元300b即可從原本的弧形位置往-z方向移動。如此一來,使用者的眼睛50所看到的影像畫面便可以是一平面影像畫面,而不是一個彎曲的影像畫面(即呈弧形的影像畫面)。7A and 7B are respectively side views of the display device in two different directions according to still another embodiment of the present invention, and FIG. 7C is a side view of one of the image generating units of FIG. 7A, and FIG. FIG. 8B is a front view of the refractive module of FIG. 7A, and FIG. 9B is a front view of the image in FIG. 7A. Referring to FIGS. 7A to 7C, 8A to 8B, and 9A to 9B, the display device 100b of the present embodiment is similar to the display device 100 of FIG. 1A, and the differences between the two are as follows. In the display device 100b of the present embodiment, the refractive module 200b of each image generating unit 300b includes a plurality of lenses, which in this embodiment includes a first lens 210 and a second lens 220, wherein the first lens 210 is located in the aperture light.阑130 and second Between the lenses 220. In addition, in FIG. 1C, since the optical axis A is concentrated on one side of the eye 50, the image generating units 300 are arranged in an arc shape, and the image 114 is also arranged on a curved surface. However, in the embodiment, the images 114 generated by the image generating units 300b substantially fall on the same plane, which can be made by the positions of the image generating units 300b originally arranged on the arc surface. The generating unit 300b moves in a direction substantially falling on the same plane. As shown in FIG. 7B, the image generating unit 300b located on the upper side and the lower side can move from the original curved position to the -z direction. In this way, the image of the image seen by the user's eyes 50 can be a flat image, rather than a curved image (ie, an arcuate image).

此外,如圖8A所繪示,當影像產生單元300b的光軸A傾斜時,影像產生單元300b所產生的影像114亦隨之傾斜,此時使用者看到影像114時便會產生梯形失真(keystone distortion)。為了有效解決梯形失真的問題,在本實施例中,如圖8B所繪示,可使影像產生單元300b所產生的影像114相對於影像產生單元300b的光軸A傾斜,且使影像114相對於光軸A的傾斜方向相反於影像源110相對於光軸A的傾斜方向。在本實施例中,至少部分這些影像產生單元300b(例如在y方向上位於顯示裝置中央的那一排影像產生單元300b以外的影像產生單元300b)的每一影像產生單元300b所產生的影像114相對於影像產生單元300b的光軸A傾斜,且影像114相對於光軸A的傾斜方向相反於影像源110相對於光軸A的傾斜方向。In addition, as shown in FIG. 8A, when the optical axis A of the image generating unit 300b is tilted, the image 114 generated by the image generating unit 300b is also tilted, and the trapezoidal distortion is generated when the user sees the image 114. Keystone distortion). In order to effectively solve the problem of trapezoidal distortion, in the embodiment, as shown in FIG. 8B, the image 114 generated by the image generating unit 300b can be tilted relative to the optical axis A of the image generating unit 300b, and the image 114 is compared with respect to The tilt direction of the optical axis A is opposite to the oblique direction of the image source 110 with respect to the optical axis A. In this embodiment, at least some of the image generating units 300b (for example, the image generating unit 300b other than the row of image generating units 300b located in the center of the display device in the y direction) generate images 114 generated by each image generating unit 300b. The optical axis A is inclined with respect to the image generating unit 300b, and the oblique direction of the image 114 with respect to the optical axis A is opposite to the oblique direction of the image source 110 with respect to the optical axis A.

由於越往顯示裝置100b的邊緣的影像產生單元300b越傾斜,因此在本實施例中,至少部分這些影像產生單元300b(例如在y方向上位於顯示裝置中央的那一排影像產生單元300b以外的影像產生單元300b)的這些影像源110分別相對於這些光軸A的傾斜程度從靠近顯示裝置100b的中央處往靠近顯示裝置100b的邊緣處遞增。此時,影像產生單元300b的光軸A可定義為屈光模組200b的光軸。如此一來,可使所有的影像114都落在同一平面中。舉例而言,在一實施例中,請參照圖7B與圖8B,這些影像源110的光軸B相對於z軸的傾斜角度θ由上至下例如依序為41度、35度、29度、23度、18度、12度、6度、0度、-6度、-12度、-18度、-23度、-29度、-35度及-41度,但本發明不以此為限。此外,關於上述傾斜角度θ,當光軸B由-z方向及+y方向往+z方向及-y方向延伸時,其所對應的傾斜角度θ定義為正值,而當光軸B由-z方向及-y方向往+z方向及+y方向延伸時,其所對應的傾斜角度θ定義為負值。從圖9A中可看出這些屈光模組200b因隨著遠離顯示裝置100b的中央逐漸傾斜,而使得其正視圖中的面積從中央往邊緣逐漸縮小。從圖9B中則可看出這些影像114的尺寸彼此實質上相同而沒有梯形失真。Since the image generation unit 300b toward the edge of the display device 100b is inclined, in the present embodiment, at least some of the image generation units 300b (for example, other than the row of image generation units 300b located in the center of the display device in the y direction) The degree of inclination of the image sources 110 of the image generating unit 300b) with respect to the optical axes A is increased from near the center of the display device 100b toward the edge near the display device 100b. At this time, the optical axis A of the image generating unit 300b can be defined as the optical axis of the refractive module 200b. In this way, all of the images 114 can be placed in the same plane. For example, in an embodiment, referring to FIG. 7B and FIG. 8B, the inclination angle θ of the optical axis B of the image source 110 with respect to the z-axis is, for example, 41 degrees, 35 degrees, and 29 degrees from top to bottom. 23 degrees, 18 degrees, 12 degrees, 6 degrees, 0 degrees, -6 degrees, -12 degrees, -18 degrees, -23 degrees, -29 degrees, -35 degrees, and -41 degrees, but the present invention does not Limited. Further, regarding the above-described inclination angle θ, when the optical axis B extends from the -z direction and the +y direction to the +z direction and the -y direction, the corresponding inclination angle θ is defined as a positive value, and when the optical axis B is - When the z direction and the -y direction extend in the +z direction and the +y direction, the corresponding inclination angle θ is defined as a negative value. As can be seen from FIG. 9A, the refractive modules 200b are gradually tapered from the center to the edges due to the gradual tilting away from the center of the display device 100b. It can be seen from Figure 9B that the dimensions of these images 114 are substantially identical to one another without trapezoidal distortion.

以下表五與表六將舉出影像產生單元300b之一實施例,但本發明不以此為限。An embodiment of the image generating unit 300b will be described in the following Tables 5 and 6, but the invention is not limited thereto.

在表五中各物理量的說明可參照表一的說明。For the description of each physical quantity in Table 5, refer to the description of Table 1.

此外,在表五中,表面S1b為影像源110的主動表面。表面S2b為孔徑光闌130。表面S3b、S4b分別為第一透鏡210之相對兩表面,而表面S5b、S6b分別為第二透鏡220的相對兩表面。表面S7b為影像114。有關於各表面之曲率半徑、間距等參數值,請參照表五,在此不再重述。由表五可看出,在本實施例中,第一透鏡210與第二透鏡220的屈光力皆為正,且第一透鏡210與第二透鏡220例如各為一非球面雙凸透鏡。Further, in Table 5, the surface S1b is the active surface of the image source 110. The surface S2b is an aperture stop 130. The surfaces S3b, S4b are the opposite surfaces of the first lens 210, respectively, and the surfaces S5b, S6b are the opposite surfaces of the second lens 220, respectively. Surface S7b is image 114. For the parameter values such as the radius of curvature and the spacing of each surface, please refer to Table 5, and will not be repeated here. It can be seen from Table 5 that in the present embodiment, the refractive powers of the first lens 210 and the second lens 220 are both positive, and the first lens 210 and the second lens 220 are each an aspherical lenticular lens, for example.

再者,上述之表面S3b、S4b、S5b及S6b為非球面,而其可採用上述用以表示表面S3及S4的非球面公式表示,而公式中各參數的說明請參照上述對表面S3及S4的非球面公式的說明,在此不再重述。在本實施例中,係數A1 為0。表六所列出的是表面S3b、S4b、S5b及S6b的非球面參數值。Furthermore, the above-mentioned surfaces S3b, S4b, S5b and S6b are aspherical surfaces, and the above-mentioned aspherical formulas for indicating the surfaces S3 and S4 can be used, and the description of each parameter in the formula can be referred to the above-mentioned pair of surfaces S3 and S4. The description of the aspheric formula is not repeated here. In the present embodiment, the coefficient A 1 is zero. Table 6 lists the aspherical parameter values for surfaces S3b, S4b, S5b, and S6b.

在本實施例中,影像產生單元300b的物像放大率例如為1,物高例如為7.5毫米,像高(即影像114的高度)例如為7.5毫米,屈光模組200b的焦距例如為31.39毫米,屈光模組200b的數值孔徑例如為0.25,且孔徑光闌130的位置與屈光模組200b前焦點的位置差異例如為1.21毫米,但本發明不以此為限。In the present embodiment, the image generating unit 300b has an object image magnification of 1, for example, a height of, for example, 7.5 mm, an image height (ie, a height of the image 114) of, for example, 7.5 mm, and a focal length of the refractive module 200b of, for example, 31.39 mm. The numerical aperture of the refractive module 200b is, for example, 0.25, and the difference between the position of the aperture stop 130 and the front focus of the refractive module 200b is, for example, 1.21 mm, but the invention is not limited thereto.

圖10為本發明之再一實施例之顯示裝置的立體示意圖。本實施例之顯示裝置100c與圖1A之顯示裝置100類似,而兩者的差異如下所述。在本實施例中,物距調整單元140c包括複數個子調整單元141c,分別連接這些影像源110與對應的這些屈光模組200,以各別調整每一影像產生單元300的影像源110與屈光模組200的距離。換言之,一個子調整單元141c類似於圖1A中的一個物距調整單元140,而兩者的差異在於子調整單元141c是連接一個影像產生單元300中的一個影像源110與一個屈光模組200,而圖1A的物距調整單元140則是同時連接複數個影 像產生單元300中的複數個影像源110與複數個屈光模組200。如此一來,在本實施例中,不同的影像產生單元300中的影像源110與屈光模組200的距離(即物距)便可以作不同的調整。當不同的影像產生單元300中的物距被調得不同時,其所對應的像距亦會不同,而使得這些影像114沒有落在同一個平面上,而使用者觀察這些影像114時便會覺得這些影像114有前有後而產生立體視覺效果。換言之,此時這些影像114可組合成立體影像畫面。FIG. 10 is a perspective view of a display device according to still another embodiment of the present invention. The display device 100c of the present embodiment is similar to the display device 100 of FIG. 1A, and the differences between the two are as follows. In this embodiment, the object distance adjusting unit 140c includes a plurality of sub-adjusting units 141c respectively connected to the image source 110 and the corresponding refraction modules 200 to individually adjust the image source 110 and the refraction module 200 of each image generating unit 300. the distance. In other words, one sub-adjustment unit 141c is similar to an object distance adjustment unit 140 in FIG. 1A, and the difference between the two is that the sub-adjustment unit 141c is connected to one image source 110 and one refraction module 200 in one image generation unit 300. The object distance adjusting unit 140 of FIG. 1A simultaneously connects a plurality of shadows The plurality of image sources 110 and the plurality of refractive modules 200 in the generating unit 300. In this way, in the embodiment, the distance between the image source 110 and the refractive module 200 in the different image generating unit 300 (ie, the object distance) can be adjusted differently. When the object distances in different image generating units 300 are adjusted differently, the corresponding image distances are also different, so that the images 114 do not fall on the same plane, and the user will observe the images 114. I feel that these images 114 have a stereoscopic effect before and after. In other words, at this time, these images 114 can be combined to form a volume image.

綜上所述,在本發明之實施例之顯示裝置中,藉由複數個屈光模組來分別形成複數個影像源的複數個飄浮於空中的影像,而這些影像可在空中組合成一影像畫面。因此,顯示裝置可形成飄浮於空中的影像畫面。如此一來,當顯示裝置與光學偵測裝置相搭配時,藉由光學偵測裝置偵測使用者的手指的位置及判斷使用者的手指是否碰到飄浮於空中的影像畫面,便可形成非接觸式飄浮影像觸控介面。另外,由於採用複數個屈光模組,因此每一個屈光模組的尺寸可以較小,而使屈光模組中的透鏡的尺寸較小。如此一來,便可以不用製造尺寸很大的透鏡來形成影像畫面,因此本發明之實施例之顯示裝置可解決透鏡尺寸過大所造成的透鏡難以製造且成本昂貴的問題。In summary, in the display device of the embodiment of the present invention, a plurality of images of a plurality of image sources are respectively formed by a plurality of refractive modules, and the images can be combined into an image frame in the air. Therefore, the display device can form an image frame floating in the air. In this way, when the display device is matched with the optical detecting device, the optical detecting device detects the position of the user's finger and determines whether the user's finger touches the image image floating in the air, thereby forming a non- Contact floating image touch interface. In addition, since a plurality of refractive modules are used, the size of each of the refractive modules can be small, and the size of the lenses in the refractive module is small. In this way, the image frame can be formed without using a lens having a large size. Therefore, the display device according to the embodiment of the present invention can solve the problem that the lens is difficult to manufacture and expensive due to excessive lens size.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

50‧‧‧眼睛50‧‧‧ eyes

50a‧‧‧左眼50a‧‧‧Left eye

50b‧‧‧右眼50b‧‧‧ right eye

100、100a、100b、100c‧‧‧顯示裝置100, 100a, 100b, 100c‧‧‧ display devices

110‧‧‧影像源110‧‧‧Image source

112‧‧‧影像光束112‧‧‧Image beam

112a、112b‧‧‧邊緣光線112a, 112b‧‧‧ edge rays

114‧‧‧影像114‧‧‧Image

120‧‧‧邊框120‧‧‧Border

130‧‧‧孔徑光闌130‧‧‧ aperture diaphragm

140、140c‧‧‧物距調整單元140, 140c‧‧‧ object distance adjustment unit

141c‧‧‧子調整單元141c‧‧ sub-adjustment unit

142、144‧‧‧固定框142, 144‧‧‧ fixed frame

146‧‧‧軌道146‧‧‧ Track

200、200a、200b‧‧‧屈光模組200, 200a, 200b‧‧‧ refraction module

210‧‧‧第一透鏡210‧‧‧First lens

220‧‧‧第二透鏡220‧‧‧second lens

222‧‧‧圓形透鏡222‧‧‧ Round lens

224‧‧‧圓形切單邊的透鏡224‧‧‧Circular unilateral lens

226‧‧‧圓形切相鄰兩邊的透鏡226‧‧‧Circularly cut the lens on the adjacent sides

300、300a、300b‧‧‧影像產生單元300, 300a, 300b‧‧‧ image generation unit

A、B‧‧‧光軸A, B‧‧‧ optical axis

C1、C2‧‧‧切邊C1, C2‧‧‧ trimming

D、L‧‧‧影像至眼睛的距離D, L‧‧‧ image to eye distance

E‧‧‧雙眼的間距E‧‧‧ spacing between eyes

E1‧‧‧第一端E1‧‧‧ first end

E2‧‧‧第二端E2‧‧‧ second end

S1~S5、S1a~S5a、S1b~S7b‧‧‧表面S1~S5, S1a~S5a, S1b~S7b‧‧‧ surface

Y‧‧‧影像的半高Half-height of Y‧‧‧ images

θ‧‧‧傾斜角度Θ‧‧‧ tilt angle

圖1A為本發明之一實施例之顯示裝置的立體示意圖。1A is a perspective view of a display device according to an embodiment of the present invention.

圖1B與圖1C分別為圖1A之顯示裝置於兩個不同的方向上的側視圖。1B and 1C are side views of the display device of FIG. 1A in two different directions, respectively.

圖1D與圖1E分別為圖1B與圖1C中的一個影像產生單元的側視圖。1D and 1E are side views of an image generating unit of Figs. 1B and 1C, respectively.

圖2A為圖1A中的屈光模組的正視圖。2A is a front elevational view of the refractive module of FIG. 1A.

圖2B為圖1A中的影像的正視圖。Figure 2B is a front elevational view of the image of Figure 1A.

圖3A與圖3B分別繪示使用者的雙眼中的任一眼皆可看到完整的影像114的情況與皆無法看到完整的影像114的情況。FIG. 3A and FIG. 3B respectively illustrate the case where the complete image 114 can be seen by any of the eyes of the user and the case where the complete image 114 cannot be seen.

圖4為圖1C之顯示裝置的另一變化。4 is another variation of the display device of FIG. 1C.

圖5A與圖5B分別為本發明之另一實施例之顯示裝置於兩個不同的方向上之側視示意圖。5A and 5B are side elevational views, respectively, of the display device in two different directions according to another embodiment of the present invention.

圖5C為圖5A中之一個影像產生單元的側視示意圖。Figure 5C is a side elevational view of one of the image generating units of Figure 5A.

圖6A為圖5A中的屈光模組之正視圖。Figure 6A is a front elevational view of the refractive module of Figure 5A.

圖6B為圖5A中的影像的正視圖。Figure 6B is a front elevational view of the image of Figure 5A.

圖7A與圖7B分別為本發明之又一實施例之顯示裝置於兩個不同的方向上之側視示意圖。7A and 7B are side elevational views, respectively, of the display device in two different directions according to still another embodiment of the present invention.

圖7C為圖7A中之一個影像產生單元的側視示意圖。Figure 7C is a side elevational view of an image generating unit of Figure 7A.

圖8A繪示旋轉影像產生單元的光軸但不旋轉影像源的狀態。FIG. 8A illustrates a state in which the optical axis of the image generating unit is rotated but the image source is not rotated.

圖8B繪示圖7B中旋轉影像產生單元且同時旋轉光軸 的狀態。8B illustrates the rotating image generating unit of FIG. 7B and simultaneously rotates the optical axis status.

圖9A為圖7A中的屈光模組之正視圖。Figure 9A is a front elevational view of the refractive module of Figure 7A.

圖9B為圖7A中的影像的正視圖。Figure 9B is a front elevational view of the image of Figure 7A.

圖10為本發明之再一實施例之顯示裝置的立體示意圖。FIG. 10 is a perspective view of a display device according to still another embodiment of the present invention.

50‧‧‧眼睛50‧‧‧ eyes

100‧‧‧顯示裝置100‧‧‧ display device

110‧‧‧影像源110‧‧‧Image source

112‧‧‧影像光束112‧‧‧Image beam

114‧‧‧影像114‧‧‧Image

120‧‧‧邊框120‧‧‧Border

130‧‧‧孔徑光闌130‧‧‧ aperture diaphragm

140‧‧‧物距調整單元140‧‧‧object adjustment unit

142、144‧‧‧固定框142, 144‧‧‧ fixed frame

146‧‧‧軌道146‧‧‧ Track

200‧‧‧屈光模組200‧‧‧Refractive Module

300‧‧‧影像產生單元300‧‧‧Image Generation Unit

Claims (29)

一種顯示裝置,包括:複數個影像產生單元,每一該影像產生單元包括:一影像源,提供一影像光束;以及一屈光模組,配置在該影像光束的傳遞路徑上,且具有屈光力,其中該屈光模組形成對應於該影像源的一飄浮於空中的影像,且該屈光模組位於該影像源與該影像之間;其中,該些影像產生單元排列成陣列,且該些影像產生單元所形成的該些影像排列成陣列,並組合成一影像畫面,該些影像產生單元的複數個屈光模組分別配置於該些影像產生單元的複數個影像源所分別提供的複數個影像光束的傳遞路徑上。 A display device includes: a plurality of image generating units, each of the image generating units comprising: an image source providing an image beam; and a refractive module disposed on the transmission path of the image beam and having a refractive power, wherein the image is The diopter module forms an image floating in the air corresponding to the image source, and the diopter module is located between the image source and the image; wherein the image generating units are arranged in an array, and the image generating units are formed The images are arranged in an array and combined into an image frame. The plurality of refractive modules of the image generating units are respectively disposed on the transmission paths of the plurality of image beams respectively provided by the plurality of image sources of the image generating units. 如申請專利範圍第1項所述之顯示裝置,其中每一該影像產生單元符合NA≧sin(tan-1 (Y/L)),其中NA為該影像產生單元的數值孔徑,Y為該影像單元所產生的該影像的半高,L為該影像至一使用者的單眼在平行於該屈光模組的光軸上的距離,且該距離為該單眼能看到一個完整的該影像的最短距離,該影像位於屈光模組與該單眼之間。The display device of claim 1, wherein each of the image generating units conforms to NA≧sin(tan -1 (Y/L)), wherein NA is a numerical aperture of the image generating unit, and Y is the image The half height of the image produced by the unit, L is the distance of the image to a user's monocular on the optical axis parallel to the refractive module, and the distance is the shortest distance that the single eye can see a complete image. The image is located between the refractive module and the single eye. 如申請專利範圍第2項所述之顯示裝置,其中25公分≦L≦2公尺。 The display device according to claim 2, wherein 25 cm is ≦L ≦ 2 meters. 如申請專利範圍第1項所述之顯示裝置,其中每一該影像產生單元符合NA≧sin(tan-1 ((2Y+E)/2D)),其中 NA為該影像產生單元的數值孔徑,Y為該影像單元所產生的該影像的半高,E為一使用者的雙眼的間距,D為該影像至該雙眼在平行於該屈光模組的光軸上的距離,且該距離為該雙眼能同時看到一個完整的該影像的最短距離,該影像位於屈光模組與該雙眼之間。The display device of claim 1, wherein each of the image generating units conforms to NA≧sin(tan -1 ((2Y+E)/2D)), wherein NA is a numerical aperture of the image generating unit, Y is the half height of the image generated by the image unit, E is the distance between the eyes of a user, and D is the distance from the image to the optical axis of the two eyes parallel to the refractive module, and the distance is The eyes can simultaneously see a complete shortest distance of the image between the refractive module and the eyes. 如申請專利範圍第4項所述之顯示裝置,其中25公分≦D≦2公尺。 The display device of claim 4, wherein 25 cm is ≦D ≦ 2 meters. 如申請專利範圍第1項所述之顯示裝置,其中該些影像產生單元所產生的該些影像為實像。 The display device of claim 1, wherein the images generated by the image generating units are real images. 如申請專利範圍第1項所述之顯示裝置,其中該些影像產生單元排列成二維陣列,且該些影像排列成二維陣列。 The display device of claim 1, wherein the image generating units are arranged in a two-dimensional array, and the images are arranged in a two-dimensional array. 如申請專利範圍第1項所述之顯示裝置,其中每一影像產生單元的光軸具有位於該影像源處的一第一端及靠近一使用者的眼睛的一第二端,該影像位於該屈光模組與該眼睛之間,且該些影像產生單元的該些光軸的該些第二端比該些第一端集中。 The display device of claim 1, wherein an optical axis of each image generating unit has a first end located at the image source and a second end adjacent to a user's eye, the image being located The second ends of the optical axes of the image generating units are concentrated between the refractive modules and the eyes. 如申請專利範圍第8項所述之顯示裝置,其中該些影像產生單元所產生的該些影像實質上落在同一平面上。 The display device of claim 8, wherein the images generated by the image generating units substantially fall on the same plane. 如申請專利範圍第8項所述之顯示裝置,其中至少部分該些影像產生單元中的每一該影像產生單元所產生的該影像相對於該影像產生單元的該光軸傾斜,且該影像相對於該光軸的傾斜方向相反於該影像源相對於該光軸的 傾斜方向。 The display device of claim 8, wherein the image generated by each of the image generating units is tilted relative to the optical axis of the image generating unit, and the image is relatively The tilting direction of the optical axis is opposite to the image source relative to the optical axis Tilt direction. 如申請專利範圍第10項所述之顯示裝置,其中至少部分該些影像產生單元的該些影像源分別相對於該些光軸的傾斜程度從靠近該顯示裝置的中央處往靠近該顯示裝置的邊緣處遞增。 The display device of claim 10, wherein at least some of the image sources of the image generating units are tilted relative to the optical axes from a center of the display device to a proximity of the display device. The edge is incremented. 如申請專利範圍第1項所述之顯示裝置,其中該些影像產生單元的數值孔徑彼此實質上相同,且該些影像產生單元所產生的影像尺寸彼此實質上相同。 The display device of claim 1, wherein the numerical apertures of the image generating units are substantially identical to each other, and the image sizes generated by the image generating units are substantially identical to each other. 如申請專利範圍第1項所述之顯示裝置,其中該些影像產生單元的數值孔徑彼此不相同,且該些影像產生單元所產生的影像尺寸彼此實質上相同。 The display device of claim 1, wherein the numerical apertures of the image generating units are different from each other, and the image sizes generated by the image generating units are substantially identical to each other. 如申請專利範圍第1項所述之顯示裝置,其中該些影像產生單元的數值孔徑彼此不相同,且該些影像產生單元所產生的影像尺寸彼此不相同。 The display device of claim 1, wherein the numerical apertures of the image generating units are different from each other, and the image sizes generated by the image generating units are different from each other. 如申請專利範圍第1項所述之顯示裝置,其中每一該影像產生單元的該影像源為一顯示面板、一發光元件或一被光照射的物體。 The display device of claim 1, wherein the image source of each of the image generating units is a display panel, a light emitting element or an object illuminated by light. 如申請專利範圍第1項所述之顯示裝置,其中該些影像產生單元所分別產生的該些影像之間存在有空隙。 The display device of claim 1, wherein the image generating units respectively generate a gap between the images. 如申請專利範圍第1項所述之顯示裝置,其中該些影像產生單元所形成的該影像畫面至一使用者的眼睛的距離小於或等於該使用者的手臂在伸直狀態下的長度。 The display device of claim 1, wherein the image forming unit forms a distance from the image to a user's eyes that is less than or equal to a length of the user's arm in a straightened state. 如申請專利範圍第17項所述之顯示裝置,其中在該距離下,全部的該些影像皆被該使用者的雙眼同時看到。 The display device of claim 17, wherein at the distance, all of the images are simultaneously seen by both eyes of the user. 如申請專利範圍第17項所述之顯示裝置,其中在該距離下,該使用者的左眼看到該些影像的一部分,且該使用者的右眼看到該些影像的另一部分。 The display device of claim 17, wherein at the distance, the left eye of the user sees a portion of the images, and the right eye of the user sees another portion of the images. 如申請專利範圍第17項所述之顯示裝置,其中在該距離下,該使用者的雙眼看到該些影像的一部分,且該使用者的雙眼移動至不同位置時看到該些影像的不同部分。 The display device of claim 17, wherein at the distance, the user's eyes see a part of the images, and the user's eyes move to different positions to see the images. different section. 如申請專利範圍第1項所述之顯示裝置,其中每一該影像產生單元的該屈光模組包括至少一透鏡。 The display device of claim 1, wherein the refractive module of each of the image generating units comprises at least one lens. 如申請專利範圍第21項所述之顯示裝置,其中該些影像產生單元的該些透鏡為圓形透鏡、圓形切單邊的透鏡、圓形切相鄰兩邊的透鏡或其組合。 The display device of claim 21, wherein the lenses of the image generating units are a circular lens, a circular unilateral lens, a circular tangential lens, or a combination thereof. 如申請專利範圍第22項所述之顯示裝置,其中該圓形切單邊的透鏡之切邊是位於靠近該顯示裝置的中央的一側。 The display device of claim 22, wherein the cut edge of the circularly unilateral lens is located on a side near the center of the display device. 如申請專利範圍第23項所述之顯示裝置,其中該圓形切相鄰兩邊的透鏡之任一切邊是位於靠近該圓形切單邊的透鏡之一側。 The display device of claim 23, wherein any one of the sides of the circularly adjacent lens is located on one side of the lens adjacent to the circular one side. 如申請專利範圍第1項所述之顯示裝置,其中該影像源為液晶顯示面板、有機發光二極體顯示面板、電漿顯示面板、發光元件或被光照射的物體。 The display device according to claim 1, wherein the image source is a liquid crystal display panel, an organic light emitting diode display panel, a plasma display panel, a light emitting element, or an object illuminated by light. 如申請專利範圍第1項所述之顯示裝置,更包括一物距調整單元,連接該些影像源與該些屈光模組,以調整該些影像源與該些屈光模組的距離。 The display device of claim 1, further comprising an object distance adjusting unit that connects the image sources and the refractive modules to adjust the distance between the image sources and the refractive modules. 如申請專利範圍第26項所述之顯示裝置,其中該物距調整單元包括複數個子調整單元,分別連接該些影像源與對應的該些屈光模組,以各別調整每一該影像產生單元的該影像源與該屈光模組的距離。 The display device of claim 26, wherein the object distance adjusting unit comprises a plurality of sub-adjusting units respectively connecting the image sources and the corresponding refraction modules to adjust each of the image generating units separately The distance between the image source and the refractive module. 如申請專利範圍第1項所述之顯示裝置,其中該些影像的間距小於或等於該些屈光模組的間距。 The display device of claim 1, wherein the distance between the images is less than or equal to the pitch of the refractive modules. 如申請專利範圍第1項所述之顯示裝置,其中該些影像的間距大於該些屈光模組的間距。 The display device of claim 1, wherein the distance between the images is greater than the pitch of the refractive modules.
TW101123250A 2011-07-10 2012-06-28 Display apparatus TWI477815B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/545,002 US9097904B2 (en) 2011-07-10 2012-07-10 Display apparatus
CN201210239578.3A CN102880337B (en) 2011-07-10 2012-07-10 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161506155P 2011-07-10 2011-07-10

Publications (2)

Publication Number Publication Date
TW201303372A TW201303372A (en) 2013-01-16
TWI477815B true TWI477815B (en) 2015-03-21

Family

ID=47481377

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100149642A TW201303368A (en) 2011-07-10 2011-12-29 Display apparatus
TW101123250A TWI477815B (en) 2011-07-10 2012-06-28 Display apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100149642A TW201303368A (en) 2011-07-10 2011-12-29 Display apparatus

Country Status (2)

Country Link
CN (1) CN102879995A (en)
TW (2) TW201303368A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11109000B2 (en) * 2017-03-07 2021-08-31 Goertek Inc. Laser projection device and laser projection system
CN108254931B (en) 2018-01-22 2021-08-24 上海天马微电子有限公司 Display device
CN112147775A (en) * 2019-06-28 2020-12-29 成都理想境界科技有限公司 Optical fiber scanning device and scanning display equipment
CN110675782B (en) * 2019-09-26 2023-01-31 京东方科技集团股份有限公司 Floating display system and method for displaying by utilizing same
CN110824694A (en) * 2019-11-13 2020-02-21 北方夜视技术股份有限公司 Enhancement mode night-vision goggles visual system based on color separation membrane
TWI757941B (en) * 2020-10-30 2022-03-11 幻景啟動股份有限公司 Image processing system and image processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200638063A (en) * 2004-12-27 2006-11-01 Nippon Sheet Glass Co Ltd Stereoimage formation apparatus and stereoimage display unit
CN101641964A (en) * 2007-03-30 2010-02-03 独立行政法人情报通信研究机构 Mid-air video interaction device and its program
TWM387270U (en) * 2010-01-07 2010-08-21 Rui-Cong Zhang Flat display panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042235A (en) * 1996-11-08 2000-03-28 Videotronic Systems Videoconferencing eye contact spatial imaging display
US6377229B1 (en) * 1998-04-20 2002-04-23 Dimensional Media Associates, Inc. Multi-planar volumetric display system and method of operation using three-dimensional anti-aliasing
US6612701B2 (en) * 2001-08-20 2003-09-02 Optical Products Development Corporation Image enhancement in a real image projection system, using on-axis reflectors, at least one of which is aspheric in shape
JP2005141102A (en) * 2003-11-07 2005-06-02 Pioneer Electronic Corp Stereoscopic two-dimensional image display device and its method
CN101750748B (en) * 2008-12-04 2012-09-05 财团法人工业技术研究院 Three-dimensional image display device
CN101872073B (en) * 2009-04-24 2011-10-19 财团法人工业技术研究院 Three-dimensional display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200638063A (en) * 2004-12-27 2006-11-01 Nippon Sheet Glass Co Ltd Stereoimage formation apparatus and stereoimage display unit
CN101641964A (en) * 2007-03-30 2010-02-03 独立行政法人情报通信研究机构 Mid-air video interaction device and its program
TWM387270U (en) * 2010-01-07 2010-08-21 Rui-Cong Zhang Flat display panel

Also Published As

Publication number Publication date
TW201303372A (en) 2013-01-16
TW201303368A (en) 2013-01-16
CN102879995A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
TWI477815B (en) Display apparatus
CN102880337B (en) Display device
US20210149108A1 (en) Energy relays with traverse energy localization
US8878780B2 (en) Display apparatus
TW201514543A (en) Aerial projection display with dual reflectors
CN108139588A (en) Wide visual field head-mounted display
US20190243228A1 (en) Projection video display apparatus
KR20140068927A (en) User interface display device
US9097904B2 (en) Display apparatus
KR101749443B1 (en) Stereoscopic display device
TW201344244A (en) Naked-eye 3-D rear projection display device
JP2019053296A (en) Near-eye display device
WO2021052104A1 (en) Holographic display system
JP7433902B2 (en) display device
CN214540258U (en) Air imaging mechanism for medical system and non-contact medical service device
WO2011129825A1 (en) Three-dimensional display systems and methods
JP6860191B2 (en) A three-dimensional two-dimensional image display device and a three-dimensional two-dimensional image display system formed by using the device.
CN110941104A (en) Stereoscopic display device with multiple viewing distances
TW202401093A (en) Image generating module and floating image generation device
CN113759563A (en) Air imaging mechanism for medical system and non-contact medical service device
Miyazaki et al. Visual Feedback Using Semitransparent Mirror to Enhance Depth Perception of Aerial Image in Floating Touch Display
JP2012141446A (en) Stereoscopic image display device and stereoscopic image display method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees