TWI476733B - Three-dimensional space motion reconstruction method and apparatus constructed thereby - Google Patents
Three-dimensional space motion reconstruction method and apparatus constructed thereby Download PDFInfo
- Publication number
- TWI476733B TWI476733B TW098121857A TW98121857A TWI476733B TW I476733 B TWI476733 B TW I476733B TW 098121857 A TW098121857 A TW 098121857A TW 98121857 A TW98121857 A TW 98121857A TW I476733 B TWI476733 B TW I476733B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- trajectory
- unit
- module
- sensing
- Prior art date
Links
Landscapes
- Position Input By Displaying (AREA)
- User Interface Of Digital Computer (AREA)
Description
本發明係關於一種運動軌跡重建方法及其裝置,尤其是針對三維空間中之二維及三維運動軌跡的一種運動軌跡重建方法及其裝置。The present invention relates to a motion trajectory reconstruction method and apparatus thereof, and more particularly to a motion trajectory reconstruction method and apparatus for two-dimensional and three-dimensional motion trajectories in three-dimensional space.
一種習用之運動軌跡重建方法及其裝置,如中華民國專利第M313840號之「整合型輸入裝置」所揭示,其係包含一整合型輸入裝置,以及受該整合型輸入裝置所控制之影像處理裝置。該整合型輸入裝置具有一慣性感測單元、一訊號處理單元及一無線發射單元,以便藉由該慣性感測單元根據該整合型輸入裝置的擺動狀態產生電子訊號,並由該訊號處理單元將該電子訊號轉換為游標位置訊號,再由該無線發射單元將該游標位置訊號傳送至該影像處理裝置。最後,該影像處理裝置即可根據該游標位置訊號移動一顯示裝置所顯示的游標至指定位置。其中,當該整合型輸入裝置受使用者操作而在一三維空間中作偏擺轉動時,該慣性感測單元即感測該整合型輸入裝置在一z軸方向上的重力加速度、重力加速度之變化、在一y軸方向的重力加速度分量,以及在一X軸方向的偏擺角速度,以作為該電子訊號,並由該訊號處理單元將上述之電子訊號轉換為分別以x軸及z軸為轉軸之二偏轉角度,以作為該游標位置訊號。A conventional method for reconstructing a motion trajectory and a device thereof, as disclosed in the "integrated input device" of the Republic of China Patent No. M313840, which comprises an integrated input device and an image processing device controlled by the integrated input device . The integrated input device has an inertial sensing unit, a signal processing unit and a wireless transmitting unit, so that the inertial sensing unit generates an electronic signal according to the swing state of the integrated input device, and the signal processing unit The electronic signal is converted into a cursor position signal, and the wireless transmitting unit transmits the cursor position signal to the image processing device. Finally, the image processing device can move the cursor displayed by the display device to the designated position according to the cursor position signal. Wherein, when the integrated input device is operated by a user to perform yaw rotation in a three-dimensional space, the inertial sensing unit senses gravity acceleration and gravitational acceleration of the integrated input device in a z-axis direction. a change, a gravitational acceleration component in a y-axis direction, and a yaw angular velocity in an X-axis direction as the electronic signal, and the signal processing unit converts the electronic signal into an x-axis and a z-axis, respectively. The deflection angle of the second axis is used as the cursor position signal.
然而,由於上述習用裝置係將慣性感測單元所產生的電子訊號係直接轉換為該游標位置訊號並傳送至該影像處理裝置,因此該整合型輸入裝置無法對該慣性感測單元的漂移誤差進行修正,導致該整合型輸入裝置之使用者難以將該顯示裝置所顯示的游標確實定位於一指定位置。此外,更由於在上述習用方法僅是以該整合型輸入裝置位在一固定位置時的二偏轉角度作為該游標位置訊號,導致此種方法顯然不適用於該整合型輸入裝置本身在三維空間中進行位移的情況下。惟,當使用者握持該整合型輸入裝置在三維空間中進行實際操作時,極難維持該整合型輸入裝置不產生位移而僅進行偏擺轉動,故上述習用裝置及方法顯然有加以改善之必要。However, since the conventional device directly converts the electronic signal generated by the inertial sensing unit into the cursor position signal and transmits the signal to the image processing device, the integrated input device cannot perform the drift error of the inertial sensing unit. The correction causes the user of the integrated input device to have difficulty positioning the cursor displayed by the display device at a specified position. In addition, since the above-mentioned conventional method uses only the two deflection angles of the integrated input device at a fixed position as the cursor position signal, the method is obviously not applicable to the integrated input device itself in three-dimensional space. In the case of displacement. However, when the user holds the integrated input device for actual operation in a three-dimensional space, it is extremely difficult to maintain the integrated input device without displacement and only yaw rotation, so the conventional device and method are obviously improved. necessary.
本發明係提供一種運動軌跡重建方法及其裝置,主要係藉由一軌跡重建單元降低計算複雜度及演算法計算量,以增加硬體運算效能並實現即時作業之功能,為其主要之發明目的。The invention provides a motion trajectory reconstruction method and a device thereof, which mainly reduce the computational complexity and the calculation amount of the algorithm by a trajectory reconstruction unit, thereby increasing the hardware computing performance and realizing the function of real-time operation, and the main purpose of the invention is .
本發明係提供一種運動軌跡重建方法及其裝置,主要係藉由一動態開關單元降低運動軌跡誤差,為其另一發明目的。The invention provides a motion trajectory reconstruction method and a device thereof, which mainly reduce motion trajectory error by a dynamic switch unit, and another object thereof.
為達到前述發明目的,本發明所運用之技術手段及藉由該技術手段所能達到之功效包含有:一種運動軌跡重建裝置,其包含一訊號感測模組、一運算模組及一訊號傳送模組。該訊號感測模組感測該訊號感測模組本身之移動並產生一組感測訊號;該運算模組接收該感測訊號,並具有串接之一動態開關單元及一軌跡重建單元,以運算產生一二維運動軌跡訊號;該訊號傳送模組具有二端部分別連接該訊號感測模組及該運算模組之動態開關單元,以傳遞該感測訊號至該動態開關單元。其中該動態開關單元設有數個門檻值,當該感測訊號之數個數值分別大於或等於該數個門檻值時,該動態開關單元係呈導通狀態,並將該感測訊號及運算結果送至該軌跡重建單元;而當該數個數值分別小於該數個門檻值時,該動態開關單元係呈截止狀態,即無訊號送至該軌跡重建單元;該軌跡重建單元根據該動態開關單元輸出之感測訊號及運算結果產生一投影軌跡訊號,再由該投影軌跡訊號形成該二維運動軌跡訊號。In order to achieve the foregoing object, the technical means and the achievable functions of the present invention include: a motion track reconstruction device, comprising a signal sensing module, a computing module and a signal transmission Module. The signal sensing module senses the movement of the signal sensing module itself and generates a set of sensing signals; the computing module receives the sensing signal and has a dynamic switching unit and a track reconstruction unit connected in series. The signal transmission module has two ends connected to the signal sensing module and the dynamic switching unit of the computing module to transmit the sensing signal to the dynamic switching unit. The dynamic switch unit is provided with a plurality of threshold values. When the plurality of values of the sense signal are greater than or equal to the plurality of threshold values, the dynamic switch unit is in a conducting state, and the sensing signal and the operation result are sent. To the trajectory reconstruction unit; and when the plurality of values are respectively smaller than the plurality of threshold values, the dynamic switch unit is in an off state, that is, no signal is sent to the trajectory reconstruction unit; and the trajectory reconstruction unit outputs according to the dynamic switch unit The sensing signal and the operation result generate a projection track signal, and the two-dimensional motion track signal is formed by the projection track signal.
一種運動軌跡重建方法,其步驟包含:以一訊號感測模組測得一組感測訊號;以一訊號傳送模組將該感測訊號送至一運算模組;將該感測訊號中的數個數值分別與該運算模組之動態開關單元中的數個門檻值進行比較,且在該數個數值分別大於或等於該數個門檻值時,將該感測訊號及該動態開關單元之運算結果送至該運算模組之一軌跡重建單元;將該動態開關單元之運算結果投影至虛擬投影平面而產生一投影軌跡訊號;以該感測訊號計算獲得該虛擬投影平面與一大地座標之一軌跡投影平面之間的夾角,並產生一轉換矩陣,該轉換矩陣係供將該虛擬投影平面轉換至該軌跡投影平面;以該轉換矩陣將該投影軌跡訊號轉換為一二維運動軌跡訊號。A method for reconstructing a motion trajectory, comprising: measuring a set of sensing signals by using a signal sensing module; sending the sensing signal to a computing module by a signal transmitting module; The plurality of values are respectively compared with the plurality of threshold values in the dynamic switching unit of the computing module, and when the plurality of values are greater than or equal to the plurality of threshold values, the sensing signal and the dynamic switching unit are The operation result is sent to a track reconstruction unit of the operation module; the operation result of the dynamic switch unit is projected onto the virtual projection plane to generate a projection track signal; and the virtual projection plane and the ground coordinates are obtained by the sensing signal calculation An angle between the projection planes of a trajectory, and a transformation matrix for converting the virtual projection plane to the trajectory projection plane; and converting the projection trajectory signal into a two-dimensional motion trajectory signal by the transformation matrix.
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:請參照第1圖所示,其係繪示藉由本發明較佳實施例之運動軌跡重建裝置所實施之運動軌跡重建方法的運作流程圖。該運動軌跡重建裝置包含一訊號感測模組1、一訊號傳送模組2、一運算模組3,其中該訊號感測模組1係供使用者握持並沿一欲輸入軌跡在三維空間中進行移動,以藉由一訊號感測步驟對應於該輸入軌跡產生一組感測訊號;該訊號傳送模組2則將該訊號感測模組1所產生之感測訊號傳送至該運算模組3;該運算模組3在接收該訊號感測模組1所產生之感測訊號之後,執行一軌跡重建運算步驟以獲得一二維運動軌跡訊號。藉此,該訊號感測模組1、訊號傳送模組2及運算模組3可將該欲輸入軌跡重建為該二維運動軌跡訊號。此外,該運算模組3亦可隨後執行一辨識步驟對該二維運動軌跡訊號進行辨識,並透過一顯示模組4顯示該二維運動軌跡訊號的辨識結果。The above and other objects, features, and advantages of the present invention will become more apparent from the aspects of the appended claims. It is a flowchart showing the operation of the motion trajectory reconstruction method implemented by the motion trajectory reconstruction device of the preferred embodiment of the present invention. The motion track reconstruction device comprises a signal sensing module 1, a signal transmission module 2, and a computing module 3, wherein the signal sensing module 1 is for the user to hold and follow a desired input track in a three-dimensional space. Moving to generate a set of sensing signals corresponding to the input track by a signal sensing step; the signal transmitting module 2 transmits the sensing signal generated by the signal sensing module 1 to the computing mode After receiving the sensing signal generated by the signal sensing module 1, the computing module 3 performs a trajectory reconstruction operation step to obtain a two-dimensional motion trajectory signal. Thereby, the signal sensing module 1, the signal transmission module 2 and the computing module 3 can reconstruct the desired input trajectory into the two-dimensional motion trajectory signal. In addition, the computing module 3 can also perform an identification step to identify the two-dimensional motion track signal, and display the identification result of the two-dimensional motion track signal through a display module 4.
該訊號感測模組1具有一加速度計11、一陀螺儀12及一磁力計13分別連接至該訊號傳送模組2。該加速度計11係供在該訊號感測模組1受到移動時,分別沿該訊號感測模組1的三個相互垂直之初始軸向各測得一加速度值Ai ,且該訊號感測模組1的三個初始軸向係分別為一X’軸、一Y’軸及一Z’軸;該陀螺儀12係供量測該訊號感測模組1分別以該X’軸、Y’軸及Z’軸為轉軸所產生的三個角速度值,且以該X’軸、Y’軸及Z’軸為轉軸所產生的旋轉方向係依序為該訊號感測模組1之滾轉角[roll angle]、俯仰角[pitch angle]及偏航角[yaw angle],藉此可獲得該訊號感測模組1之各初始軸向與一重力方向g之角度關係;該磁力計13則供產生一補償訊號,以補償該陀螺儀12在偏航角所輸出之旋轉方向上的角度。其中,該加速度計11所產生的三個加速度值Ai 、該陀螺儀12所產生的三個角速度值及該重力方向g、該磁力計13所產生的補償訊號即構成該感測訊號。此外,該加速度計11、陀螺儀12及磁力計13亦可透過一濾波單元14連接該訊號傳送模組2,以便利用該濾波單元14濾除該感測訊號中之雜訊。The signal sensing module 1 has an accelerometer 11 , a gyroscope 12 and a magnetometer 13 respectively connected to the signal transmitting module 2 . The accelerometer 11 is configured to measure an acceleration value A i along each of three mutually perpendicular initial axes of the signal sensing module 1 when the signal sensing module 1 is moved, and the signal is sensed. The three initial axial systems of the module 1 are respectively an X' axis, a Y' axis and a Z'axis; the gyroscope 12 is configured to measure the signal sensing module 1 with the X' axis and Y respectively. The 'axis and Z' axis are the three angular velocity values generated by the rotating shaft, and the rotation directions generated by the X' axis, the Y' axis and the Z' axis are the rotation directions of the signal sensing module 1 in sequence. An angle [roll angle], a pitch angle, and a yaw angle, thereby obtaining an angular relationship between each initial axis of the signal sensing module 1 and a gravity direction g; the magnetometer 13 Then, a compensation signal is generated to compensate the angle of the gyroscope 12 in the direction of rotation output by the yaw angle. The three acceleration values A i generated by the accelerometer 11 , the three angular velocity values generated by the gyroscope 12 , and the gravity direction g and the compensation signal generated by the magnetometer 13 constitute the sensing signal. In addition, the accelerometer 11 , the gyroscope 12 , and the magnetometer 13 can also be connected to the signal transmission module 2 through a filtering unit 14 to filter out the noise in the sensing signal by using the filtering unit 14 .
該訊號傳送模組2具有二端部分別連接該訊號感測模組1及運算模組3。當該訊號傳送模組2選擇為一訊號傳輸線,利用有線方式進行訊號傳輸時,該訊號傳送模組2之二端部即為二訊號傳輸接頭;而當該訊號傳送模組2選擇為一無線傳輸模組,利用無線方式進行訊號傳輸時,該訊號傳送模組2之二端部係分別為一無線訊號發射器及一無線訊號接收器,且該無線訊號發射器係連接該訊號感測模組1,該無線訊號接收器則連接該運算模組3。此外,該訊號傳送模組2為無線傳輸時,其傳輸方式係可選擇為射頻傳輸方式、紅外線傳輸方式或藍芽傳輸方式。The signal transmission module 2 has two ends connected to the signal sensing module 1 and the computing module 3. When the signal transmission module 2 selects a signal transmission line and transmits the signal by wire, the two ends of the signal transmission module 2 are two signal transmission connectors; and when the signal transmission module 2 is selected as a wireless device When the transmission module uses the wireless mode for signal transmission, the two ends of the signal transmission module 2 are respectively a wireless signal transmitter and a wireless signal receiver, and the wireless signal transmitter is connected to the signal sensing module. In group 1, the wireless signal receiver is connected to the computing module 3. In addition, when the signal transmission module 2 is wirelessly transmitted, the transmission mode can be selected as a radio frequency transmission mode, an infrared transmission mode, or a Bluetooth transmission mode.
該運算模組3具有依序串聯連接之一動態開關單元31、一軌跡重建單元32、一儲存單元33及一辨識單元34。該動態開關單元31與該訊號傳送模組2連接,並利用該感測訊號之各加速度值Ai 的變化即時偵測該訊號感測模組1的運動狀況。該動態開關單元31係設有一暫存器311,以供紀錄各初始軸向在一預定時間內之該加速度值Ai ,以及將各該加速度值Ai 對時間進行積分後所取得的速度值Vi 。另,當該動態開關單元31呈一導通狀態[ON]時,其係輸出該感測訊號及該訊號感測模組1在各該初始軸向上的位移量至該軌跡重建單元32;惟,若該動態開關單元31呈一截止狀態[OFF],則未輸出訊號至該軌跡重建單元32。此外,針對各該初始軸向,該動態開關單元31均預設有數個門檻值,藉以降低該感測訊號的漂移誤差。更詳言之,本發明之動態開關單元31在各該初始軸向上所預設的數個門檻值較佳係為一加速度門檻值TAi 及一速度門檻值Tvi 。其中,當欲決定該加速度門檻值TAi 時,較佳係將該訊號感測模組1處於一歸零狀態下並維持該預定時間,取得該訊號感測模組1在該預定時間內之加速度值Ai 的最大值之後,以該最大值的1至3倍作為該加速度門檻值TAi ;而若欲決定該速度門檻值TVi ,較佳則將該預定時間內之速度值Vi 的最大。值取0.5至1倍作為該速度門檻值TVi 。The computing module 3 has a dynamic switching unit 31, a track reconstruction unit 32, a storage unit 33 and an identification unit 34 connected in series. The dynamic switch unit 31 is connected to the signal transmission module 2, and detects the motion condition of the signal sensing module 1 by using the change of the acceleration values A i of the sensing signals. The dynamic switch unit 31 is provided with a register 311 for recording the acceleration values A i of the initial axes for a predetermined time and the speed values obtained by integrating the acceleration values A i with time. V i . In addition, when the dynamic switching unit 31 is in an ON state [ON], it outputs the sensing signal and the displacement amount of the signal sensing module 1 in each of the initial axial directions to the trajectory reconstruction unit 32; If the dynamic switch unit 31 is in an off state [OFF], no signal is output to the track reconstruction unit 32. In addition, for each of the initial axes, the dynamic switch unit 31 is pre-set with a plurality of threshold values, thereby reducing the drift error of the sensing signal. More specifically, the threshold values preset by the dynamic switch unit 31 of the present invention in each of the initial axes are preferably an acceleration threshold T Ai and a velocity threshold T vi . Preferably, when the acceleration threshold value T Ai is to be determined, the signal sensing module 1 is preferably placed in a return-to-zero state and maintained for the predetermined time, and the signal sensing module 1 is obtained within the predetermined time. after the maximum acceleration values of a i, 1 to 3 times the maximum value of the acceleration as a threshold T Ai; Ruoyu determining the velocity and threshold T Vi, the speed is preferably within a predetermined time value of V i maximum. The value is taken as 0.5 to 1 times as the speed threshold T Vi .
請參照第2圖所示,其係繪示本發明之動態開關單元31之操作流程圖。該動態開關單元31首先接收該感測訊號,並將其本身設定為該截止狀態。隨後執行一第一判斷式D1,判斷「該動態開關單元31是否呈導通狀態」。若該第一判斷式D1之判斷結果為「是」,即將各該加速度值Ai 對時間進行積分以取得各該速度值Vi ,並執行一第二判斷式D2;而若該第一判斷式D1之判斷結果為「否」,則將各該加速度值Ai 取絕對值以獲得一加速度絕對值EAi ,並執行一第三判斷式D3。Please refer to FIG. 2, which is a flow chart showing the operation of the dynamic switch unit 31 of the present invention. The dynamic switch unit 31 first receives the sensing signal and sets itself to the off state. Then, a first judgment formula D1 is executed to determine "whether the dynamic switch unit 31 is in an on state". If the determination result of the first judgment formula D1 is YES, each acceleration value A i is integrated with time to obtain each of the speed values V i , and a second judgment formula D2 is executed; and if the first judgment is If the judgment result of the formula D1 is "NO", each of the acceleration values A i is taken as an absolute value to obtain an acceleration absolute value E Ai , and a third judgment formula D3 is executed.
該動態開關單元31之第二判斷式D2係判斷「是否已設定該速度門檻值TVi 」。若該第二判斷式D2之判斷結果為「是」,即將各該速度值Vi 對時間進行積分以取得各該初始軸向上的位移量,並將各該加速度值Ai 取絕對值以獲得一加速度絕對值EAi ,且將各該速度值Vi 取絕對值以獲得一速度絕對值EVi ,再執行一第四判斷式D4;而若該第二判斷式D2之判斷結果為「否」,則執行一第五判斷式D5。The second judgment formula D2 of the dynamic switch unit 31 determines whether "the speed threshold value T Vi has been set". If the determination result of the second judgment formula D2 is "YES", each of the speed values V i is integrated with time to obtain the displacement amount in each of the initial axial directions, and each of the acceleration values A i is taken as an absolute value to obtain An acceleration absolute value E Ai , and each of the speed values V i is taken to obtain an absolute speed value E Vi , and then a fourth judgment formula D4 is performed; and if the second judgment formula D2 is judged as “No” Then, a fifth judgment formula D5 is executed.
該動態開關單元31之第三判斷式D3係比較「該加速度絕對值EAi 是否大於各該初始軸向上所預設的加速度門檻值TAi 」。若該第三判斷式D3之判斷結果為「是」,則將該動態開關單元31設定為該導通狀態,並將各該加速度值Ai 對時間進行積分取得各該速度值Vi 之後,執行該第五判斷式D5;若該第三判斷式D3之判斷結果為「否」,即重新執行該第一判斷式D1。The third judgment formula D3 of the dynamic switch unit 31 compares "whether the acceleration absolute value E Ai is greater than the preset acceleration threshold value T Ai in each of the initial axial directions". If the determination result of the third judgment formula D3 is YES, the dynamic switch unit 31 is set to the ON state, and each of the acceleration values A i is integrated with time to obtain each of the speed values V i , and then executed. The fifth judgment formula D5; if the judgment result of the third judgment formula D3 is "NO", the first judgment formula D1 is re-executed.
該動態開關單元31之第四判斷式D4係比較「是否該加速度絕對值EAi 小於該加速度門檻值TAi ,且該速度絕對值EVi 小於該速度門檻值TVi 」。若該第四判斷式D4之判斷結果為「是」,則設定該速度值Vi 為0,並執行一第六判斷式D6;若該第四判斷式D4之判斷結果為「否」,即重新執行該第一判斷式D1。The fourth judgment formula D4 of the dynamic switch unit 31 compares "whether the acceleration absolute value E Ai is smaller than the acceleration threshold value T Ai , and the speed absolute value E Vi is smaller than the speed threshold value T Vi ". If the determination result of the fourth judgment formula D4 is "YES", the speed value V i is set to 0, and a sixth judgment formula D6 is executed; if the judgment result of the fourth judgment formula D4 is "NO", The first judgment formula D1 is re-executed.
該動態開關單元31之第五判斷式D5係判斷「在該預定時間內,前一步驟所取得之各該速度值Vi 是否為最大值」。若該第五判斷式D5之判斷結果為「是」,即重新決定該速度門檻值TVi ,並將各該速度值Vi 對時間進行積分取得各該初始軸向上的位移量,再重新執行該第一判斷式D1;而若該第五判斷式D5之判斷結果為「否」,即直接將各該速度值Vi 對時間進行積分取得各該初始軸向上的位移量,並執行該第一判斷式D1。The fifth judgment formula D5 of the dynamic switch unit 31 determines "whether or not each of the speed values V i obtained in the previous step is the maximum value within the predetermined time." If the determination result of the fifth judgment formula D5 is "YES", the speed threshold value T Vi is re-determined, and each of the speed values V i is integrated with time to obtain the displacement amount in each of the initial axial directions, and then re-executed. The first judgment formula D1; and if the determination result of the fifth judgment formula D5 is "NO", the speed value V i is directly integrated into time to obtain the displacement amount in each of the initial axial directions, and the first execution is performed. A judgment formula D1.
該動態開關單元31之第六判斷式D6係判斷「是否所有輸入該動態開關單元31之感測訊號均已經過該動態開關單元31處理」。若該第六判斷式D6之判斷結果為「是」,即結束該動態開關單元31之運作;而若該第六判斷式D6之判斷結果為「否」,則再將該動態開關單元31設定為該截止狀態,並重新執行該第一判斷式D1。The sixth judgment formula D6 of the dynamic switch unit 31 determines whether "all the sense signals input to the dynamic switch unit 31 have been processed by the dynamic switch unit 31". If the determination result of the sixth judgment formula D6 is "YES", the operation of the dynamic switch unit 31 is ended; and if the determination result of the sixth judgment formula D6 is "NO", the dynamic switch unit 31 is set again. This is the off state, and the first judgment formula D1 is re-executed.
藉由上述之操作流程,該動態開關單元31係可在其本身呈導通狀態時,將該感測訊號及積分運算所得之位移結果送至該軌跡重建單元32,且可利用該加速度門檻值TAi 及速度門檻值TVi 進行判斷,以便適時的將該速度值Vi 歸零,進而可有效的降低該訊號感測模組1隨時間增加而累積的誤差[即所謂的漂移誤差]。Through the above operation flow, the dynamic switch unit 31 can send the displacement result of the sensing signal and the integral operation to the trajectory reconstruction unit 32 when the conduction state itself is in the on state, and the acceleration threshold value T can be utilized. The Ai and the speed threshold T Vi are judged so that the speed value V i is reset to zero in time, thereby effectively reducing the error accumulated by the signal sensing module 1 over time [so-called drift error].
請再參照第1圖,且一併參照第3圖所示,根據該動態開關單元31所輸出之各該初始軸向上的位移量,該軌跡重建單元32係產生一虛擬投影平面P1,其中該三個初始軸向之中具有最小平均位移量的初始軸向(例如第3圖中所示之Z’軸]即為該虛擬投影平面P1之法向量,而另二初始軸向(例如第3圖中所示之X’軸及Y’軸]即為該虛擬投影平面P1之二基底向量。藉此,即可將該欲輸入軌跡投影於該虛擬投影平面P1而產生一投影軌跡訊號。此外,當該軌跡重建單元32欲計算獲得該虛擬投影平面P1時,亦可直接根據該感測訊號之各初始軸向上的加速度值Ai 進行判斷,以具有最小加速度值Ai 的初始軸向作為該虛擬投影平面P1的法向量,並以另二初始軸向作為該虛擬投影平面P1之二基底向量。隨後,該軌跡重建單元32更進一步藉由作為該虛擬投影平面P1之法向量的初始軸向[即如第3圖之Z’軸]與該重力方向g的夾角θ產生一轉換矩陣,進而將該投影軌跡訊號由該虛擬投影平面P1投影至大地座標之一軌跡投影平面P2而獲得該二維運動軌跡訊號。其中,該軌跡投影平面P2可選擇為大地座標之一水平平面或一垂直平面,而如第3圖所繪示者,即是該軌跡投影平面P2係由大地座標之Z軸作為法向量所構成之水平平面。Referring to FIG. 1 again, and referring to FIG. 3 together, the trajectory reconstruction unit 32 generates a virtual projection plane P1 according to the amount of displacement in the initial axial direction output by the dynamic switch unit 31. The initial axis having the smallest average displacement amount among the three initial axes (for example, the Z' axis shown in FIG. 3) is the normal vector of the virtual projection plane P1, and the other two initial axes (for example, the third The X' axis and the Y' axis shown in the figure are the two base vectors of the virtual projection plane P1. Thereby, the desired input trajectory can be projected on the virtual projection plane P1 to generate a projection trajectory signal. When the trajectory reconstruction unit 32 is to calculate the virtual projection plane P1, it can also directly judge the acceleration value A i in each initial axis of the sensing signal to have the initial axial direction with the minimum acceleration value A i . The virtual projection plane P1 has a normal vector and uses the other two initial axes as the base vector of the virtual projection plane P1. Subsequently, the trajectory reconstruction unit 32 is further used as the initial axis of the normal vector of the virtual projection plane P1. To [as shown in Figure 3 The angle θ of the Z′ axis] and the gravity direction g generates a transformation matrix, and the projection trajectory signal is projected from the virtual projection plane P1 to the trajectory projection plane P2 of the earth coordinate to obtain the two-dimensional motion trajectory signal. The trajectory projection plane P2 can be selected as one of the horizontal planes or a vertical plane of the earth coordinates, and as shown in FIG. 3, the trajectory projection plane P2 is formed by the Z-axis of the earth coordinates as a normal vector. Horizontal plane.
更詳言之,當該軌跡投影平面P2選擇為大地座標之Z軸作為法向量所構成之水平平面,且該投影軌跡訊號係以該X’軸為轉軸旋轉該夾角θ進行投影,則較佳選擇該轉換矩陣如下:More specifically, when the trajectory projection plane P2 is selected as the horizontal plane formed by the normal coordinate Z axis and the projection trajectory signal is rotated by the X' axis as the rotation axis, the projection is preferably performed. Select the conversion matrix as follows:
藉此,在該轉換矩陣與該投影軌跡訊號進行矩陣運算之後,即可將得到該二維運動軌跡訊號。此外,如第4圖所示,即使該虛擬投影平面P1垂直於該軌跡投影平面P2,仍可藉由該轉換矩陣將該投影軌跡訊號投影至該軌跡投影平面P2,以獲得位於該軌跡投影平面P2上的二維運動軌跡訊號。最後,該儲存單元33係儲存該軌跡重建單元32運算獲得之二維運動軌跡訊號;而該辨識單元34則針對該二維運動軌跡訊號以影像辨識程式進行辨識,且該辨識單元34係連接至該顯示模組4,以便該顯示模組4顯示該辨識單元34之辨識結果。另,該辨識單元34亦可直接連接至該軌跡重建單元32,以便即時對該二維運動軌跡訊號進行影像辨識。Thereby, after the matrix of the conversion matrix and the projection track signal are subjected to a matrix operation, the two-dimensional motion track signal can be obtained. In addition, as shown in FIG. 4, even if the virtual projection plane P1 is perpendicular to the trajectory projection plane P2, the projection trajectory signal can be projected to the trajectory projection plane P2 by the conversion matrix to obtain the trajectory projection plane. Two-dimensional motion track signal on P2. Finally, the storage unit 33 stores the two-dimensional motion track signal obtained by the track reconstruction unit 32; and the identification unit 34 identifies the two-dimensional motion track signal by an image recognition program, and the identification unit 34 is connected to The display module 4 is configured such that the display module 4 displays the identification result of the identification unit 34. In addition, the identification unit 34 can also be directly connected to the trajectory reconstruction unit 32 to perform image recognition on the two-dimensional motion trajectory signal in real time.
藉由本發明之軌跡重建單元32,係僅利用該加速度值Ai 及所測得之重力方向g,即可產生該虛擬投影平面P1,並將三維空間中的欲輸入軌跡投影至該虛擬投影平面P1而形成二維空間軌跡訊號[即該投影軌跡訊號],故可有效降低產生該虛擬投影平面P1及進行該影像辨識時的計算複雜度及演算法計算量。此外,更由於以具有最小加速度值Ai 的初始軸向作為該虛擬投影平面P1的法向量,可即時取得該虛擬投影平面P1,使本發明之運動軌跡重建方法不會受到僅能進行離線作業之限制。With the trajectory reconstruction unit 32 of the present invention, the virtual projection plane P1 can be generated only by using the acceleration value A i and the measured gravity direction g, and the trajectory to be input in the three-dimensional space is projected to the virtual projection plane. The two-dimensional spatial trajectory signal [that is, the projection trajectory signal] is formed by P1, so that the computational complexity and the calculation amount of the algorithm when the virtual projection plane P1 is generated and the image recognition is performed can be effectively reduced. In addition, since the initial axis having the minimum acceleration value A i is used as the normal vector of the virtual projection plane P1, the virtual projection plane P1 can be obtained in real time, so that the motion trajectory reconstruction method of the present invention is not subject to offline operation only. The limit.
藉由該訊號感測模組1在三維空間中依二維軌跡進行移動,本發明之運動軌跡重建裝置不僅可供進行軌跡位置控制[例如游標位置控制]之使用,亦可供書寫字符並辨識後以該顯示模組4顯示所描繪之字符[例如進行簡報時可即時投影字符及簽名辨識],更可用於追蹤使用者之肢體移動的軌跡[例如醫療復健及運動員訓練]。或者,也可持該訊號感測模組1依一物件的邊緣移動以精確測得該物件之形狀。By moving the signal sensing module 1 in a three-dimensional space according to a two-dimensional trajectory, the motion trajectory reconstruction device of the present invention can be used not only for track position control [such as cursor position control] but also for writing characters and recognizing Then, the display module 4 displays the depicted characters [for example, the character and signature can be instantly projected when the briefing is performed], and can be used to track the trajectory of the user's limb movement [eg medical rehabilitation and athlete training]. Alternatively, the signal sensing module 1 can be moved according to the edge of an object to accurately measure the shape of the object.
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described in connection with the preferred embodiments described above, it is not intended to limit the scope of the invention. The technical scope of the invention is protected, and therefore the scope of the invention is defined by the scope of the appended claims.
1...訊號感測模組1. . . Signal sensing module
11...加速度計11. . . Accelerometer
12...陀螺儀12. . . Gyro
13...磁力計13. . . Magnetometer
14...濾波單元14. . . Filter unit
2...訊號傳送模組2. . . Signal transmission module
3...運算模組3. . . Computing module
31...動態開關單元31. . . Dynamic switching unit
311...暫存器311. . . Register
32...軌跡重建單元32. . . Trajectory reconstruction unit
33...儲存單元33. . . Storage unit
34...辨識單元34. . . Identification unit
4...顯示模組4. . . Display module
Ai ...加速度值A i . . . Acceleration value
EAi ...加速度絕對值E Ai . . . Absolute value of acceleration
EVi ‧‧‧速度絕對值E Vi ‧‧‧speed absolute value
D1‧‧‧第一判斷式D1‧‧‧ first judgment
D2‧‧‧第二判斷式D2‧‧‧Second judgment
D3‧‧‧第三判斷式D3‧‧‧ third judgment
D4‧‧‧第四判斷式D4‧‧‧ fourth judgment
D5‧‧‧第五判斷式D5‧‧‧ fifth judgment
D6‧‧‧第六判斷式D6‧‧‧ sixth judgment
g‧‧‧重力方向G‧‧‧gravity direction
P1‧‧‧虛擬投影平面P1‧‧‧Virtual projection plane
P2‧‧‧軌跡投影平面P2‧‧‧ trajectory projection plane
TAi ‧‧‧加速度門檻值T Ai ‧‧‧ Acceleration threshold
TVi ‧‧‧速度門檻值T Vi ‧‧‧Speed threshold
Vi ‧‧‧速度值V i ‧‧‧ speed value
θ‧‧‧夾角Θ‧‧‧ angle
第1圖:本發明較佳實施例之運動軌跡重建方法及其裝置的運作流程圖。Figure 1 is a flow chart showing the operation of the motion track reconstruction method and apparatus of the preferred embodiment of the present invention.
第2圖:本發明較佳實施例之運動軌跡重建方法及其裝置之動態開關單元的操作流程圖。Figure 2 is a flow chart showing the operation of the dynamic trajectory unit of the preferred embodiment of the present invention.
第3圖:本發明較佳實施例之運動軌跡重建方法及其裝置之軌跡重建單元產生二維運動軌跡訊號的操作示意圖。Figure 3 is a schematic diagram showing the operation of the motion trajectory reconstruction method of the preferred embodiment of the present invention and the trajectory reconstruction unit of the apparatus for generating a two-dimensional motion trajectory signal.
第4圖:本發明較佳實施例之運動軌跡重建方法及其裝置之軌跡重建單元在虛擬投影平面垂直於軌跡投影平面時產生二維運動軌跡訊號的操作示意圖。FIG. 4 is a schematic diagram showing the operation of the trajectory reconstruction unit of the preferred embodiment of the present invention for generating a two-dimensional motion trajectory signal when the virtual projection plane is perpendicular to the trajectory projection plane.
1...訊號感測模組1. . . Signal sensing module
11...加速度計11. . . Accelerometer
12...陀螺儀12. . . Gyro
13...磁力計13. . . Magnetometer
14...濾波單元14. . . Filter unit
2...訊號傳送模組2. . . Signal transmission module
3...運算模組3. . . Computing module
31...動態開關單元31. . . Dynamic switching unit
311...暫存器311. . . Register
32...軌跡重建單元32. . . Trajectory reconstruction unit
33...儲存單元33. . . Storage unit
34...辨識單元34. . . Identification unit
4...顯示模組4. . . Display module
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098121857A TWI476733B (en) | 2009-06-29 | 2009-06-29 | Three-dimensional space motion reconstruction method and apparatus constructed thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098121857A TWI476733B (en) | 2009-06-29 | 2009-06-29 | Three-dimensional space motion reconstruction method and apparatus constructed thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201101234A TW201101234A (en) | 2011-01-01 |
TWI476733B true TWI476733B (en) | 2015-03-11 |
Family
ID=44836954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098121857A TWI476733B (en) | 2009-06-29 | 2009-06-29 | Three-dimensional space motion reconstruction method and apparatus constructed thereby |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI476733B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102915171A (en) * | 2011-08-04 | 2013-02-06 | 王振兴 | Moving trajectory generation method |
US20130085712A1 (en) * | 2011-09-30 | 2013-04-04 | Industrial Technology Research Institute | Inertial sensing input apparatus and method thereof |
TWI459370B (en) * | 2012-03-16 | 2014-11-01 | Ability Entpr Co Ltd | Image display system and control method thereof |
CN103324405A (en) * | 2012-03-21 | 2013-09-25 | 佳能企业股份有限公司 | Image display system and control method thereof |
TWI476626B (en) * | 2012-08-24 | 2015-03-11 | Ind Tech Res Inst | Authentication method and code setting method and authentication system for electronic apparatus |
TWI582391B (en) * | 2015-08-05 | 2017-05-11 | 緯創資通股份有限公司 | Calibration method and electronic device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060092133A1 (en) * | 2004-11-02 | 2006-05-04 | Pierre A. Touma | 3D mouse and game controller based on spherical coordinates system and system for use |
US20070066394A1 (en) * | 2005-09-15 | 2007-03-22 | Nintendo Co., Ltd. | Video game system with wireless modular handheld controller |
US20090085867A1 (en) * | 2007-10-02 | 2009-04-02 | Samsung Electronics Co., Ltd. | Error-correction apparatus and method and 3D pointing device using the error-correction apparatus |
-
2009
- 2009-06-29 TW TW098121857A patent/TWI476733B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060092133A1 (en) * | 2004-11-02 | 2006-05-04 | Pierre A. Touma | 3D mouse and game controller based on spherical coordinates system and system for use |
US20070066394A1 (en) * | 2005-09-15 | 2007-03-22 | Nintendo Co., Ltd. | Video game system with wireless modular handheld controller |
US20090085867A1 (en) * | 2007-10-02 | 2009-04-02 | Samsung Electronics Co., Ltd. | Error-correction apparatus and method and 3D pointing device using the error-correction apparatus |
Non-Patent Citations (1)
Title |
---|
ANALOG DEVICES, "Tri-Axis Inertial Sensor with Magnetometer", 2008/12/09 * |
Also Published As
Publication number | Publication date |
---|---|
TW201101234A (en) | 2011-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210208180A1 (en) | Correction of accumulated errors in inertial measurement units attached to a user | |
US10521011B2 (en) | Calibration of inertial measurement units attached to arms of a user and to a head mounted device | |
US10379613B2 (en) | Tracking arm movements to generate inputs for computer systems | |
US10540006B2 (en) | Tracking torso orientation to generate inputs for computer systems | |
JP5258974B2 (en) | Method and device for inputting force intensity and rotational intensity based on motion sensing | |
US10705113B2 (en) | Calibration of inertial measurement units attached to arms of a user to generate inputs for computer systems | |
US11009964B2 (en) | Length calibration for computer models of users to generate inputs for computer systems | |
TWI512548B (en) | Moving trajectory generation method | |
JP5987247B2 (en) | Motion capture pointer by data fusion | |
US10093280B2 (en) | Method of controlling a cursor by measurements of the attitude of a pointer and pointer implementing said method | |
EP2359223B1 (en) | Correcting angle error in a tracking system | |
EP2939402B1 (en) | Method and device for sensing orientation of an object in space in a fixed frame of reference | |
TWI476733B (en) | Three-dimensional space motion reconstruction method and apparatus constructed thereby | |
CN103597426B (en) | Air pointing device and air pointing method | |
US20190212807A1 (en) | Tracking Torso Leaning to Generate Inputs for Computer Systems | |
CN103837157A (en) | Motion measuring method and device | |
JPWO2020110659A1 (en) | Information processing equipment, information processing methods, and programs | |
US11531392B2 (en) | Tracking upper arm movements using sensor modules attached to the hand and forearm | |
JP5870656B2 (en) | Trajectory calculation device and trajectory calculation method | |
US20100259475A1 (en) | Angle sensor-based pointer and a cursor control system with the same | |
WO2013029303A1 (en) | Attitude sensing device and positioning, mouse cursor control method and device thereof | |
TWI411939B (en) | Moving trajectory reconstruction system and a signal input apparatus | |
US11845001B2 (en) | Calibration system and method for handheld controller | |
TWI534659B (en) | 3d pointing device and method for compensating movement thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |