TWI475741B - Separator substrate, electrochemical cell including separator, and method for fabricating separator - Google Patents

Separator substrate, electrochemical cell including separator, and method for fabricating separator Download PDF

Info

Publication number
TWI475741B
TWI475741B TW099147153A TW99147153A TWI475741B TW I475741 B TWI475741 B TW I475741B TW 099147153 A TW099147153 A TW 099147153A TW 99147153 A TW99147153 A TW 99147153A TW I475741 B TWI475741 B TW I475741B
Authority
TW
Taiwan
Prior art keywords
substrate
particles
separator
ionic
preparation
Prior art date
Application number
TW099147153A
Other languages
Chinese (zh)
Other versions
TW201228073A (en
Inventor
Jason Fang
Li Duan Tsai
Yueh Wei Lin
Cheng Liang Cheng
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099147153A priority Critical patent/TWI475741B/en
Publication of TW201228073A publication Critical patent/TW201228073A/en
Application granted granted Critical
Publication of TWI475741B publication Critical patent/TWI475741B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

隔離膜材、包含隔離膜之電化學電池及隔離膜材之製備方法Isolation membrane, electrochemical cell including separator and preparation method of separator

本發明係關於一種複合材料和製備與使用該複合材料之方法,特別係關於一種具一高分子材料與離子奈米顆粒之混合材料,以及該混合材料不同的應用,例如在電池和電化學電池。The present invention relates to a composite material and a method of preparing and using the same, in particular to a mixed material having a polymer material and ion nano particles, and a different application of the mixed material, such as in a battery and an electrochemical battery. .

在許多的應用中,使用單一、整塊材料的需求是昂貴、困難且難以達成的。例如,特定的應用需要陶瓷材料所具備的化學及/或熱穩定性,及一些高分子材料所具有的機械彈性與對特定種類加工(例如:擠製(extrusion)、旋製(spin-coating)等)的易加工性。在這種情況下,由兩或以上不同種類材料組合而成之複合及/或混合材料可被使用。使用的例子跨越許多不同的領域和應用,包括電化學電池、太空工程和裝甲。In many applications, the need to use a single, monolithic material is expensive, difficult, and difficult to achieve. For example, specific applications require the chemical and/or thermal stability of ceramic materials, as well as the mechanical elasticity of some polymeric materials and the processing of specific types (eg, extrusion, spin-coating). Easy processing. In this case, a composite and/or hybrid material composed of two or more different kinds of materials may be used. The examples used span many different fields and applications, including electrochemical cells, space engineering, and armor.

以下說明係在不限制本揭露的範圍的前提下之例舉,一種混合材料應用的例子是電池隔離膜或是使用在電化學電池之隔離膜。電池或電化學電池隔離膜必須能夠隔離電極,並仍能保持足夠程度的離子導電性。隔離膜可為薄、多孔並具好的機械強度的絕緣材料。高分子隔離膜經常被使用,主要是因為其具高機械強度且容易為一些加工技術來製備,其中該等加工技術可使其具高多孔性。常用在電池隔離膜之高分子材料之例子包含有機聚烯烴以及複合材料(如:聚丙烯/聚乙烯/聚丙烯)。然而,某些傳統高分子材料欠缺熱穩定性、化學穩定性,或者兩者。這些特性使它們不適合某些應用,例如:曝露在高腐蝕性的化學環境或高溫環境,前述之一種環境或兩種環境可能在高效能的電池中發生。因此,高效能電池傾向使用無機隔離膜(例如:玻璃和陶瓷隔離膜),無機隔離膜可與它們的具腐蝕性和非高分子電解質相容;而某些無機隔離膜具有易脆或難加工等缺點。The following description is exemplified without limiting the scope of the present disclosure. An example of a mixed material application is a battery separator or a separator used in an electrochemical cell. The battery or electrochemical cell separator must be able to isolate the electrode and still maintain a sufficient level of ionic conductivity. The separator may be an insulating material that is thin, porous, and has good mechanical strength. Polymer separators are often used mainly because of their high mechanical strength and are easily prepared by some processing techniques, which can make them highly porous. Examples of polymer materials commonly used in battery separators include organic polyolefins and composite materials (e.g., polypropylene/polyethylene/polypropylene). However, some conventional polymer materials lack thermal stability, chemical stability, or both. These characteristics make them unsuitable for certain applications, such as exposure to highly corrosive chemical environments or high temperature environments, one or both of which may occur in high performance batteries. Therefore, high-performance batteries tend to use inorganic separators (such as glass and ceramic separators), inorganic separators are compatible with their corrosive and non-polymer electrolytes; and some inorganic separators are brittle or difficult to process. And so on.

圖1A例示一種作為習知電池隔離膜材料之陶瓷/高分子複合材料1。如圖1A所示,基底2,一般為高分子,以氧基(oxide group)4做官能基化。基底2可為多孔狀,因此可增加離子交換可用的表面積。表面官能基化4讓基底2表面可塗覆一層材料6,藉此改善熱和化學穩定性及溼潤性等性質。使用在電池應用中的電解質對溼潤性的影響特別受到矚目,因為低電解質溼潤性的隔離膜會降低或減少電池的效率。在許多的例子中,材料6可包含多個粒子6a,其中粒子6a可包含陶瓷、玻璃及/或金屬氧化物成份。該等粒子可以數種方法堆積在基底2上,例如:溶膠凝膠法(Sol-gel processing)或濕沈降(wet deposition)法。通常,為保持材料6的完整,必須施加某種黏著劑6b,以將粒子6a間彼此黏著。為使材料6固定或保持在表面上,也必須將材料6加熱到足以使陶瓷粒子6a燒結的溫度。燒結可能造成一些粒子6a和其他粒子6a或和黏著劑6b間產生化學鍵結。以例言,燒結會活化粒子6a-黏著劑6b-粒子6a及/或粒子6a-黏著劑6b-基底6間之化學交聯。在一些例子中,燒結甚至會造成粒子6a部份或完全熔合。況且,燒結製程的高熱會降低基底2的品質。再者,使用黏著劑6b有明顯的壞處,包括先天上限制粒子6a之密度以及採用在電化學電池內嚴苛化學環境下會劣化的化學藥劑(chemical agent)。Fig. 1A illustrates a ceramic/polymer composite material 1 as a conventional battery separator material. As shown in FIG. 1A, the substrate 2, which is generally a polymer, is functionalized with an oxide group 4. Substrate 2 can be porous, thus increasing the surface area available for ion exchange. Surface functionalization 4 allows the surface of the substrate 2 to be coated with a layer of material 6, thereby improving properties such as thermal and chemical stability and wettability. The effect of the use of electrolytes in battery applications on wettability is particularly noticeable because low electrolyte wettability separators can reduce or reduce battery efficiency. In many examples, material 6 can comprise a plurality of particles 6a, wherein particles 6a can comprise ceramic, glass, and/or metal oxide components. The particles may be deposited on the substrate 2 in several ways, such as Sol-gel processing or wet deposition. Usually, in order to maintain the integrity of the material 6, an adhesive 6b must be applied to adhere the particles 6a to each other. In order to fix or retain the material 6 on the surface, it is also necessary to heat the material 6 to a temperature sufficient to sinter the ceramic particles 6a. Sintering may cause chemical bonding between some of the particles 6a and other particles 6a or with the adhesive 6b. By way of example, sintering will activate the chemical cross-linking between the particles 6a-adhesive 6b-particles 6a and/or particles 6a-adhesive 6b-substrate 6. In some instances, sintering may even cause partial or complete fusion of particles 6a. Moreover, the high heat of the sintering process lowers the quality of the substrate 2. Furthermore, the use of adhesive 6b has significant disadvantages, including congenitally limiting the density of particles 6a and the use of chemical agents that degrade under harsh chemical environments within electrochemical cells.

圖1B為一示範的基底之電子顯微照片。圖1B是自S.S. Zhang等人之論文“A review on the separators of liquid electrolyte Li-ion batteries,”Journal of Power Sources,Volume 164,Issue 1,2007,page 351。翻印。圖1B顯示一不織布基底15a。特別地,圖1B例示添加粒子6a前,不織布基底15b之上視影像。圖1B例示具有數條纖維15a之不織布基底15b。Figure 1B is an electron micrograph of an exemplary substrate. Figure 1B is a paper "S review on the separators of liquid electrolyte Li-ion batteries," Journal of Power Sources, Volume 164, Issue 1, 2007, page 351, by S. S. Zhang et al. Reprinted. Figure 1B shows a nonwoven substrate 15a. In particular, FIG. 1B illustrates a top view image of the nonwoven substrate 15b before the addition of the particles 6a. Figure 1B illustrates a nonwoven substrate 15b having a plurality of fibers 15a.

圖1C顯示一陶瓷/不織布隔離膜600之上視圖,其中陶瓷/不織布隔離膜600是將具有微粒子、金屬氧化物和黏著劑之塗覆630形成在市售不織布基底表面上。圖1C是自S.S. Zhang等人之論文“A review on the separators of liquid electrolyte Li-ion batteries,”Journal of Power Sources,Volume 164,Issue 1,2007,page 351。翻印。圖1C例示多個金屬氧化物粒子614和在粒子614間之黏著劑616。1C shows a top view of a ceramic/non-woven release film 600 in which a coating 630 having microparticles, metal oxides, and an adhesive is formed on the surface of a commercially available nonwoven substrate. Figure 1C is a paper "S review on the separators of liquid electrolyte Li-ion batteries," Journal of Power Sources, Volume 164, Issue 1, 2007, page 351. Reprinted. FIG. 1C illustrates a plurality of metal oxide particles 614 and an adhesive 616 between the particles 614.

在這些例子中之每一個,保護陶瓷層是相當厚(幾個微米)。再者,在一些應用或製程,此保護層是使用黏著劑及/或高溫燒結所形成,而此形成方法會劣化或限制基底、保護層或兩者之性質。無論是何種狀況,複合材料或混成材料之化學和熱穩定性都會受影響。In each of these examples, the protective ceramic layer is quite thick (several microns). Moreover, in some applications or processes, the protective layer is formed using an adhesive and/or high temperature sintering which degrades or limits the properties of the substrate, protective layer or both. In either case, the chemical and thermal stability of the composite or hybrid material is affected.

在一實施例中,本揭露是針對一隔離膜材,其包含一基底,其中該基底具一主體部和一表面部。表面部具至少一多孔區域,而該至少一多孔區域具一淨電荷;以及複數個離子顆粒,耦接至少部份之多孔區域,其中部份之該些離子顆粒具與該多孔區域之該淨電荷相反之一淨電荷。在本實施例之一些變化態樣中,其他離子顆粒可具與該多孔區域之該淨電荷相同之淨電荷。部份之至少部份之多孔區域和離子顆粒間之耦接使隔離基材具電化學效能、化學穩定性、吸濕性、熱穩定性和強韌性中之至少一者之特性。In one embodiment, the present disclosure is directed to a barrier film comprising a substrate, wherein the substrate has a body portion and a surface portion. The surface portion has at least one porous region, and the at least one porous region has a net charge; and the plurality of ion particles are coupled to at least a portion of the porous region, wherein a portion of the ionic particles have a porous region The net charge is opposite to one of the net charges. In some variations of this embodiment, the other ionic particles may have the same net charge as the net charge of the porous region. The coupling of at least a portion of the porous region and the ionic particles provides the barrier substrate with at least one of electrochemical performance, chemical stability, hygroscopicity, thermal stability, and toughness.

在另一實施例中,本揭露是針對一種電化學電池,其包含一隔離膜。隔離膜包含一基底,基底具一主體部和一表面部。一覆層覆蓋至少部份之該表面部。該至少部份之該表面部係多孔狀。該覆層離子接合在該至少部份之該表面部。部份之至少部份之多孔區域和離子顆粒間之耦接使隔離基材具有增進電化學效能、化學穩定性、熱穩定性、介面相容性和強韌性中之至少一者之特性。In another embodiment, the present disclosure is directed to an electrochemical cell that includes a separator. The separator includes a substrate having a body portion and a surface portion. A coating covers at least a portion of the surface portion. At least a portion of the surface portion is porous. The cladding ion is bonded to the at least a portion of the surface portion. The coupling of at least a portion of the porous region and the ionic particles provides the barrier substrate with at least one of enhanced electrochemical performance, chemical stability, thermal stability, interface compatibility, and toughness.

在另一實施例中,本揭露是針對一種隔離膜材之製備方法。該方法包含處理一基底,使該基底之一表面部具一淨電荷;以及將複數個離子顆粒耦接至少部份之該表面部。離子顆粒具與該表面部之淨電荷相反之淨電荷。離子顆粒與至少部份之該表面部之耦接使該隔離膜具有電化學效能、化學穩定性、熱穩定性、吸濕性和強韌性中之至少一者之特性。In another embodiment, the present disclosure is directed to a method of making a barrier film. The method includes processing a substrate such that a surface portion of the substrate has a net charge; and coupling the plurality of ion particles to at least a portion of the surface portion. The ionic particles have a net charge that is opposite to the net charge of the surface portion. The coupling of the ionic particles to at least a portion of the surface portion provides the separator with characteristics of at least one of electrochemical performance, chemical stability, thermal stability, hygroscopicity, and toughness.

圖2A至2C例示符合本發明所揭露之實施例之使用離子顆粒之一隔離膜結構和組合。圖2A例示處理前之一示範基底10。圖2B例示經一示範表面處理後之一基底10,其中表面處理使該基底10之一表面區域10a帶負電荷。圖2C例示與帶相反電荷之離子材料接觸後之基底10。雖然圖2B顯示帶負電荷之基底10,但此僅為範例。如以下所述,此製程可以不同的方式執行,例如使用帶正電荷之基底10和帶負電荷之離子顆粒14。2A through 2C illustrate an isolation membrane structure and combination using one of the ionic particles in accordance with an embodiment of the present invention. FIG. 2A illustrates one exemplary substrate 10 prior to processing. 2B illustrates a substrate 10 after an exemplary surface treatment in which surface treatment causes one surface region 10a of the substrate 10 to be negatively charged. Figure 2C illustrates substrate 10 after contact with an oppositely charged ionic material. Although FIG. 2B shows the negatively charged substrate 10, this is merely an example. As described below, this process can be performed in different ways, such as using a positively charged substrate 10 and negatively charged ionic particles 14.

圖2A例示一基底10。如例所示,基底10為不導電,如此它能將表面電荷12保留在它的表面區域(surface region)10a或部份表面區域10a。然而,在一些實施例中,基底10可有導電部份及/或導熱部份。基底10可包含數種運用在不同場合的材料。例如,基底10可包含高分子材料,如:有機聚烯烴(organic polyolefin)、和複合材料(如:聚丙烯/聚乙烯/聚丙烯),和包含其他常用在電化學電池內之材料(例如:纖維素(cellulose)、聚氯乙烯(PVC)、聚對苯二甲酸乙二醇酯(PET)、聚偏二氟乙烯(PVDF))。基底10也可包含其他種類之高分子材料及/或複合材料,包括(但不限於)聚丙烯(polypropylene)、如聚偏二氟乙烯(polyvinylidene fluoride)等之含氟聚合物,和其他不同高分子材料。除高分子材料外,基底10可為或包含無機、金屬或其他有機材料等其中一組成、前述材料之組合物或兩者之組合。FIG. 2A illustrates a substrate 10. As shown, the substrate 10 is non-conductive such that it retains the surface charge 12 in its surface region 10a or portion of the surface region 10a. However, in some embodiments, substrate 10 can have conductive portions and/or thermally conductive portions. Substrate 10 can comprise several materials that are used in different applications. For example, substrate 10 can comprise polymeric materials such as: organic polyolefins, and composite materials (eg, polypropylene/polyethylene/polypropylene), and other materials commonly used in electrochemical cells (eg, Cellulose, polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyvinylidene fluoride (PVDF). The substrate 10 may also comprise other kinds of polymer materials and/or composite materials including, but not limited to, polypropylene, fluoropolymers such as polyvinylidene fluoride, and the like. Molecular material. In addition to the polymeric material, the substrate 10 can be or comprise one of a composition of inorganic, metallic or other organic materials, a combination of the foregoing materials, or a combination of both.

基底10可包含多孔或實質多孔區域。例如,基底10可包含細孔,細孔穿過它的主體(bulk)10b和表面區域10a。此外,基底10上部份之表面區域10a及/或主體10b可具實質的多孔結構,而其他基底10之表面區域10a及/或主體10b之部份則無。以例言,基底10之表面區域10a及/或主體10b之有些部份缺少或具有較少之細孔,因而可維持結構的完整性。如果基底10用於嚴苛的化學環境,基底10之表面區域10a及/或主體10b之有些部份可不具有細孔,藉此保護基底10之部份區域及/或其他組成(components)不受周遭化學物質(例如:在電化學電池內的電解質)的影響。在這些和其他的應用裡,基底10可包含多孔和無孔區域及/或其他多孔性變化結構。Substrate 10 can comprise a porous or substantially porous region. For example, the substrate 10 may include pores that pass through its bulk 10b and surface area 10a. Further, the surface area 10a and/or the body 10b of the upper portion of the substrate 10 may have a substantially porous structure, while the surface area 10a of the other substrate 10 and/or portions of the body 10b are absent. By way of example, portions of surface area 10a and/or body 10b of substrate 10 lack or have fewer pores to maintain structural integrity. If the substrate 10 is used in a harsh chemical environment, portions of the surface region 10a of the substrate 10 and/or portions of the body 10b may have no pores, thereby protecting portions of the substrate 10 and/or other components from being affected. The effects of surrounding chemicals (eg, electrolytes in electrochemical cells). In these and other applications, substrate 10 can comprise porous and non-porous regions and/or other porous varying structures.

圖2A所例示之圓柱形狀之基底10僅為示範。基底10在不同的隔離膜上或其他的應用中可具不同的形狀。舉例言,基底10可被塑造成矩形柱狀及/或具一邊長顯著地較其他邊為長之長寬比(即牆形(wall-shaped))。基底10另可保持其管狀或長形狀,但具數種不同截面形狀(例如:方形、圓形、三角形、各種梯形等等)中之一種。基底10也可被製作以包含規律或不規律形狀。例如,基底10可包含數段具交叉層之纖維(cross-ply fiber),其會造成規律或不規律形狀。基底10另可具適合特殊應用之不規則或其他形狀。The cylindrically shaped substrate 10 illustrated in Figure 2A is merely exemplary. Substrate 10 can have different shapes on different barrier films or in other applications. For example, the substrate 10 can be shaped as a rectangular column and/or have a length-to-width ratio (i.e., wall-shaped) that is significantly longer on one side than the other sides. The substrate 10 can also maintain its tubular or elongated shape, but with one of several different cross-sectional shapes (eg, square, circular, triangular, various trapezoids, etc.). The substrate 10 can also be fabricated to include regular or irregular shapes. For example, substrate 10 can comprise a plurality of cross-ply fibers that can result in regular or irregular shapes. Substrate 10 may alternatively have irregularities or other shapes suitable for a particular application.

圖2D顯示一示範基底之電子顯微照片,該示範基底為一微細孔高分子基底(micro porous polymer substrate)15c,其可與本揭露同時使用。值得注意的是,圖1B例示之習知基底15b亦可與本發明同時使用。特別地,圖2D顯示一微細孔高分子基底15c之上視影像,其中該影像中之該微細孔高分子基底15c是在加入離子顆粒前之狀態。圖2D顯示具有細孔15d之微細孔高分子基底15c。2D shows an electron micrograph of an exemplary substrate, which is a microporous polymer substrate 15c that can be used in conjunction with the present disclosure. It should be noted that the conventional substrate 15b illustrated in FIG. 1B can also be used in conjunction with the present invention. Specifically, Fig. 2D shows a top view image of a microporous polymer substrate 15c in which the microporous polymer substrate 15c is in a state before the ion particles are added. Fig. 2D shows a microporous polymer substrate 15c having pores 15d.

圖2B例示在加入離子顆粒前之處理過後之基底10。一般而言,處理包含對基底10之表面區域10a進行表面處理。在例舉之實施例中,如圖2B顯示,處理使至少一區域之表面10a帶一淨電荷。以例言,處理可使整個表面區域10a帶負電荷,如所展示之在表面區域10a上之負電荷12。處理可不需使整個表面區域10a帶淨電荷,較有利地,在一些應用中,處理讓一部份(fraction)的表面區域10a帶淨電荷。在一些實例中,表面處理係在一特定圖案(例如:在表面區域10a上之某種有形的特徵或形狀)上進行是較有利的。舉例來說,表面區域10a上之凹部可賦予一淨表面電荷。一些技術可用來在表面區域10a產生特定之淨電荷圖案,例如包括微影技術。事實上,某些微影技術可允許在表面區域10a上規劃處理(treated)或帶電荷部份之尺寸、位置、幾何形狀和數量等。Figure 2B illustrates substrate 10 after treatment prior to the addition of ionic particles. In general, the treatment involves surface treatment of the surface region 10a of the substrate 10. In the illustrated embodiment, as shown in Figure 2B, the process causes the surface 10a of at least one region to carry a net charge. By way of example, processing can cause the entire surface region 10a to be negatively charged, as shown by the negative charge 12 on the surface region 10a. The treatment may not require the entire surface area 10a to be charged with a net charge, and advantageously, in some applications, the treatment will have a fractional surface area 10a with a net charge. In some instances, it may be advantageous to perform the surface treatment on a particular pattern (e.g., some tangible feature or shape on surface area 10a). For example, the recess on the surface region 10a can impart a net surface charge. Some techniques can be used to create a particular net charge pattern in surface area 10a, including, for example, lithography. In fact, some lithography techniques may allow for the size, location, geometry, number, etc. of the treated or charged portions to be planned on the surface region 10a.

本實施例運用在基底10之表面區域10a之處理方法是可使表面區域10a上帶電荷之數種方法中之其中之一種或以上。其中的例子包含將表面區域10a曝露在高能量處理下,如曝露表面區域10a於電漿。電漿處理可形成帶電荷之表面基團,而不犧牲或實質地改變基底10之主體性質(bulk properties)。電漿處理可包含以任何適合參數所產生之任何適合的電漿。以例言,基底10可在室溫下,以50瓦的功率用氧電漿(microwave oxygen plasma)處理5分鐘。電漿參數可按所需或所要產生之表面淨電荷而調整。電漿處理可或不能施行在超過基底10之一表面區域10a。例如,包含聚丙烯之基底10可用紫外線電漿照射,以在基底10表面產生帶淨電荷12的表面基團。淨電荷12可為正、負或兩者之組合(即,當不同部位之表面區域10a暴露在電漿下時改變或修改電漿參數,如此可在表面區域10a之不同部位上產生帶不同淨電荷之表面基團)。The treatment method applied to the surface region 10a of the substrate 10 in this embodiment is one or more of several methods for charging the surface region 10a. An example of this involves exposing surface area 10a to high energy processing, such as exposing surface area 10a to plasma. The plasma treatment can form charged surface groups without sacrificing or substantially altering the bulk properties of the substrate 10. The plasma treatment can comprise any suitable plasma produced by any suitable parameters. By way of example, substrate 10 can be treated with a microwave oxygen plasma for 5 minutes at room temperature at 50 watts. The plasma parameters can be adjusted to the desired or required surface net charge. The plasma treatment may or may not be performed over a surface area 10a of the substrate 10. For example, the substrate 10 comprising polypropylene may be irradiated with ultraviolet plasma to produce a surface group with a net charge 12 on the surface of the substrate 10. The net charge 12 can be positive, negative, or a combination of both (ie, changing or modifying the plasma parameters when the surface regions 10a of different locations are exposed to the plasma, such that different bands can be produced on different portions of the surface region 10a Surface group of charge).

處理方法亦可包含數種其他處理方法中之一種,包括化學處理、紫外線照射等。在一些實例中,表面上沈積來自溶液、真空或氣體環境之電荷基團是合適的。使部份表面區域10a帶淨電荷之任何適合方法均適用本揭露之範圍內。The treatment method may also include one of several other treatment methods, including chemical treatment, ultraviolet irradiation, and the like. In some instances, it may be appropriate to deposit a charge group from a solution, vacuum or gaseous environment on the surface. Any suitable method of rendering a portion of the surface region 10a with a net charge is within the scope of the present disclosure.

淨表面電荷12可為負(如圖2B所示),或在其他的實施例之為正。淨表面電荷12無需在整個表面區域10a都相同。以例言,在一些應用裡,表面區域10a的某些部份帶負表面電荷,而表面區域10a的其他部份則帶正表面電荷。在一些實例中,整個表面區域10a的總體表面電荷分布是電中性。The net surface charge 12 can be negative (as shown in Figure 2B) or positive in other embodiments. The net surface charge 12 need not be the same throughout the entire surface area 10a. By way of example, in some applications, some portions of surface region 10a have a negative surface charge, while other portions of surface region 10a have a positive surface charge. In some examples, the overall surface charge distribution of the entire surface region 10a is electrically neutral.

圖2C例示將離子顆粒14添加在圖2B所示之處理後之表面區域10a上。一般來說,離子顆粒14本身會帶一淨表面電荷16。離子顆粒14之淨表面電荷16與在部份表面區域10a上之淨表面電荷12的電性是相反的。在此例中,離子顆粒14被吸引至表面區域10a之部份,其係因淨表面電荷12與離子顆粒14之淨表面電荷16電性相反。雖然圖2C例示離子顆粒14帶正淨表面電荷16,然此僅為說明示範。在其他的配置中,離子顆粒14之淨表面電荷16可為負。另在其他的配置中,一些離子顆粒14可帶正表面電荷,而其他離子顆粒14則帶負表面電荷。離子顆粒14間之電荷量可不同的。Fig. 2C illustrates the addition of ionic particles 14 to the surface region 10a after the treatment shown in Fig. 2B. In general, the ionic particles 14 themselves carry a net surface charge 16. The net surface charge 16 of the ionic particles 14 is opposite to the electrical conductivity of the net surface charge 12 on the partial surface region 10a. In this case, the ionic particles 14 are attracted to portions of the surface region 10a because the net surface charge 12 is electrically opposite to the net surface charge 16 of the ionic particles 14. Although FIG. 2C illustrates that the ionic particles 14 have a positive net surface charge 16, this is merely illustrative. In other configurations, the net surface charge 16 of the ionic particles 14 can be negative. In still other configurations, some of the ionic particles 14 may have a positive surface charge while the other ionic particles 14 have a negative surface charge. The amount of charge between the ionic particles 14 can vary.

在一些變化實施例中,離子顆粒14帶均勻的淨表面電荷16是較有益的。這些實施例可包含需產生均勻或接近均勻覆蓋(covering)的應用。其他應用可能需雙峰(bimodal)、三峰(trimodal)或多峰(multimodal)分布,而對淨表面電荷有不同的要求。例如,在一些變化例中,讓帶特別低靜電荷量之一些離子顆粒14附著在表面區域10a上不平坦之處(例如:凹下處及/或細孔)是較為有利的。在這些和其他的變化例中,讓帶特別低靜電荷量之一些離子顆粒14覆蓋在表面區域10a之其他表面部份。更在一些其他變化例中,數群組之具不同淨表面電荷之離子顆粒14可被使用,以產生類似或額外的效果。In some variant embodiments, it is advantageous for the ionic particles 14 to have a uniform net surface charge 16. These embodiments may include applications that require uniform or near uniform coverage. Other applications may require bimodal, trimodal or multimodal distributions with different requirements for net surface charge. For example, in some variations, it may be advantageous to have some of the ionic particles 14 with a particularly low static charge attached to the surface region 10a that are not flat (e.g., recesses and/or pores). In these and other variations, some of the ionic particles 14 with a particularly low electrostatic charge are applied over the other surface portions of the surface region 10a. In still other variations, a plurality of groups of ionic particles 14 having different net surface charges can be used to produce similar or additional effects.

離子顆粒14可具不同大小。在一實施例中,離子顆粒14屬奈米等級。例如,它們的直徑可介於約1奈米至500奈米。在另一實施例中,離子顆粒14可具約在10奈米至30奈米之中等直徑。更在其他實施例中,一些離子顆粒14可具有大於數十微米(tens of micrometers)之直徑。離子顆粒14之粒徑分布可很小,離子顆粒14可如圖2C所示,實際上或大約呈單分散性(monodisperse)。在其他的變化例中,離子顆粒14可具特別地大粒徑分布,甚至粒徑分布含有差距數個量級(orders of magnitude)之直徑變異。這些和其他的應用可具有雙峰(bimodal)、三峰(trimodal)或多峰(multimodal)離子顆粒14粒子尺寸分布,以適合特殊應用。以例言,較大離子顆粒14可具有一定淨表面電荷16,而較小離子顆粒14可具有相同或不同之淨表面電荷16。具雙峰(bimodal)、三峰(trimodal)或多峰(multimodal)粒子尺寸分布的離子顆粒14,其尺寸可以與淨表面電荷16相關連之狀態。例如,較大的離子顆粒14具有較多的淨表面電荷16。然而,構成雙峰(bimodal)、三峰(trimodal)或多峰(multimodal)粒子尺寸分布之粒子可能是具相同淨表面電荷16之離子顆粒14。The ionic particles 14 can be of different sizes. In one embodiment, the ionic particles 14 are of the nanometer scale. For example, they may range in diameter from about 1 nanometer to 500 nanometers. In another embodiment, the ionic particles 14 can have a diameter of between about 10 nanometers and 30 nanometers. In still other embodiments, some of the ionic particles 14 can have a diameter greater than tens of micrometers. The particle size distribution of the ionic particles 14 can be small, and the ionic particles 14 can be substantially monodisperse as shown in Figure 2C. In other variations, the ionic particles 14 may have a particularly large particle size distribution, and even the particle size distribution may contain diameter variations of orders of magnitude. These and other applications may have bimodal, trimodal or multimodal ion particle 14 particle size distributions to suit a particular application. By way of example, larger ionic particles 14 may have a certain net surface charge 16, while smaller ionic particles 14 may have the same or different net surface charges 16. Ion particles 14 having a bimodal, trimodal or multimodal particle size distribution that are sized to be associated with a net surface charge 16. For example, the larger ionic particles 14 have more net surface charge 16 . However, particles constituting a bimodal, trimodal or multimodal particle size distribution may be ionic particles 14 having the same net surface charge 16.

雖然圖2C係以球形表示離子顆粒14,但此僅為說明用之示例。離子顆粒14在本案之脈絡中,可具有適合的形狀,包括各種幾何形狀、圓形、部份圓或不完整形狀。離子顆粒14可為具相當規則形狀之微結晶,或可為部份結晶及/或非結晶。離子顆粒14可具完全或部份不規則形狀,可為長形、扁平狀或具任何適合形狀。Although FIG. 2C shows the ionic particles 14 in a spherical shape, this is merely an illustrative example. The ionic particles 14 may have suitable shapes in the context of the present invention, including various geometric shapes, circles, partial circles, or incomplete shapes. The ionic particles 14 may be microcrystals of a fairly regular shape or may be partially crystalline and/or non-crystalline. The ionic particles 14 may have a full or partial irregular shape and may be elongated, flat or have any suitable shape.

離子顆粒14可被吸引至表面區域10a之部份,其係因淨表面電荷12與離子顆粒14之淨表面電荷16電性相反之故。此吸引力,在一些實例中,導致在離子顆粒14與表面區域10a上具相反淨電荷12之該部份之間,產生離子鍵結。在某些實例中,如果離子鍵結的強度足夠的話,此製程會產生如圖2C所示之層覆基底(coated substrate)100。特而言之,在離子顆粒14與表面區域10a上具相反淨電荷12之該部份之間會產生離子鍵結,而此離子鍵結會導致一由離子顆粒14構成之一表面層18之形成,表面層18覆蓋至少部份之表面區域10a。在一些變化例中,離子顆粒表面層18以覆蓋整個表面區域10a為較佳。在其他的應用,表面層18以僅覆蓋部份之表面區域10a為宜。The ionic particles 14 can be attracted to portions of the surface region 10a due to the net surface charge 12 being electrically opposite to the net surface charge 16 of the ionic particles 14. This attraction, in some instances, results in an ionic bond between the ionic particles 14 and the portion of the surface region 10a having an opposite net charge 12. In some instances, if the strength of the ionic bond is sufficient, the process produces a coated substrate 100 as shown in Figure 2C. In particular, ionic bonding occurs between the ionic particles 14 and the portion of the surface region 10a having an opposite net charge 12, and the ionic bonding results in a surface layer 18 formed by the ionic particles 14. Formed, the surface layer 18 covers at least a portion of the surface area 10a. In some variations, the ionic particle surface layer 18 is preferred to cover the entire surface area 10a. In other applications, the surface layer 18 preferably covers only a portion of the surface area 10a.

圖3A-1和3A-2顯示符合本發明揭露實施例之離子顆粒之合成,特別是離子顆粒,之示意圖。圖3B是符合本發明揭露實施例之一根據圖3A-1的合成方法合成之離子顆粒之一特寫、截面示意圖。離子顆粒14之粒芯14a(圖3A和3B)可包含無機材料,例如:金屬氧化物。圖3A-3和3A-4揭露數個與圖3A-2合成技術相連結並成功施行在本案的高分子電解質。3A-1 and 3A-2 show schematic representations of the synthesis of ionic particles, particularly ionic particles, in accordance with an embodiment of the present invention. 3B is a close-up, cross-sectional view of one of the ionic particles synthesized according to the synthesis method of FIG. 3A-1 in accordance with one embodiment of the present disclosure. The core 14a (Figs. 3A and 3B) of the ionic particles 14 may comprise an inorganic material such as a metal oxide. Figures 3A-3 and 3A-4 disclose several polymer electrolytes that are coupled to the synthesis technique of Figure 3A-2 and successfully implemented in the present case.

本揭露不特別限制於上述揭示之粒芯14a。任何化學上穩定及可耐化學侵蝕之材料所製作之粒芯均可使用。以例言,金屬氧化物在含特定環境下具化學穩定性,故其適合用於製作粒芯14a之材料。此環境可包含,鋰,電解質與其電解質添加劑。由於混合材料內之鋰和含鋰的化合物適合一些鋰離子電池應用,因此使用這些粒芯14a可改善化學穩定性。製作粒芯14a之合適金屬氧化物之例子包含(但不限於)二氧化矽(SiO2 )、氧化鋅(ZnO)、二氧化錫(SnO2 )、二氧化鈦(TiO2)、氧化鋯(ZrO2)、氧化鋁(Al2O3)、鈦酸鋇(BaTiO3)、氧化釔(Y2O3)、氧化鎂(MgO)、氧化鎳(NiO)、氧化鈣(CaO)。此外,形狀為空心球體之氧化物或其他材料亦可用作粒芯14a。粒芯14a也可為或包括其他種類之無機材料,例如:陶瓷、玻璃、矽及/或金屬。粒芯14a亦可包含或完全以有機材料或碳基材料所製作。粒芯14a可以任何適用本案之合適的技術所製作。例如,粒芯14a可以沈澱法(precipitation techniques)、溶凝膠法(sol-gel techniques)或微乳液(microemulsion)或奈米乳液化法(nanoemulsion techniques)。粒芯14a可以是以燒結或其他製程所製作之無機奈米結晶或其他奈米結晶。以熱穩定性材料製作之粒芯14a也可使用。例如,在某些應用中,溫度150℃以上的熱穩定性是有助益的。具此熱穩定性之適合的粒芯14a包含任何上述提及之粒芯14a,以及具合適熱穩定性之其他材料,包括有機或無機。以例言,一金屬氧化物粒芯14a會被選用,是因其具有較高分子材料或其他基底10具有較高的熱穩定性。在此和其他實例中,由具一示範金屬氧化物粒芯14a之離子顆粒14所構成之一離子顆粒表面層30可改善整個隔離膜基底100之整體熱穩定性。在一些應用中,與基底10相較,使用具較高溼潤性之粒芯14a是有益的。換言之,使用以上述金屬氧化物中之一者、其他在此討論之材料,或其他隱含材料所製作之粒芯14a可改善隔離膜100對電解質之溼潤性,其中基底10使用之材料對同樣的電解質之溼潤性低。例如,一金屬氧化物粒芯14a會被選取,是因其相較於高分子基底10,具較高之電解質溼潤性。在此和其他的實例,具由金屬氧化物製作之粒芯14a之離子顆粒14所構成之一離子顆粒層30可改善整個隔離膜100之整體溼潤性。The present disclosure is not particularly limited to the above-described disclosed core 14a. Any core made of chemically stable and chemically resistant materials can be used. By way of example, metal oxides are chemically stable in a particular environment and are therefore suitable for use in making the core 14a. This environment can include lithium, electrolytes and their electrolyte additives. Since the lithium and lithium-containing compounds in the hybrid material are suitable for some lithium ion battery applications, the use of these cores 14a improves chemical stability. Examples of suitable metal oxides for making the core 14a include, but are not limited to, cerium oxide (SiO 2 ), zinc oxide (ZnO), tin dioxide (SnO 2 ), titanium dioxide (TiO 2 ), zirconia (ZrO 2 ), Alumina (Al 2 O 3 ), barium titanate (BaTiO 3 ), yttrium oxide (Y 2 O 3 ), magnesium oxide (MgO), nickel oxide (NiO), calcium oxide (CaO). Further, an oxide or other material in the form of a hollow sphere may be used as the core 14a. The core 14a may also be or include other types of inorganic materials such as ceramics, glass, tantalum and/or metals. The core 14a may also be made of or entirely made of an organic material or a carbon-based material. The core 14a can be made of any suitable technique suitable for use in the present case. For example, the core 14a may be a precipitation technique, a sol-gel technique or a microemulsion or a nanoemulsion technique. The core 14a may be inorganic nanocrystals or other nanocrystals produced by sintering or other processes. A core 14a made of a thermally stable material can also be used. For example, in some applications, thermal stability above 150 °C is helpful. Suitable cores 14a of this thermal stability comprise any of the aforementioned cores 14a, as well as other materials having suitable thermal stability, including organic or inorganic. By way of example, a metal oxide core 14a will be selected for its higher thermal stability due to its higher molecular material or other substrate 10. In this and other examples, one of the ionic particle surface layers 30 formed of ionic particles 14 having an exemplary metal oxide core 14a can improve the overall thermal stability of the entire separator substrate 100. In some applications, it is beneficial to use a core 14a having a higher wettability than the substrate 10. In other words, the use of a core 14a made of one of the above metal oxides, other materials discussed herein, or other hidden materials can improve the wettability of the separator 100 to the electrolyte, wherein the substrate 10 is made of the same material. The electrolyte has low wettability. For example, a metal oxide core 14a is selected because it has a higher electrolyte wettability than the polymer substrate 10. In this and other examples, the ionic particle layer 30, which is composed of the ionic particles 14 of the core 14a made of a metal oxide, improves the overall wettability of the entire separator 100.

在一些應用中,使用較基底10之機械穩定性為高之粒芯14a同樣是有益的。換言之,使用以上述金屬氧化物中之一者、其他在此討論之材料,或其他隱含材料所製作之粒芯14a可改善隔離膜100之機械強韌性,其中基底10使用之材料具較低之機械穩定性。例如,一金屬氧化物粒芯14a會被選取,是因其相較於高分子基底10,具較高之機械穩定性。在此和其他的實例,由具金屬氧化物粒芯14a之離子顆粒14所構成之一離子顆粒層30可改善整個隔離膜100之機械強韌性。在許多的實例中,使用實質地絕緣或非導電粒芯14a同樣是有利的,如此可避免或降低通過離子顆粒14內部之短路,其中絕緣或非導電粒芯14a之材料可為金屬氧化物。在一些應用中,粒芯14a具溼潤性,特別是對電解質的溼潤性,同樣是有益處的。換言之,使用以上述金屬氧化物中之一者、其他在此討論之材料,或其他隱含材料所製作之粒芯14a可改善隔離膜100之電解質溼潤性,其中基底10使用之材料具電解質溼潤性。一金屬氧化物粒芯14a會被選取,是因其相較於高分子基底10具較高之電解質溼潤性。在此和其他的實例,由具金屬氧化物粒芯14a之離子顆粒14所構成之一離子顆粒層30可改善整個隔離膜100之電解質溼潤性。粒芯材料會因其會改善對使用在不同應用中之任何液體或電解質之溼潤性而被選擇,包括電池應用。合適電解質之例子包含,但不限於,丙烯碳酸酯(propylene carbonate)和其他市售和非市售電解質。In some applications, it is also beneficial to use a core 14a that is mechanically stable compared to the substrate 10. In other words, the use of the core 14a made of one of the above metal oxides, other materials discussed herein, or other hidden materials can improve the mechanical toughness of the separator 100, wherein the substrate 10 is made of a lower material. Mechanical stability. For example, a metal oxide core 14a is selected because it has a higher mechanical stability than the polymer substrate 10. In this and other examples, one of the ionic particle layers 30 composed of the ionic particles 14 having the metal oxide core 14a improves the mechanical toughness of the entire separator 100. In many instances, it is also advantageous to use a substantially insulating or non-conductive core 14a to avoid or reduce shorting through the interior of the ionic particles 14, wherein the material of the insulating or non-conductive core 14a can be a metal oxide. In some applications, the core 14a is also wet, especially for the wettability of the electrolyte. In other words, the use of a core 14a made of one of the above metal oxides, other materials discussed herein, or other hidden materials, can improve the electrolyte wettability of the separator 100, wherein the substrate 10 is wetted with an electrolyte. Sex. A metal oxide core 14a is selected because it has a higher electrolyte wettability than the polymer substrate 10. In this and other examples, the ionic particle layer 30 composed of the ionic particles 14 having the metal oxide core 14a can improve the electrolyte wettability of the entire separator 100. The core material will be selected for its improved wettability to any liquid or electrolyte used in different applications, including battery applications. Examples of suitable electrolytes include, but are not limited to, propylene carbonate and other commercially available and non-commercially available electrolytes.

在一些應用中,粒芯材料14a能夠增進隔離膜在電化學上的特性。這些特性可能包含降低隔離膜電阻,提升電解液的含浸量,改變有效離子遷移數。在相關實施例中,導入粒蕊材料14a的隔離膜著實有助於充放電的效能表現。導入粒蕊材料14a的隔離膜可能也適用於高能量移轉,高傳輸效率,或是穩定高速/低速充放電的電池元件中。In some applications, the core material 14a is capable of enhancing the electrochemical properties of the separator. These characteristics may include reducing the resistance of the separator, increasing the impregnation of the electrolyte, and changing the effective ion migration number. In a related embodiment, the barrier film introduced into the core material 14a contributes to the performance of charge and discharge. The separator introduced into the core material 14a may also be suitable for high energy transfer, high transmission efficiency, or stable high speed/low speed charge and discharge battery elements.

如圖3B所示,粒芯14a可使用與粒芯14a耦合之接枝劑及/或錨定基團(anchor group)14b進行官能基化。任何適合的接枝劑14b皆可使用。合適接枝劑14b之例子包含,但不限於,三烷氧矽烷(trialkoxysilanes)、磷酸酯(phosphonates)、磺酸鹽(sulfonates)及/或其他雙牙配位基(bidentate ligands)。合適接枝劑14b之額外例子包含含一級胺之矽甲烷(primary amine-containing silane)、含二級胺之矽甲烷(secondary amine-containing silane)、含三級胺之矽甲烷(tertiary amine-containing silane)、含四級胺之矽甲烷(quaternary amine-containing silane)、含羧基之矽甲烷(carboxylic containing silane)、含磺酸基之矽甲烷(sulfonate containing silane)或含磷酸化合物之矽甲烷(phosphate-containing silane)。適合的接枝劑14b包含至少有一個末端多官能基(n2),其並至少有一個下列元素:氮N硫S硼B磷P碳C矽Si氧O。As shown in FIG. 3B, the core 14a can be functionalized using a grafting agent and/or an anchor group 14b coupled to the core 14a. Any suitable grafting agent 14b can be used. Examples of suitable grafting agents 14b include, but are not limited to, trialkoxysilanes, phosphonates, sulfonates, and/or other bidentate ligands. Additional examples of suitable grafting agents 14b include primary amine-containing silanes, secondary amine-containing silanes, tertiary amine-containing methane (tertiary amine-containing) Silane), quaternary amine-containing silane, carboxylic acid containing silane, sulfonate containing silane or phosphoric acid containing compound -containing silane). Suitable grafting agent 14b comprises at least one terminal polyfunctional group (n 2), which has at least one of the following elements: nitrogen N sulfur S boron B phosphorus P carbon C 矽 Si oxygen O.

接枝劑14b可進一步包含具一淨電荷16之一官能基18,如圖3A-1所繪示。適合的官能基18包含(但不限於)具一單一正電荷之含氮官能基18,如圖3B所示。後者之例子包含,例如,NR4+官能基(其中,R包含數種元素,包括氫)、銨基(ammonium groups;NH4+)等等。然而,任何具一淨電荷(正或負)之合適官能基可與接枝劑14b一同使用。雖然圖3B顯示陰離子Cl-,然此僅為範例。任何合適陰離子均可使用;而其他適合陰離子可包含溴化物(bromide)、氟化物(fluoride)、碘化物(iodide)和其他適合陰離子。The grafting agent 14b can further comprise a functional group 18 having a net charge of 16, as depicted in Figure 3A-1. Suitable functional groups 18 include, but are not limited to, nitrogen-containing functional groups 18 having a single positive charge, as shown in Figure 3B. Examples of the latter include, for example, NR4+ functional groups (wherein R contains several elements including hydrogen), ammonium groups (NH4+), and the like. However, any suitable functional group having a net charge (positive or negative) can be used with the grafting agent 14b. Although FIG. 3B shows an anion Cl-, this is merely an example. Any suitable anion can be used; while other suitable anions can include bromide, fluoride, iodide, and other suitable anions.

除了使用接枝劑14b的技術,粒蕊材料14a也能利用前例技術高分子電解質進行改質。適用的技術包括整合奈米矽和高分子在膠體粒子上(如:Frank Caruso,Science,282,1111(1998).)。如圖3A-2所示,利用高分子電解質24b合成離子型粒子24,某種程度上相似利用接枝劑14b合成離子型粒子14(圖3A-1)。在圖3A-2和3A-1製程上最大的差異在於高分子電解質24b跟粒蕊間並沒有強烈的化學共價鍵。然而離子顆粒24經由圖3A-2的製程方式仍可能具有與先前技術離子顆粒14本質上相同的性質、功能與特性。換句話說,本案爾後所討論涉及離子顆粒14的應用與性質將等同於離子顆粒24。In addition to the technique of using the grafting agent 14b, the core material 14a can also be modified by the prior art polymer electrolyte. Suitable techniques include the integration of nanopellets and macromolecules on colloidal particles (e.g., Frank Caruso, Science, 282, 1111 (1998).). As shown in Fig. 3A-2, the ionic particles 24 are synthesized by the polymer electrolyte 24b, and the ionic particles 14 are synthesized in some similar manner by the grafting agent 14b (Fig. 3A-1). The biggest difference in the process of Figures 3A-2 and 3A-1 is that there is no strong chemical covalent bond between the polymer electrolyte 24b and the core. However, the ionic particles 24 may still have substantially the same properties, functions, and characteristics as the prior art ionic particles 14 via the process of Figures 3A-2. In other words, the application and properties of the ionic particles 14 discussed in the present case will be equivalent to the ionic particles 24.

適用在圖示3A-2的高分子電解質24b必須帶有相當淨電荷(正或負)。圖3A-3和3A-4分別列出可使用在本合成技術的高分子電解質。圖3A-3是正電荷型高分子電解質聚氯化己二烯二甲基胺Poly(diallyldimethylammonium chloride)。圖3A-4是負電荷型高分子電解質聚(4-苯乙烯磺酸)鋰鹽(Poly(4-styrenesulfonic acid) lithium)。其他適用的高分子電解質包括:聚丙烯氯化銨Poly(allylamine hydrochloride),聚苯乙烯磺酸鈉Poly(sodium 4-styrenesulfonate),聚苯乙烯磺酸鈉Poly(vinylsulfonic acid,sodium salt),聚(對二甲苯四氫噻吩鎓氯化物) Poly(p-xylene tetrahydrothiophenium chloride),and聚丙烯酸鈉Poly(acrylic acid sodium salt).適用的高分子電解質必須具有合適的電荷28進而可在離子粒子24的表面上導入靜電荷26。此外,正負電荷的結合交錯使用也在施行範圍。The polymer electrolyte 24b suitable for use in the drawing 3A-2 must have a relatively net charge (positive or negative). 3A-3 and 3A-4 respectively show polymer electrolytes which can be used in the present synthesis technique. 3A-3 is a positively charged polymer electrolyte poly(diallyldimethylammonium chloride). 3A-4 is a negatively charged polymer electrolyte poly(4-styrenesulfonic acid) lithium. Other suitable polymer electrolytes include: Polyallylamine hydrochloride, sodium 4-styrenesulfonate, Polysulfonate sodium (Polysulfate), Poly (Sodium Salt), Poly(Sodium Polystyrene Sulfate) Poly(p-xylene tetrahydrothiophenium chloride), and sodium polyacrylate (Poly(acrylic acid sodium salt). Suitable polymer electrolytes must have a suitable charge 28 and thus be on the surface of the ionic particles 24. An electrostatic charge 26 is introduced on it. In addition, the combination of positive and negative charges is also used in the implementation range.

如圖3A-2製程,其包含在特定pH值,沉積相反電荷的高分子電解質24b在膠體粒子14之上。主要是藉由靜電吸引力將高分子電解質層24b建構(build-up)或是堆疊在膠體粒子14之上,最終形成離子粒子24。穩定沉積後的高分子電解質仍然會有多出的電荷(正或負)基團。其可應用在與膠體粒子14表面或是其他未使用的電荷基團相作用,這可能將會引發電荷的過補償效應,有助於在膠體粒子14上利用靜電吸引力堆疊多層的高分子電解質24b。As shown in the process of Fig. 3A-2, it contains a polymer electrolyte 24b which deposits an opposite charge at a specific pH value above the colloidal particles 14. The polymer electrolyte layer 24b is mainly build-up or stacked on the colloidal particles 14 by electrostatic attraction, and finally the ion particles 24 are formed. The polymer electrolyte after stable deposition still has an extra charge (positive or negative) group. It can be applied to the surface of the colloidal particles 14 or other unused charge groups, which may cause an overcompensation effect of the charge, which helps to stack the multilayered polymer electrolyte on the colloidal particles 14 by electrostatic attraction. 24b.

圖3C-1和3C-2顯示符合本發明揭露實施例之使用圖3A-1與3A-2離子顆粒之混合材料和經處理之高分子基底等之合成物之示意圖。圖3D例示符合本發明揭露實施例之圖3C-1之混合材料隔離膜之示意圖。如與圖3A-1和3B或是3A-2相關內文中描述之合成離子顆粒14可懸浮在溶液20中。溶液20然後可接觸基底10,特別是與具淨電荷12之表面區域10a接觸。將溶液20和離子顆粒14或24導入基材10的適用方法包含含浸塗佈,噴塗塗佈,狹縫模具式塗佈,流動塗佈,凹版印刷式塗佈,噴墨塗佈等等將離子顆粒披覆在基材表面。3C-1 and 3C-2 are schematic views showing a composition using the mixed material of the ionic particles of Figs. 3A-1 and 3A-2 and the treated polymer substrate or the like in accordance with the disclosed embodiment of the present invention. Figure 3D illustrates a schematic view of the hybrid material barrier of Figure 3C-1 in accordance with an embodiment of the present invention. Synthetic ionic particles 14 as described in the context of Figures 3A-1 and 3B or 3A-2 can be suspended in solution 20. Solution 20 can then contact substrate 10, particularly in contact with surface area 10a having a net charge 12. Suitable methods for introducing solution 20 and ionic particles 14 or 24 into substrate 10 include impregnation coating, spray coating, slot die coating, flow coating, gravure coating, ink jet coating, etc. The particles are coated on the surface of the substrate.

當表面區域10a之淨電荷12與離子顆粒14上的淨電荷16或是與離子顆粒24上的淨電荷26電性相反時(為例示和舉例說明,如圖3C-1和3C-2分別所示之負電性與正電性),離子鍵結會發生在離子顆粒14與24和表面區域10a之間。在此例子中,離子顆粒14與24會與表面區域10a結合,在隔離膜100上形成由離子顆粒14與24所構成之一表面層30,如圖3D所顯示。圖4A和4B是符合本發明揭露實施例且顯示沈積在帶電荷之基底之圖3A中之合成離子顆粒之一顯微照片。離子顆粒24可能鍵結在表面區域10a而形成離子顆粒24層狀結構30構築在隔離膜之基底100之上When the net charge 12 of the surface region 10a is electrically opposite to the net charge 16 on the ionic particles 14 or the net charge 26 on the ionic particles 24 (for illustration and illustration, as shown in Figures 3C-1 and 3C-2, respectively) The electronegativity and positive charge are shown to occur between the ionic particles 14 and 24 and the surface region 10a. In this example, the ionic particles 14 and 24 are combined with the surface region 10a, and a surface layer 30 composed of the ionic particles 14 and 24 is formed on the separator 100 as shown in Fig. 3D. 4A and 4B are photomicrographs of one of the synthetic ionic particles of Fig. 3A consistent with the disclosed embodiment and shown deposited on a charged substrate. The ionic particles 24 may be bonded to the surface region 10a to form ionic particles. The layered structure 30 is constructed on the substrate 100 of the separator.

溶液20可為數種適合用來沈積離子顆粒14或24之溶液之一。例如,合適溶液包含水(淨化、去離子及/或具有添加物或其他添加)、各式合適有機溶劑(例如:乙醇(ethanol)、丙酮(acetone))或前述溶液和其他溶液之混合。儘管許多不同溶液20可被使用,重要的考量是離子顆粒14或24在溶液20中之zeta-電位(zeta potential;ζ),其關係到離子顆粒14在溶液20中所需要的整體電荷。離子顆粒14或24在溶液20中具較低ζ(例如:-30mV<ζ<30mV)時,會導致弱或低淨表面電荷,因而造成顆粒聚集。ζ值與離子顆粒14或24間之斥力成比例變化,其反向地影響離子顆粒14或24間凝聚或聚集的傾向。在溶液中具較高ζ值(例如:-30mV>ζ或ζ>30mV)之離子顆粒14或24會導致高表面電荷12,因而會在顆粒間產生較強的斥力。具低表面電荷12之離子顆粒14或24會傾向凝聚。具相當高表面電荷12之離子顆粒14或24會遭受強斥力作用,而使表面區域10a的有效覆蓋會被抑制或降低。改變溶液20的特性(例如:酸鹼值)可改變一特定組之離子顆粒14或24之ζ值,從而可相應地改變沈積特性。例如,在溶液20中,具相當大、正ζ值之離子顆粒14或24可能導致在一些表面上不勻稱的覆蓋。儘管一範圍的酸鹼值可在本案中被使用,然亦可因應特定的應用所需,而準備合適的酸鹼值、ζ值和離子顆粒14或24之表面電荷。一般而言,酸鹼值介於1至10是適當的,儘管在一些應用中,會使用超出範圍的酸鹼值。通常,ζ值在-70mV至70mV之間的範圍是適合用來在高分子基底10上產生相當均勻、穩定的離子顆粒覆層。然而,可理解的是,此處敘述的技術在施行時,可伴隨任何合適的ζ值。實際上,ζ值也可調整或改變,以提供所需的表面區域10a之覆蓋。Solution 20 can be one of several solutions suitable for depositing ionic particles 14 or 24. For example, suitable solutions include water (purification, deionization and/or with additives or other additions), various suitable organic solvents (eg, ethanol, acetone) or a mixture of the foregoing solutions and other solutions. Although many different solutions 20 can be used, an important consideration is the zeta-potential of the ionic particles 14 or 24 in solution 20, which is related to the overall charge required for the ionic particles 14 in solution 20. When the ionic particles 14 or 24 have a lower enthalpy (e.g., -30 mV < ζ < 30 mV) in the solution 20, a weak or low net surface charge is caused, thereby causing particle aggregation. The enthalpy changes in proportion to the repulsion between the ionic particles 14 or 24, which adversely affects the tendency of the ionic particles 14 or 24 to agglomerate or aggregate. Ion particles 14 or 24 with a higher enthalpy (for example: -30 mV > ζ or ζ > 30 mV) in solution result in a high surface charge of 12 and thus a stronger repulsion between the particles. Ion particles 14 or 24 with a low surface charge 12 tend to agglomerate. The ionic particles 14 or 24 having a relatively high surface charge 12 are subjected to a strong repulsion, and the effective coverage of the surface region 10a is suppressed or lowered. Varying the properties of solution 20 (e.g., pH) can alter the enthalpy of a particular set of ionic particles 14 or 24, thereby altering the deposition characteristics accordingly. For example, in solution 20, ionic particles 14 or 24 having a relatively large, positive enthalpy may result in uneven coverage on some surfaces. Although a range of pH values can be used in this case, the appropriate pH, enthalpy, and surface charge of the ionic particles 14 or 24 can be prepared for the particular application. In general, a pH of between 1 and 10 is suitable, although in some applications an out-of-range pH value will be used. Generally, a range of enthalpy values between -70 mV and 70 mV is suitable for producing a relatively uniform and stable ionic particle coating on the polymer substrate 10. However, it will be understood that the techniques described herein can be accompanied by any suitable threshold. In fact, the threshold can also be adjusted or changed to provide the desired coverage of the surface area 10a.

儘管圖3D例示一表面層30,其係為在基底10上均勻分布之離子顆粒14或24所構成,此僅為例示說明。事實上,離子顆粒14或24可群聚、覆蓋及/或附著在基底10之表面區域10a的不同部份上,如前所討論。Although FIG. 3D illustrates a surface layer 30 which is constructed of ionic particles 14 or 24 uniformly distributed on the substrate 10, this is merely illustrative. In fact, the ionic particles 14 or 24 can be clustered, covered and/or attached to different portions of the surface region 10a of the substrate 10, as previously discussed.

圖4A和4B是符合本發明揭露實施例且分別為一示意圖和一顯微照片,其個別顯示沈積在帶電荷之基底之雙層離子顆粒。圖4A是一橫截面,其顯示沈積在帶負電荷之基底10上由帶正電荷之離子顆粒44a所構成之第一層42。第一層42之沈積步驟可如同上述內文中描述離子顆粒14和表面層30之內容。一旦第一層42被沈積後,無論是單層或複層,如圖4A所示,一由帶負電荷之離子顆粒44b所構成之第二層46可被沈積在第一層42上。雖然圖4A和圖4B都顯示帶負電荷之離子顆粒44b較帶正電荷之離子顆粒44a為大,但此僅是說明例示。顆粒44a和44b可為任何適合大小的安排(例如:44a可比44b為大,反之亦然或相同大小等等)。再者,此特殊的電荷安排僅是說明例示。例如,基底10可帶正電荷,離子顆粒44a帶負電,而離子顆粒44b帶正電。此項技藝人士可意識到其他的組合是明確提及,是隱含、暗喻或不明確提及,且應被視為本發明之不同變化例。4A and 4B are schematic views and a photomicrograph, respectively, consistent with the disclosed embodiments of the present invention, each showing double layer ionic particles deposited on a charged substrate. Figure 4A is a cross section showing the first layer 42 of positively charged ionic particles 44a deposited on a negatively charged substrate 10. The deposition step of the first layer 42 can be as described above for the contents of the ionic particles 14 and the surface layer 30. Once the first layer 42 is deposited, whether it is a single layer or a multiple layer, as shown in FIG. 4A, a second layer 46 of negatively charged ionic particles 44b can be deposited on the first layer 42. Although both FIGS. 4A and 4B show that the negatively charged ionic particles 44b are larger than the positively charged ionic particles 44a, this is merely illustrative. The particles 44a and 44b can be of any suitable size (e.g., 44a can be larger than 44b, and vice versa or the same size, etc.). Again, this particular charge arrangement is illustrative only. For example, substrate 10 can be positively charged, ionic particles 44a negatively charged, and ionic particles 44b positively charged. Those skilled in the art will recognize that other combinations are explicitly mentioned, implicit, metaphorical or unambiguous, and should be considered as different variations of the invention.

圖4B顯示雙層沈積之結果。如圖4B所示,雙層42和46是分明的。雖然圖4B顯示一部份雙層,可理解的是任何適合的形態都是在本發明之範圍內。例如,第二層46在第一層42上以產生島、帶狀或其他圖案之離子顆粒44b之方式圖案化。此項技藝人士可意識到這些層42和46之不同安排、不同圖案等等都是在本發明之範圍內。Figure 4B shows the results of two-layer deposition. As shown in Figure 4B, the double layers 42 and 46 are distinct. Although Figure 4B shows a portion of a double layer, it will be understood that any suitable form is within the scope of the invention. For example, the second layer 46 is patterned on the first layer 42 in a manner that produces island, ribbon or other patterned ionic particles 44b. Those skilled in the art will recognize that various arrangements of the layers 42 and 46, different patterns, and the like are within the scope of the present invention.

圖5A至5C是顯微照片,其係顯示使用離子顆粒之一隔離膜結構和組合之示意圖,以及顯示一根據圖2之步驟所製作之一傳統之高分子隔離膜材料。在圖5A中,基底210是一可購得並可用於電化學電池之高分子隔離膜(Celgard 2320)。如圖5A所示,基底210是多孔狀,具有複數可在顯微照片上清晰可見之細孔210c。圖5B顯示受電漿處理後之圖5A之基底210,其中表面區域210a擁有淨負電荷。細孔210c在處理後的表面上仍可見到,如圖5B所示。圖5C顯示與離子奈米顆粒214接觸後之表面區域210a,其中離子奈米顆粒214具有二氧化矽粒芯214a和接枝劑214b,其中接枝劑214b包含帶正電之銨基。圖5C顯示大致相同和均勻的覆層230,其係由離子奈米顆粒214所構成並覆蓋表面區域210a。再者,如圖5C上所顯示,許多在基底210上出現的細孔210c都未被覆層230所阻閉。5A to 5C are photomicrographs showing a schematic diagram of the structure and combination of the separators using one of the ionic particles, and showing a conventional polymer separator material produced according to the procedure of Fig. 2. In Figure 5A, substrate 210 is a commercially available polymeric separator (Celgard 2320) for use in electrochemical cells. As shown in Fig. 5A, the substrate 210 is porous and has a plurality of fine pores 210c which are clearly visible on the photomicrograph. Figure 5B shows the substrate 210 of Figure 5A after plasma treatment wherein the surface region 210a has a net negative charge. The pores 210c are still visible on the treated surface as shown in Fig. 5B. Figure 5C shows surface area 210a after contact with ionized nanoparticle 214 having cerium oxide core 214a and grafting agent 214b, wherein grafting agent 214b comprises a positively charged ammonium group. Figure 5C shows a substantially identical and uniform coating 230 comprised of ionized nanoparticles 214 and covering surface area 210a. Further, as shown on FIG. 5C, many of the fine pores 210c appearing on the substrate 210 are not blocked by the coating layer 230.

圖5D至5E是顯微照片,其係顯示使用相當大的離子顆粒之一隔離膜結構和組合之示意圖,以及顯示一根據圖2A至2C之步驟所製作之一傳統之高分子隔離膜材料。在圖5D中,基底310是一可購得並可用於電化學電池之高分子隔離膜(Celgard 2320)。在經電漿處理後,表面區域310a擁有淨負電荷。如圖5D所示,基底310是多孔,具有複數可在顯微照片上清晰可見之細孔310c。圖5E顯示與離子奈米顆粒314接觸後之表面區域310a,其中離子奈米顆粒314具有二氧化鈦粒芯314a和接枝劑314b,其中接枝劑314b包含帶正電之銨基。圖5E顯示大致相同和均勻的覆層330,其係由離子奈米顆粒314所構成並覆蓋表面區域310a。再者,如圖5E上所顯示,一些在基底210上出現的細孔210c在被離子顆粒層330覆蓋後,仍可被看見。覆層330中之離子奈米顆粒314較離子奈米顆粒214大許多,如圖5C所示。再者,相較於離子奈米顆粒214,離子奈米顆粒314是具相當不規則之形狀及粒子尺寸分布。這些結果顯示藉由改變粒芯、沈積參數和層圖案可產生一些相當顯著的變化。Figures 5D through 5E are photomicrographs showing schematic diagrams of the structure and combination of barrier films using one of the relatively large ionic particles, and showing a conventional polymeric barrier film material made in accordance with the steps of Figures 2A through 2C. In Figure 5D, substrate 310 is a commercially available polymeric separator (Celgard 2320) for electrochemical cells. Surface area 310a has a net negative charge after plasma treatment. As shown in Fig. 5D, the substrate 310 is porous and has a plurality of fine pores 310c which are clearly visible on the photomicrograph. Figure 5E shows surface area 310a after contact with ionized nanoparticles 314 having ionized titanium particles 314a and grafting agent 314b, wherein grafting agent 314b comprises a positively charged ammonium group. Figure 5E shows a substantially identical and uniform coating 330 comprised of ionized nanoparticles 314 and covering surface area 310a. Further, as shown on FIG. 5E, some of the pores 210c appearing on the substrate 210 can still be seen after being covered by the ionic particle layer 330. The ionized nanoparticles 314 in the cladding 330 are much larger than the ionized nanoparticles 214, as shown in Figure 5C. Further, the ion nanoparticle 314 has a relatively irregular shape and particle size distribution as compared to the ion nanoparticle 214. These results show that some significant changes can be made by changing the core, deposition parameters and layer pattern.

圖6A和6E例示根據離子顆粒上之相對電荷密度,達成在多孔高分子基底上形成離子顆粒表面層並符合本揭露之兩種機制。圖6A和6E例示在表面區域10a之細孔10c。在某些實例中,表面10a被離子顆粒14覆蓋的情形可以調整離子顆粒14上之淨表面電荷12。應指出的是:圖6A顯示的細孔16c,和任何在此討論的細孔,不必然限制在表面區域10a,如圖6A所示。例如,細孔10c,和任何在此討論之細孔,可開放的,如圖6B所示。如此之開放的細孔10c(如圖6B所示),例如,包含在表面區域10a中或在基底10之主體部10b內形成網絡之細孔。事實上,應用在電池隔離膜之基底10上之許多細孔10c會穿過表面區域10a及/或在基底10之主體10b內形成網絡。6A and 6E illustrate two mechanisms for achieving formation of an ionic particle surface layer on a porous polymeric substrate in accordance with the relative charge density on the ionic particles and in accordance with the present disclosure. 6A and 6E illustrate the fine holes 10c in the surface region 10a. In some instances, the surface 10a is covered by ionic particles 14 to adjust the net surface charge 12 on the ionic particles 14. It should be noted that the pores 16c shown in Fig. 6A, and any of the pores discussed herein, are not necessarily limited to the surface region 10a, as shown in Fig. 6A. For example, the pores 10c, and any of the pores discussed herein, can be opened as shown in Figure 6B. Such an open pore 10c (shown in FIG. 6B), for example, includes pores formed in the surface region 10a or in the body portion 10b of the substrate 10 to form a network. In fact, a plurality of pores 10c applied to the substrate 10 of the battery separator may pass through the surface region 10a and/or form a network within the body 10b of the substrate 10.

在圖6A中,離子顆粒14具相當高的淨表面電荷12。圖6D例示根據圖6A之製程製作之一隔離膜材料之穿透式電子顯微鏡照片。圖6D是意指在相對高表面靜電荷12的情形下,離子顆粒14將會堆疊出相對薄的表面層30,並且離子顆粒14會在細孔10c中形成良好的批覆。In Figure 6A, the ionic particles 14 have a relatively high net surface charge 12. Figure 6D illustrates a transmission electron micrograph of a separator material made in accordance with the process of Figure 6A. Figure 6D is meant that in the case of a relatively high surface electrostatic charge 12, the ionic particles 14 will stack a relatively thin surface layer 30, and the ionic particles 14 will form a good overlay in the pores 10c.

當顆粒14在沈積溶液20中具有相當高的ζ值時,會產生高的淨表面電荷12。相當高的ζ值可為正或負,就如離子顆粒14之高淨表面電荷12一樣。相當高的淨表面電荷12會在離子顆粒14之間造成大的淨斥力F1,如圖6A所示。在一些實例中,此大的淨斥力F1足夠大而可驅動離子顆粒14進入表面區域10a之細孔10c內,如圖6A、6C和6D所示。如圖6A和6D所示,離子顆粒14在表面區域10c上的覆蓋情形為在細孔10c及在表面10a之外邊緣相當均勻。然而,圖6A和6D顯示的離子顆粒14在表面區域10a上的覆蓋情形僅為例示。事實上,調整離子顆粒14之淨表面電荷12可產生數種不同覆蓋表面區域10a的方式。例如,離子顆粒14之淨表面電荷12可被調整,以致於表面區域10a之外邊緣10d上可有數層之離子顆粒14,而細孔10d內可有單層之離子顆粒14或少於單層之離子顆粒14。後者概略相當於圖6C所示之覆蓋情形。此外,離子顆粒14之淨表面電荷12可被調整,以致於表面區域10a之外邊緣10d可保有單層之離子顆粒14或少於單層之離子顆粒14,而細孔10d內保有單層之離子顆粒14或多於單層之離子顆粒14。更在其他的變化例中,具不同淨表面電荷12之離子顆粒14可被同時使用,以覆蓋表面區域10a之外邊緣10d之部份、細孔10c之部份或兩者。When the particles 14 have a relatively high enthalpy in the deposition solution 20, a high net surface charge 12 is produced. A relatively high enthalpy can be positive or negative, as is the high net surface charge 12 of the ionic particles 14. A relatively high net surface charge 12 will cause a large net repulsion F1 between the ionic particles 14, as shown in Figure 6A. In some examples, this large net repulsion F1 is large enough to drive the ionic particles 14 into the pores 10c of the surface region 10a, as shown in Figures 6A, 6C and 6D. As shown in Figs. 6A and 6D, the coverage of the ionic particles 14 on the surface region 10c is relatively uniform at the outer edges of the pores 10c and at the outer surface 10a. However, the coverage of the ionic particles 14 on the surface region 10a shown in Figures 6A and 6D is merely illustrative. In fact, adjusting the net surface charge 12 of the ionic particles 14 can result in several different ways of covering the surface region 10a. For example, the net surface charge 12 of the ionic particles 14 can be adjusted such that there can be several layers of ionic particles 14 on the outer edge 10d of the surface region 10a, while the pores 10d can have a single layer of ionic particles 14 or less than a single layer. Ionic particles 14. The latter is roughly equivalent to the coverage shown in Fig. 6C. In addition, the net surface charge 12 of the ionic particles 14 can be adjusted such that the outer edge 10d of the surface region 10a can retain a single layer of ionic particles 14 or less than a single layer of ionic particles 14, while the pores 10d retain a single layer. The ionic particles 14 or more than a single layer of ionic particles 14. In still other variations, ionic particles 14 having different net surface charges 12 can be used simultaneously to cover portions of the outer edge 10d of the surface region 10a, portions of the pores 10c, or both.

在圖6E中,離子顆粒14具有相當低的淨表面電荷12。圖6F例示根據圖6E之製程製作之一隔離膜材料之穿透式電子顯微鏡照片。圖6F是意指在相對低淨表面電荷的情形下,離子顆粒14將會堆疊出相對厚的表面層30,並且離子顆粒14似乎不會在細孔10c中形成任何的披覆。當顆粒14在沈積溶液20中具有相當低的ζ值時,會產生低的淨表面電荷12。相當低的ζ值可為正或負,就如離子顆粒14之低淨表面電荷12一樣。In Figure 6E, the ionic particles 14 have a relatively low net surface charge 12. Figure 6F illustrates a transmission electron micrograph of a separator material made in accordance with the process of Figure 6E. Figure 6F is meant that in the case of a relatively low net surface charge, the ionic particles 14 will stack a relatively thick surface layer 30, and the ionic particles 14 do not appear to form any coating in the pores 10c. When the particles 14 have a relatively low enthalpy in the deposition solution 20, a low net surface charge 12 is produced. A relatively low enthalpy can be positive or negative, as is the low net surface charge 12 of the ionic particles 14.

低淨表面電荷12在離子顆粒14之間產生的淨斥力會弱於離子顆粒14間之引力,其中離子顆粒14間之引力係因,例如,偏極效應(polarization effects)而產生。如前述狀況發生,則明顯的淨吸引力F2會存在在離子顆粒14之間,如圖6E所示。在一些實例中,此明顯的淨吸引力F2可達到一足夠大小,而可阻止離子顆粒14進入表面區域10a之細孔10c,如圖6E所示。再者,在一些實例中,此明顯的吸引力F2會產生由離子顆粒14所組成之表面層30,而此表面層30可實質地覆蓋細孔10c。圖6E顯示的離子顆粒14在表面區域10a上的覆蓋情形僅為例示。事實上,調整離子顆粒14之淨表面電荷12可產生數種不同覆蓋表面區域10a的方式。例如,離子顆粒14之淨表面電荷12可被調整,以致於表面區域10a之外邊緣10d上可有數層之離子顆粒14,而細孔10d內可為或不為由離子顆粒14構成之表面層30所覆蓋。在其他的變化例中,具不同淨表面電荷12之離子顆粒14可被同時使用,以覆蓋表面區域10a之外邊緣10d之部份、細孔10c之部份或兩者。The net repulsive force generated by the low net surface charge 12 between the ionic particles 14 is weaker than the gravitational force between the ionic particles 14, wherein the gravitational forces between the ionic particles 14 are caused by, for example, polarization effects. As the foregoing occurs, a significant net attractive force F2 will exist between the ionic particles 14, as shown in Figure 6E. In some instances, this apparent net attractive force F2 can be of a sufficient size to prevent the ionic particles 14 from entering the pores 10c of the surface region 10a, as shown in Figure 6E. Moreover, in some instances, this significant attractive force F2 will result in a surface layer 30 comprised of ionic particles 14, which may substantially cover the pores 10c. The coverage of the ionic particles 14 on the surface region 10a shown in Figure 6E is merely illustrative. In fact, adjusting the net surface charge 12 of the ionic particles 14 can result in several different ways of covering the surface region 10a. For example, the net surface charge 12 of the ionic particles 14 can be adjusted such that there may be several layers of ionic particles 14 on the outer edge 10d of the surface region 10a, while the pores 10d may or may not be surface layers composed of ionic particles 14. 30 covered. In other variations, ionic particles 14 having different net surface charges 12 may be used simultaneously to cover portions of the outer edge 10d of the surface region 10a, portions of the pores 10c, or both.

圖7A至7B是顯示符合揭露實施例之兩其他包含多孔聚丙烯(porous polypropylene)之混合隔離膜之透射式電子顯微鏡影像。特而言之,圖7A和7B顯示在本質上相同的示範基底上,不同的沈積參數如何產生不同的覆蓋。7A through 7B are transmission electron microscope images showing two other hybrid separators comprising porous polypropylene in accordance with the disclosed embodiments. In particular, Figures 7A and 7B show how different deposition parameters produce different coverage on an essentially identical exemplary substrate.

如圖7A所示,隔離膜400之基底410包含細孔410c,和其他的特徵。離子顆粒414是存在於細孔410c內,以及在基底10之一表面區域410a上聚積而構成一離子顆粒層430。離子顆粒層430的厚度是由數個離子顆粒414所構成。存在於細孔410c內之離子顆粒414係以至少單層之離子顆粒414之樣態覆蓋在多層的細孔壁410d上。事實上,細孔410c內之某些區域415上所存在之離子顆粒層之厚度明顯地大過單層的厚度。再者,圖7A顯示,許多的細孔410c被在基底410之表面區域410a上之離子顆粒層430所覆蓋。As shown in FIG. 7A, the substrate 410 of the separator 400 includes pores 410c, and other features. The ionic particles 414 are present in the pores 410c and accumulate on one surface region 410a of the substrate 10 to constitute an ionic particle layer 430. The thickness of the ionic particle layer 430 is composed of a plurality of ionic particles 414. The ionic particles 414 present in the pores 410c are overlaid on the pore walls 410d of the plurality of layers in the form of at least a single layer of ionic particles 414. In fact, the thickness of the ionic particle layer present on certain regions 415 within the pores 410c is significantly greater than the thickness of the monolayer. Furthermore, FIG. 7A shows that a plurality of fine holes 410c are covered by the ionic particle layer 430 on the surface region 410a of the substrate 410.

如圖7B所示,隔離膜500之基底510包含細孔510c,以及其他的特徵。圖7C例示離子顆粒514覆蓋於細孔壁510d,此結構同樣顯示在圖7B。510e是高分子(polymer)、聚丙烯(polypropylene)所構成之區域。離子顆粒514存在於細孔510c和以一離子顆粒層530的樣態位在基底10之一表面區域510a上,如圖7B和7C所示。離子顆粒層530可與離子顆粒層430具類似的厚度。在細孔510c內之離子顆粒514以幾近單層之離子顆粒514之方式,覆蓋幾乎整個細孔壁510d之表面上。As shown in FIG. 7B, the substrate 510 of the separator 500 includes pores 510c, as well as other features. Fig. 7C illustrates that the ionic particles 514 cover the pore walls 510d, and this structure is also shown in Fig. 7B. 510e is a region composed of a polymer or a polypropylene. The ionic particles 514 are present in the pores 510c and in the form of an ionic particle layer 530 on one surface region 510a of the substrate 10, as shown in Figs. 7B and 7C. The ionic particle layer 530 can have a similar thickness to the ionic particle layer 430. The ionic particles 514 in the pores 510c cover almost the entire surface of the pore walls 510d in the manner of nearly single-layered ionic particles 514.

比較例1Comparative example 1

圖8例示一隔離膜700之電子顯微照片上視圖,該隔離膜係根據本揭露的許多揭露面向而製作。該製作是將離子顆粒層730沈積在與圖1C揭示之類似市售隔離膜510之隔離膜基底710的表面上。圖8顯示即便覆蓋離子顆粒層730,隔離膜基底710之細孔710c仍暴露在外。Figure 8 illustrates an electron micrograph top view of a separator 700 made in accordance with many of the disclosed aspects of the present disclosure. The fabrication is performed by depositing an ionic particle layer 730 on the surface of a barrier film substrate 710 similar to the commercially available release film 510 disclosed in FIG. 1C. Fig. 8 shows that even if the ionic particle layer 730 is covered, the pores 710c of the separator substrate 710 are still exposed.

圖8A和圖1C之尺寸比例是相似的。比較圖8A和圖1C可發現,離子顆粒層730較在陶瓷/不織布隔離膜600上之顆粒614更為均勻。這是可預期的,因為除其他原因外,離子顆粒714小數個等級(orders of magnitude),因此,在某些例子中,加強形成均勻覆蓋層之能力。The dimensional ratios of Figures 8A and 1C are similar. Comparing Figures 8A and 1C, it can be seen that the ionic particle layer 730 is more uniform than the particles 614 on the ceramic/non-woven separator 600. This is to be expected because, among other reasons, the ionic particles 714 have a few orders of magnitude and, therefore, in some instances, enhance the ability to form a uniform cover layer.

再者,離子顆粒層730保留至少一些在底下之隔離膜基底710之細孔710c。相反地,黏著劑616和顆粒614則完全覆蓋基底610之任何細孔。Furthermore, the ionic particle layer 730 retains at least some of the pores 710c of the underlying separator substrate 710. Conversely, adhesive 616 and particles 614 completely cover any pores of substrate 610.

表1:圖1C顯示之陶瓷/不織布隔離膜與隔離膜500(圖7B)之特徵和特性比較。Table 1: Comparison of features and characteristics of the ceramic/nonwoven separator and the barrier film 500 (Fig. 7B) shown in Fig. 1C.

表1係比較圖1C所揭示之類型之陶瓷/不織布隔離膜與圖8顯示之隔離膜700。如表1所示,在下面基底710之填料較傳統的陶瓷/不織布隔離膜低上40~60倍。由於此和其他的原因,隔離膜700能夠在相當輕量下具有較好之電化學效能、濕潤性、化學、熱和機性穩定性及/或對基板710之強度。隔離膜之離子顆粒層830不需要黏著劑,而傳統的陶瓷/不織布隔離膜需要約佔整個隔離膜15重量百分比(weight percent;wt.%)之黏著劑。再者,因為隔離膜700之接著機制是離子力,離子顆粒層730與基底710間之固著力會實質上強過在傳統陶瓷/不織布隔離膜內陶瓷層和基底間之固著力。此外,儘管可能形成任何厚度之多數層之離子顆粒層730,離子顆粒層730可薄至數奈米。在陶瓷/不織布隔離膜內之典型的陶瓷層,例如,可具有的厚度在陶瓷顆粒尺寸之等級(order),即微米等級。Table 1 compares the ceramic/non-woven separator of the type disclosed in Figure 1C with the separator 700 of Figure 8. As shown in Table 1, the filler of the underlying substrate 710 is 40 to 60 times lower than the conventional ceramic/nonwoven separator. For this and other reasons, the separator 700 is capable of better electrochemical performance, wettability, chemical, thermal and mechanical stability and/or strength to the substrate 710 at relatively light weight. The ionic particle layer 830 of the separator does not require an adhesive, whereas a conventional ceramic/nonwoven separator requires about 15 weight percent (wt%) of the adhesive of the entire separator. Moreover, since the adhesion mechanism of the separator 700 is an ionic force, the adhesion between the ionic particle layer 730 and the substrate 710 is substantially stronger than the adhesion between the ceramic layer and the substrate in the conventional ceramic/nonwoven separator. Furthermore, although it is possible to form a plurality of layers of ionic particle layer 730 of any thickness, the ionic particle layer 730 can be as thin as a few nanometers. A typical ceramic layer within a ceramic/nonwoven release film, for example, may have a thickness on the order of the ceramic particle size, i.e., on a micron scale.

比較例2Comparative example 2

圖9A和9B顯示離子顆粒使市售之含丙烯碳酸酯(propylene carbonate)之電解質對高分子基底的溼潤性的影響。圖9A例示在4種不同表面上,丙烯碳酸酯之前進接觸角(advancing contact angle),其中該4種表面分別為一市售高分子隔離膜表面(Celgard 2320,於此後稱"未進行處理之隔離膜900")、經電漿處理過後之表面(MW-plasma treated Celgard 2320,於此後稱"電漿處理後之隔離膜910")、覆蓋單層離子顆粒之電漿處理過之市售高分子隔離膜(HS30-silane3 monolayer coated MW-plasma treated Celgard 2320,於此後稱"單層隔離膜920")和覆蓋多層離子顆粒之電漿處理過之市售高分子隔離膜(HS30-silane3 multilayers coated MW-plasma treated Celgard 2320,於此後稱"多層混合隔離膜930")。圖9B例示圖9A中之4種不同表面上接觸角之示意圖。9A and 9B show the effect of ionic particles on the wettability of a commercially available propylene carbonate-containing electrolyte on a polymer substrate. Figure 9A illustrates an advancing contact angle of propylene carbonate on four different surfaces, wherein the four surfaces are respectively a commercially available polymeric barrier film surface (Celgard 2320, hereinafter referred to as "untreated" The separator 900"), the plasma-treated surface (MW-plasma treated Celgard 2320, hereinafter referred to as "plasma-treated separator 910"), and the plasma treated with single-layer ionic particles are commercially available. A molecular separator (HS30-silane3 monolayer coated MW-plasma treated Celgard 2320, hereinafter referred to as "single layer separator 920") and a plasma treated commercial polymer separator coated with multilayer ionic particles (HS30-silane3 multilayers coated) MW-plasma treated Celgard 2320, hereinafter referred to as "multilayer hybrid separator 930"). Figure 9B illustrates a schematic view of the contact angles on the four different surfaces of Figure 9A.

接觸角是量測一表面對丙烯碳酸酯的濕潤性。通常電池隔離膜具備對電解質有增強或最大的濕潤性之外表面層是有益的。此點對使用在具特別腐蝕環境之電池(例如:鋰離子電池)之隔離膜特別明顯。然而,對某些應用,不要求濕潤性達到極致有時是較好的。在很多的場合中,能夠調整隔離膜之濕潤性是較有利的。The contact angle is a measure of the wettability of a surface to propylene carbonate. It is generally advantageous for the battery separator to have an enhanced or maximum wettability to the electrolyte. This is especially true for separators used in batteries with particularly corrosive environments (eg, lithium-ion batteries). However, for some applications, it is sometimes preferable to not require wettability to the extreme. In many cases, it is advantageous to be able to adjust the wettability of the separator.

如圖9A所示,接觸角從大約65度到30度是降低最大,此發生在將Celgard 2320進行電漿處理的表面上。經電漿處理後,增加對丙烯碳酸酯之濕潤性,可能是與表面上產生淨表面電荷(提升極性)有關。隔離膜對丙烯碳酸酯之濕潤性在增加一層之離子顆粒後可進一步改進。如圖9A所示,當加入奈米顆粒層後,接觸角遞減下降(即,從在隔離膜910和920上0層之離子顆粒到在隔離膜930上之一層之離子顆粒和在隔離膜940之多層之離子顆粒)。As shown in Figure 9A, the contact angle is reduced from about 65 to 30 degrees, which occurs on the surface where the Celgard 2320 is plasma treated. After the plasma treatment, increasing the wettability of the propylene carbonate may be related to the generation of a net surface charge (increasing polarity) on the surface. The wetting of the separator to propylene carbonate can be further improved after the addition of one layer of ionic particles. As shown in FIG. 9A, when the nanoparticle layer is added, the contact angle decreases (i.e., from the ionic particles of the 0 layer on the separators 910 and 920 to the ionic particles of one of the layers on the separator 930 and the separator 940). Multiple layers of ionic particles).

如圖9A所示,多層混合隔離膜930具有接近0之接觸角。這顯示,如圖9B所呈現,丙烯碳酸酯完全濕潤隔離膜930之表面。在另一方面,隔離膜920之接觸角10±2度。此較高接觸角意謂較低的濕潤性,比較此例與量測隔離膜930所得接觸角,可得:1)在現有的條件下,濕潤性似乎隨個離子顆粒層之數目增加而增加;及2)此特別的例子展現可藉由控制沈積離子顆粒之層數來調整HS30-silane3 multilayers coated MW-plasma treated Celgard 2320之濕潤性。As shown in FIG. 9A, the multilayer hybrid separator 930 has a contact angle close to zero. This shows that, as shown in Fig. 9B, the propylene carbonate completely wets the surface of the separator 930. On the other hand, the contact angle of the separator 920 is 10 ± 2 degrees. This higher contact angle means lower wettability. Comparing the contact angle obtained by this example with the measurement separator 930, it can be obtained that: 1) under the existing conditions, the wettability seems to increase as the number of ionic particle layers increases. And 2) This particular example demonstrates that the wettability of HS30-silane3 multilayers coated MW-plasma treated Celgard 2320 can be adjusted by controlling the number of layers of deposited ionic particles.

比較例3Comparative example 3

圖10顯示塗覆離子顆粒前、後對一高分子隔離膜之充/放電特性,其係符合揭露實施例。如圖10所示,包含一離子奈米顆粒混合隔離膜之系統之比電容量(specific capacity),以及包含DEC電解質之系統之比電容量(specific capacity)均隨循環次數的增加而減少。然而,圖10顯示混合隔離膜之比電容量在40或更多循環後,顯著地高於包含DEC電解質之系統。這顯示混合隔離膜的循環壽命確比市售之替代品有實質地改善。Figure 10 shows the charge/discharge characteristics of a polymer separator before and after coating of ion particles, which is in accordance with the disclosed embodiment. As shown in FIG. 10, the specific capacity of the system including the ion nanoparticle mixed separator, and the specific capacity of the system including the DEC electrolyte are decreased as the number of cycles is increased. However, Figure 10 shows that the specific capacitance of the hybrid separator is significantly higher than the system containing the DEC electrolyte after 40 or more cycles. This shows that the cycle life of the hybrid separator is indeed substantially improved over commercially available alternatives.

如所示,揭示之材料或技術可增進裝置(例如:電池隔離膜)之電化學效能、化學、熱或機械強度,而不實質增加重量As shown, the disclosed materials or techniques can enhance the electrochemical performance, chemical, thermal or mechanical strength of a device (eg, a battery separator) without substantially increasing weight.

因此,裝置能更堅固耐用,但不犧牲其他與功能相關之重要特性。As a result, the device is more rugged, yet does not sacrifice other important features related to functionality.

雖然在關於電池隔離膜和其他電池應用之內文中討論到一些實施例,但它們僅是例示,故不因此把本揭露之基底限制於電池應用上。例如,揭示之材料和技術可運用在輕量化的應用產品或其他用於改善產品之機械、化學或熱耐用性之塗覆技術。While some embodiments are discussed in the context of battery separators and other battery applications, they are merely illustrative and thus do not limit the substrate of the present disclosure to battery applications. For example, the disclosed materials and techniques can be applied to lightweight applications or other coating techniques for improving the mechanical, chemical or thermal durability of the product.

本發明之技術內容及技術特點已揭示如上,然而熟悉本項技術之人士仍可能基於本發明之教示及揭示而作種種不背離本發明精神之替換及修飾。因此,本發明之保護範圍應不限於實施例所揭示者,而應包括各種不背離本發明之替換及修飾,並為以下之申請專利範圍所涵蓋。The technical and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the present invention should be construed as being limited by the scope of the appended claims

1...陶瓷/高分子複合材料1. . . Ceramic/polymer composite

2...基底2. . . Base

4...氧基4. . . Oxyl

6...材料6. . . material

6a...粒子6a. . . particle

6b...黏著劑6b. . . Adhesive

10...基底10. . . Base

10a...表面區域10a. . . Surface area

10b...主體10b. . . main body

10c...細孔10c. . . Fine hole

10d...外邊緣10d. . . Outer edge

12...淨表面電荷12. . . Net surface charge

14...離子顆粒14. . . Ionic particles

14a...粒芯14a. . . Core

14b...接枝劑14b. . . Grafting agent

15a...纖維15a. . . fiber

15b...基底15b. . . Base

15c...微細孔高分子基底15c. . . Microporous polymer substrate

15d...細孔15d. . . Fine hole

16...淨表面電荷16. . . Net surface charge

16c...細孔16c. . . Fine hole

18...表面層18. . . Surface layer

20...溶液20. . . Solution

24...離子顆粒twenty four. . . Ionic particles

24b...高分子電解質24b. . . Polymer electrolyte

26...靜電荷26. . . Static charge

28...電荷28. . . Electric charge

30...表面層30. . . Surface layer

42...第一層42. . . level one

44a...離子顆粒44a. . . Ionic particles

44b...離子顆粒44b. . . Ionic particles

46...第二層46. . . Second floor

100...基底100. . . Base

210...多孔性高分子基底210. . . Porous polymer substrate

210a...表面區域210a. . . Surface area

210c...細孔210c. . . Fine hole

211...裡層孔隙211. . . Inner pore

214...離子奈米顆粒214. . . Ion nanoparticle

214a...二氧化矽粒芯214a. . . Ceria core

214b...接枝劑214b. . . Grafting agent

220...多孔性複合材料基底220. . . Porous composite substrate

230...覆層230. . . Coating

310...多孔性高分子基底310. . . Porous polymer substrate

310a...表面區域310a. . . Surface area

310c...細孔310c. . . Fine hole

314...離子奈米顆粒314. . . Ion nanoparticle

314a...二氧化鈦粒芯314a. . . Titanium dioxide core

314b...接枝劑314b. . . Grafting agent

320...多孔性複合材料基底320. . . Porous composite substrate

330...覆層330. . . Coating

410...基底410. . . Base

400...隔離膜400. . . Isolation film

410c...細孔410c. . . Fine hole

410a...表面區域410a. . . Surface area

410b...深層區域410b. . . Deep area

410c...細孔410c. . . Fine hole

410d...細孔壁410d. . . Fine wall

414...離子顆粒414. . . Ionic particles

415...區域415. . . region

430...離子顆粒層430. . . Ionic particle layer

500...隔離膜500. . . Isolation film

510...基底510. . . Base

510a...表面區域510a. . . Surface area

510c...細孔510c. . . Fine hole

510d...細孔壁510d. . . Fine wall

510e...區域510e. . . region

514...離子顆粒514. . . Ionic particles

530...離子顆粒層530. . . Ionic particle layer

600...陶瓷/不織布隔離膜600. . . Ceramic/nonwoven insulation film

614...顆粒614. . . Granule

616...黏著劑616. . . Adhesive

630...塗覆630. . . Coating

700...隔離膜700. . . Isolation film

710...隔離膜基底710. . . Isolation film substrate

710c...細孔710c. . . Fine hole

714...離子顆粒714. . . Ionic particles

730...離子顆粒層730. . . Ionic particle layer

830...離子顆粒層830. . . Ionic particle layer

900...未進行處理之隔離膜900. . . Untreated barrier

910...電漿處理後之隔離膜910. . . Plasma treated separator

920...單層隔離膜920. . . Single layer isolation membrane

930...多層混合隔離膜930. . . Multilayer hybrid separator

F1...淨斥力F1. . . Net repulsion

F2...淨吸引力F2. . . Net attraction

圖1A例示一種作為習知電池隔離膜材料之陶瓷/高分子複合材料;1A illustrates a ceramic/polymer composite material as a conventional battery separator material;

圖1B為一示範的基底之電子顯微照片其係來自S.S. Zhang等人之論文“A review on the separators of liquid electrolyte Li-ion batteries,”Journal of Power Sources,Volume 164,Issue 1,2007,page 351);Figure 1B is an electron micrograph of an exemplary substrate from SS Zhang et al. "A review on the separators of liquid electrolyte Li-ion batteries," Journal of Power Sources, Volume 164, Issue 1, 2007, page 351);

圖1C顯示一陶瓷/不織布隔離膜之上視圖其係來自S.S. Zhang等人之論文“A review on the separators of liquid electrolyte Li-ion batteries,”Journal of Power Sources,Volume 164,Issue 1,2007,page 351;Figure 1C shows a top view of a ceramic/non-woven separator film from SS Zhang et al. "A review on the separators of liquid electrolyte Li-ion batteries," Journal of Power Sources, Volume 164, Issue 1, 2007, page 351;

圖2A至2C例示符合本發明揭露之實施例之使用離子顆粒之一隔離膜結構和組合;2A to 2C illustrate an isolation film structure and combination using one of ionic particles in accordance with an embodiment of the present disclosure;

圖2D顯示符合本發明揭露實施例之示範基底之電子顯微照片;2D shows an electron micrograph of an exemplary substrate consistent with an embodiment of the present disclosure;

圖3A-1和3A-2顯示符合本發明揭露實施例之合成一離子顆粒之示意圖;3A-1 and 3A-2 are schematic views showing the synthesis of an ion particle in accordance with an embodiment of the present invention;

圖3A-3和3A-4顯示符合本發明揭露圖示技術3A-2所使用的高分子電解質;3A-3 and 3A-4 show a polymer electrolyte used in accordance with the disclosed technique 3A-2 of the present invention;

圖3B是符合本發明揭露實施例之一根據圖3A-1的合成方法合成之離子顆粒之一特寫、截面示意圖;3B is a close-up, cross-sectional view of one of the ionic particles synthesized according to the synthesis method of FIG. 3A-1 in accordance with one embodiment of the present disclosure;

圖3C-1與3C-2顯示使用圖3A-1與3A-2離子顆粒之混合材料和經處理之高分子基底等之合成物之示意圖;3C-1 and 3C-2 show schematic views of a composite using the mixed material of the ionic particles of Figs. 3A-1 and 3A-2 and the treated polymer substrate;

圖3D例示符合本發明揭露實施例之圖3C-1之混合材料隔離膜之示意圖;3D illustrates a schematic view of the mixed material separator of FIG. 3C-1 in accordance with an embodiment of the present invention;

圖4A和4B是符合本發明揭露實施例且分別為一示意圖和一顯微照片,其個別顯示沈積在帶電荷之基底之雙層離子顆粒;4A and 4B are schematic views and a photomicrograph, respectively, consistent with the disclosed embodiments of the present invention, each showing double layer ion particles deposited on a charged substrate;

圖5A至5C是顯微照片,其係顯示使用離子顆粒之一隔離膜結構和組合之示意圖,以及顯示一根據圖2之步驟所製作之一傳統之高分子隔離膜材料;5A to 5C are photomicrographs showing a structure of a separator structure and a combination using one of ionic particles, and showing a conventional polymer separator material produced according to the steps of FIG. 2;

圖5D至5E是顯微照片,其係顯示使用相當大的離子顆粒之一隔離膜結構和組合之示意圖,以及顯示一根據圖2A至2C之步驟所製作之一傳統之高分子隔離膜材料;5D to 5E are photomicrographs showing schematic views of the structure and combination of the separators using one of the relatively large ionic particles, and showing a conventional polymer separator material produced according to the steps of Figs. 2A to 2C;

圖6A至6E是符合揭露實施例,且例示在多孔高分子基底上根據在離子顆粒上相應之電荷密度,形成離子顆粒表層之不同結構;6A to 6E are diagrams consistent with the disclosed embodiments, and exemplifying different structures of the surface layer of the ionic particles formed on the porous polymer substrate according to the corresponding charge density on the ionic particles;

圖6F例示根據圖6E之製程製作之一隔離膜材料之穿透式電子顯微鏡照片6F illustrates a transmission electron micrograph of a separator material fabricated according to the process of FIG. 6E

圖7A至7B是符合揭露實施例,且顯示兩其他包含多孔聚丙烯之混合隔離膜之透射式電子顯微鏡影像;7A to 7B are transmission electron microscope images showing a hybrid insulating film comprising two other porous polypropylenes in accordance with the disclosed embodiment;

圖7C例示離子顆粒覆蓋於細孔壁,同樣顯示在圖7B;Figure 7C illustrates the ionic particles covering the pore walls, also shown in Figure 7B;

圖8例示一隔離膜之電子顯微照片上視圖,該隔離膜係根據本揭露的許多揭露面向而製作,該製作是將離子顆粒沈積在與圖8揭示之類似市售隔離膜基底的表面;Figure 8 illustrates an electron micrograph top view of a separator film fabricated in accordance with a number of disclosed aspects of the present disclosure, which deposits ionic particles on a surface of a commercially available separator substrate similar to that disclosed in Figure 8;

圖9A和9B顯示離子顆粒使市售之含丙烯碳酸酯之電解質對高分子基底的溼潤性的影響;以及9A and 9B show the effect of ionic particles on the wettability of a commercially available propylene carbonate-containing electrolyte on a polymer substrate;

圖10顯示塗覆離子顆粒前、後對一高分子隔離膜之充/放電特性,其係符合揭露實施例。Figure 10 shows the charge/discharge characteristics of a polymer separator before and after coating of ion particles, which is in accordance with the disclosed embodiment.

10...基底10. . . Base

10a...表面區域10a. . . Surface area

10b...主體10b. . . main body

12...淨表面電荷12. . . Net surface charge

14...離子顆粒14. . . Ionic particles

14a...粒芯14a. . . Core

14b...接枝劑14b. . . Grafting agent

18...表面層18. . . Surface layer

20...溶液20. . . Solution

Claims (37)

一種隔離膜材,包含:一基底,具一主體部和一表面部,該表面部具至少一多孔區域,而該至少一多孔區域具一淨電荷;以及複數個離子顆粒具有與該多孔區域之該淨電荷相反之一淨電荷,其中該些離子顆粒附著並耦接該多孔區域之一內壁而形成一具有離子顆粒之多孔網絡。 An isolating film comprising: a substrate having a body portion and a surface portion, the surface portion having at least one porous region, wherein the at least one porous region has a net charge; and a plurality of ionic particles having the porous The net charge of the region is the opposite of a net charge, wherein the ion particles are attached to and coupled to an inner wall of the porous region to form a porous network having ionic particles. 根據請求項1所述之隔離膜材,其中該些離子顆粒形成至少一離子顆粒層,其中相較於該隔離基材與該基底,該至少一離子顆粒層對鋰、電解質以及電解質添加劑具有較高的化學穩定性,且該至少一離子顆粒層相較於該基底具有較高的機械強度。 The isolating film of claim 1, wherein the ionic particles form at least one ionic particle layer, wherein the at least one ionic particle layer has a higher ratio of lithium, electrolyte, and electrolyte additive than the insulating substrate and the substrate High chemical stability, and the at least one ionic particle layer has a higher mechanical strength than the substrate. 根據請求項1所述之隔離膜材,其中該些離子顆粒包含尺寸介於1奈米至500奈米之奈米顆粒。 The separator of claim 1, wherein the ionic particles comprise nanoparticle having a size ranging from 1 nm to 500 nm. 根據請求項1所述之隔離膜材,其中該基底包含高分子材料。 The separator of claim 1, wherein the substrate comprises a polymer material. 根據請求項1所述之隔離膜材,其中該些離子顆粒包含金屬氧化物,二氧化矽、氧化鋅、二氧化錫、二氧化鈦、氧化鋯、氧化鋁、鈦酸鋇、氧化釔、氧化鎂、氧化鎳、氧化鈣中至少一者。 The separator according to claim 1, wherein the ionic particles comprise a metal oxide, cerium oxide, zinc oxide, tin dioxide, titanium dioxide, zirconium oxide, aluminum oxide, barium titanate, cerium oxide, magnesium oxide, At least one of nickel oxide and calcium oxide. 根據請求項1所述之隔離膜材,其中至少部份之該些離子顆粒之Zeta電位值介於-70mV至70mV之間。 The isolating film of claim 1, wherein at least a portion of the ionic particles have a zeta potential value between -70 mV and 70 mV. 根據請求項1所述之隔離膜材,更包含至少一接枝劑,其係耦接該些離子顆粒。 The separator according to claim 1, further comprising at least one grafting agent coupled to the ionic particles. 根據請求項7所述之隔離膜材,其中該接枝劑包含含一級胺之矽甲烷、含二級胺之矽甲烷、含三級胺之矽甲烷、含四級胺之矽甲烷、含羧基之矽甲烷、含磺酸基之矽甲烷或含磷酸化合物之矽甲烷中至少一者;或是該接枝劑包含至少有一個末端多官能基(n2),其並至少有一個下列元素:氮、硫、硼、磷、碳、矽和氧。The separator according to claim 7, wherein the grafting agent comprises a primary amine-containing methane, a secondary amine-containing methane, a tertiary amine-containing methane, a quaternary amine-containing methane, and a carboxyl group. And at least one of methane, sulfonic acid-containing methane or a phosphoric acid-containing methane; or the grafting agent comprises at least one terminal polyfunctional group (n 2) It has at least one of the following elements: nitrogen, sulfur, boron, phosphorus, carbon, helium and oxygen. 根據請求項1所述之隔離膜材,更包含至少一高分子電解質。 The separator according to claim 1 further comprising at least one polymer electrolyte. 根據請求項9所述之隔離膜材,其中至少一高分子電解質包含至少有一個下列元素:氮、硫、硼、磷、碳、矽和氧。 The separator of claim 9, wherein the at least one polymer electrolyte comprises at least one of the following elements: nitrogen, sulfur, boron, phosphorus, carbon, ruthenium and oxygen. 根據請求項2所述之隔離膜材,其中該至少一離子顆粒層之厚度介於1奈米到10微米。 The separator of claim 2, wherein the at least one ionic particle layer has a thickness of from 1 nm to 10 μm. 根據請求項2所述之隔離膜材,其中該至少一離子顆粒層對包含電解質之一液體之溼潤性大於該基底對該液體之溼潤性。 The separator of claim 2, wherein the at least one ionic particle layer has a wettability to a liquid containing one of the electrolytes greater than a wettability of the liquid to the liquid. 根據請求項12所述之隔離膜材,其中該隔離基材為一電化學電池內之一隔離膜。 The separator of claim 12, wherein the separator substrate is an separator in an electrochemical cell. 一種電化學電池,包含一隔離膜,該隔離膜包含:一基底,具一主體部和一表面部,該表面部具有一多孔區域,而該多孔區域具一淨電荷;以及一覆層,覆蓋該表面部,其中該覆層係由離子顆粒聚積而成,且該些離子顆粒具有與該多孔區域之該淨電荷相反之一淨電荷;以及一具有離子顆粒之多孔網絡位於該多孔區域,其中該 離子顆粒之多孔網絡係由該些離子顆粒進入該多孔區域並耦接該多孔區域之一內壁。 An electrochemical cell comprising a separator, the separator comprising: a substrate having a body portion and a surface portion, the surface portion having a porous region having a net charge; and a coating layer, Covering the surface portion, wherein the coating is formed by ionic particles, and the ionic particles have a net charge opposite to the net charge of the porous region; and a porous network having ionic particles is located in the porous region, Which should The porous network of ionic particles enters the porous region from the ionic particles and couples to an inner wall of the porous region. 根據請求項14所述之電化學電池,其中該基底包含一高分子材料,該覆層更包含金屬氧化物粒子,該些金屬氧化物粒子為一接枝劑或一高分子電解質所改質,使得各該金屬氧化物粒子具有一淨電荷。 The electrochemical cell according to claim 14, wherein the substrate comprises a polymer material, and the coating further comprises metal oxide particles, wherein the metal oxide particles are modified by a grafting agent or a polymer electrolyte. Each of the metal oxide particles has a net charge. 根據請求項14所述之電化學電池,其中該覆層對一電解質的溼潤性高於該基底對該電解質。 The electrochemical cell of claim 14, wherein the coating has a higher wettability to an electrolyte than the substrate. 一種隔離膜材之製備方法,包含下列步驟:處理一基底,使該基底之一表面部具一淨電荷;以及將複數個離子顆粒耦接至少部份之該表面部,該些離子顆粒具與該表面部之該淨電荷相反之一淨電荷,其中該離子顆粒與至少部份之該表面部之耦接使該隔離膜具有電化學效能、化學穩定性、吸濕性、熱穩定性和強韌性中之至少一者之特性。 A method for preparing an isolating film, comprising the steps of: treating a substrate such that a surface portion of the substrate has a net charge; and coupling a plurality of ion particles to at least a portion of the surface portion, the ion particles having The surface charge of the surface portion is opposite to a net charge, wherein the coupling of the ion particles to at least a portion of the surface portion provides electrochemical, chemical stability, hygroscopicity, thermal stability, and strength of the separator. The character of at least one of the toughness. 根據請求項17所述之製備方法,其中該耦接形成至少一離子顆粒層,其中相較於該基底,該至少一離子顆粒層對鋰,電解質以及電解質添加劑添加劑具有較高的化學穩定性,以及較高的機械強度。 The preparation method according to claim 17, wherein the coupling forms at least one ionic particle layer, wherein the at least one ionic particle layer has higher chemical stability to lithium, an electrolyte, and an electrolyte additive additive than the substrate. And high mechanical strength. 根據請求項18所述之製備方法,其中該鋰包含鋰離子、氧化鋰、磷酸鋰、氟化鋰或鋰碳化合物中至少一者。 The preparation method according to claim 18, wherein the lithium contains at least one of lithium ion, lithium oxide, lithium phosphate, lithium fluoride or lithium carbon compound. 根據請求項17所述之製備方法,其中處理一基底之步驟包含將該表面部暴露在電漿下。 The preparation method according to claim 17, wherein the step of treating a substrate comprises exposing the surface portion to a plasma. 根據請求項17所述之製備方法,其中處理一基底之步驟包 含將該表面部進行化學處理。 The preparation method according to claim 17, wherein the step of processing a substrate is The surface portion is chemically treated. 根據請求項17所述之製備方法,其中處理一基底之步驟包含以紫外光照射該表面部。 The preparation method according to claim 17, wherein the step of treating a substrate comprises irradiating the surface portion with ultraviolet light. 根據請求項17所述之製備方法,其中該基底包含高分子材料。 The preparation method according to claim 17, wherein the substrate comprises a polymer material. 根據請求項20所述之製備方法,其中將複數個離子顆粒耦接至少部份之該表面部之步驟包含使該基底接觸含離子奈米顆粒之水溶液。 The method of claim 20, wherein the step of coupling the plurality of ionic particles to at least a portion of the surface portion comprises contacting the substrate with an aqueous solution containing ionized nanoparticles. 根據請求項24所述之製備方法,其中使該基底接觸含離子奈米顆粒之水溶液之步驟包含浸塗佈,噴塗塗佈,狹縫模具式塗佈,流動塗佈,凹版印刷式塗佈或噴墨塗佈,以將該些離子顆粒披覆在該基底之該表面部。 The preparation method according to claim 24, wherein the step of contacting the substrate with the aqueous solution containing the ionized nanoparticles comprises dip coating, spray coating, slit die coating, flow coating, gravure coating or Inkjet coating to coat the ionic particles on the surface portion of the substrate. 根據請求項24所述之製備方法,其中該水溶液之酸鹼值介於1至10之間。 The preparation method according to claim 24, wherein the aqueous solution has a pH of between 1 and 10. 根據請求項17所述之製備方法,更包含選擇一接枝劑以對複數金屬氧化物奈米粒子進行改質;以及使用該接枝劑對該些金屬氧化物奈米粒子進行改質,以製備該些離子奈米顆粒。 The preparation method according to claim 17, further comprising: selecting a grafting agent to modify the plurality of metal oxide nanoparticles; and modifying the metal oxide nanoparticles by using the grafting agent to The ionized nanoparticles are prepared. 根據請求項27所述之製備方法,其中選擇一接枝劑以對複數金屬氧化物奈米粒子進行改質之步驟更包含選擇該接枝劑,使得該離子奈米顆粒具有一電荷密度,其中該電荷密度相應於該表面部之一所欲達成之覆蓋。 The preparation method according to claim 27, wherein the step of selecting a grafting agent to modify the plurality of metal oxide nanoparticles further comprises selecting the grafting agent such that the ionized nanoparticle has a charge density, wherein The charge density corresponds to the desired coverage of one of the surface portions. 根據請求項28所述之製備方法,其中該電荷密度為高電荷密度,而該所欲達成之覆蓋包含該些離子奈米顆粒滲入該 基底之孔隙內。 The method of preparation of claim 28, wherein the charge density is a high charge density, and the desired coverage comprises infiltrating the ionized nanoparticles into the Within the pores of the substrate. 根據請求項28所述之製備方法,其中該電荷密度為低電荷密度,而該所欲達成之覆蓋包含該些離子奈米顆粒覆蓋該基底之孔隙。 The preparation method according to claim 28, wherein the charge density is a low charge density, and the desired coverage comprises the ion nanoparticle covering the pores of the substrate. 根據請求項27所述之製備方法,其中該接枝劑包含含一級胺之矽甲烷、含二級胺之矽甲烷、含三級胺之矽甲烷、含四級胺之矽甲烷、含羧基之矽甲烷、含磺酸基之矽甲烷或含磷酸化合物之矽甲烷中至少一者或是該接枝劑包含至少有一個末端多官能基(n2),其並至少有一個下列元素:氮、硫、硼、磷、碳、矽和氧。The preparation method according to claim 27, wherein the grafting agent comprises a primary amine-containing methane, a secondary amine-containing methane, a tertiary amine-containing methane, a quaternary amine-containing methane, and a carboxyl group. At least one of methane, sulfonic acid-containing methane or a phosphoric acid-containing methane or the grafting agent comprising at least one terminal polyfunctional group (n 2) It has at least one of the following elements: nitrogen, sulfur, boron, phosphorus, carbon, helium and oxygen. 根據請求項18所述之製備方法,其中該至少一離子顆粒層之厚度介於1奈米到10微米。 The preparation method according to claim 18, wherein the at least one ionic particle layer has a thickness of from 1 nm to 10 μm. 根據請求項17所述之製備方法,更包含:選擇一高分子電解質以對複數金屬氧化物奈米粒子進行改質;以及使用該高分子電解質對該些金屬氧化物奈米粒子進行改質,以製備該些離子奈米顆粒。 The preparation method according to claim 17, further comprising: selecting a polymer electrolyte to modify the plurality of metal oxide nanoparticles; and modifying the metal oxide nanoparticles by using the polymer electrolyte, To prepare the ionized nanoparticles. 根據請求項33所述之製備方法,其中選擇一高分子電解質以對複數金屬氧化物奈米粒子進行改質之步驟更包含選擇該高分子電解質,使得該離子奈米顆粒具有一電荷密度,其中該電荷密度相應於該表面部之一所欲達成之覆蓋。 The preparation method according to claim 33, wherein the step of selecting a polymer electrolyte to modify the plurality of metal oxide nanoparticles further comprises selecting the polymer electrolyte such that the ion nano particles have a charge density, wherein The charge density corresponds to the desired coverage of one of the surface portions. 根據請求項34所述之製備方法,其中該電荷密度為高電荷密度,而該所欲達成之覆蓋包含該些離子奈米顆粒滲入該 基底之孔隙內。 The preparation method of claim 34, wherein the charge density is a high charge density, and the desired coverage comprises infiltrating the ionized nanoparticles into the Within the pores of the substrate. 根據請求項34所述之製備方法,其中該電荷密度為低電荷密度,而該所欲達成之覆蓋包含該些離子奈米顆粒覆蓋該基底之孔隙。 The preparation method according to claim 34, wherein the charge density is a low charge density, and the desired coverage comprises the ion nanoparticle covering the pores of the substrate. 根據請求項33所述之製備方法,其中至少一高分子電解質包含至少有一個下列元素:氮、硫、硼、磷、碳、矽和氧。 The preparation method according to claim 33, wherein the at least one polymer electrolyte contains at least one of the following elements: nitrogen, sulfur, boron, phosphorus, carbon, ruthenium and oxygen.
TW099147153A 2010-12-31 2010-12-31 Separator substrate, electrochemical cell including separator, and method for fabricating separator TWI475741B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099147153A TWI475741B (en) 2010-12-31 2010-12-31 Separator substrate, electrochemical cell including separator, and method for fabricating separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099147153A TWI475741B (en) 2010-12-31 2010-12-31 Separator substrate, electrochemical cell including separator, and method for fabricating separator

Publications (2)

Publication Number Publication Date
TW201228073A TW201228073A (en) 2012-07-01
TWI475741B true TWI475741B (en) 2015-03-01

Family

ID=46933488

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099147153A TWI475741B (en) 2010-12-31 2010-12-31 Separator substrate, electrochemical cell including separator, and method for fabricating separator

Country Status (1)

Country Link
TW (1) TWI475741B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200810209A (en) * 2006-07-04 2008-02-16 Sumitomo Chemical Co Polymer electrolyte emulsion and use thereof
TW200939551A (en) * 2008-03-03 2009-09-16 Chengdu Zhongke Laifang Power Science & Technology Co Ltd Non-woven-fabric enhancement micro-pore polymeric membrane and the preparation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200810209A (en) * 2006-07-04 2008-02-16 Sumitomo Chemical Co Polymer electrolyte emulsion and use thereof
TW200939551A (en) * 2008-03-03 2009-09-16 Chengdu Zhongke Laifang Power Science & Technology Co Ltd Non-woven-fabric enhancement micro-pore polymeric membrane and the preparation method

Also Published As

Publication number Publication date
TW201228073A (en) 2012-07-01

Similar Documents

Publication Publication Date Title
JP6251141B2 (en) Separator, electrochemical cell including separator, and separator manufacturing method
CN109314207B (en) Separator and electrochemical device comprising the same
TWI577635B (en) Inorganic oxide powder and a slurry containing an inorganic oxide, and a lithium ion secondary battery using the same and a method for producing the same
JP6378196B2 (en) Ceramic coating on battery separator
JP6505052B2 (en) Electrochemical cell separator
JP2023058556A (en) Improved coated separators for lithium batteries and related methods
CN103181000B (en) The manufacturing method of diaphragm, the diaphragm manufactured by this method and the electrochemical apparatus for having the diaphragm
KR20200101958A (en) Separator with ceramic-comprising separator layer
KR102405618B1 (en) Laminable, Dimension-Stable Microporous Web
JP2023058602A (en) Improved battery separators and related methods
JP7416819B2 (en) Aqueous aluminum ion batteries, battery-capacitor hybrids, compositions of said batteries and battery-capacitors, and related methods of manufacture and use.
US20110311855A1 (en) Methods and systems for making separators and devices arising therefrom
KR20120039334A (en) Separator for electrochemical device and manufacturing method of the same
TW200931702A (en) Batteries having inorganic/organic porous films
TW201230453A (en) Electrospinning for integrated separator for lithium-ion batteries
JP2019537202A (en) Separation membrane for battery to which functional binder is applied and electrochemical device using the same
KR101301595B1 (en) Micro porous separator coated with ceramics and its preparing method
AU2009211726B2 (en) Separator for metal halogen battery
CN107768582A (en) A kind of lithium ion battery coats barrier film with aqueous ceramic
KR20170112248A (en) Method for manufacturing a separator and the separator manufactured by the method
TWI475741B (en) Separator substrate, electrochemical cell including separator, and method for fabricating separator
WO2019198499A1 (en) Porous body, separator for lead acid storage batteries, and lead acid storage battery
KR102168273B1 (en) Stretchable Batteries with Gradient Multilayer Conductors
CN112886143A (en) Multilayer structure composite diaphragm, preparation method thereof, secondary battery and electric equipment
KR20210003745A (en) Alumina powder and slurry containing the same, alumina porous film and laminated separator containing the same, and non-aqueous electrolyte secondary battery and production method thereof