TWI475808B - Power generating apparatus and sampling method thereof - Google Patents

Power generating apparatus and sampling method thereof Download PDF

Info

Publication number
TWI475808B
TWI475808B TW100149876A TW100149876A TWI475808B TW I475808 B TWI475808 B TW I475808B TW 100149876 A TW100149876 A TW 100149876A TW 100149876 A TW100149876 A TW 100149876A TW I475808 B TWI475808 B TW I475808B
Authority
TW
Taiwan
Prior art keywords
value
sampling
signal
voltage
bit
Prior art date
Application number
TW100149876A
Other languages
Chinese (zh)
Other versions
TW201328195A (en
Inventor
Yu Wei Lin
Original Assignee
Tatung Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatung Co filed Critical Tatung Co
Priority to TW100149876A priority Critical patent/TWI475808B/en
Publication of TW201328195A publication Critical patent/TW201328195A/en
Application granted granted Critical
Publication of TWI475808B publication Critical patent/TWI475808B/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Description

發電裝置及其取樣方法Power generation device and sampling method thereof

本發明是有關於一種發電裝置及其取樣方法,且特別是有關於一種可提高類比數位轉換解析度的發電裝置及其取樣方法。The present invention relates to a power generating device and a sampling method thereof, and more particularly to a power generating device capable of improving the resolution of analog digital conversion and a sampling method thereof.

現今社會在能源需求與日俱增以及環境污染日益嚴重的情況下,較無污染及理論上可取之不盡的再生能源(Renewable energy)成為現今能源發展的一個重要課題。這些再生能源例如是太陽能、風能、潮汐能或是生質能等。其中,太陽能電池及其發電系統可直接將太陽能轉換為電能,更是近幾年在能源開發的研究上相當重要且受歡迎的一環。In today's society, with the increasing demand for energy and increasing environmental pollution, the more pollution-free and theoretically renewable renewable energy has become an important issue in today's energy development. These renewable energy sources are, for example, solar energy, wind energy, tidal energy or biomass energy. Among them, solar cells and their power generation systems can directly convert solar energy into electrical energy, which is a very important and popular part of energy development research in recent years.

圖1繪示為習知之太陽能發電裝置100的示意圖。太陽能板110可將所接收的太陽光L轉換為電能,並利用電源轉換模組120將電能轉換為穩定電源,藉以供電給負載130(於此例中,負載130可以是蓄電池,藉以儲存電能)。另一方面,太陽能板110發電時的輸出功率會受到日照強度、負載、溫度等因素影響,致使太陽能板110所輸出的電源無法時時刻刻維持在最大的電源輸出功率,降低了發電效率。因此,許多廠商便藉由取樣電路140取得輸出電源的相關參數(例如輸出電壓V1或輸出電流等),以利用微控制器150中的最大電源功率追蹤法(maximum power point tracking,MPPT)產生脈波寬度調變(pulse width modulation,PWM)訊號,並驅使電源轉換模組120將輸出電源調整至最大電源輸出功率MPP上。FIG. 1 is a schematic diagram of a conventional solar power generation device 100. The solar panel 110 converts the received sunlight L into electrical energy, and converts the electrical energy into a stable power source by the power conversion module 120, thereby supplying power to the load 130 (in this example, the load 130 may be a battery to store electrical energy). . On the other hand, the output power of the solar panel 110 during power generation is affected by factors such as sunlight intensity, load, temperature, etc., so that the power output from the solar panel 110 cannot be maintained at the maximum power output at all times, thereby reducing power generation efficiency. Therefore, many manufacturers obtain the relevant parameters of the output power (such as the output voltage V1 or the output current, etc.) by the sampling circuit 140 to generate the pulse by using the maximum power point tracking (MPPT) in the microcontroller 150. A pulse width modulation (PWM) signal drives the power conversion module 120 to adjust the output power to the maximum power output power MPP.

由於輸出電壓V1的數值變動範圍隨著太陽能發電裝置100所擺放的環境因素(例如日照強度的變化)而定,因此取樣電路140往往須遷就最大可能輸出的電壓,因而拉大取樣的範圍,造成取樣電路140所取樣的電性訊號變化值相對於其取樣範圍來說並不明顯,進而影響其類比數位轉換的解析度,如此將會大幅降低取樣精確度,從而拉低太陽能發電裝置100的轉換效率。Since the range of numerical variation of the output voltage V1 depends on the environmental factors (such as changes in the intensity of the sunlight) placed on the solar power generating device 100, the sampling circuit 140 tends to accommodate the maximum possible output voltage, thereby widening the sampling range. The electrical signal change value sampled by the sampling circuit 140 is not obvious with respect to the sampling range thereof, thereby affecting the resolution of the analog digital conversion, which will greatly reduce the sampling accuracy, thereby lowering the solar power generation device 100. Conversion efficiency.

本發明提供一種發電裝置及其取樣方法,可有效提高取樣訊號的類比數位轉換解析度,進而提升發電裝置的轉換效率。The invention provides a power generating device and a sampling method thereof, which can effectively improve the analog digital conversion resolution of the sampled signal, thereby improving the conversion efficiency of the power generating device.

本發明提出一種發電裝置,包括一發電單元、一取樣電路、一控制單元、以及一主機。其中發電單元用以產生一輸出電壓。取樣電路耦接發電單元,取樣輸出電壓而輸出一取樣訊號。控制單元耦接取樣電路,控制取樣電路調整取樣訊號的電壓值,並執行一最大電源功率追蹤演算法,將取樣訊號轉換為一位元訊號。主機連接控制單元,依據一位元值的變化率控制控制單元調整取樣訊號的電壓值,以調整一映射比例,其中位元值為位元訊號所對應之數值,映射比例為取樣訊號之電壓值與位元訊號所對應之處理器記憶單元位元數二進位值數值的比值。The invention provides a power generating device comprising a power generating unit, a sampling circuit, a control unit, and a host. The power generating unit is configured to generate an output voltage. The sampling circuit is coupled to the power generating unit, and samples the output voltage to output a sampling signal. The control unit is coupled to the sampling circuit, controls the sampling circuit to adjust the voltage value of the sampled signal, and performs a maximum power power tracking algorithm to convert the sampled signal into a one-bit signal. The host connection control unit controls the control unit to adjust the voltage value of the sampling signal according to the rate of change of the one-bit value to adjust a mapping ratio, wherein the bit value is a value corresponding to the bit signal, and the mapping ratio is the voltage value of the sampling signal. The ratio of the number of binary memory values of the number of processor memory cells corresponding to the bit signal.

在本發明之一實施例中,上述之控制單元以一預設時間間隔對輸出電壓進行取樣,主機每間隔一預設取樣次數判斷位元值的變化率是否低於一預設值,若位元值的變化率低於預設值,則調整取樣訊號的電壓值,以將位元值的變化率拉回至大於預設值,同時在控制程式中重新定義出其映射比例,以正確換算出不同比例周期時之實際對應電壓值。In an embodiment of the present invention, the control unit samples the output voltage at a predetermined time interval, and the host determines whether the rate of change of the bit value is lower than a preset value every predetermined number of sampling intervals. If the rate of change of the element value is lower than the preset value, the voltage value of the sampled signal is adjusted to pull back the rate of change of the bit value to be greater than the preset value, and the mapping ratio is redefined in the control program for correct conversion. The actual corresponding voltage value at different proportional cycles.

在本發明之一實施例中,其中當該位元值的變化率低於該預設值時,若位元值大於一設定高端之門檻值,主機控制取樣電路降低取樣訊號的電壓值,若位元值未大於門檻值,則主機控制取樣電路升高取樣訊號的電壓值。In an embodiment of the present invention, when the rate of change of the bit value is lower than the preset value, if the bit value is greater than a threshold value of the set high end, the host controls the sampling circuit to decrease the voltage value of the sampled signal, if If the bit value is not greater than the threshold value, the host controls the sampling circuit to increase the voltage value of the sampled signal.

在本發明之一實施例中,上述之主機具有一圖形使用者介面,用以顯示取樣訊號的類比數位轉換解析度,並接收使用者的設定,主機依據使用者的設定控制控制單元調整取樣訊號的電壓值。In an embodiment of the present invention, the host has a graphical user interface for displaying the analog digital conversion resolution of the sampled signal, and receiving the user's settings, and the host controls the control unit to adjust the sampling signal according to the user's setting. Voltage value.

在本發明之一實施例中,上述之取樣電路包括一分壓模組、一取樣單元、一步進馬達控制單元以及一步進馬達。分壓模組耦接發電單元,對輸出電壓進行分壓,以輸出一分壓電壓。取樣單元耦接分壓模組與控制單元,取樣分壓電壓以產生取樣訊號。步進馬達控制單元耦接控制單元,受控於控制單元而輸出一角度轉動信號。步進馬達耦接步進馬達控制單元與分壓模組,依據角度轉動信號調整分壓模組的分壓阻抗比率,進而調整分壓電壓。In an embodiment of the invention, the sampling circuit includes a voltage dividing module, a sampling unit, a stepping motor control unit, and a stepping motor. The voltage dividing module is coupled to the power generating unit to divide the output voltage to output a divided voltage. The sampling unit is coupled to the voltage dividing module and the control unit, and samples the divided voltage to generate a sampling signal. The stepping motor control unit is coupled to the control unit and is controlled by the control unit to output an angular rotation signal. The stepping motor is coupled to the stepping motor control unit and the voltage dividing module, and adjusts the voltage dividing impedance ratio of the voltage dividing module according to the angle rotation signal, thereby adjusting the voltage dividing voltage.

在本發明之一實施例中,上述之分壓模組包括一取樣電阻以及一可變電阻。其中取樣電阻耦接至取樣單元。可變電阻一端耦接至取樣電阻的一端,可變電阻的另一端耦接至輸出電壓的第一端,且可變電阻的控制端耦接至步進馬達,而取樣電阻的另一端耦接至輸出電源的第二端,其中步進馬達受控於步進馬達控制單元而調整可變電阻的電阻值。In an embodiment of the invention, the voltage dividing module includes a sampling resistor and a variable resistor. The sampling resistor is coupled to the sampling unit. One end of the variable resistor is coupled to one end of the sampling resistor, the other end of the variable resistor is coupled to the first end of the output voltage, and the control end of the variable resistor is coupled to the stepping motor, and the other end of the sampling resistor is coupled To the second end of the output power source, wherein the stepping motor is controlled by the stepping motor control unit to adjust the resistance value of the variable resistor.

在本發明之一實施例中,上述之可變電阻為一旋鈕式可變電阻。In an embodiment of the invention, the variable resistor is a knob type variable resistor.

在本發明之一實施例中,上述之發電裝置,更包括一橋接協調單元,其耦接至可變電阻與步進馬達之間,用以依據步進馬達的轉動來調整可變電阻的電阻值。In an embodiment of the present invention, the power generating device further includes a bridge coordination unit coupled between the variable resistor and the stepping motor for adjusting the resistance of the variable resistor according to the rotation of the stepping motor. value.

在本發明之一實施例中,上述之橋接協調單元為一齒輪组,用以將步進馬達與旋紐式可變電阻的轉動角度進行比例修正。In an embodiment of the invention, the bridge coordination unit is a gear set for proportionally correcting a rotation angle of the stepping motor and the knob type variable resistor.

在本發明之一實施例中,上述之主機具有一圖形使用者介面,用以顯示步進馬達目前的轉動角度、轉動步進馬達的目標角度、輸出電壓之電壓值以及取樣訊號的類比數位轉換解析度,並接收使用者的設定,以使主機依據使用者的設定控制控制單元調整取樣訊號的電壓值。In an embodiment of the invention, the host has a graphical user interface for displaying the current rotation angle of the stepping motor, the target angle of the rotating stepping motor, the voltage value of the output voltage, and the analog digital conversion of the sampled signal. The resolution is adjusted, and the user's setting is received, so that the host controls the control unit to adjust the voltage value of the sampled signal according to the user's setting.

在本發明之一實施例中,上述之控制單元依據取樣訊號以及分壓模組的阻抗比率計算輸出電壓之電壓值,並將輸出電壓之電壓值傳送至主機進行顯示。In an embodiment of the invention, the control unit calculates the voltage value of the output voltage according to the sampling signal and the impedance ratio of the voltage dividing module, and transmits the voltage value of the output voltage to the host for display.

本發明提出亦一種發電裝置的取樣方法,包括下列步驟。取樣發電裝置的一輸出電壓以得到一取樣訊號。依據取樣訊號執行一最大電源功率追蹤演算法,將取樣訊號轉換為一位元訊號。依據一位元值的變化率調整取樣訊號的電壓值,以調整一映射比例,其中位元值為該位元訊號所對應之數值,映射比例為取樣訊號之電壓值與位元訊號所對應之數值的比值。The invention also proposes a sampling method for a power generating device, comprising the following steps. An output voltage of the power generating device is sampled to obtain a sampling signal. Performing a maximum power-power tracking algorithm based on the sampled signal converts the sampled signal into a one-bit signal. Adjusting the voltage value of the sampling signal according to the rate of change of the one-bit value to adjust a mapping ratio, wherein the bit value is a value corresponding to the bit signal, and the mapping ratio is the voltage value of the sampling signal and the bit signal corresponding to The ratio of the values.

在本發明之一實施例中,上述之取樣訊號為以一預設時間間隔對輸出電壓進行取樣而得到,依據取樣訊號的電壓變化率調整取樣訊號的電壓值的步驟包括下列步驟。每間隔一預設取樣次數判斷位元值的變化率是否低於一預設值。若位元值的變化率低於預設值,則調整取樣訊號的電壓值,以將位元值的變化率拉回至大於預設值,同時在控制程式中重新定義出其映射比例,以正確換算出不同比例周期時之實際對應電壓值。In an embodiment of the invention, the sampling signal is obtained by sampling the output voltage at a predetermined time interval, and the step of adjusting the voltage value of the sampling signal according to the voltage change rate of the sampling signal includes the following steps. Whether the rate of change of the bit value is lower than a preset value is determined by a predetermined number of sampling intervals. If the rate of change of the bit value is lower than the preset value, the voltage value of the sampled signal is adjusted to pull back the rate of change of the bit value to be greater than the preset value, and the mapping ratio is redefined in the control program to Correctly convert the actual corresponding voltage value at different proportional cycles.

在本發明之一實施例中,上述調整取樣訊號的電壓值,以將位元值的變化率拉回至大於預設值的步驟包括下列步驟。判斷位元值是否大於一門檻值。若位元值大於一設定高端之門檻值,降低取樣訊號的電壓值。若位元值未大於門檻值,升高取樣訊號的電壓值。In an embodiment of the invention, the step of adjusting the voltage value of the sampled signal to pull back the rate of change of the bit value to be greater than the preset value comprises the following steps. Determine if the bit value is greater than a threshold. If the bit value is greater than a threshold value for setting the high end, the voltage value of the sampled signal is lowered. If the bit value is not greater than the threshold value, increase the voltage value of the sampled signal.

在本發明之一實施例中,上述發電裝置的取樣方法,更包括將該輸出電壓的電壓值顯示於一圖形使用者介面上。In an embodiment of the invention, the sampling method of the power generating device further includes displaying the voltage value of the output voltage on a graphical user interface.

基於上述,本發明藉由依據位元值的變化率調整取樣訊號的電壓值,以調整取樣訊號與位元訊號間的映射比例,進而提高取樣訊號的類比數位轉換解析度。Based on the above, the present invention adjusts the mapping ratio between the sampled signal and the bit signal by adjusting the voltage value of the sampled signal according to the rate of change of the bit value, thereby improving the analog digital conversion resolution of the sampled signal.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

現將詳細參考本發明之示範性實施例,在附圖中說明所述示範性實施例之實例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/符號代表相同或類似部分。DETAILED DESCRIPTION OF THE INVENTION Reference will now be made in detail to the exemplary embodiments embodiments In addition, wherever possible, the elements and/

圖2繪示為本發明一實施例之發電裝置的示意圖。請參照圖2,發電裝置200包括一發電單元202、一取樣電路204、一控制單元206以及一主機208。其中發電單元202耦接取樣電路204,控制單元206耦接取樣電路204與主機208。在本實施例中,發電裝置200為一太陽能發電裝置,而發電單元202為一太陽能板,然實際應用上並不以此為限。舉例來說,在其他實施例中,發電裝置200亦可例如為風力發電裝置或其他利用不同的發電原理的裝置。另外,控制單元206則可例如為微控制器,主機208與控制單元206兼可透過RS232介面連接,或是以無線通訊的方式連接。2 is a schematic diagram of a power generating device according to an embodiment of the present invention. Referring to FIG. 2 , the power generating device 200 includes a power generating unit 202 , a sampling circuit 204 , a control unit 206 , and a host 208 . The power generating unit 202 is coupled to the sampling circuit 204, and the control unit 206 is coupled to the sampling circuit 204 and the host 208. In the present embodiment, the power generating device 200 is a solar power generating device, and the power generating unit 202 is a solar panel, but the actual application is not limited thereto. For example, in other embodiments, power generation device 200 can also be, for example, a wind power generation device or other device that utilizes different power generation principles. In addition, the control unit 206 can be, for example, a microcontroller, and the host 208 and the control unit 206 can be connected through an RS232 interface or wirelessly.

上述之發電單元202用以產生一輸出電壓Vout,取樣電路204用以取樣發電單元202的輸出電壓Vout而輸出一取樣訊號S1。控制單元206用以控制取樣電路204調整取樣訊號S1的電壓值大小,並依據取樣訊號S1執行最大電源功率追蹤演算法,將取樣訊號S1轉換為位元訊號。另外主機208則依據位元訊號所對應之數值(在此將其稱為位元值)的變化率來控制控制單元206調整取樣訊號S1與位元訊號間的映射比例,亦即調整取樣訊號S1之電壓值與位元訊號所對應之處理器記憶單元位元換算出來的解析度格數,以一般A/D為10bits之處理器為例,即為1024格數值的比值。The power generating unit 202 is configured to generate an output voltage Vout, and the sampling circuit 204 is configured to sample the output voltage Vout of the power generating unit 202 to output a sampling signal S1. The control unit 206 is configured to control the sampling circuit 204 to adjust the magnitude of the voltage value of the sampling signal S1, and perform a maximum power power tracking algorithm according to the sampling signal S1 to convert the sampling signal S1 into a bit signal. In addition, the host 208 controls the control unit 206 to adjust the mapping ratio between the sampling signal S1 and the bit signal according to the change rate of the value corresponding to the bit signal (referred to herein as the bit value), that is, adjust the sampling signal S1. The resolution value of the processor memory unit bit corresponding to the voltage value and the bit signal is, for example, a processor with a general A/D of 10 bits, which is a ratio of 1024 grid values.

由於取樣訊號S1的電壓值的波動將會反應在位元值的變化率上,而位元訊號所能表示的數值為固定值,因此可藉由依據位元值的變化率來調整取樣訊號S1的電壓值大小,以放大或縮小取樣訊號S1與位元訊號間的映射比例,進而調整取樣訊號S1的類比數位轉換解析度。舉例來說,假設取樣電路204的取樣範圍為600伏特(V),在此情形下,若取樣訊號S1的電壓值波動幅度為10V,在取樣訊號S1被轉換為位元訊號後,位元值的大小變化將會十分地不明顯,因而影響到控制單元206解讀取樣訊號S1的精確度,使發電裝置200無法獲得最佳的轉換效率。此時便可透過控制單元將取樣訊號S1的電壓值放大,以放大取樣訊號S1與位元訊號間的映射比例,進而提高取樣訊號S1的類比數位轉換解析度。Since the fluctuation of the voltage value of the sampling signal S1 will be reflected in the rate of change of the bit value, and the value that the bit signal can represent is a fixed value, the sampling signal S1 can be adjusted according to the rate of change of the bit value. The voltage value is used to enlarge or reduce the mapping ratio between the sampling signal S1 and the bit signal, thereby adjusting the analog digital conversion resolution of the sampling signal S1. For example, assume that the sampling range of the sampling circuit 204 is 600 volts (V). In this case, if the voltage value of the sampling signal S1 fluctuates by 10 V, after the sampling signal S1 is converted into a bit signal, the bit value is The change in size will be quite inconspicuous, thus affecting the accuracy with which control unit 206 interprets sampled signal S1, rendering power generating device 200 unable to achieve optimal conversion efficiency. At this time, the voltage value of the sampling signal S1 can be amplified by the control unit to amplify the mapping ratio between the sampling signal S1 and the bit signal, thereby improving the analog digital conversion resolution of the sampling signal S1.

另外,若取樣訊號S1的電壓值過高,亦會影響到取樣訊號S1的類比數位轉換的解析度。舉例來說,假設取樣訊號S1的電壓值落在540V,在取樣訊號S1轉換為位元訊號後,位元值可往上變化的範圍將僅剩下總數值的10%。若此時取樣訊號S1的波動幅度大於60V,位元訊號便無法正確反應取樣訊號S1的變化情形,進而影響控制單元206解讀取樣訊號S1的精確度,使得發電裝置200無法獲得最佳的轉換效率。在此情形下便可透過控制單元降低取樣訊號S1的電壓值,以減小取樣訊號S1與位元訊號間的映射比例,使位元值有更大的數值變化空間,避免位元訊號的上限值限制影響取樣訊號S1的類比數位轉換解析度。In addition, if the voltage value of the sampling signal S1 is too high, the resolution of the analog digital conversion of the sampling signal S1 is also affected. For example, if the voltage value of the sampling signal S1 falls at 540V, after the sampling signal S1 is converted into a bit signal, the range in which the bit value can be changed upwards will only be 10% of the total value. If the amplitude of the sampling signal S1 is greater than 60V at this time, the bit signal cannot correctly reflect the change of the sampling signal S1, thereby affecting the accuracy of the control unit 206 interpreting the sampling signal S1, so that the power generating device 200 cannot obtain the optimal conversion efficiency. . In this case, the voltage value of the sampling signal S1 can be reduced by the control unit to reduce the mapping ratio between the sampling signal S1 and the bit signal, so that the bit value has a larger value change space, and the bit signal is avoided. The limit limit affects the analog digital conversion resolution of the sampled signal S1.

以此類推,當取樣訊號S1的電壓值波動幅度過小或電壓值過低時,亦可以類似的方式對取樣訊號S1進行電壓值調整,以提高取樣訊號S1的類比數位轉換解析度,本領域具通常知識者應可依據上述所教示的實施例推知其實施方式,因而在此不再贅述。By analogy, when the voltage value of the sampling signal S1 is too small or the voltage value is too low, the voltage value of the sampling signal S1 can be adjusted in a similar manner to improve the analog digital conversion resolution of the sampling signal S1. Generally, the skilled person should infer the implementation manner according to the embodiments taught above, and thus will not be further described herein.

進一步來說,為使取樣訊號S1的類比數位轉換解析度調整機制不因偶發的電壓波動而被觸發,可設計使控制單元206以一預設時間間隔對輸出電壓Vout進行取樣。另一方面,主機208則每間隔一預設取樣次數便判斷位元值的變化率是否低於一預設值,若位元值的變化率低於預設值,才調整取樣訊號S1的電壓值,將位元值的變化率拉回至大於預設值。舉例來說,當位元值的變化率低於30%時,若位元值大於一設定高端之門檻值(此門檻值可例如設定為位元值所能表示最大數值的一半,然不以此為限),則主機208透過控制單元206控制取樣電路206降低取樣訊號S1的電壓值,若位元值未大於一設定低端的門檻值,則主機208控制取樣電路206升高取樣訊號S1的電壓值。Further, in order to prevent the analog digital conversion resolution adjustment mechanism of the sampling signal S1 from being triggered by sporadic voltage fluctuations, the control unit 206 can be designed to sample the output voltage Vout at a predetermined time interval. On the other hand, the host 208 determines whether the rate of change of the bit value is lower than a preset value every time a predetermined number of sampling intervals are separated, and adjusts the voltage of the sampling signal S1 if the rate of change of the bit value is lower than a preset value. The value pulls the rate of change of the bit value back to a value greater than the preset value. For example, when the rate of change of the bit value is lower than 30%, if the bit value is greater than a threshold value for setting a high end (this threshold value can be set, for example, as a bit value which can represent half of the maximum value, but not The host 208 controls the sampling circuit 206 to reduce the voltage value of the sampling signal S1 through the control unit 206. If the bit value is not greater than a threshold value of the set low end, the host 208 controls the sampling circuit 206 to raise the sampling signal S1. Voltage value.

值得注意的是,在部分實施例中,主機208可更具有一圖形使用者介面,其用以顯示取樣訊號的類比數位轉換解析度,並接收使用者的設定,主機208依據使用者的設定控制控制單元206調整取樣訊號S1的電壓值,以提高取樣訊號S1的類比數位轉換解析度。It should be noted that, in some embodiments, the host 208 may further have a graphical user interface for displaying the analog digital conversion resolution of the sampled signal, and receiving the user's settings, and the host 208 controls according to the user's settings. The control unit 206 adjusts the voltage value of the sampling signal S1 to increase the analog digital conversion resolution of the sampling signal S1.

圖3繪示為本發明另一實施例之發電裝置的示意圖。請參照圖3,在本實施例中,發電裝置300的取樣電路204包括一分壓模組302、一取樣單元304、一步進馬達控制單元306、步進馬達308以及橋接協調單元310。其中分壓模組302耦接發電單元202、取樣單元304及橋接協調單元310,橋接協調單元310耦接進馬達308,另外取樣單元304與步進馬達308皆耦接控制單元206。3 is a schematic diagram of a power generating device according to another embodiment of the present invention. Referring to FIG. 3 , in the embodiment, the sampling circuit 204 of the power generating device 300 includes a voltage dividing module 302 , a sampling unit 304 , a stepping motor control unit 306 , a stepping motor 308 , and a bridge coordination unit 310 . The voltage dividing module 302 is coupled to the power generating unit 202, the sampling unit 304, and the bridge coordination unit 310. The bridge coordination unit 310 is coupled to the motor 308, and the sampling unit 304 and the stepping motor 308 are coupled to the control unit 206.

分壓模組302包括可變電阻VR及取樣電阻R1,可變電阻VR的一端耦接至取樣電阻R1的一端,可變電阻VR的另一端則耦接至發電單元202的輸出電源端NP+,取樣電阻R1的另一端則耦接至發電單元202的輸出電源端NP-。可變電阻VR的控制端則藉由橋接協調單元310而耦接至步進馬達308。藉此,分壓模組302可依據可變電阻VR及取樣電阻R1的阻抗比率來產生輸出分壓電壓VDIV 。於其他實施例中,分壓模組302亦可將可變電阻VR及取樣電阻R1的耦接關係相互置換,本發明並不限制於此。The voltage dividing module 302 includes a variable resistor VR and a sampling resistor R1. One end of the variable resistor VR is coupled to one end of the sampling resistor R1, and the other end of the variable resistor VR is coupled to the output power terminal NP+ of the power generating unit 202. The other end of the sampling resistor R1 is coupled to the output power terminal NP- of the power generating unit 202. The control terminal of the variable resistor VR is coupled to the stepper motor 308 by the bridge coordination unit 310. Thereby, the voltage dividing module 302 can generate the output divided voltage V DIV according to the impedance ratio of the variable resistor VR and the sampling resistor R1. In other embodiments, the voltage dividing module 302 can also replace the coupling relationship between the variable resistor VR and the sampling resistor R1, and the present invention is not limited thereto.

取樣單元304用以取樣分壓電壓VDIV 以產生取樣訊號S1。控制單元206接收取樣信號S1,並利用分壓模組302中的阻抗比率來還原輸出電壓Vout,執行最大功率追蹤演算法(maximum power point tracking,MPPT)來判斷並取得輸出電壓Vout的相關參數(例如最大輸出功率、輸出電壓Vout的變動範圍等)。控制單元206依據這些輸出電壓Vout的相關參數,並配合可變電阻VR的相關控制參數及步進馬達308的相關控制技術來控制步進馬達控制單元306輸出角度轉動信號SC (於本實施例的角度轉動信號SC 可以是一種脈衝寬度調變(Pulse Width Modulation,PWM)信號)。The sampling unit 304 is configured to sample the divided voltage V DIV to generate the sampling signal S1. The control unit 206 receives the sampling signal S1, and restores the output voltage Vout by using the impedance ratio in the voltage dividing module 302, and performs a maximum power point tracking (MPPT) to determine and obtain the relevant parameters of the output voltage Vout ( For example, the maximum output power, the variation range of the output voltage Vout, and the like). The control unit 206 controls the stepping motor control unit 306 to output the angular rotation signal S C according to the relevant parameters of the output voltage Vout and the related control parameters of the variable resistor VR and the related control technology of the stepping motor 308 (in this embodiment). The angular rotation signal S C may be a Pulse Width Modulation (PWM) signal.

步進馬達308接收並依據角度轉動信號SC 來隨之調整可變電阻VR的電阻值,以動態調整分壓模組302的阻抗比率。藉此,發電裝置300可利用動態調整分壓模組302的阻抗比率,將分壓電壓VDIV 控制在取樣單元304的取樣範圍內。控制單元206可利用角度轉動信號SC 來控制步進馬達308以動態調整可變電阻VR的電阻值,在部分實施例中,控制單元206內可儲存取樣電阻R1的電阻值,以利用可變電阻VR及取樣電阻R1的電阻值來取得分壓模組302的阻抗比率。The stepping motor 308 receives and adjusts the resistance value of the variable resistor VR according to the angular rotation signal S C to dynamically adjust the impedance ratio of the voltage dividing module 302. Thereby, the power generating device 300 can control the divided voltage V DIV within the sampling range of the sampling unit 304 by dynamically adjusting the impedance ratio of the voltage dividing module 302. The control unit 206 can use the angular rotation signal S C to control the stepping motor 308 to dynamically adjust the resistance value of the variable resistor VR. In some embodiments, the resistance value of the sampling resistor R1 can be stored in the control unit 206 to utilize the variable The resistance value of the resistor VR and the sampling resistor R1 is used to obtain the impedance ratio of the voltage dividing module 302.

此外,由於可變電阻VR及步進馬達308不一定相互匹配,因此可利用橋接協調單元310依據步進馬達308的轉動來調整可變電阻VR的電阻值。於本實施例中,橋接協調單元310以齒輪组作為其實現方式。旋鈕式可變電阻VR具有刻度設計(對應步進馬達特性,以2度角為一刻度),因此便可利用齒輪组將步進馬達308及旋鈕式可變電阻的轉動角度進行比例上的修正。例如,在步進馬達308轉動了特定角度時,旋鈕式可變電阻VR便可藉由橋接協調單元310而增加或減少對應的刻度,藉以調整其電阻值。而於其他實施例中,亦可利用步進馬達308及不同的橋接協調單元310來調整滑動式或其他機械式可變電阻VR的電阻值。In addition, since the variable resistor VR and the stepping motor 308 do not necessarily match each other, the bridge coordination unit 310 can be used to adjust the resistance value of the variable resistor VR according to the rotation of the stepping motor 308. In the present embodiment, the bridge coordination unit 310 uses a gear set as its implementation. The knob type variable resistor VR has a scale design (corresponding to the stepping motor characteristic, which is a scale of 2 degrees), so that the rotation angle of the stepping motor 308 and the knob type variable resistor can be proportionally corrected by the gear set. . For example, when the stepping motor 308 is rotated by a certain angle, the knob type variable resistor VR can increase or decrease the corresponding scale by the bridge coordination unit 310, thereby adjusting its resistance value. In other embodiments, the stepping motor 308 and the different bridge coordination unit 310 can also be used to adjust the resistance value of the sliding or other mechanical variable resistor VR.

值得注意的是,符合本實施例精神的可變電阻VR應為機械式可變電阻,例如旋鈕式可變電阻、滑動式可變電阻等,藉以受控於步進馬達308。本實施例以旋鈕式可變電阻作為其實現方式,因此控制單元206可利用旋鈕式可變電阻的轉動角度及阻抗變化的對應關係(此對應關係可為一線性關係,但不限制於此)來計算出步進馬達308所需轉動的角度及方向,藉以輸出角度轉動信號SC 來驅動步進馬達308進行轉動,達到調整可變電阻VR之電阻值的目的。It should be noted that the variable resistor VR conforming to the spirit of the embodiment should be a mechanical variable resistor such as a knob type variable resistor, a sliding type variable resistor or the like, thereby being controlled by the stepping motor 308. In this embodiment, the knob type variable resistor is used as the implementation manner. Therefore, the control unit 206 can utilize the corresponding relationship between the rotation angle of the knob type variable resistor and the impedance change (this correspondence relationship can be a linear relationship, but is not limited thereto). The angle and direction of rotation required by the stepping motor 308 are calculated, and the angle rotation signal S C is output to drive the stepping motor 308 to rotate to achieve the purpose of adjusting the resistance value of the variable resistor VR.

另外,在本實施例中,主機208的圖形使用者介面更可顯示步進馬達308目前的轉動角度、轉動步進馬達308的目標角度、輸出電壓Vout之電壓值以及取樣訊號的類比數位轉換解析度。其中輸出電壓Vout之電壓值為控制單元206依據取樣訊號S1以及分壓模組302的阻抗比率計算得到後,再將其傳送至主機208進行顯示。In addition, in the embodiment, the graphical user interface of the host 208 can further display the current rotation angle of the stepping motor 308, the target angle of the rotary stepping motor 308, the voltage value of the output voltage Vout, and the analog digital conversion analysis of the sampled signal. degree. The voltage value of the output voltage Vout is calculated by the control unit 206 according to the impedance ratio of the sampling signal S1 and the voltage dividing module 302, and then transmitted to the host 208 for display.

本發明實施例之發電裝置300採用機械式元件(例如機械式可變電阻VR及步進馬達308)來精確調整取樣電路310的取樣範圍,除了亦可如圖2實施例提高取樣訊號S1的類比數位轉換解析度外,由於機械式元件受到環境因素(例如:環境溫度、溼度等)的影響較小,藉此,應用本實施例者便可減少因環境因素而導致的故障機率。The power generating device 300 of the embodiment of the present invention uses a mechanical component (for example, a mechanical variable resistor VR and a stepping motor 308) to accurately adjust the sampling range of the sampling circuit 310, in addition to increasing the analogy of the sampling signal S1 as shown in the embodiment of FIG. In addition to the digital conversion resolution, since the mechanical component is less affected by environmental factors (for example, ambient temperature, humidity, etc.), the application of the present embodiment can reduce the probability of failure due to environmental factors.

圖4繪示為本發明一實施例之發電裝置的取樣方法流程圖。請參照圖4,歸納上述發電裝置200的取樣方法可包括下列步驟。首先,取樣發電裝置的輸出電壓以得到取樣訊號(步驟S402)。在部分實施例中,取樣訊號可以一預設時間間隔對輸出電壓進行取樣而得到。接著,依據取樣訊號執行一最大電源功率追蹤演算法,以將取樣訊號轉換為一位元訊號(步驟S404)。然後,依據位元值的變化率調整取樣訊號的電壓值,以調整映射比例(步驟S406)。其中位元值為位元訊號所對應之數值,映射比例為取樣訊號之電壓值與位元訊號所對應之處理器記憶單元位元數值的比值換算出來的解析度格數,以一般A/D為10bits之處理器為例,即為1024格。最後,將輸出電壓的電壓值顯示於一圖形使用者介面上(步驟S408)。4 is a flow chart of a sampling method of a power generating device according to an embodiment of the present invention. Referring to FIG. 4, the sampling method of the power generating device 200 described above may be summarized as follows. First, the output voltage of the power generating device is sampled to obtain a sampling signal (step S402). In some embodiments, the sampling signal can be obtained by sampling the output voltage at a predetermined time interval. Then, a maximum power power tracking algorithm is executed according to the sampling signal to convert the sample signal into a one-bit signal (step S404). Then, the voltage value of the sampling signal is adjusted according to the rate of change of the bit value to adjust the mapping ratio (step S406). The bit value is the value corresponding to the bit signal, and the mapping ratio is the resolution of the ratio of the voltage value of the sampled signal to the bit value of the processor memory unit corresponding to the bit signal, in general A/D. For example, the processor of 10bits is 1024 grids. Finally, the voltage value of the output voltage is displayed on a graphical user interface (step S408).

詳細來說,依據位元值的變化率調整取樣訊號的電壓值的步驟可包括,每間隔一預設取樣次數判斷位元值的變化率是否低於一預設值(步驟S4061)。若位元值的變化率低於預設值,則調整取樣訊號的電壓值,以將位元值的變化率拉回至大於預設值(步驟S4062)。舉例來說,當位元值的變化率低於預設值時,可先判斷位元值是否大於一門檻值,若位元值大於一設定高端之門檻值,則降低取樣訊號的電壓值,若位元值未大於一設定低端之門檻值,則升高取樣訊號的電壓值,以將位元值拉回至大於預設值,此時便可進入到步驟S408。相反地,若在步驟S4061判斷出位元值的變化率未低於預設值,則可直接進入步驟S408。In detail, the step of adjusting the voltage value of the sampling signal according to the rate of change of the bit value may include determining whether the rate of change of the bit value is lower than a predetermined value every predetermined number of sampling intervals (step S4061). If the rate of change of the bit value is lower than the preset value, the voltage value of the sample signal is adjusted to pull back the rate of change of the bit value to be greater than the preset value (step S4062). For example, when the rate of change of the bit value is lower than the preset value, it may first determine whether the bit value is greater than a threshold value, and if the bit value is greater than a threshold value of the set high end, the voltage value of the sampled signal is decreased. If the bit value is not greater than a threshold value of the set low end, the voltage value of the sampling signal is raised to pull the bit value back to be greater than the preset value, and then the process proceeds to step S408. Conversely, if it is determined in step S4061 that the rate of change of the bit value is not lower than the preset value, the process may proceed directly to step S408.

綜上所述,本發明藉由依據位元值的變化率調整取樣訊號的電壓值,以調整取樣訊號與位元訊號間的映射比例,如此便可避免取樣訊號的類比數位轉換解析度因取樣訊號的電壓值過大、過小或變化幅度不明顯而下降,可有效提高取樣訊號的類比數位轉換解析度,進而使發電裝置獲得最佳的轉換效率。In summary, the present invention adjusts the mapping ratio between the sampled signal and the bit signal by adjusting the voltage value of the sample signal according to the rate of change of the bit value, so as to avoid the analog digital conversion resolution of the sampled signal due to sampling. If the voltage value of the signal is too large, too small, or the amplitude of the change is not obvious, it can effectively improve the analog digital conversion resolution of the sampled signal, so that the power generation device can obtain the best conversion efficiency.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100...太陽能發電裝置100. . . Solar power plant

110...太陽能板110. . . Solar panels

120...電源轉換模組120. . . Power conversion module

130...負載130. . . load

140...取樣電路140. . . Sampling circuit

150...微控制器150. . . Microcontroller

200、300...發電裝置200, 300. . . Power generation unit

202...發電單元202. . . Power generation unit

204...取樣電路204. . . Sampling circuit

206...控制單元206. . . control unit

208...主機208. . . Host

302...分壓模組302. . . Voltage dividing module

304...取樣單元304. . . Sampling unit

306...步進馬達控制單元306. . . Stepper motor control unit

308...步進馬達308. . . Stepper motor

310...橋接協調單元310. . . Bridge coordination unit

Vout...輸出電壓Vout. . . The output voltage

S1...取樣訊號S1. . . Sampling signal

VR...可變電阻VR. . . Variable resistance

R1...取樣電阻R1. . . Sampling resistor

NP+、NP-...輸出電源端NP+, NP-. . . Output power terminal

VDIV ...分壓電壓V DIV . . . Voltage divider

SC ...角度轉動信號S C . . . Angle rotation signal

S402~S408...發電裝置的取樣方法步驟S402~S408. . . Sampling method steps of power generation unit

圖1繪示為習知之太陽能發電裝置的示意圖。FIG. 1 is a schematic diagram of a conventional solar power generation device.

圖2繪示為本發明一實施例之發電裝置的示意圖。2 is a schematic diagram of a power generating device according to an embodiment of the present invention.

圖3繪示為本發明另一實施例之發電裝置的示意圖。3 is a schematic diagram of a power generating device according to another embodiment of the present invention.

圖4繪示為本發明一實施例之發電裝置的取樣方法流程圖。4 is a flow chart of a sampling method of a power generating device according to an embodiment of the present invention.

S402~S408...發電裝置的取樣方法步驟S402~S408. . . Sampling method steps of power generation unit

Claims (15)

一種發電裝置,包括:一發電單元,產生一輸出電壓;一取樣電路,耦接該發電單元,取樣該輸出電壓而輸出一取樣訊號;一控制單元,耦接該取樣電路,控制該取樣電路調整該取樣訊號的電壓值,並執行一最大電源功率追蹤演算法,將該取樣訊號轉換為一位元訊號;以及一主機,連接該控制單元,依據一位元值的變化率控制該控制單元調整該取樣訊號的電壓值,以調整一映射比例,其中該位元值為該位元訊號所對應之數值,該映射比例為該取樣訊號之電壓值與該位元訊號所對應之數值的比值。A power generating device includes: a power generating unit that generates an output voltage; a sampling circuit coupled to the power generating unit, sampling the output voltage to output a sampling signal; and a control unit coupled to the sampling circuit to control the sampling circuit to adjust Sampling the voltage value of the signal, and performing a maximum power-power tracking algorithm to convert the sampled signal into a one-bit signal; and a host connected to the control unit to control the control unit to adjust according to a rate of change of the one-bit value The voltage value of the sampled signal is adjusted to adjust a mapping ratio, wherein the bit value is a value corresponding to the bit signal, and the mapping ratio is a ratio of a voltage value of the sampled signal to a value corresponding to the bit signal. 如申請專利範圍第1項所述之發電裝置,其中該控制單元以一預設時間間隔對該輸出電壓進行取樣,該主機每間隔一預設取樣次數判斷該位元值的變化率是否低於一預設值,若該位元值的變化率低於該預設值,則調整該取樣訊號的電壓值,以將該位元值的變化率拉回至大於該預設值。The power generating device of claim 1, wherein the control unit samples the output voltage at a predetermined time interval, and the host determines whether the rate of change of the bit value is lower than a predetermined number of sampling intervals. a preset value, if the rate of change of the bit value is lower than the preset value, adjusting a voltage value of the sample signal to pull the rate of change of the bit value back to be greater than the preset value. 如申請專利範圍第2項所述之發電裝置,其中當該位元值的變化率低於該預設值時,若該位元值大於一設定之高端門檻值,該主機控制該取樣電路降低該取樣訊號的電壓值,若該位元值的變化率未大於一設定之低端該門檻值,則該主機控制該取樣電路升高該取樣訊號的電壓值。The power generating device of claim 2, wherein when the rate of change of the bit value is lower than the preset value, if the bit value is greater than a set high-end threshold, the host controls the sampling circuit to decrease The voltage value of the sample signal, if the rate of change of the bit value is not greater than a threshold value of the set low end, the host controls the sampling circuit to increase the voltage value of the sample signal. 如申請專利範圍第1項所述之發電裝置,其中該主機具有一圖形使用者介面,用以顯示該取樣訊號的類比數位轉換解析度,並接收使用者的設定,該主機依據該使用者的設定控制該控制單元調整該取樣訊號的電壓值。The power generating device of claim 1, wherein the host has a graphical user interface for displaying an analog digital conversion resolution of the sampled signal, and receiving a user setting according to the user The setting controls the control unit to adjust the voltage value of the sampled signal. 如申請專利範圍第1項所述之發電裝置,其中該取樣電路包括:一分壓模組,耦接該發電單元,對該輸出電壓進行分壓,以輸出一分壓電壓;一取樣單元,耦接該分壓模組與該控制單元,取樣該分壓電壓以產生該取樣訊號;一步進馬達控制單元,耦接至該控制單元,受控於該控制單元而輸出一角度轉動信號;以及一步進馬達,耦接該步進馬達控制單元與該分壓模組,依據該角度轉動信號調整該分壓模組的分壓阻抗比率,進而調整該分壓電壓。The power generating device of claim 1, wherein the sampling circuit comprises: a voltage dividing module coupled to the power generating unit, and dividing the output voltage to output a divided voltage; a sampling unit, Coupling the voltage dividing module and the control unit, sampling the divided voltage to generate the sampling signal; a stepping motor control unit coupled to the control unit, and controlling the control unit to output an angular rotation signal; A stepping motor is coupled to the stepping motor control unit and the voltage dividing module, and adjusts a voltage dividing impedance ratio of the voltage dividing module according to the angle rotation signal, thereby adjusting the voltage dividing voltage. 如申請專利範圍第5項所述之發電裝置,其中該分壓模組包括:一取樣電阻,耦接至該取樣單元;以及一可變電阻,該可變電阻的一端耦接至該取樣電阻的一端,該可變電阻的另一端耦接至該輸出電壓的第一端,且該可變電阻的控制端耦接至該步進馬達,而該取樣電阻的另一端耦接至該輸出電源的第二端,其中該步進馬達受控於該步進馬達控制單元而調整該可變電阻的電阻值。The power generating device of claim 5, wherein the voltage dividing module comprises: a sampling resistor coupled to the sampling unit; and a variable resistor, one end of the variable resistor coupled to the sampling resistor The other end of the variable resistor is coupled to the first end of the output voltage, and the control end of the variable resistor is coupled to the stepping motor, and the other end of the sampling resistor is coupled to the output power source The second end, wherein the stepping motor is controlled by the stepping motor control unit to adjust the resistance value of the variable resistor. 如申請專利範圍第6項所述之發電裝置,其中該可變電阻為一旋鈕式可變電阻。 The power generating device of claim 6, wherein the variable resistor is a knob type variable resistor. 如申請專利範圍第7項所述之發電裝置,更包括:一橋接協調單元,耦接至該可變電阻與該步進馬達之間,用以依據該步進馬達的轉動來調整該可變電阻的電阻值。 The power generating device of claim 7, further comprising: a bridge coordination unit coupled between the variable resistor and the stepping motor for adjusting the variable according to the rotation of the stepping motor The resistance value of the resistor. 如申請專利範圍第8項所述之發電裝置,其中該橋接協調單元為一齒輪组,用以將該步進馬達與該旋紐式可變電阻的轉動角度進行比例修正。 The power generating device of claim 8, wherein the bridge coordination unit is a gear set for proportionally correcting a rotation angle of the stepping motor and the knob type variable resistor. 如申請專利範圍第5項所述之發電裝置,其中該主機具有一圖形使用者介面,用以顯示該步進馬達目前的轉動角度、轉動該步進馬達的目標角度、該輸出電壓之電壓值以及該取樣訊號的類比數位轉換解析度,並接收使用者的設定,以使該主機依據該使用者的設定控制該控制單元調整該取樣訊號的電壓值。 The power generating device of claim 5, wherein the host has a graphical user interface for displaying a current rotation angle of the stepping motor, a target angle of rotating the stepping motor, and a voltage value of the output voltage. And the analog digital conversion resolution of the sampled signal, and receiving the user's setting, so that the host controls the control unit to adjust the voltage value of the sampled signal according to the user's setting. 如申請專利範圍第10項所述之發電裝置,該控制單元依據該取樣訊號以及該分壓模組的阻抗比率計算該輸出電壓之電壓值,並將該輸出電壓之電壓值傳送至該主機進行顯示。 The power generating device according to claim 10, wherein the control unit calculates a voltage value of the output voltage according to the sampling signal and an impedance ratio of the voltage dividing module, and transmits the voltage value of the output voltage to the host. display. 一種發電裝置的取樣方法,包括:取樣該發電裝置的一輸出電壓以得到一取樣訊號;依據該取樣訊號執行一最大電源功率追蹤演算法,將該取樣訊號轉換為一位元訊號;以及 依據一位元值的變化率調整該取樣訊號的電壓值,以調整一映射比例,其中該位元值為該位元訊號所對應之數值,該映射比例為該取樣訊號之電壓值與該位元訊號所對應之數值的比值。 A sampling method for a power generating device includes: sampling an output voltage of the power generating device to obtain a sampling signal; performing a maximum power power tracking algorithm according to the sampling signal, converting the sampling signal into a bit signal; Adjusting the voltage value of the sample signal according to the rate of change of the one-bit value to adjust a mapping ratio, wherein the bit value is a value corresponding to the bit signal, and the mapping ratio is a voltage value of the sample signal and the bit The ratio of the values corresponding to the yuan signal. 如申請專利範圍第12項所述之發電裝置的取樣方法,其中該取樣訊號為以一預設時間間隔對該輸出電壓進行取樣而得到,依據該取樣訊號的電壓變化率調整該取樣訊號的電壓值的步驟包括:每間隔一預設取樣次數判斷該位元值的變化率是否低於一預設值;以及若該位元值的變化率低於該預設值,則調整該取樣訊號的電壓值,以將該位元值的變化率拉回至大於該預設值。 The method for sampling a power generating device according to claim 12, wherein the sampling signal is obtained by sampling the output voltage at a predetermined time interval, and adjusting a voltage of the sampling signal according to a voltage change rate of the sampling signal. The step of determining includes: determining, by a predetermined number of sampling intervals, whether the rate of change of the bit value is lower than a preset value; and adjusting the sampling signal if the rate of change of the bit value is lower than the preset value The voltage value is to pull back the rate of change of the bit value to be greater than the preset value. 如申請專利範圍第13項所述之發電裝置的取樣方法,其中調整該取樣訊號的電壓值,以將該位元值的變化率拉回至大於該預設值的步驟包括:判斷該位元值是否大於一門檻值;若該位元值大於該門檻值,降低該取樣訊號的電壓值;若該位元值未大於該門檻值,升高該取樣訊號的電壓值。 The sampling method of the power generating device of claim 13, wherein the step of adjusting the voltage value of the sampling signal to pull the rate of change of the bit value back to the preset value comprises: determining the bit Whether the value is greater than a threshold; if the value of the bit is greater than the threshold, the voltage value of the sampled signal is decreased; if the value of the bit is not greater than the threshold, the voltage of the sampled signal is raised. 如申請專利範圍第11項所述之發電裝置的取樣方法,更包括:將該輸出電壓的電壓值顯示於一圖形使用者介面上。 The method for sampling a power generating device according to claim 11, further comprising: displaying the voltage value of the output voltage on a graphical user interface.
TW100149876A 2011-12-30 2011-12-30 Power generating apparatus and sampling method thereof TWI475808B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100149876A TWI475808B (en) 2011-12-30 2011-12-30 Power generating apparatus and sampling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100149876A TWI475808B (en) 2011-12-30 2011-12-30 Power generating apparatus and sampling method thereof

Publications (2)

Publication Number Publication Date
TW201328195A TW201328195A (en) 2013-07-01
TWI475808B true TWI475808B (en) 2015-03-01

Family

ID=49225327

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149876A TWI475808B (en) 2011-12-30 2011-12-30 Power generating apparatus and sampling method thereof

Country Status (1)

Country Link
TW (1) TWI475808B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697196B (en) * 2019-12-13 2020-06-21 財團法人工業技術研究院 Power distribution control apparatus of power generation system and power distribution control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892354A (en) * 1995-09-22 1999-04-06 Canon Kabushiki Kaisha Voltage control apparatus and method for power supply
US6984970B2 (en) * 2002-09-19 2006-01-10 Alcatel Conditioning circuit for a power supply at the maximum power point, a solar generator, and a conditioning method
US7796412B2 (en) * 2006-03-23 2010-09-14 Enphase Energy, Inc. Method and apparatus for converting direct current to alternating current

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892354A (en) * 1995-09-22 1999-04-06 Canon Kabushiki Kaisha Voltage control apparatus and method for power supply
US6984970B2 (en) * 2002-09-19 2006-01-10 Alcatel Conditioning circuit for a power supply at the maximum power point, a solar generator, and a conditioning method
US7796412B2 (en) * 2006-03-23 2010-09-14 Enphase Energy, Inc. Method and apparatus for converting direct current to alternating current

Also Published As

Publication number Publication date
TW201328195A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
Gomathy et al. Design and implementation of maximum power point tracking (MPPT) algorithm for a standalone PV system
CN102411075B (en) Solar photovoltaic cell simulation system and simulation method for same
US7960863B2 (en) System and method of determining maximum power point tracking for a solar power inverter
CN102736661B (en) MPPT control method in novel photovoltaic system
CN101592969B (en) Method and device for tracking control of solar electrical energy generation
CN101877559A (en) Compound control method for fast and accurate tracking control of maximum power point of photovoltaic power generation system
WO2011036669A9 (en) System and method for generating an alternating current output signal
US20130015321A1 (en) Intelligent Solar Panel Array
CN105116957B (en) A kind of maximum power point of photovoltaic power generation system tracking
Anusha et al. Design and development of real time clock based efficient solar tracking system
CN103149945A (en) Sun azimuth tracking control system
Khemliche et al. Bond graph modeling and optimization of photovoltaic pumping system: Simulation and experimental results
KR101277762B1 (en) Method for Maximum Power Point Tracking in Mismatched Solar Cell
TWI475808B (en) Power generating apparatus and sampling method thereof
CN103529862A (en) Intelligent tracking device of distributed type networked photovoltaic cell panel and control method of device
CN201039038Y (en) Self-adapted sun tracking device for photovoltaic power generation
CN201830172U (en) Solar automatic tracking power generation device
CN107732966B (en) MPPT (maximum power point tracking) optimization control method for small wind driven generator based on duty ratio
CN203338147U (en) Accurate and automatic tracking system for photovoltaic panel of solar power plant
CN203324833U (en) DSP-based dual-axis high-accuracy sun tracking controller
CN111752311A (en) Photovoltaic panel position optimization governing system
TWI408527B (en) Photovoltaic power apparatus and sampling method thereof
Zhengxi et al. The control method and design of photovoltaic tracking system
KR101530973B1 (en) Hybrid Type Method for Tracking Sunlight
Baek et al. Development of novel MPPT algorithm of PV system considering radiation variation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees